【実施例】
【0080】
試験結果
磁気走査を使用してイオンビームの位置を制御する機能は、光子では可能ではないイオンの好適な特性である。これは、光子が電荷を持っていないためであり、したがって、光子ビームは、磁界よりもむしろ機械式コリメーションシステムで制御される。ある態様において、SS法は、治療体積を覆う三次元デカルト格子上での、イオンビームの磁気及び/または機械式走査を必要とする。例示的な態様において、ビームスポットの深さ方向の位置は、材料をビームに挿入して陽子ペンシルビームのエネルギーを変化させることによって、陽子加速器でビームエネルギーを制御することによって、または、両方の方法の組合せによって制御される。ある態様において、材料は、加速器とガントリーとの間のビームラインのどこかに配置することができる。一般的な材料は、ベリリウム及びカーボンを含んでもよい。標的の各位置で停止するイオンの数は、イオン加速器及びビーム輸送システム(すなわち、上述のようなイオン治療源及びその構成要素)によって制御することができ、以下でさらに詳細に論じられる治療計画プロセスにおいて、(システム制御装置を介した)コンピュータ最適化によって、最初に決定することができる。
【0081】
イオンビームの側方幅の一般的な基準は、シグマ(σ)であり、それは陽子の進行方向に垂直なライン上の、ビームの放射線量プロファイルの標準偏差である。σ−パラメータの説明は、ある態様による
図5cに提供される。
図5bは、頭頚部癌患者での単一の陽子ビームスポットの線量分布を示す。正方形は、示される軸方向のX線体軸断層写真スライスにおけるすべての点のブラッグピークの位置を表す。空気中のペンシルビームシグマの値σ
airは、陽子照射技術によって決まり、患者内部のσの増加は、変更できない物理的プロセスである、複数のクーロン散乱による。
図5cは、空気中の陽子ペンシルビームのガウシアン側方線量プロファイルを示し、σ及び80%〜20%半影部の定義を示す。
【0082】
標的側方の放射線量が鋭く下がることが特に重要である状況が、頭蓋内(脳)定位手術的照射(SRS)である。SRSにおいて、高い放射線量が、1回の高線量照射セッションで、聴神経腫などの良性病変及び脳転移などの悪性病変に対して照射される。小さい体積の健常組織が高い放射線量にさらされるとき、脳は壊死の影響を非常に受けやすい。そして、病変に照射できる線量は、それを囲む健常組織外殻の体積によって制限され、それは病変の体積に依存する。脳病変のイオンSS放射線手術は、病変を囲む組織外殻に、より低い線量を照射することができ、光子をベースとした放射線手術技術に比べて健康な脳の壊死の危険性を減少させる。SSに使用されるペンシルビームのσがある特定の閾値以下の場合のみ、イオン放射線手術のこのような利点を生じさせることができる。ある態様において、σは約5mmとすることができる。しかし、σはその他の態様において変えることができる。
【0083】
臨床標的体積(CTV)によって表される辺縁の脳腫瘍に対する光子及び陽子SS放射線手術治療計画の実施例が、
図14に示される。さまざまな放射線線量分布による、いくつかの異なる光子及び陽子SS計画が示される。示される光子照射技術は、強度変調回転照射(VMAT)及び円錐ベース放射線手術であり、陽子技術は、スポット走査(SS)である。
【0084】
図14において一人の患者に関して示されるように、ビームシグマが増加すると、治療計画の品質は低下する。
図14に示される放射線手術計画が頭蓋内脳腫瘍に関するものであるので、合併症の最も大きい危険が存在する組織は、健康な脳組織である。脳組織の壊死に関する正常組織障害発生率(NTCP)は、
図14の各計画に対して計算されてもよい。陽子治療計画については、ビームシグマが増加し、より高い線量が周囲の正常組織に照射されると、NTCPは増加する。陽子計画に対応するある範囲のNTCP値があるので、2つ(VMATまたは円錐ベース放射線外科)の光子計画のうちより好適なものに等しいNTCPを有する陽子計画をもたらす陽子ペンシルビームシグマとして「シグマクロス」を定義する。この値が、NTCPを50%まで減少させるのに必要なビームシグマを表すシグマ50%減少とともに、
図15にプロットされている。
【0085】
頭蓋内放射線手術患者に関して、DTSSが陽子ペンシルビームシグマを低減する効果を推定するために、
図16に示されるように、そのファントム面における陽子ビームが、所定の位置にDTCがある場合とない場合について、MCNPXコードによるモンテカルロシミュレーションを使用してシミュレートされた。従来の127MeVのエネルギーを有する陽子ビーム、5mmの初期シグマ、7.5g/cm
2のレンジシフタ厚さ、及び下流レンジシフタ面とファントムとの間の臨床的に現実的な5cmのエアギャップの場合(左側)、ファントム面における空気中のシグマは5.9mmであった。所定の位置にDTCがあり、及び下流トリマーとファントムとの間の5cmのエアギャップでは、ファントム面における空気中のシグマは2.3mmであった。これらの結果は、
図17にまとめられている。
【0086】
図14のものなどの光子及び陽子SS治療計画のセットは、11人の患者のために作成され、購入可能な陽子SSシステムを使用したとき、11人の患者のうちの8人(73%)が、光子計画と比べて改善された可能性があるNTCP値を有したことが決定され(
図18)、それは検討された腫瘍の深達度について、約5.9mmのシグマ値を有する。2.3mmのσ
air値を有する陽子ペンシルビームが臨床的に使用された場合、
図18に示される、検討された11人の患者の100%について、健康な脳のNTCPが光子放射線手術技術と比べて減少した。
【0087】
DTCによってもたらされる、従来のSSと比べたσ
airの改善は、既存の技術を使用して得ることができるが、既存の技術は、患者固有の黄銅開口部(すなわち、腫瘍の形状に一致するように切り抜かれた開口部を有する黄銅片)またはマルチリーフコリメータから成る。所定の黄銅開口部は腫瘍の単一平面に対する腫瘍範囲にのみ一致するように形づくられるので、開口部は、マルチリーフコリメータまたはDTCで可能である程度まで三次元線量分布を鋭くすることができない。さらに、黄銅開口部は、各患者のために、及び、患者を治療する各ビームのために製造する必要があり、照射プロセスまでに、カスタムメイドの開口部あたり500ドル程度の大きな追加費用が発生する。また、黄銅開口部は組立時間を必要とし、患者の治療の計画、準備、及び実施に必要な時間に制限を与える。患者は、計画が光子SRSで作成されるのと同じ日に治療されることが一般的であるため、これは、SRSの特に重要な制限である。この利点を除外することは、イオンSRSの幅広い採用に対する障害となる。
【0088】
MLCは、SS半影部を改善する手段として提案された。非特許文献1には、MLCが、低いエネルギー陽子ビームのSS半影部を鋭くすることに効果的である可能性があることが示されているが、陽子ビームエネルギーが増加すると収穫逓減が発生することが明らかにされている。表1に示されるように、MLCは、72MeV及び118MeVのビームエネルギーに対するブラッグピークの深さでの80%〜20%半影部を実質的に減少させたが、174MeVビームについては半影部を増加させた。これは、174MeV陽子ビームの20.5cmの飛程が、媒体内部の複数のクーロン散乱相互作用がMLCによって提供されたσ
airのいずれも改善をも支配する十分な高さであったためである。より浅い深さについては、複数のクーロン散乱相互作用が支配せず、MLCを使用した半影部の大きな改善が可能になった。表1の効果的なσ
air値は、MLCがある場合とない場合の半影部の比率でMLC前のσ
air値をスケーリングすることによって計算された。複数のクーロン散乱相互作用がイオンビームと患者組織との間で発生することを防止するために行うことができることはないので(
図5b)、コリメータがない場合と比べたDTCの利点は、線量分布を形づくる機能に関して、MLCのものと同様である。
【0089】
MLCに勝る、DTCを利用する利点は、DTCの面の全領域に対する使用可能なビーム領域の比率が、MLCの比率よりはるかに大きいことである。半影部は患者皮膚面までの距離によって幾何学的に大きくなるので、DTCまたはMLCを患者のできるだけ近くに配置することが重要である。放射線照射野から格納するとき、MLCリーフはどこかに格納しなければならず、MLCまわりのハウジングは大きくなる傾向がある。これにより、頭部及び頸部領域を治療するとき、MLCを患者皮膚面の10cm以内に移動させることが困難になる。
【0090】
最も小さく利用可能な2つのMLCは、それぞれ、
図19a〜bに示されるSiemens ModuLeaf及びRadionics MMLCであり、それぞれ、7.8cm×6.5cm及び6.9cm×5.4cmの物理的な照射野サイズを有する。ModuLeafは
図20にも示される。
図19aに示されるように、陽子ビームが通過できるノズル領域のパーセンテージは、DTCの約46%であり、それは15cm×15cmの物理的な照射野サイズであり、Siemens ModuLeafではわずか7%である。したがって、たとえ既存のMLCが患者皮膚面の近くに配置できるとしても、MLCの4つの接合された照射野(すなわち、1つのより大きい照射野を作るために組み合わせられた複数の小さい照射野)が、単一のDTC照射野と同じ領域を覆うために必要である。接合照射野は通常、
図20に示されるように、ModuLeafで治療される頭蓋内病変のためには必要ないが、接合を必要とするより大きい照射野が、多くの頭頸部、食道、肺、頭蓋脊椎、肉腫、及び肝癌の患者のために期待されている。さらに、市販のMLCは、陽子治療よりもむしろ光子治療のために最適化されており、陽子治療のためのビーム修正装置は、光子治療において使用されるより実質的に高い中性子線量にさらされるため、それは考慮すべき重要な点である。高い中性子線量は、中性子損傷により敏感でない電子機器の使用を必要とする。
【0091】
DTCをベースとしたDTSSの背景には、2つの主要な効果的な原理がある。第1に、比較的低エネルギーのイオンビームが使用されるとき、スポット走査線量分布はコリメーションシステムによって改善されるのみであり、それは陽子ビームに関して、患者皮膚面で160MeV以下のエネルギーを有する。これは、高エネルギービームのより深い深さでの半影部は、患者での分散に大部分は支配されるためである。この事実により、トリマーの放射線学的厚さを低いエネルギー陽子ビームの飛程のものよりわずかに大きくすることができ、光子及びイオン治療で使用されるマルチリーフコリメータ(MLC)などの従来のコリメータと比較して軽量となる。第2に、SSでは、コリメータは、ビームが標的の縁部に近いときのみ、標的の縁部に必要であり、トリマーの動きが走査されたビームの動きに干渉しない限り、ビームが他の場所にあるとき、トリマーは動いていることができる。
【0092】
ビームレット線量分布のモデリング
ある態様において、トリマー刃と相互作用した後、対称の入射陽子ビームレット(
図21aに示される)は、
図21bに示されるように、非対称にして、ビーム方向像において横に移動させることができる。例示的な態様において、非対称トリミングビームレットの側方分布は、非トリミングビームレットと同様に、ガウシアンパラメータを使用してさらに説明できる。これは、
図21cに示されるように、トリミングビームレットの4つの主要な横軸、すなわち、X
1、X
2、Y
1、及びY
2のそれぞれに沿ってガウス関数を当てはめることによって達成される。次いで、この手法により、側方プロファイルは以下のようにモデル化することができる。
ここで、μ
x(z)及びμ
y(z)は対象平面における最大線量の位置であり、σ
x1(z)、σ
x2(z)、σ
y1(z)、σ
y2(z)、は深さzにおいて(μ
x(z),μ
y(z))を中心とする、各主軸に沿った4つの半ガウス分布のシグマ値である。ヘビサイドステップ関数H(...)は、(μ
x(z),μ
y(z))を中心とする対応する半分の軸に、各指数項を制限する。数値的に決定された規格化因子A(z)による乗算は、すべてのzについて
を保証する。このような方法は、コリメーションから生じるものだけでなく、任意の非対称ビームレットに適用できる。
【0093】
ある態様において、トリマー刃と相互作用した後、トリミングビームレットの積分深部線量(IDD)曲線は、非トリミングビームレットの曲線から、
図22に示されるように変化する。深さ依存補正関数を適用することによって、トリミングビームレットIDD曲線は、非トリミングビームレットIDDから生成することができる。そのような補正関数は、以下の式の形態をとる。
D
+(z,R)=D
+(0)・(C・z+1)
ここで、D
+(z,R)は、トリミングIDDを生成するために非トリミングIDDに適用される深さ依存補正を表し、D
+(0)は、表面の非トリミングIDDと比較したトリミングIDDの入射線量(%)の増加であり、Cは、補正の深さ依存を決定するエネルギーの関数である定数パラメータである。以下の式は、D
T(z,R)によって表されるトリミングIDDが、非トリミング積分深部線量曲線D(z,R)及び上述の補正の追加によって得ることができる方法を説明する。
D
T(z,R)=D(z,R)+D
+(z,R)
【0094】
DTSS照射の時間依存トリマー位置の決定
ある態様において、標的体積全体に格子または六角形のパターンでスポットを配置し、その後、トリマー位置を定義することを、ビームスポットを配置するために使用することができる。任意のDTSSスポット配置技術は、従来のSSで照射できるものより優れている線量分布をさらに生成する。
【0095】
別の態様において、トリミングスポットピーク追跡(TSPT)は、格子または六角形のスポット配置パターンで達成できるものより優れた線量分布を生成する。TSPTは、標的体積への線量の原体性を最大化することは、線量が最大のトリミングスポットが標的体積の縁部に配置されることを必要とするという論理的推測に基づく。トリマーを離れた、標的媒体における陽子分散により、トリミングスポットのビーム方向像の最大線量の点は、走査マグネットがトリマーの上流でペンシルビームを向けている光線上で発生しない。よって、トリミングビームスポットの最大線量の点を配置することは、走査マグネット及びトリマーが一緒に機能することを必要とする。
【0096】
以下は、ある態様によるTSPT法の実施態様の説明である。例示的な態様によると、
図16〜17に示されるように、単一のトリマーは、陽子ペンシルビームスポットのトリマーの一方側で、σ
airの値を5.9mmから2.3mmまで減少させることができる。また、ビームスポットの最大線量の点の位置は、トリマーから離れて移動する。
図21a〜bは、トリマーの直交セットは、二次元ガウシアンとして陽子ペンシルビームスポットの両方の寸法について、σ
airの値を減少させることができることを示す。同様に、ペンシルビームの3つまたは4つの側面上のトリマーは、トリマーが配置される各側面におけるσ
airの値を減少させることができ、スポットピークの位置を移動させることができる。入射スポットの中心から異なる距離でトリマーを配置することによって、最大線量の点の位置及び二次元σ
airの値を変化させることができる。ある態様によると、トリミングペンシルビーム(すなわち、遮断トリマーによって形づくられたビーム)(TPB)ライブラリは、
図23に示されるように、異なるトリマー位置の組合せの計算を行うことができる。これらのTPBは、所望の線量分布を実現するために、イオンのペンシルビームの中心軸からのさまざまな距離でのさまざまなトリマー位置を表す。
【0097】
TPBライブラリが存在すると、適切なTPB最大線量位置、したがって、標的体積の所定の点のトリマー構成を選択する方法を定義することができる。
図24は、ビーム方向像における任意のエネルギー層での標的境界を示す。所望のTPB最大線量点は、標的境界上の等距離の点、たとえば5mm間隔でもよい点に配置することができる。標的境界上へのTBP線量最大の配置後、残りのビームスポットは、
図24に示されるような格子パターンで、標的体積中に配置することができる。あるいは、スポット位置の固定されたスポット格子は、正方形、六角形、またはその他のパターンで使用されてもよく、最も近いとなりのスポットは、標的境界に割り当てられてもよい。このような状況において、走査マグネットが常に標的外の標的境界に最も近いスポットを配置するように構成される場合、標的境界により近くまたは境界上にTPBの最大線量の点を配置することができるトリマー構成が存在する。所望のTPB最大線量点位置は、標的境界上である。
【0098】
それぞれの所望のTPB最大線量位置で、TSPTアルゴリズムは、ペンシルビームエネルギーのi=1,...,NTPBのトリミングスポットカーネルのライブラリを検索し、以下の検索条件を満たすTPBトリマー構成を選択する。
ここで、
別の可能なTPB検索条件は以下のとおりである。
ここで、
あるいは、検索TPB条件の重みつき組合せは、加重和として使用することができる。
ここで、wは、0と1との間で値が決められるスカラー加重係数である。
【0099】
別の態様によるTPB配置方針は、非常に小さいスポット間距離で多数の初期スポットを割り当て、各スポットに照射するためのイオンの数に比例するスポット重量を最適化することによって治療計画を生成することである。次いで、繰り返しプロセスにおいて、一部の低重量のスポットを取り除くことができ、照射のために必要なスポットの数が減少する。標的境界上の任意のトリミングスポットが現実的なトリマー位置で作成できない場合、それは最も近いスポット形状を有するものに置き換えられる。
【0100】
ある態様によると、4つのトリマーのそれぞれの位置を決定することは、
図4a〜dに示されるように、スポット位置、スポットサイズ、標的形状、及びユーザが治療されている面における標的の正常組織の外側に照射されることを受け入れる気がある、全スポットエネルギーの一部(ε)を考慮するアルゴリズムを必要とする。ある態様において、後述のように、このようなアルゴリズムは、DTSSソフトウェアによって実装することができる。
【0101】
ε=0の場合、トリマーは、任意のスポットエネルギーを標的の外側に蓄積させない。トリマーが各スポット間で位置を変化させなければならないことがあり、トリマーがない場合に対して照射時間が劇的に増加するため、これは湾曲縁部(非矩形)を有する標的にとって望ましくない。さらに、スポットエネルギーが標的外側に降りかかることを認めない場合、標的のある特定の領域が線量を受けるにはあまりに保守的なトリマー配置パターンになる可能性があり、その結果、標的への照射が不十分になる。これらの問題を回避するため、所定のビームスポットからのエネルギーのゼロ以外の部分が標的から外れることを認める選択肢を提供することができる。特に、ENT(正常組織に蓄積されるエネルギー)がε×E
tot(スポットにより蓄積される全エネルギー)以下でなければならないという制約条件の下で、アルゴリズムはET(標的に蓄積されるスポットエネルギー)を最大化する。
【0102】
ある態様において、方法は、
図25に示されるように、DTCシステムの射出窓のビーム方向像(BEV)平面における所定のエネルギーのスポットの直交空間座標として、x及びyを定義する。平面上の組織タイプは、関数A
T(x,y)及びA
NT(x,y)によって定義され、それは標的組織及び正常組織内部にまとめて値をつけて、それ以外は0とする。D(x,y,x
s,y
s)を、(x
s,y
s)を中心とするビームスポットによってBEV平面に照射される線量分布であるとし、それはこの簡素化された実施例のための二次元ガウス関数であると仮定される。
ここで、σ
x及びσ
yはそれぞれ、x及びy方向のスポット幅を定義する。
【0103】
x及びyトリマーの位置がそれぞれ、[X
1,X
2]及び[Y
1,Y
2]である場合、E
T及びE
NTが所定のBEV平面上で次のように計算される。
そして、E
tot=E
T+E
NTである。各スポットのトリマー位置は、以下の最適化問題を解くことによって決定できる。
最大化E
T
{X
1,X
2,Y
1,Y
2}
以下を条件とする:
ここで、制約条件(a)は正常組織に蓄積されるスポットエネルギーがユーザ指定の許容値を上回らないことを保証し、制約条件(b)は任意の1つのトリマー刃によってビームスポットの半分以下しか塞がれないことを保証し、制約条件(c)はトリマーによって定義される開口部がいくつかの最小領域ΔX
minΔY
minの下にないことを保証する。標的が非常に小さく、制約条件(c)に違反することなく制約条件(a)を満たすことができない場合、トリマー位置は制約条件(b)及び(c)を満たすように定義される。
【0104】
式(8)で定義される最適化問題は、以下の導関数を使用する勾配ベースの最適化技法で解決することができる。
【0105】
トリマーは、ビームが予定位置に達するときにビームを遮断する位置にある必要がある。これは、この段落に記載される軌跡モデルを使用して達成される。トリマー軌跡モデルの図が、
図26に示される。示されるように、トリマー軌跡モデルは、速度ではなく、時間、トリマー位置、及び加速度を示す。X
nは、時間T
nのトリマー位置であり、ここで、nは、トリマー移動間隔インデックスである。各移動間隔はM個のサブ間隔に分割され、t
m,nは、移動間隔nのサブ間隔mの初めの時間である。加速度は、所定のサブ間隔上に均等に適用され、a
0,nは、時間t
0,nとt
1,nとの間の加速度である。
【0106】
所定のトリマー縁部によるサブ間隔でなければならない位置がX
nによって与えられると仮定すると、ここで、n∈[0,N−1]は位置インデックスである。T
n、V
n、及びA
nをそれぞれ、位置nにあるときのトリマーの時間、速度、及び加速度とする。位置nとn+1との間のトリマー移動間隔及び移動時間として、それぞれ、ΔX
n=X
n+1−X
n及びΔT
n=T
n+1−T
nを定義し、ΔX
N−1=ΔT
N−1=0と定義する。トリマー縁部が位置nにあるときの、時間Tn及び縁部位置Xnは次のように計算できる。
そして、すべてのN位置の全トリマー移動時間はT
N−1である。
【0107】
移動時間ΔT
nを等しい長さの整数Mサブ間隔間に分割し、高分解時間t
m,nを以下のように定義する。
ここで、n∈[0,M−1]であり、時間t
m,nとt
m+1,nとの間の一定トリマー加速度としてa
m,nを定義する。したがって、時間t
m,nのトリマー速度及び位置は以下のとおりである。
したがって、それぞれ以下のとおりである。
【0108】
トリマー移動距離は、式(12)のX
m,nにv
m,nを代入することによって、加速度、速度、及び移動時間の関数として表現することができ、次いで、式(13)を使用して、x
M,n=X
n+1にx
m,nを設定することで、以下が得られる。
ここで、
【0109】
間隔nの間で加速度が一定のA
nである場合、m’∈[0,M−1]、γ
n=1/2A
nについてa
m’,n=A
nであり、式(14)は見慣れた運動方程式に変形する。式(14)は、二次方程式の根の公式を使用してΔT
nについて解くことができ、以下が得られる。
式(10)によりT
nの簡単な計算を行うことができる。
【0110】
トリマー動き最適化問題は、全トリマー移動時間T
N−1を最小化する加速度マトリクスaの要素a
m,nを明らかにすることである。問題は、以下のように定式化できる。
【0111】
制約条件(a)は、最初と最後のトリマー位置で速度が0であることを強制し、制約条件(b)は、トリマーの動き方向が変わる位置で速度が0であることを強制する。sgn(x)関数はxの符号を戻し、x<0の場合−1、x=0の場合0、x>0の場合1である。制約条件(c)は、すべての移動時間が負でないことを保証する。制約条件(d)及び(e)はトリマー加速度を保証し、それぞれ、速度の大きさは、Amax及びVmaxの機械的に指示された最大値以下のままである。制約条件(f)はγ
n及びV
nに対するΔT
nの導関数が発散せず、ΔT
nが実数であることを保証する。
【0112】
式(17)のすべての制約条件を満たすaの初期推定は、以下のように計算できる。すべてのnについて、M=2、V
n=0及びa
0,n=−a
1,nとする。そして、γ
n=a
0,nΔT
n/2及びΔX
n=a0,nΔT
2n/4=v
1,nΔT
n/2である。a
0,n=sgn(ΔX
n)A
maxを代入する場合、ΔT
n=√4ΔX
n/a
0,nであり、V
max<v
1,nの場合、v
1,n=V
maxを代入することができ、新たにΔT
n=|2ΔX
n/V
max|を計算し、a
0,n=4ΔX
n/ΔT
2n=V
2max/ΔX
nを再代入する。初期推定は、リサンプリングによる倍数である任意のMの場合まで拡張することができる。
【0113】
現在の段落において、aに対するT
N−1の勾配の式が提供され、次いで、式の各構成要素が得られる。a
m,nに対するT
N−1の導関数は、以下のように計算される。
ここで、
式(19)の構成要素は以下のとおりである。
及び、
ここで、
は、間隔nの間の平均加速度である。n’=n+1の場合の式(22)がn’=nの場合の式(19)によって決まり、n’>n+1の場合の式(22)がn’−1の場合の式(22)によって決まるため、式(19)の計算は再帰処理である。
【0114】
制約条件(a)及び(b)は以下の導関数を有する。
ここで、
制約条件(e)は以下のように書き換えることができる。
よって、制約条件(e)のa
m,nに対する導関数は以下の通りである。
【0115】
制約条件(f)の導関数は、以下の通りである。
式(29)の第2の偏導関数は、式(15)のγ
nを書き換えることによって計算することができ、a
m,nが和に配置されるところを示すことができる。
式(30)の右側の第1項はa
m,nから独立しており、括弧内の第1項及び第3項(和)もそうである。よって、a
m,nに対するそれらの導関数は消滅し、以下が得られる。
式(19)は、以下のように連鎖法則を適用することによって得られる。
式(29)の第2の偏導関数は、式(15)のγ
nを書き換えることによって計算することができ、a
m,nが和に配置されるところを示すことができる。
式(30)の右側の第1項はa
m,nから独立しており、及び、括弧内の第1項及び第3項(和)もそうである。よって、a
m,nに対する導関数は消滅し、以下が得られる。
【0116】
γ
n及びV
nに対する式(16)を区別することにより、ゼロ以外のγ
nの場合の、式(20)及び式(21)がそれぞれ生成される。それらの結果にロピタルの定理を適用することで、「±」が負であるとき、γ
nが0である場合の式(20)及び式(21)が得られる。n’=n+1の場合の式(22)は、式(12)でm=Mを設定することによって得られ、よってv
m,n=v
M,n=V
n+1=V
n’であり、ΔT
nがa
m,nによって決まる認識の下でa
m,nに対する結果を区別する。n’>n+1の場合の式(22)は、連鎖法則を使用して得られる。
式の右側の第1の偏導関数は、式(12)にv
m,n=v
M,n’−1=V
n’を設定することによって得られ、次いで、V
n’−1に対する結果を区別する。式(32)の第2の偏導関数は)(式(22)の場合のように)、先のn’の値からの式(22)の評価から、再帰的に得られる。
【0117】
図27は、本発明の実施形態によって開示された方法の一部を行うための例示的な動作環境を示すブロック図である。この例示的な動作環境は動作環境の単なる実施例であり、動作環境アーキテクチャの使用範囲または機能に関して任意の制限を提案するものとは意図されない。そして、動作環境は、例示的な動作環境に示される構成要素の任意の1つまたは組合せに関する任意の依存または要件を有することと解釈すべきではない。
【0118】
さらに、当業者は、本明細書に開示されるシステム及び方法が、コンピュータ1401の形態で汎用コンピューティング装置を利用できることを理解するであろう。上述の方法は、コンピュータ1401で行うことができる。たとえば、コンピュータ1401は、
図1〜2の上述された制御装置60の義務及び責任を果たすことができる。さらに、コンピュータ1401は、上述の照射制御装置62、SSシステム制御装置64、及び位置計画制御装置66の責任を果たし、制御することができる。
【0119】
コンピュータ1401の構成要素は、1つまたは複数のプロセッサまたは処理ユニット1403と、システムメモリ1412と、プロセッサ1403を含むさまざまなシステム構成要素をシステムメモリ1412に結合するシステムバス1413とを備えることができるが、それに限定されるものではない。多重処理ユニット1403の場合、システムは並列コンピューティングを利用することができる。
【0120】
システムバス1413は、メモリバスまたはメモリ制御装置、周辺バス、アクセラレイティッドグラフィックスポート、及びさまざまなバスアーキテクチャの任意のものを使用するプロセッサまたはローカルバスを含む、バス構造のいくつかの可能なタイプのうちの1つまたは複数を表す。一例として、このようなアーキテクチャは、業界標準アーキテクチャ(ISA)バス、マイクロチャネルアーキテクチャ(MCA)バス、拡張ISA(EISA)バス、ビデオエレクトロニクススタンダーズアソシエーション(VESA)ローカルバス、加速式グラフィックスポート(AGP)バス、及び、周辺コンポーネントインターコネクト(PCI)、PCI−Expressバス、パーソナルコンピュータメモリカード国際協会(PCMCIA)、ユニバーサルシリアルバス(USB)などを備えることができる。また、バス1413及び本説明で明示されるすべてのバスは、有線または無線のネットワーク接続で実装することも可能であり、プロセッサ1403、大容量記憶装置1404、オペレーティングシステム1405、DTSSソフトウェア1406、DTSSデータ1407、ネットワークアダプタ1408、システムメモリ1412、入出力インタフェース1410、ディスプレイアダプタ1409、ディスプレイ装置1411、及び、ヒューマンマシンインタフェース1402を含むサブシステムのそれぞれは、物理的に独立した場所にある1つまたは複数のリモートコンピューティング装置1414a、b、cの中に含有することができ、この形態のバスによって連結され、実質的に、完全分散システムを実装する。
【0121】
コンピュータ1401は通常、さまざまなコンピュータ可読媒体を備える。例示的な可読媒体は、コンピュータ1401で利用できる任意の利用可能な媒体とすることができ、たとえば、揮発性及び不揮発性媒体、取り外し可能及び取り外し不可能な媒体を備えるが、それらに限定することを意味していない。システムメモリ1412は、ランダムアクセスメモリ(RAM)などの揮発性メモリ、及び/または、読み取り専用メモリ(ROM)などの不揮発性メモリの形態のコンピュータ可読媒体を備える。システムメモリ1412は通常、DTSSデータ1407などのデータ、及び/または、オペレーティングシステム1405及びDTSSソフトウェア1406などの(すなわち、上述のさまざまな制御装置60及びモジュール62、64、66を制御する)プログラムモジュールを含有し、それらはすぐにアクセス可能、及び/または、現在、処理ユニット1403で作動されている。
【0122】
別の態様において、また、コンピュータ1401は、その他の取り外し可能/取り外し不可能、揮発性/不揮発性のコンピュータ記憶媒体も備えることができる。一例として、
図27は大容量記憶装置1404を示し、それはコンピュータコード、コンピュータ可読命令、データ構造、プログラムモジュール、及びその他のデータの不揮発性記憶装置をコンピュータ1401に提供することができる。たとえば、大容量記憶装置1404は、ハードディスク、取り外し可能な磁気ディスク、取り外し可能な光ディスク、磁気カセット、またはその他の磁気記憶装置、フラッシュメモリカード、CD−ROM、デジタル汎用ディスク(DVD)、またはその他の光記憶装置、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、電気的消去可能プログラム可能読み取り専用メモリ(EEPROM)などとすることができるが、それらに限定することを意味しない。
【0123】
任意選択的に、一例として、オペレーティングシステム1405及びDTSSソフトウェア1406を含む、任意の数のプログラムモジュールを、大容量記憶装置1404に格納することができる。オペレーティングシステム1405及びDTSSソフトウェア1406(または、そのいくつかの組合せ)のそれぞれは、プログラミング及びDTSSソフトウェア1406の要素を備えることができる。また、DTSSデータ1407も、大容量記憶装置1404に格納することができる。DTSSデータ1407は、当該技術分野において知られている1つまたは複数のデータベースのうちの任意のものに格納することができる。このようなデータベースの例には、DB2(登録商標)、Microsoft(登録商標) Access、Microsoft(登録商標) SQL Server、Oracle(登録商標)、mySQL、PostgreSQLなどが含まれる。データベースは、集中化、または多重システム全体に分散化することができる。
【0124】
別の態様において、ユーザは、入力装置(図示せず)を介してコマンド及び情報をコンピュータ1401に入力することができる。このような入力装置の例は、キーボード、ポインティングデバイス(たとえば、「マウス」)、マイク、ジョイスティック、スキャナ、グローブなどの触覚入力装置、及び、その他の人体被覆物などを備えるが、それらに限定することを意味しない。これら及びその他の入力装置は、システムバス1413に結合されるヒューマンマシンインタフェース1402を介して、処理ユニット1403に連結することができるが、パラレルポート、ゲームポート、IEEE1394ポート(Firewireポートとしても知られる)、シリアルポート、ユニバーサルシリアルバス(USB)などのその他のインタフェース及びバス構造で連結することができる。
【0125】
さらに別の態様において、ディスプレイ装置1411も、ディスプレイアダプタ1409などのインタフェースを介して、システムバス1413に連結できる。コンピュータ1401が1つまたは複数のディスプレイアダプタ1409を有することができ、コンピュータ1401が1つまたは複数のディスプレイ装置1411を有することができることが企図されている。たとえば、ディスプレイ装置は、モニタ、LCD(液晶ディスプレイ)、またはプロジェクタとすることができる。ディスプレイ装置1411に加えて、その他の出力周辺デバイスは、入出力インタフェース1410を介してコンピュータ1401に連結できるスピーカ(図示せず)及びプリンタ(図示せず)などの構成要素を備えることができる。方法の任意のステップ及び/または結果は、任意の形態で出力装置に出力することができる。このような出力は、視覚表現の任意の形態とすることができ、テキスト、グラフィック、アニメーション、音声、触覚などを含むがこれに限定されない。
【0126】
コンピュータ1401は、1つまたは複数のリモートコンピューティング装置1414a、b、cへの論理結合を使用して、ネットワーク化された環境で作動させることができる。一例として、リモートコンピューティング装置は、パーソナルコンピュータ、ラップトップコンピュータ、携帯型コンピュータ、サーバ、ルーター、ネットワークコンピュータ、ピア装置、またはその他の一般的なネットワークノードなどとすることができる。コンピュータ1401とリモートコンピューティング装置1414a、b、cとの間の論理結合は、ローカルエリアネットワーク(LAN)及び一般的なワイドエリアネットワーク(WAN)を介して作ることができる。このようなネットワーク接続は、ネットワークアダプタ1408によることができる。ネットワークアダプタ1408は、有線及び無線環境で実装することができる。このようなネットワーキング環境は、オフィス、企業規模のコンピュータネットワーク、イントラネット、及びインターネット1415において既存のものであり、当然のものである。
【0127】
ある態様によると、コンピュータ1401は、DTSSソフトウェア1406及びDTSSデータ1407を介して、ある態様によってSSイオン治療システム10の操作を制御することができる。別の態様において、コンピュータ1401は、本発明の制御装置60、ならびに、さまざまな制御装置(
図2を参照して論じられる照射制御装置62、SSシステム制御装置64、及び位置計画制御装置66)を備えることができる。
【0128】
説明上、アプリケーションプログラム及びオペレーティングシステム1405などのその他の実行可能プログラム構成要素は、個別のブロックとして本明細書に示されるが、このようなプログラム及び構成要素は、コンピューティング装置1401のさまざまな記憶構成要素内にさまざまな時に存在し、コンピュータのデータプロセッサ(単数または複数)で実行されることが認識される。DTSSソフトウェア1406の実施態様は、何らかの形態のコンピュータ可読媒体に格納することができる、または、それ全体に伝送することができる。任意の開示された方法は、コンピュータ可読媒体上で具現化されるコンピュータ可読命令によって実行することができる。コンピュータ可読媒体は、コンピュータでアクセスできる任意の利用可能な媒体とすることができる。一例として、コンピュータ可読媒体は、「コンピュータ記憶媒体」及び「通信媒体」を備えることができるが、それに限定することを意味していない。「コンピュータ記憶媒体」は、コンピュータ可読命令、データ構造、プログラムモジュール、またはその他のデータなどの情報の記憶のための任意の方法または技術で実装される揮発性及び不揮発性、取り外し可能及び取り外し不可能なメディアを備える。例示的なコンピュータ記憶媒体は、所望の情報を格納するために使用することができ、コンピュータでアクセスすることができる、RAM、ROM、EEPROM、フラッシュメモリ、またはその他のメモリ技術、CD−ROM、デジタル汎用ディスク(DVD)、またはその他の光学記憶、磁気カセット、磁気テープ、磁気ディスク記憶装置、またはその他の磁気記憶装置、あるいは任意のその他の媒体を含むが、これに限定されるものではない。
【0129】
本発明の上記説明により、当業者は、その最良の実施形態であると現在考えられるものを作り、使用することができるが、当業者は、本明細書の特定の実施形態、方法、及び実施例の変形、組合せ、及び等価物の存在を理解して、認識する。したがって、本発明は、上記実施形態、方法、及び実施例によって限定すべきではないが、本発明の範囲及び精神内のすべての実施形態及び方法によってすべきである。本発明の開示を理解して、完成させるのに必要な範囲で、本明細書に記載のすべての刊行物、特許、及び特許出願は、それぞれが個別に組み込まれたように、本明細書に同じ範囲まで参照によって明確に組み込まれる。
【0130】
よって、本発明の例示的な実施形態を説明したが、当業者は、開示内は例示のみであり、さまざまなその他の代案、適応、及び変更が本発明の範囲内で行われてもよいことを理解するであろう。したがって、本発明は、本明細書に示される特定の実施形態に限定されないが、以下の特許請求の範囲によってのみ限定される。