(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
本発明は、インターフェロン−α及びインターフェロン−ωを広域に中和する抗体、それらの抗体又は断片をコードするポリヌクレオチド、並びに上記を製造及び使用する方法に関する。
ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプと結合し、それらの生物活性を中和する、単離されたモノクローナル抗体。
前記ヒトIFN−ω及び前記ヒトIFN−αサブタイプの前記生物活性が、シグナル伝達性転写因子2(STAT2)、インターフェロン調節因子9(IRF9)、及びSEAPを安定に発現するHEK293細胞におけるインターフェロン誘導性ISG54プロモーター下での前記ヒトIFN−ω又は前記ヒトIFN−αサブタイプによって誘導された分泌胚アルカリホスファターゼ(SEAP)の発現である、請求項1に記載の抗体。
前記IFN−αサブタイプが、IFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aからなる群から選択される、請求項6に記載の抗体。
前記抗体が、それぞれ配列番号109、113、及び116の重鎖相補性決定領域(HCDR)1(HCDR1)、2(HCDR2)、及び3(HCDR3)のアミノ酸配列、並びにそれぞれ配列番号82、94、及び99の軽鎖相補性決定領域(LCDR)1(LCDR1)、2(LCDR2)、及び3(LCDR3)のアミノ酸配列を含む、請求項8に記載の抗体。
前記抗体が、それぞれ配列番号109、114、及び121の重鎖相補性決定領域(HCDR)1(HCDR1)、2(HCDR2)、及び3(HCDR3)のアミノ酸配列、並びにそれぞれ配列番号118、119、及び120の軽鎖相補性決定領域(LCDR)1(LCDR1)、2(LCDR2)、及び3(LCDR3)のアミノ酸配列を含む、請求項6に記載の抗体。
前記抗体が、IFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aからなる群から選択される少なくとも6つのヒトIFN−αサブタイプを中和する、請求項6に記載の抗体。
前記抗体が、それぞれ配列番号109、114、121、159、119、及び160のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む、請求項11に記載の抗体。
前記抗体が、IFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aからなる群から選択される少なくとも10のヒトIFN−αサブタイプを中和する、請求項6に記載の抗体。
前記抗体が、それぞれ配列番号109、114、121、161、119、及び162のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む、請求項14に記載の抗体。
前記抗体が、少なくとも前記ヒトIFN−αサブタイプのIFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αJ1、及びIFN−α4aを中和する、請求項15に記載の抗体。
前記抗体が、配列番号28と少なくとも90%、95%、又は97%同一の重鎖可変領域(VH)アミノ酸配列、及び配列番号150と少なくとも90%、95%、又は97%同一の軽鎖可変領域(VL)アミノ酸配列を含む、請求項5に記載の抗体。
前記置換が、置換M252Y/S254T/T256E、V234A/G237A/P238S/H28A/V309L/A330S/P331S、又はP238S/L234A/L235Aを含み、残基の番号付けがEU番号付けに準ずる、請求項25に記載の抗体。
前記VLが配列番号35、39、40、42、46、52、53、54、57、61、62、68、71、73、75、135、又は150のアミノ酸配列を含む、請求項27に記載の抗体。
前記抗体が、BLyS、CD40L、IL−6、CD27、BDCA2、IL−12、IL−23、IFN−αD、IL−17、CD20、IL−10、CD22、IL−21、ICOS、ICOSL、又はIFN−γと結合する、請求項31に記載の抗体。
請求項20に記載の抗体の生成方法であって、前記抗体が発現する条件下で請求項36に記載の宿主細胞を培養することと、前記宿主細胞によって生成された前記抗体を回収することと、を含む、方法。
免疫媒介炎症性疾患、自己免疫疾患、又は慢性ウイルス感染症の治療方法であって、請求項1、20、又は29に記載の単離された抗体の治療有効量を、それを必要とする患者に、前記疾患又は前記感染症を治療するのに十分な時間投与することを含む、方法。
前記免疫媒介炎症性疾患又は前記自己免疫疾患とは、狼瘡、乾癬、免疫性血小板減少症(ITP)、エカルディ−グチエール症候群(AGS)、全身性硬化症、シェーグレン症候群、筋炎、分類不能型免疫不全症(CVID)、自己免疫性甲状腺疾患、I型糖尿病、関節リウマチ、移植片拒絶反応、又は移植片対宿主病(GVHD)である、請求項38に記載の方法。
前記二重特異性抗体が、BLyS、CD40L、IL−6、CD27、BDCA2、IL−12、IL−23、IFN−αD、IL−17、CD20、IL−10、CD22、IL−21、ICOS、ICOSL、又はIFN−γを中和する、請求項45に記載の方法。
前記第2の治療薬が、BLyS、CD40L、IL−6、CD27、BDCA2、IL−12、IL−23、IFN−αD、IL−17、CD20、IL−10、CD22、IL−21、ICOS、ICOSL、又はIFN−γと結合する抗体である、請求項47に記載の方法。
前記第2の治療薬がプレドニゾン、プレドニゾロン、メチルプレドニゾロン、デフラザコート、ヒドロキシクロロキン、アザチオプリン、メトトレキサート、シクロホスファミド、ミコフェノール酸モフェチル(MMF)、ミコフェノール酸ナトリウム、シクロスポリン、レフルノミド、タクロリムス、リツキシマブ(商標)、又はベリムマブ(商標)である、請求項49に記載の方法。
【発明を実施するための形態】
【0028】
本明細書に引用される特許及び特許出願を含むが、それらに限定されない全ての刊行物は、完全に記載されているかのように、参照により本明細書に組み込まれる。
【0029】
本明細書で使用される用語は、特定の実施形態を記載する目的でのみ使用され、限定を意図するものではないと理解すべきである。特に断らないかぎり、本明細書において使用される全ての技術用語及び科学用語は、本発明が属する技術分野における当業者によって一般的に理解されているものと同じ意味を有する。
【0030】
本明細書に記載されているものと同様又は同等の任意の方法及び材料を、本発明の試験を実施するために使用することができるが、例示となる材料及び方法が本明細書に記載される。本発明を説明及び特許請求する上で以下の用語が用いられる。
【0031】
本明細書で使用される用語「特異的結合」又は「特異的に結合する」又は「結合する」とは、抗体が抗原又は抗原中のエピトープに他の抗原とよりも高い親和性で結合することを指す。典型的には、この抗体は、1×10
-8M以下(例えば1×10
-9M以下、1×10
-10M以下、1×10
-11M以下、又は1×10
-12M以下)の解離定数(K
D)で抗原又は抗原中のエピトープに結合し、典型的には、非特異的抗原(例えばBSA、カゼイン)に結合する場合のK
Dより少なくとも10倍未満のK
Dで結合する。解離定数は標準的手法を用いて測定することができる。しかしながら、抗原又は抗原中のエピトープに特異的に結合する抗体は、例えばヒト又はサル(例えばカニクイザル(Macaca fascicularis)(マカクザル(cynomolgus)、シノ(cyno))又はチンパンジー(Pan troglodytes)(チンパンジー(chimpanzee)、チンプ(chimp))といった他の関連抗原、例えば他の種からの同一の抗原(相同体)に対して交差反応性を有し得る。抗原又は抗原中のエピトープに特異的に結合する抗体は、少なくとも1つのインターフェロンアルファ(IFN−α)サブタイプ及びインターフェロンオメガ(IFN−ω)などの2つ又は3つ以上の別個の抗原間で共有されるエピトープに更に結合することができる(即ちIFN−αサブタイプ及びIFN−ωと交差反応する抗体)。
【0032】
本明細書で使用される用語「中和」若しくは「中和する」又は「中和抗体」若しくは「抗体アンタゴニスト」とは、組み換えヒトインターフェロンオメガ(IFN−ω)及び/又は少なくとも1つの組み換えヒトインターフェロンアルファ(IFN−α)サブタイプの生物活性を部分的に又は完全に阻害する抗体又は抗体断片を指す。中和抗体は、本明細書に記載するように、IFN−α及び/又はIFN−ωの生物活性のアッセイを用いて特定することができる。IFN−α及び/又はIFN−ω中和抗体は、測定されるIFN−α及び/又はIFN−ωの生物活性を20%、30%、40%、50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%又は100%阻害することが可能である。
【0033】
本明細書で使用される用語「インターフェロン−α」(IFN−α)は、ヒトアルファインターフェロンの全ての天然のサブタイプを指す。天然のIFN−αは、構造相同性の高い別個の遺伝子によってコードされた少なくとも12の密接に関連するタンパク質サブタイプからなる(Weissmann and Weber,Prog Nucl Acid Res Mol Biol.,33:251,1986;18:805〜816,1998)。ヒトインターフェロンの命名法は以下のウェブサイトに掲載されている。http://www_genenames_org/genefamilies/_IFN.表4は、他のI型IFNに加えて本明細書で使用されるIFN−αサブタイプの配列を示す。
【0034】
本明細書で使用される用語IFN−ωは、ヒトIFN−ωであって、配列番号1に示されるアミノ酸配列及びUniProt受入番号P05000を有するものを指す。ヒトIFN−ωは、位置80(T80)でのスレオニンからグルタミン酸への置換を有する配列番号2の変異体を更に含む。
【0035】
「I型インターフェロン」又は「IFN−I」は、共通のインターフェロン受容体IFNARに結合する、ヒトインターフェロン−αの全ての天然のサブタイプ、並びにインターフェロン−β、インターフェロン−ε、インターフェロン−ω、及びインターフェロン−κの1つのサブタイプを指す。
【0036】
本明細書で使用される用語「IFNAR」は、ヘテロダイマー又はIFNAR1及びIFNAR2である周知のインターフェロン受容体を指す。IFNAR1及びIFNAR2のタンパク質配列は、それぞれ配列番号26及び27に示される。IFNAR1の成熟細胞外ドメインは、配列番号26の残基28〜436の範囲であり、IFNAR2の成熟細胞外ドメインは、配列番号27の残基27〜243の範囲である。
【0037】
本明細書で使用される用語「抗体」は広義が意図され、ポリクローナル抗体、ネズミ、ヒト、ヒト化、及びキメラモノクローナル抗体を含むモノクローナル抗体、抗体断片、少なくとも2つの無傷の抗体又は抗体断片から形成される二重特異性抗体又は多重特異性抗体、二量体の、四量体の、若しくは多量体の抗体、一本鎖抗体、ドメイン抗体、並びに必要な特異性の抗原識別部を含む免疫グロブリン分子の任意の他の修飾された構成を含む免疫グロブリン分子を含む。
【0038】
免疫グロブリンは、重鎖の定常領域のアミノ酸配列に応じて、IgA、IgD、IgE、IgG、及びIgMの5つの大きなクラスに割り当てることができる。IgA及びIgGは、アイソタイプIgA
1、IgA
2、IgG
1、IgG
2、IgG
3及びIgG
4に更に下位分類される。任意の脊椎動物種の抗体軽鎖は、これらの定常領域のアミノ酸配列に基づき、2つの明らかに異なる種類(即ちカッパ(k)及びラムダ(λ))のうちの1つに割り当てることができる。
【0039】
用語「抗体断片」とは、例えば、重鎖相補性決定領域(HCDR)1、2、及び3、軽鎖相補性決定領域(LCDR)1、2、及び3、重鎖可変領域(VH)、又は軽鎖可変領域(VL)などの重鎖及び/又は軽鎖抗原結合部位を保有する免疫グロブリン分子の一部を指す。抗体断片としては、周知のFab、F(ab’)2、Fd、及びFvの断片、並びに1つのVHドメインからなるドメイン抗体(dAb)が挙げられる。VHドメイン及びVLドメインは、合成リンカーを介して一緒に連結して様々な種類の一本鎖抗体設計を形成することができ、VHドメイン及びVLドメインが別々の一本鎖抗体構築物で発現される場合、VH/VLドメインが分子内又は分子間で対合して、一本鎖Fv(scFv)又は二重特異性抗体などの一価の抗原結合部位を形成する。これに関しては、例えば国際公開公報第WO1998/44001号、同第WO1988/01649号、同第WO1994/13804号、同第WO1992/01047号で説明されている。
【0040】
抗体可変領域は、3つの「抗原結合部位」で遮られた「フレームワーク」領域からなる。抗原結合部位は、様々な用語を用いて定義される:(i)相補性決定領域(CDR)、これは、配列変異性に基づいてVH内に3つ(HCDR1、HCDR2、HCDR3)、及びVL内に3つ(LCDR1、LCDR2、LCDR3)存在する(Wu及びKabat,J Exp Med 132:211〜50,1970、Kabatら、Sequences of Proteins of Immunological Interest,5th Ed.Public Health Service,National Institutes of Health,Bethesda,Md.,1991)。(ii)「超可変領域」、「HVR」、又は「HV」が、VH内に3つ(H1、H2、H3)及びVL内に3つ(L1、L2、L3)存在する。この領域は、抗体可変ドメインであり、Chothia and Lesk(Chothia and Lesk,Mol.Biol.196:901〜17,1987)により定義される構造において超可変性である。他の用語には、「IMGT−CDR」(Lefrancら、Dev.Comparat.Immunol.27:55〜77,2003)及び「Specificity Determining Residue Usage」(SDRU)(Almagro,Mol Recognit 17:132〜43,2004)が含まれる。国際免疫遺伝情報(IMGT)データベース(http://www_imgt_org)は、抗原結合部位の標準化番号付け及び定義を提供している。CDR、HV、及びIMGTの表記間の対応については、Lefrancら、Dev.Comparat.Immunol.27:55〜77,2003に記載されている。
【0041】
本明細書で使用される「モノクローナル抗体」は、単一の分子組成を有する均質の抗体個体群を指す。モノクローナル抗体は非特異性であっても多重特異性であってもよい。
【0042】
本明細書で使用される「Chothia残基」は、Al−Lazikani(Al−Lazikaniら、J Mol Biol 273:927〜48,1997)に準じて番号付けされた抗体VL残基及びVH残基である。
【0043】
「フレームワーク」又は「フレームワーク配列」は、抗原結合部位として定義されたものを除く、可変領域の残りの配列である。抗原結合部位が上記のような様々な用語によって定義され得るため、フレームワークの正確なアミノ酸配列は抗原結合部位がどのように定義されるかに依存する。
【0044】
「ヒト化抗体」とは、抗原結合部位が非ヒト種に由来し、かつ可変領域フレームワークがヒト免疫グロブリン配列に由来する抗体を指す。ヒト化抗体がフレームワーク領域内に置換を含む場合があり、それにより、当該フレームワークは、発現したヒト免疫グロブリン又は生殖系列遺伝子配列の正確な複製物でない場合がある。
【0045】
「ヒト適合」抗体又は「ヒトフレームワーク適合(HFA)」抗体とは、米国特許出願公開第US2009/0118127号に記載の方法に従って適合されたヒト化抗体を指す。ヒト適合抗体は、CDR1及びCDR2ループ、並びにCDR3ループの一部の最大CDRとFRとの類似性、長さ適合性、及び配列類似性に基づいてアクセプターヒトフレームワークを選択することによりヒト化される。
【0046】
「ヒト抗体」とは、フレームワーク及び抗原結合部位領域の両方がヒト起源の配列に由来する重鎖可変領域及び軽鎖可変領域を有する抗体を指す。抗体が定常領域を含む場合、定常領域もヒト起源の配列に由来する。
【0047】
ヒト抗体は、抗体の可変領域がヒト生殖系列免疫グロブリン又は再編成された免疫グロブリン遺伝子を使用する系から得られた場合のヒト起源の配列に「由来する」重鎖可変領域又は軽鎖可変領域を含む。そのような例示的な系は、ファージ上に提示されるヒト免疫グロブリン遺伝子ライブラリ、及び本明細書に記載されるヒト免疫グロブリン遺伝子座を保有するマウスなど、遺伝子組み換え非ヒト動物を含む。「ヒト抗体」は、例えば天然に存在する体細胞突然変異又は意図的な置換導入により、ヒト生殖系列又は再編成された免疫グロブリン配列と比較したとき、アミノ酸の相違を含み得る。典型的には、「ヒト抗体」は、アミノ酸配列において、ヒト生殖系列又は再編成された免疫グロブリン遺伝子によってコードされるアミノ酸配列と、少なくとも約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、又は100%同一である。いくつかの場合では、「ヒト抗体」は、例えばKnappikら(2000)J Mol Biol 296:57〜86)に記載されるヒトフレームワーク配列分析から得られたコンセンサスフレームワーク配列、又は例えばShiら(2010)J Mol Biol.397:385〜96,2010、及び国際公開公報第WO2009/085462号に記載されるファージ上に提示されるヒト免疫グロブリン遺伝子ライブラリに組み込まれた合成HCDR3を含み得る。
【0048】
単離されたヒト化抗体は合成である。ヒト抗体は、ヒト免疫グロブリン配列に由来するが、合成CDR及び/若しくは合成フレームワークを組み込むファージディスプレイなどの系を用いて生成することができるか、又は抗体特性を改善するためにインビトロ突然変異誘発に供することができ、インビボでヒト抗体生殖系列レパートリー内に天然に存在しない抗体をもたらす。
【0049】
ヒト抗体は、フレームワーク又は抗原結合部位に置換を含む場合があり、それにより、該ヒト抗体は、発現したヒト免疫グロブリン又は生殖系列遺伝子配列の正確な複製物でない場合がある。しかしながら、抗原結合部位が非ヒト種由来である抗体は、「ヒト抗体」の定義には含まれない。
【0050】
本明細書で使用される用語「組み換え」とは、組み換え方法によって調製、発現、作製、又は単離された様々なIFN−αサブタイプ又はIFN−ωなどの抗体及び他のタンパク質を含む。
【0051】
本明細書で使用される用語「エピトープ」とは、抗体が特異的に結合する抗原の一部を意味する。エピトープは通常、アミノ酸又は多糖類側鎖のような部分の化学的に活性な(極性、非極性、又は疎水性など)表面基からなり、特定の3次元構造特性及び特定の電荷特性を有し得る。エピトープは、立体配座空間単位を形成する連続した及び/又は連続していないアミノ酸からなり得る。連続していないエピトープについて、抗原の直鎖配列の異なる部分からのアミノ酸は、タンパク質分子の折り畳みを通じて、3次元空間において近接する。
【0052】
本明細書で使用される「二重特異性」とは、2つの別個の抗原に結合する抗体、又は抗原内の2つの別個のエピトープに結合する抗体を指す。二重特異性抗体は他の関連抗原と交差反応性を有してもよく、又は少なくとも1つのIFN−αサブタイプ及びIFN−ωなどの2つ若しくは3つ以上の別個の抗原間で共有されるエピトープに結合してもよい。
【0053】
本明細書で使用される用語「と組み合わせて」は、薬剤又は治療薬が、混合物中で一緒に、単独薬剤として同時に、又は単独薬剤として順次に任意の順序で、ヒトなどの動物種に投与され得ることを意味する。
【0054】
本明細書で使用される用語「IFN−αの生物活性」及び「IFN−ωの生物活性」とは、それぞれ、IFN−α及びIFN−ωがその受容体IFNARに結合した結果として生じる任意の活性を指す。IFN−α及びIFN−ωの1つの生物活性は、シグナル伝達性転写因子2(STAT2)、インターフェロン調節因子9(IRF9)、及びSEAPを標準的な方法を用いて安定に発現するHEK293細胞におけるISG54などのインターフェロン誘導性プロモーター下で、分泌胚アルカリホスファターゼ(SEAP)の発現を誘導するIFN−α及びIFN−ωの能力である。別のIFN−α及びIFN−ωの生物活性は、本明細書に記載されるように、末梢血単核細胞(PBMC)又は全血からのケモカインIP−10(CXCL10)の産生の誘導である。
【0055】
用語「ベクター」は、生物系内で複製されることができる、又はそのような系間で移動可能である、ポリヌクレオチドを意味する。ベクターポリヌクレオチドは典型的には、生物系内でこれらのポリヌクレオチドの複製又は維持を促進するように機能する複製起点、ポリアデニル化シグナル、又は選択マーカーなどの要素を含んでいる。そのような生物系の例としては、細胞、ウイルス、動物、植物、及びベクターを複製することができる生物学的成分を利用して再構成された生物系を挙げることができる。ベクターを構成するポリヌクレオチドは、DNA若しくはRNA分子又はこれらのハイブリッド分子であり得る。
【0056】
用語「発現ベクター」は、発現ベクター中に存在するポリヌクレオチド配列によってコードされるポリペプチドの翻訳を指示するために、生物系又は再構成生物系において利用することができるベクターを意味する。
【0057】
用語「ポリヌクレオチド」は、糖−リン酸骨格又は他の同等の共有結合化学作用により共有結合を介して連結されたヌクレオチド鎖からなる分子を意味する。二本鎖及び一本鎖DNA及びRNAが、ポリヌクレオチドの典型的な例である。
【0058】
用語「ポリペプチド」又は「タンパク質」は、ペプチド結合により連結されてポリペプチドを形成する少なくとも2つのアミノ酸残基を含む分子を意味する。50アミノ酸未満の小ポリペプチドを「ペプチド」と呼ぶ場合がある。
【0059】
本明細書では表1に示すような従来の1文字及び3文字のアミノ酸コードを用いる。
【0061】
物質の組成
本発明は、ヒトインターフェロンオメガ(IFN−ω)及び複数のヒトインターフェロンアルファ(IFN−α)のサブタイプ(抗IFN−α/ω抗体)に結合し、その活性を中和するモノクローナル抗体を提供する。本発明は、少なくとも部分的に、IFN−α単独の場合と比較して同様の免疫調節効果を有する狼瘡病原におけるINF−ωの役割の理解に基づく。IFN−ωが、狼瘡患者の血清中に存在し、かつそこで活性であることが判明しており、IFN−ωが、IFN−αと比較して同様のサイトカイン放出プロファイル及び遺伝子発現プロファイル、樹状細胞分化、並びにT細胞に依存しないB細胞の活性化を誘導することが判明しており、これは、IFN−α及びIFN−ωを中和して治療効果を最大化する理論的根拠の基礎を提供する。本発明は、少なくとも部分的に、本発明のIFN−α/ω抗体が結合するIFN−ωと複数のIFN−αサブタイプとによって共有される中和性が最小のエピトープを特定することにも基づく。本発明のIFN−α/ω抗体は、IFN−ω及び複数のIFN−αサブタイプを中和し得るため、これらは、複数のIFN−αサブタイプを中和するがIFN−ωは中和しない抗体と比較して、I型IFN及びIFNシグネチャのSLE関連調製物を中和する上でより効力があり得る。したがって、本発明の抗体は、狼瘡を含む免疫媒介炎症性疾患又は自己免疫疾患の治療により効果的であり得る。本発明のIFN−α/ω抗体はIFN−βを中和しないため、全てのI型IFNを遮断することが予測される抗IFNAR療法と比較して、より好ましい安全性及びPKプロファイルを有し得る。
【0062】
本明細書に記載され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の一実施形態は、ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、それらの生物活性を中和する、単離されたモノクローナル抗体である。
【0063】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、ヒトIFN−ωの活性が、シグナル伝達性転写因子2(STAT2)、インターフェロン調節因子9(IRF9)、及びSEAP(本明細書で説明する「ISREアッセイ」)を安定に発現するHEK293細胞におけるインターフェロン誘導性ISG54プロモーター下での分泌胚アルカリホスファターゼ(SEAP)のヒトIFN−ωによって誘導された発現である場合、本発明の抗体は、少なくとも約1×10
-9M以下、約1×10
-10M以下、約5×10
-11M以下、又は約1×10
-11M以下のIC
50でヒトIFN−ωの活性を中和する。
【0064】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aからなる群から選択される少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプを中和する。
【0065】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αH2、及びIFN−αKを中和する。
【0066】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αG、IFN−αH2、及びIFN−αKを中和する。
【0067】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αF、IFN−αG、IFN−αH2、及びIFN−αKを中和する。
【0068】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αF、IFN−αG、IFN−αH2、及びIFN−αKを中和する。
【0069】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αF、IFN−αG、IFN−αH2、IFN−αJ1、及びIFN−αKを中和する。
【0070】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αG、IFN−αH2、及びIFN−αKを中和する。
【0071】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αF、IFN−αG、IFN−αH2、及びIFN−αKを中和する。
【0072】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αC、IFN−αG、IFN−αH2、及びIFN−αKを中和する。
【0073】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αC、IFN−αF、IFN−αG、及びIFN−α4aを中和する。
【0074】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、及びIFN−αKを中和する。
【0075】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αF、IFN−αG、IFN−αH2、IFN−αJ1、及びIFN−αKを中和する。
【0076】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αJ1、及びIFN−αKを中和する。
【0077】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、及びIFN−α4aを中和する。
【0078】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αWA、及びIFN−α4aを中和する。
【0079】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aを中和する。
【0080】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びにIFN−αA、IFN−αB、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aを中和する。
【0081】
本明細書に記載され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の抗体は、IFN−ωを中和することに加えて、少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、これらを中和し得る。これらのIFN−αサブタイプ及びIFN−ωは、標準的な方法を使用した組み換え発現によって産生することができる。分泌を指示するために使用され得る例示的なシグナル配列は、配列番号21〜25に示される。
【0082】
本明細書に記載され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の抗体のIFN−α及びIFN−ωを中和する能力は、インターフェロン応答性プロモーター下でレポーター遺伝子を発現する細胞株を使用して種々のIFN−αサブタイプ及び/又はIFN−ωで細胞を刺激するレポーター遺伝子アッセイで試験することができる。例えば、完全に活性なI型IFNシグナル伝達経路を発現する(STAT2及びIRF9を安定に発現する)ように設計され、IFN−α/β誘導性ISG54プロモーターの制御下で、SEAPレポーター遺伝子でトランスフェクトされたHEK−Blue(商標)IFN−α/β細胞(InvivoGen(San Diego,CA)を、本明細書に記載したように使用することができる。周知の方法を用いて、アルカリホスファターゼからのシグナルは検出可能であり、阻害に関するIC
50は計算可能である。
【0083】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、ヒトIFN−ωの生物活性が本明細書の実施例1に記載されるように、アッセイ「ISREレポーター遺伝子アッセイ」を用いて、シグナル伝達性転写因子2(STAT2)、インターフェロン調節因子9(IRF9)、及びSEAPを安定に発現するHEK293細胞におけるインターフェロン誘導性ISG54プロモーター下での分泌胚アルカリホスファターゼ(SEAP)発現の阻害である場合、本発明の抗体は、約1×10
-9M以下、約1×10
-10M以下、約5×10
-11M以下、又は約1×10
-11M以下のIC
50値でヒトIFN−ωの生物活性を中和する。
【0084】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、IC
50が本明細書に記載の「ISREレポーター遺伝子アッセイ」で測定されるとき、本発明の抗体は、少なくとも約1×10
-10M以下のIC
50値でヒトIFN−ωの生物活性を中和する。
【0085】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、IC
50が本明細書に記載の「ISREレポーター遺伝子アッセイ」で測定されるとき、本発明の抗体は、約1×10
-10M〜約6×10
-12MのIC
50値でヒトIFN−ωの生物活性を中和する。当業者であれば、ISREレポーター遺伝子アッセイのアッセイ偏差が、典型的にはおよそ約0.28(log(M))のpIC
50の範囲内であり得ることを理解するであろう。したがって、用語「約」は、アッセイにおける典型的な標準偏差を表す。例えば、1×10
-9MのIC
50の典型的なSDは、約0.53×10
-9〜1.9×10
-9である。
【0086】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、少なくとも約2×10
-10M以下、約1.5×10
-10M以下、又は約1×10
-10M以下のIC
50値で少なくとも3、4、5、6、7、8、9、10、又は11のヒトIFN−αサブタイプにおける生物活性を中和する。
【0087】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、IC
50が本明細書に記載の「ISREレポーター遺伝子アッセイ」を用いて測定されるとき、本発明の抗体は、少なくとも約1×10
-10M以下のIC
50値でヒトIFN−ωの活性、及び約2×10
-10M以下、約1.5×10
-10M以下、又は約1×10
-10M以下のIC
50値で少なくとも6のヒトIFN−αサブタイプの活性を中和する。
【0088】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、IC
50が本明細書に記載の「ISREレポーター遺伝子アッセイ」を用いて測定されるとき、本発明の抗体は、少なくとも約1×10
-10M以下のIC
50でヒトIFN−ωの活性、及び約2×10
-10M以下、約1.5×10
-10M以下、又は約1×10
-10M以下のIC
50値で少なくとも10のヒトIFN−αサブタイプの活性を中和する。
【0089】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、IC
50が本明細書に記載の「ISREレポーター遺伝子アッセイ」を用いて測定されるとき、本発明の抗体は、少なくとも約1×10
-10M以下のIC
50でヒトIFN−ωの活性、及び約1×10
-10M以下のIC
50値で少なくとも6のヒトIFN−αサブタイプの活性を中和する。
【0090】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、IC
50が本明細書に記載の「ISREレポーター遺伝子アッセイ」を用いて測定されるとき、本発明の抗体は、少なくとも約1×10
-10M以下のIC
50でヒトIFN−ωの活性、及び約1×10
-10M以下のIC
50値で少なくとも10のヒトIFN−αサブタイプの活性を中和する。
【0091】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、250U/mlのインターフェロンによって誘導された全血中の白血球インターフェロンによって誘導されたIP−10放出を、10μg/mlの抗体の存在下では抗体の不在下と比較して約50%以上阻害する。
【0092】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、全血中の全身性紅斑性狼瘡(SLE)免疫複合体によって誘導されたIP−10放出を、10μg/mlの抗体の存在下では抗体の不在下と比較して約50%以上阻害する。
【0093】
本明細書に記載され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の抗体は、IFNによって誘導された末梢血単核細胞(PBMC)又は全血からのIP−10放出などのIFNによって誘導されたサイトカイン放出を阻害する能力を評価することによってその中和能力を試験することができる。例えば、PBMCは、試験されるIFN及び抗体の予め形成された複合体で処置した標準的なプロトコルを使用して健常ボランティアからのヘパリン化全血から単離され、IP−10の放出は、Milliplexサイトカイン/ケモカインキット(Millipore、Premixed 39 plex)のような標準的な方法を使用して測定される。本発明の抗体は、抗体の不在下でのIFNによって誘導されたIP−10放出と比較して、IP−10放出を少なくとも30%、40%、50%、60%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%、又は100%阻害することができる。
【0094】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、約1×10
-10M以下、約5×10
-11M以下、約1×10M
-11以下、又は約5×10
-12M以下の解離定数(K
D)でヒトIFN−ωに結合する。
【0095】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、IFN−ω、並びに約5×10
-10M以下、約1×10
-10M以下、約5×10
-11M以下、約1×10
-11M以下、又は約5×10
-12M以下のK
Dを有するIFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aからなる群から選択される少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合する。
【0096】
IFN−ω又は様々なIFN−αサブタイプに対する抗体の親和性は、任意の好適な方法を用いて実験により決定することができる。そのような方法では、ProteOn XPR36、Biacore 3000、若しくはKinExA装置、ELISA、又は当業者に周知の競合的結合アッセイを利用することができる。特定の抗原/IFN−ω又はIFN−αサブタイプの相互作用の測定された親和力は、異なる条件(例えば、容量オスモル濃度、pH)下で測定したときに様々であり得る。したがって、親和性及び他の結合パラメータ(例えば、K
D、K
on、K
off)の測定は、好ましくは標準化条件及び例えば本明細書に記載の緩衝液などの標準化緩衝液を用いて行われる。当業者であれば、例えばBiacore 3000又はProteOnを用いた親和性測定での内部エラー(標準偏差(SD)として測定されるもの)が典型的には、典型的な検出範囲内で測定した場合、5〜33%の範囲内であり得ることを理解するであろう。したがって、用語「約」は、アッセイにおける典型的な標準偏差を表す。例えば、K
Dが1×10
-9Mの場合の典型的なSDは、最大±0.33×10
-9Mである。
【0097】
ヒトIFN−ω及びIFN−αサブタイプに所望の親和性及び中和特性で結合する抗体は、ヒトIFN−ω及び/又はIFN−αサブタイプでパニングすることによって、かつ任意に更なる抗体親和性成熟によって、変異体又は断片のライブラリから選択され得る。一例示的なパニングキャンペーンでは、ファージライブラリを逐次的に、又はチンパンジーIFN−ω並びにヒトIFN−αサブタイプのIFN−α2、IFN−α1、IFN−αH2、IFN−αG、及びIFN−αFの混合物を用いてパニングしてもよい。あるいは、本発明の抗体は、チンパンジー及びマカクザル(cynomolgus)IFN−ω、ヒトIFN−αサブタイプのIFN−αD、IFN−αJ1、IFN−αC、IFN−αB2、IFN−αH2、IFN−αA、IFN−α4a、IFN−αG、IFN−αF、IFN−αWA、及びIFN−αIでマウスを免疫して、IFN−ω及び様々なIFN−αサブタイプへの結合のためにそのハイブリオーマ(hybriomas)をスクリーニングし、続いて本明細書で説明する方法を用いて抗体の中和能力を評価することによって生成してもよい。
【0098】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、114、及び121の重鎖相補性決定領域(HCDR)1(HCDR1)、2(HCDR2)、及び3(HCDR3)のアミノ酸配列、並びに配列番号118、119、及び120の軽鎖相補性決定領域(LCDR)1(LCDR1)、2(LCDR2)、及び3(LCDR3)のアミノ酸配列を含む。
【0099】
例示的なそのような抗体は、抗体IFWM3308、IFWM3307、IFWM3410、IFWM3322、IFWM3385、IFWM3416、IFWM3310、IFWM3400、IFWM3321、IFWM3522、IFWM3524、IFWM3320、IFWM3304、IFWM3520、IFWM3399、IFWM3314、IFWM3331、IFWM3405、IFWM3442、IFWM3525、IFWM3423、IFWM3444、及びIFWM3421である。これらの抗体は、約1×10
-10 M以下のIC
50値でヒトIFN−ω及び少なくとも3つのIFN−αサブタイプを中和し、LCDR1(配列番号118)、LCDR2(配列番号119)、LCDR3(配列番号120)、HCDR2(配列番号114)、及びHCDR3(配列番号121)のコンセンサスアミノ酸配列、並びにHCDR1(配列番号109)の定常(constant)アミノ酸配列を含む。少なくとも配列番号28、31、157、又は158のVH残基位置103、配列番号35、39、40、42、46、52、53、54、71、73、75、又は135のVL残基位置30、31、32、50、91〜94、又は96、並びに配列番号57、61、62、68、及び150のVL残基位置30、31、32、50、51、92〜95、又は97に置換を有する抗体は、親IFWM371抗体と比較して改善された効力を有する抗体をもたらした。
【0100】
配列番号118
QSIX
1X
2X
3X
4、[式中、
X
1はG、D、A、R、E、S、又はNであり、
X
2はD、G、N、S、R、E、又はKであり、
X
3はF、A、N、T、S、又はVであり、
X
4はY、Nであるか、又は欠失している]。
【0101】
配列番号119
X
5AS、[式中、
X
5はF、W、又はGである]。
【0102】
配列番号120
QQX
6X
7X
8X
9PX
10T、[式中、
X
6はA、G、S、又はWであり、
X
7はL、Y、H、W、F、又はIであり、
X
8はD、又はSであり、
X
9は、F、T、L、N、又はWであり、
X
10はL、F、又はIである]。
【0103】
配列番号114
IX
11X
12SDSDT、[式中、
X
11はD、又はAであり、
X
12はP、又はAである]。
【0104】
配列番号121
ARHPGLX
13WAPDFDY、[式中、
X
13はA、又はNである]。
【0106】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、114、121、159、119、及び160のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0107】
例示的なそのような抗体は、抗体IFWM3400、IFWM3321、IFWM3522、IFWM3524、IFWM3320、IFWM3304、IFWM3520、IFWM3399、IFWM3314、IFWM3331、IFWM3405、IFWM3442、IFWM3525、IFWM3423、IFWM3444、及びIFWM3421である。これらの抗体は、約1×10
-10M以下のIC
50値でヒトIFN−ω及び少なくとも6つのIFN−αサブタイプを中和し、LCDR1(配列番号159)、LCDR2(配列番号119)、LCDR3(配列番号160)、HCDR2(配列番号114)、及びHCDR3(配列番号121)のコンセンサスアミノ酸配列、並びにHCDR1(配列番号109)の定常アミノ酸配列を含む。
【0108】
配列番号159
QSIX
14X
15X
16X
17、[式中、
X
14はG、D、A、E、S、又はNであり、
X
15はD、G、N、S、R、又はRであり、
X
16はF、A、N、S、又はVであり、
X
17はY、Nであるか、又は欠失している]。
【0109】
配列番号160
QQX
18X
19X
20X
21PX
22T、[式中、
X
18はA、G、又はSであり、
X
19は、Y、H、W、又はFであり、
X
20はD、又はSであり、
X
21は、F、T、L、又はWであり、
X
22はL、F、又はIである]。
【0110】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、114、121、161、119、及び162のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0111】
例示的なそのような抗体は、抗体IFWM3405、IFWM3442、IFWM3525、IFWM3423、IFWM3444、及びIFWM3421である。これらの抗体は、少なくとも約2×10
-10M以下、約1.5×10
-10M以下、又は約1×10
-10M以下のIC
50値でヒトIFN−ω及び少なくとも10のIFN−αサブタイプを中和し、LCDR1(配列番号161)、LCDR2(配列番号119)、LCDR3(配列番号162)、HCDR2(配列番号114)、及びHCDR3(配列番号121)のコンセンサス配列、並びにHCDR1(配列番号109)の一定のアミノ酸配列を含む。
【0112】
配列番号161
QSIX
23X
24X
25X
26、[式中、
X
23はA、又はDであり、
X
24はN、又はGであり、
X
25はF、N、又はSであり、
X
26はY、Nであるか、又は欠失している]。
【0113】
配列番号162
QQX
27X
28X
29X
30PX
31T、[式中、
X
27はG、又はSであり、
X
28は、Yであり、
X
29はDであり、
X
30はF、T、又はLであり、
X
31はL、F、又はIである]。
【0114】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、ヒトIFN−ω、並びにIFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aからなる群から選択される少なくとも10のヒトIFN−αサブタイプを中和する。
【0115】
本明細書に記載の本発明のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本抗体は、ヒトIFN−ω、並びに少なくともヒトIFN−αサブタイプのIFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αJ1、及びIFN−α4aを中和する。
【0116】
本明細書に記載の本発明のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本抗体は、IFN−αD又はIFN−α1に結合せず、又はこれを中和しない。
【0117】
本明細書に記載の本発明のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本抗体は、IFN−βに結合せず、又はこれを中和しない。
【0118】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、
配列番号109のHCDR1アミノ酸配列、
配列番号111、112、又は113のHCDR2アミノ酸配列、
配列番号115、又は116のHCDR3アミノ酸配列、
配列番号76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、又は91のLCDR1アミノ酸配列、
配列番号93、94、又は95のLCDR2アミノ酸配列、及び
配列番号96、97、98、99、100、101、102、103、104、105、106、又は107のLCDR3アミノ酸配列を含む。
【0119】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号
a)それぞれ109、113、116、77、93、及び104、
b)それぞれ109、113、116、85、93、及び96、
c)それぞれ109、113、115、79、95、及び107、
d)それぞれ109、113、116、76、93、及び103、
e)それぞれ109、113、115、85、93、及び96、
f)それぞれ109、113、115、89、95、及び100、
g)それぞれ109、113、116、86、93、及び105、
h)それぞれ109、113、115、76、93、及び103、
i)それぞれ109、113、116、80、93、及び97、
j)それぞれ109、113、116、84、93、及び97、
k)それぞれ109、113、116、90、93、及び97、
l)それぞれ109、113、116、88、93、及び102、
m)それぞれ109、113、116、87、93、及び105、
n)それぞれ109、113、116、91、93、及び106、
o)それぞれ109、113、115、80、93、及び97、
p)それぞれ109、113、116、83、93、及び101、
q)それぞれ109、113、116、82、94、及び98、
r)それぞれ109、113、115、78、95、及び100、
s)それぞれ109、111、116、81、93、及び106、
t)それぞれ109、113、116、82、94、及び99、
u)それぞれ109、113、115、81、93、及び106、
v)それぞれ109、112、116、81、93、及び106、又は
w)それぞれ109、113、116、81、93、及び106のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3アミノ酸配列を含む。
【0120】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、77、93、及び104のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0121】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、85、93、及び96のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0122】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、115、79、95、及び107のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0123】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、76、93、及び103のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0124】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、115、85、93、及び96のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0125】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、115、89、95、及び100のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0126】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、86、93、及び105のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0127】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、115、76、93、及び103のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0128】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、80、93、及び97のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0129】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、84、93、及び97のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0130】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、90、93、及び97のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0131】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、88、93、及び102のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0132】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、87、93、及び105のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0133】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、91、93、及び106のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0134】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、115、80、93、及び97のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0135】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、83、93、及び101のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0136】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、82、94、及び98のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0137】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、115、78、95、及び100のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0138】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、111、116、81、93、及び106のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0139】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、82、94、及び99のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0140】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、115、81、93、及び106のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0141】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、112、116、81、93、及び106のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0142】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、それぞれ配列番号109、113、116、81、93、及び106のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む。
【0143】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本抗体は、VH及びVLを含み、このVHは、配列番号28、31、157、又は158のアミノ酸配列を含む。
【0144】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本抗体は、VH及びVLを含み、このVLは、配列番号35、39、40、42、46、52、53、54、57、61、62、68、71、73、75、135、又は150のアミノ酸配列を含む。
【0145】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本抗体は、配列番号28、31、157、又は158のVH、及び配列番号35、39、40、42、46、52、53、54、57、61、62、68、71、73、75、135、又は150のVLを含む。
【0146】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28及び40、28及び39、31及び62、28及び54、31及び39、31及び68、28及び42、31及び54、28及び53、28及び73、28及び75、28及び52、28及び35、28及び135、31及び53、28及び46、28及び61、31及び57、157及び71、28及び150、31及び71、158及び71、又は28及び71のVH及びVLを含む。
【0147】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本抗体は、VH及びVLを含み、このVHは、配列番号28、30、31、157、又は158のアミノ酸配列を含む。
【0148】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本抗体は、配列番号28、30、31、157、又は158のHCDR1、HCDR2、及びHCDR3アミノ酸配列、並びに配列番号29、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、73、74、75、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、74、148、149、150、151、152、又は153のVLのLCDR1、LCDR2、及びLCDR3アミノ酸配列を含み、これらのCDRは、Kabat、Chothia、及び/又はIMGTに従って定義される。
【0149】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本抗体は、VH及びVLを含み、このVLは、配列番号29、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、73、74、75、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、74、148、149、150、151、152、又は153のアミノ酸配列を含む。
【0150】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、VH及びVLを含み、このVHは、配列番号28、30、31、157、又は158のアミノ酸配列を含み、VLは配列番号29、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、73、74、75、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139、140、141、142、143、144、145、146、147、74、148、149、150、151、152、又は153のアミノ酸配列を含む。
【0151】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号29のVLを含む。
【0152】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号32のVLを含む。
【0153】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号33のVLを含む。
【0154】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号34のVLを含む。
【0155】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号35のVLを含む。
【0156】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号36のVLを含む。
【0157】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号37のVLを含む。
【0158】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号38のVLを含む。
【0159】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号39のVLを含む。
【0160】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号40のVLを含む。
【0161】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号41のVLを含む。
【0162】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号42のVLを含む。
【0163】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号43のVLを含む。
【0164】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号44のVLを含む。
【0165】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号45のVLを含む。
【0166】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号46のVLを含む。
【0167】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号47のVLを含む。
【0168】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号48のVLを含む。
【0169】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号49のVLを含む。
【0170】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号50のVLを含む。
【0171】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号51のVLを含む。
【0172】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号52のVLを含む。
【0173】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号53のVLを含む。
【0174】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号54のVLを含む。
【0175】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号55のVLを含む。
【0176】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号56のVLを含む。
【0177】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号57のVLを含む。
【0178】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号58のVLを含む。
【0179】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号59のVLを含む。
【0180】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号60のVLを含む。
【0181】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号61のVLを含む。
【0182】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号62のVLを含む。
【0183】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号63のVLを含む。
【0184】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号64のVLを含む。
【0185】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号65のVLを含む。
【0186】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号66のVLを含む。
【0187】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号67のVLを含む。
【0188】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号68のVLを含む。
【0189】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号69のVLを含む。
【0190】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号32のVLを含む。
【0191】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号33のVLを含む。
【0192】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号34のVLを含む。
【0193】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号35のVLを含む。
【0194】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号36のVLを含む。
【0195】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号37のVLを含む。
【0196】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号38のVLを含む。
【0197】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号39のVLを含む。
【0198】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号40のVLを含む。
【0199】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号41のVLを含む。
【0200】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号42のVLを含む。
【0201】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号43のVLを含む。
【0202】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号44のVLを含む。
【0203】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号45のVLを含む。
【0204】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号46のVLを含む。
【0205】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号47のVLを含む。
【0206】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号48のVLを含む。
【0207】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号49のVLを含む。
【0208】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号50のVLを含む。
【0209】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号51のVLを含む。
【0210】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号52のVLを含む。
【0211】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号53のVLを含む。
【0212】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号54のVLを含む。
【0213】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号56のVLを含む。
【0214】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号57のVLを含む。
【0215】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号58のVLを含む。
【0216】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号59のVLを含む。
【0217】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号60のVLを含む。
【0218】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号61のVLを含む。
【0219】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号62のVLを含む。
【0220】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号63のVLを含む。
【0221】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号64のVLを含む。
【0222】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号65のVLを含む。
【0223】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号66のVLを含む。
【0224】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号67のVLを含む。
【0225】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号68のVLを含む。
【0226】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号69のVLを含む。
【0227】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号32のVLを含む。
【0228】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号33のVLを含む。
【0229】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号34のVLを含む。
【0230】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号35のVLを含む。
【0231】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号36のVLを含む。
【0232】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号37のVLを含む。
【0233】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号38のVLを含む。
【0234】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号39のVLを含む。
【0235】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号40のVLを含む。
【0236】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号41のVLを含む。
【0237】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号42のVLを含む。
【0238】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号43のVLを含む。
【0239】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号44のVLを含む。
【0240】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号45のVLを含む。
【0241】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号46のVLを含む。
【0242】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号47のVLを含む。
【0243】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号48のVLを含む。
【0244】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号49のVLを含む。
【0245】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号50のVLを含む。
【0246】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号51のVLを含む。
【0247】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号52のVLを含む。
【0248】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号53のVLを含む。
【0249】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号54のVLを含む。
【0250】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号56のVLを含む。
【0251】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号57のVLを含む。
【0252】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号58のVLを含む。
【0253】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号59のVLを含む。
【0254】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号60のVLを含む。
【0255】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号61のVLを含む。
【0256】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号62のVLを含む。
【0257】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号63のVLを含む。
【0258】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号65のVLを含む。
【0259】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号66のVLを含む。
【0260】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号67のVLを含む。
【0261】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号68のVLを含む。
【0262】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号69のVLを含む。
【0263】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号70のVLを含む。
【0264】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号70のVLを含む。
【0265】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号30のVH及び配列番号70のVLを含む。
【0266】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号71のVLを含む。
【0267】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号31のVH及び配列番号71のVLを含む。
【0268】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号123のVLを含む。
【0269】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号124のVLを含む。
【0270】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号125のVLを含む。
【0271】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号126のVLを含む。
【0272】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号127のVLを含む。
【0273】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号128のVLを含む。
【0274】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号129のVLを含む。
【0275】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号130のVLを含む。
【0276】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号131のVLを含む。
【0277】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号132のVLを含む。
【0278】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号133のVLを含む。
【0279】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号134のVLを含む。
【0280】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号135のVLを含む。
【0281】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号136のVLを含む。
【0282】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号137のVLを含む。
【0283】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号138のVLを含む。
【0284】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号139のVLを含む。
【0285】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号140のVLを含む。
【0286】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号141のVLを含む。
【0287】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号73のVLを含む。
【0288】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号142のVLを含む。
【0289】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号143のVLを含む。
【0290】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号74のVLを含む。
【0291】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号75のVLを含む。
【0292】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号144のVLを含む。
【0293】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号145のVLを含む。
【0294】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号146のVLを含む。
【0295】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号147のVLを含む。
【0296】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号148のVLを含む。
【0297】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号149のVLを含む。
【0298】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号150のVLを含む。
【0299】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号151のVLを含む。
【0300】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号152のVLを含む。
【0301】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号28のVH及び配列番号153のVLを含む。
【0302】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号157のVH及び配列番号71のVLを含む。
【0303】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、配列番号158のVH及び配列番号71のVLを含む。
【0304】
表9、表13、表15、表17、表19、及び表21に示すVH又はVLアミノ酸配列を含む本発明の抗IFN−ω/a抗体の変異体は、本発明の範囲内である。例えば、変異体は、VH及び/又はVL中に抗体の特性に悪影響を及ぼさない1、2、3、4、5、6、7、8、9、10、又は11のアミノ酸置換を含み得る。いくつかの実施形態では、配列同一性は、本発明のVH又はVLアミノ酸配列の約90%、91%、92%、93%、94%、95%、96%、97%、98%、又は99%であり得る。同一性パーセントは、例えばペアワイズアライメントによって、Vector NTI.9.0.0(Invitrogen,Carslbad、CA)のAlignXモジュールのデフォルト設定を用いて決定することができる。例示的な修飾は、例えば、抗体の特性に不利な改変を加えることのない、抗原結合部位又はフレームワーク内での保存的アミノ酸置換である。保存的置換は、例えば安定性又は親和性といった抗体の特性を向上させるためにも行われ得る。保存的置換とは、それらの側鎖が関連するアミノ酸ファミリー内で起こる置換である。遺伝的にコードされるアミノ酸は、4つのファミリーに分類することができる:(1)酸性(アスパラギン酸塩、グルタミン酸塩);(2)塩基性(リジン、アルギニン、ヒスチジン);(3)非極性(アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン);及び(4)非荷電極性(グリシン、アスパラギン、グルタミン、システイン、セリン、トレオニン、チロシン)。フェニルアラニン、トリプトファン、及びチロシンは、時に、芳香族アミノ酸として共に分類される。あるいは、アミノ酸のレパートリーを、(1)酸性(アスパラギン酸塩、グルタミン酸塩);(2)塩基性(リジン、アルギニン、ヒスチジン)、(3)脂肪族(グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン)、ただしセリン及びトレオニンは、任意に脂肪族−ヒドロキシルとして個別にグループ分けされる;(4)芳香族(フェニルアラニン、チロシン、トリプトファン);(5)アミド(アスパラギン、グルタミン);及び(6)イオウ含有(システイン及びメチオニン)(Stryer(ed.),Biochemistry,2nd ed,WH Freeman and Co.,1981)としてグループ分けすることができる。更に、ポリペプチド中のいずれの天然残基も、アラニンスキャニング突然変異誘発法に関して上述したように、アラニンと置換することができる(MacLennanら、(1998)Acta Physiol.Scand.Suppl.643:55〜67、Sasakiら、(1998)Adv.Biophys.35:1〜24)。当業者であれば、所望のアミノ酸置換を、そのような置換が望ましい時点で決定することができる。結果として得られた抗体変異体は、本明細書に記載するアッセイを用いてその特性を試験することができる。
【0305】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗IFN−α/ω抗体は、配列番号28と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、又は99%同一の重鎖可変領域(VH)アミノ酸配列、及び配列番号71と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、又は99%同一の軽鎖可変領域(VL)アミノ酸配列を含む。
【0306】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗IFN−α/ω抗体は、配列番号28と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、又は99%同一の重鎖可変領域(VH)アミノ酸配列、及び配列番号150と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、又は99%同一の軽鎖可変領域(VL)アミノ酸配列を含む。
【0307】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗IFN−α/ω抗体は、配列番号28と少なくとも95%同一の重鎖可変領域(VH)アミノ酸配列、及び配列番号71と少なくとも95%同一の軽鎖可変領域(VL)アミノ酸配列を含む。
【0308】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗IFN−α/ω抗体は、配列番号28と少なくとも95%同一の重鎖可変領域(VH)アミノ酸配列、及び配列番号150と少なくとも95%同一の軽鎖可変領域(VL)アミノ酸配列を含む。
【0309】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗IFN−α/ω抗体は、配列番号28と少なくとも97%同一の重鎖可変領域(VH)アミノ酸配列、及び配列番号71と少なくとも97%同一の軽鎖可変領域(VL)アミノ酸配列を含む。
【0310】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗IFN−α/ω抗体は、配列番号28と少なくとも97%同一の重鎖可変領域(VH)アミノ酸配列、及び配列番号150と少なくとも97%同一の軽鎖可変領域(VL)アミノ酸配列を含む。
【0311】
アミノ酸置換は、例えばPCR突然変異誘発(米国特許第4,683,195号)によって行うことができる。あるいは、変異体のライブラリは、既知の方法、例えば、ランダムコドン(NNK)又は非ランダムコドン、例えば11個のアミノ酸(Ala、Cys、Asp、Glu、Gly、Lys、Asn、Arg、Ser、Tyr、Trp)をコードするDVKコドンを用いて、続いて所望の特性を有する変異体のライブラリをスクリーニングすることによって生成することができる。
【0312】
実施例で説明する実施形態は、1つが重鎖に由来し、1つが軽鎖に由来する1対の可変領域を有しているが、当業者であれば、代替的な実施形態が、1つの重鎖又は軽鎖の可変領域を有してもよいとことを認識するであろう。単一の可変領域を用いて、例えばヒトIFN−ω又は様々なヒトIFN−αサブタイプに結合することができる2ドメイン特異的抗原結合断片を形成することができる可変ドメインをスクリーニングすることができる。このスクリーニングは、例えば、国際公開公報第WO92/01047号に開示される階層的二重コンビナトリアルアプローチを用いたファージディスプレイスクリーニング法によって実現され得る。このアプローチでは、H鎖クローン又はL鎖クローンのいずれかを含む個別のコロニーを用いて、他方の鎖(L又はH)をコードするクローンの完全なライブラリに感染させ、結果として得られた2鎖特異的抗原結合ドメインを記載されるようなファージディスプレイ法に基づいて選択する。したがって、個別のVH及びVLポリペプチド鎖は、国際公開公報第WO92/01047号に開示される方法を用いて、ヒトIFN−ω又は様々なIFN−αサブタイプに特異的に結合する追加の抗体を特定するのに有用である。
【0313】
本発明の抗体は、抗体を生成するための様々な技術を用いて作製することができる。例えば、Kohler及びMilsteinのハイブリドーマ法(Nature 256:495,1975)を用いてモノクローナル抗体を生成することができる。ハイブリドーマ法においては、マウス又はハムスター、ラット、若しくはサルなどの他の宿主動物を、ヒトIFN−ω及び/又は様々なIFN−αサブタイプ若しくはこれらのタンパク質の断片で免疫化し、続いて標準的な方法を用いて免役化した動物からの脾臓細胞と骨髄腫細胞とを融合させてハイブリドーマ細胞を形成する(Goding,Monoclonal Antibodies:Principles and Practice,pp.59〜103(Academic Press,1986))。1個の不死化したハイブリドーマ細胞から発生したコロニーを、結合特異性、交差反応性又はその欠如、及び抗原の親和性などの所望の特性を有する抗体の生成についてスクリーニングする。
【0314】
様々な宿主動物を用いて、本発明のIFN−α/ω抗体を生成することができる。例えば、Balb/cマウスを用いて、マウス抗ヒトIFN−α/ω抗体を生成することができる。Balb/cマウス及び他の非ヒト動物において作製された抗体は、よりヒト様の配列を生成するために、様々な技術を用いてヒト化することができる。ヒトアクセプターフレームワークの選択を含む例示的なヒト化技術は当業者に既知であり、これにはCDRグラフト法(米国特許第5,225,539号)、SDRグラフト法(米国特許第6,818,749号)、リサーフェーシング法(Padlan,Mol Immunol 28:489〜499,1991)、特異性決定残基リサーフェーシング法(米国特許出願公開第20100261620号)、ヒト適合(又はヒトフレームワーク適合)(米国特許公開第US2009/0118127号)、超ヒト化(米国特許第7,709,226号)、及びガイド選択法(Osbournら、(2005)Methods 36:61〜68,2005;U.S.Pat.No.5,565,332)が含まれる。
【0315】
ヒト化抗体は、国際公開公報第WO90/007861号及び国際公開公報第WO92/22653号で説明される開示などの技術により、結合親和性を維持するために改変したフレームワーク支持残基を組み込むことによって(逆突然変異)、所望の抗原に対するそれらの選択性又は親和性を向上させるように更に最適化することができる。
【0316】
それらのゲノムにヒト免疫グロブリン遺伝子座を保有するトランスジェニックマウスを使用して、標的タンパク質に対してヒト抗体を生成することができ、これは例えば、国際公開公報第WO90/04036号、米国特許第6150584号、国際公開公報第WO99/45962号、国際公開公報第WO02/066630号、国際公開公報第WO02/43478号、Lonbergら、Nature 368:856〜9,1994、Greenら(1994)Nature Genet.7:13〜21;Green & Jakobovits(1998)Exp.Med.188:483〜95;Lonberg and Huszar(1995)Int.Rev.Immunol.13:65〜93;Bruggemannら(1991)Eur.J.Immunol.21:1323〜1326;Fishwildら(1996)Nat.Biotechnol.14:845〜851;Mendezら(1997)Nat.Genet.15:146〜156;Green(1999)J.Immunol.Methods 231:11〜23;Yangら(1999)Cancer Res.59:1236〜1243;Bruggemann及びTaussig(1997)Curr.Opin.Biotechnol.8:455〜458;国際公開公報第WO02/043478号)に記載される。そのようなマウスにおける内因性免疫グロブリン遺伝子座は、破壊又は欠失されてもよく、相同又は非相同組み換え、導入染色体、又はミニ遺伝子を使用して、少なくとも1つの完全な又は部分的なヒト免疫グロブリン遺伝子座をマウスゲノム内に挿入することができる。Regeneron(http://_www_regeneron_com)、Harbour Antibodies(http://_www_harbourantibodies_com)、Open Monoclonal Technology,Inc.(OMT)(http://_www_omtinc_net)、KyMab(http://_www_kymab_com)、Trianni(http://_www.trianni_com)、及びAblexis(http://_www_ablexis_com)などの企業が、上記の技術を用いて選択された抗原に指向するヒト抗体の提供に取り組み得る。
【0317】
ヒト抗体は、ファージがヒト免疫グロブリン又はその一部(Fab、一本鎖抗体(scFv)、又は非対合若しくは対合抗体可変領域など)を発現するように操作されるファージディスプレイライブラリから選択され得る(Knappikら(2000)J.Mol Biol.296:57〜86;Krebsら(2001)J.Immunol.Meth.254:67〜84;Vaughanら(1996)Nature Biotechnology 14:309〜314;Sheetsら(1998)PITAS(USA)95:6157〜6162;Hoogenboom及びWinter(1991)J.Mol.Biol.227:381;Marksら(1991)J.Mol.Biol.222:581)。本発明の抗体は、例えば、Shiら(2010)J.Mol.Biol.397:385〜96及び国際公開公報第WO09/085462号に記載されるバクテリオファージpIX外被タンパク質との融合タンパク質として抗体の重鎖及び軽鎖可変領域を発現するファージディスプレイライブラリから単離され得る。ライブラリをヒトIFN−ω及びIFN−αのファージ結合に関してスクリーニングしてもよく、得られた陽性クローンを更に特徴付けし、Fabはクローンライセートから単離して全長IgGとして発現させてもよい。ヒト抗体を単離するためのそのようなファージディスプレイ法は、例えば米国特許第5,223,409号、同第5,403,484号、及び第5,571,698号(Ladnerら)、Dowerらの米国特許第5,427,908号、及び第5,580,717号、McCaffertyらの米国特許第5,969,108号及び第6,172,197号、並びにGriffithsらの米国特許第5,885,793号、第6,521,404号、第6,544,731号、第6,555,313号、第6,582,915号及び第6,593,081号に説明されている。
【0318】
免疫原性抗原の調製及びモノクローナル抗体の生成は、組み換えタンパク質生成などの任意の好適な技術を用いて実施してもよい。免疫原性抗原は、精製タンパク質、又は全細胞若しくは細胞若しくは組織抽出物を含むタンパク質混合物の形態で動物に投与されてもよく、あるいは抗原は、動物の身体内で、前記抗原又はその一部をコードする核酸から新たに形成されてもよい。
【0319】
一例示的方法では、ファージディスプレイライブラリをビオチン化ヒトIFN−α2又はビオチン化ヒトIFN−αGに対してパニングしてもよい。3回のパニングの後、抗原としてヒトIFN−α2、IFN−αG、及びIFN−ωを用いたポリクローナルファージELISA法を実施して、各パニング実験の特異的富化を検出することができる。IFN−α2、IFN−αG、及びIFN−ωに対する結合剤の富化を示すファージを回収して、標準ELISAアッセイにてFabフォーマットにおける追加のIFN−αサブタイプに対する結合に関して更にスクリーニングしてもよい。特定されたFabクローンは完全長の抗体にクローニングされ、本明細書で説明するProteOn及びISREレポーター遺伝子アッセイを用いてヒトIFN−ω及び様々なIFN−αサブタイプの親和性及び中和能力に関して更に特徴付けされてもよい。
【0320】
本発明の抗体は、ヒト又はヒト化されてもよい。
【0321】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明のIFN−α/ω抗体は、ヒト生殖系列遺伝因子IGHV5−51(配列番号155)由来のVHフレームワークを含む。
【0322】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明のIFN−α/ω抗体は、ヒト生殖系列遺伝因子IGKV1D−39(配列番号156)由来のVLフレームワークを含む。
【0323】
本明細書で説明され、以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の抗体は、IgA型、IgD型、IgE型、IgG型、又はIgM型のものであってもよい。本発明の抗体は、IgG1型、IgG2型、IgG3型、IgG4型のものであってもよい。
【0324】
本発明の抗体の免疫エフェクターの特性は、当業者に既知の技術により、Fc修飾によって強化又はサイレンシングすることが可能である。例えば、C1q結合、補体依存性細胞傷害(CDC)、抗体依存性細胞媒介性細胞傷害(ADCC)、貧食、細胞表面受容体(例えば、B細胞受容体(BCR))の下方調節などのFcエフェクター機能は、これらの活性に関与するFcの残基を修飾することによって提供及び/又は制御され得る。本発明の抗体の薬物動態特性は、抗体の半減期を延長するFcドメインの残基を突然変異させることによって強化することができる(Strohl(2009)Curr Opin Biotechnol 20:685〜91)。例示的なFc修飾は、IgG4 S228P/L234A/L235A、IgG2 M252Y/S254T/T256E(Dall’Acquaら(2006)J.Biol.Chem.281:23514〜24;又は米国特許第6,737,056号に記載されるもののIgG2のV234A/G237A/P238S、V234A/G237A/H268Q、H268A/V309L/A330S/P331、若しくはIgG2のV234A/G237A/P238S/H268A/V309L/A330S/P331S(国際公開公報第WO11/066501号)(EU番号付けに準ずる残基番号付け)である。
【0325】
更に、本明細書に記載され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の抗体は、グリコシル化、異性化、脱グリコシル化などのプロセスによって、又はポリエチレングリコール部分の付加(ペグ化)及び脂質化などの天然には存在しない共有結合修飾によって翻訳後修飾してもよい。そのような修飾は、インビボあるいはインビトロで生じ得る。例えば、本発明の抗体は、ポリエチレングリコールと接合(PEG化)することによって薬物動態プロファイルを改善することができる。接合は当業者に既知の技術によって実施され得る。治療用抗体のPEGとの接合によって、機能を妨害せずに薬力学的動態が強化されることが示されている(Knighら(2004)Platelets 15:409〜18、Leongら(2001)Cytokine 16:106〜19、Yangら(2003)Protein Eng.16:761〜70)。
【0326】
安定性、選択性、交差反応性、親和性、免疫原性、又は他の望ましい生物学的若しくは生物物理学的特性を改善するように修飾された本発明の抗体又はその断片は、発明の範囲内である。抗体の安定性は、(1)内在的な安定性に影響を及ぼす個々のドメインのコアパッキング、(2)HCとLCとの対合により影響を受けるタンパク質/タンパク質の界面相互作用、(3)極性及び荷電残基の埋め込み、(4)極性及び荷電残基のためのH結合ネットワーク、並びに(5)他の分子内及び分子間力の間の表面電荷及び極性残基の分布、を含むいくつかの因子によって影響を受ける((Wornら(2001)J.Mol.Biol.305:989〜1010)。構造を不安定にする可能性のある残基は、抗体の結晶構造に基づいて、あるいは場合によっては分子モデリングによって特定することが可能であり、また、抗体の安定性に対するこれらの残基の作用は、特定された残基に変異を含む変異体を生成及び評価することにより試験することができる。抗体安定性を改善する方法の1つは、示差走査熱量測定法(DSC)で測定した場合の熱転移中点温度(T
m)を上昇させることである。一般に、タンパク質のT
mは、その安定性と相関性を示すが、溶液中でのそのアンフォールディングし易さ及び改変し易さ、並びにそのタンパク質のアンフォールディングし易さに応じた分解プロセスとは負の相関性を示す(Remmeleら(2000)Biopharm 13:36〜46,)。多くの研究で、DSCによって熱安定性として測定された薬剤の物理的安定性のランク付けと他の方法で測定された物理的安定性との間に相関性があることが判明している(Guptaら(2003)AAPS PharmSci 5E8、Zhangら(2004)J.Pharm.Sci.93:3076〜89、Maaら(1996)Int.J.Pharm.140:155〜68、Bedu−Addoら(2004)Pharm.Res.21:1353〜61、Remmeleら(1997)Pharm.Res.15:200〜8)。これらの薬剤の研究は、FabのT
mが対応するmAbの長期の物理的安定性と密接な関係があることを示唆している。フレームワーク又はCDR内のいずれかにおけるアミノ酸の相違は、Fabドメインの熱安定性に有意な作用を有し得る(Yasuiら(1994)FEBS Lett.353:143〜6)。
【0327】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、ヒトIFN−ωへの結合に関して配列番号28のVH及び配列番号71のVLを含む単離された抗体と競合する。
【0328】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、ヒトIFN−ωへの結合に関して配列番号28のVH及び配列番号150のVLを含む単離された抗体と競合する。
【0329】
特定のVH及びVL配列を含む本発明の抗体とのヒトIFN−ωへの特異的結合間の競合は、周知の方法を用いてインビトロでアッセイすることができる。例えば、非標識抗体の存在下での、MSD Sulfoタグ(商標)NHS−エステル標識抗体の、ヒトIFN−ωへの結合は、ELISA法によって評価することができ、さもなければBioacore分析法若しくはフローサイトメトリーを用いて本発明の抗体との競合を示すことも可能である。
【0330】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、それらの生物活性を中和し、この抗体は、少なくとも残基F27、L30、及びR33において配列番号1のIFN−ωに結合する。
【0331】
残基F27、L30、及びR33 IFN−ωは、本発明のIFN−α/ω抗体の広域中和活性に必要な最小のエピトープを規定する。いくつかの抗体/IFN−α複合体又は抗体/IFN−ω複合体の結晶構造は、それらの3つの残基が抗体結合に対して主に寄与することを明らかにした。F27残基は、本発明の抗体が結合しないIFN−αD(α1)を除く全てのヒトIFN−αに保存される。L30及びR33はどちらも全てのヒトIFN−α及びヒトIFN−ωに保存される。F27のエピトープへの寄与の更なる確証は、様々なカニクイザルIFN−αサブタイプに関する結合研究から明らかである。本発明の抗体は、ヒトヒトIFN−αDと同様に位置27(S27)にセリンを有するカニクイザルIFN−α13に結合しない。
【0332】
本明細書に記載の別の実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、少なくとも残基S25、P26、F27、L28、L30、K31、R33、R34、及びD35において配列番号1のヒトIFN−ωに結合する。
【0333】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、それらの生物活性を中和し、この抗体は、残基F27を含む1つ又は2つ以上の残基において配列番号1のIFN−ωに結合する。
【0334】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体は、ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、それらの生物活性を中和し、かつBLyS、CD40L、IL−6、CD27、BDCA2、IL−12、IL−23、IFN−αD、IL−17、CD20、IL−10、CD22、IL−21、ICOS、ICOSL、又はIFN−γに結合する二重特異性抗体である。
【0335】
SLE患者において上昇するIFN−ωの存在、及びインビトロPBMCにおけるIFN−ωのBLyS分泌物誘導の実証を考慮すると、SLE患者におけるIFN−α/ωの複合遮断は、抗IFN−α特異的アプローチと比較してBLyS濃度の低減により効果的であり得る。SLE患者におけるIFNシグネチャ及びIFN活性の程度は、可溶性BLyS濃度と相関するものと思われる。
【0336】
本明細書に記載され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明のIFN−α/ω抗体を遺伝子操作して、本発明の範囲に更に包含される二重特異性抗体にすることができる。本発明の抗体のVL領域及び/又はVH領域を、公開された方法を用いて遺伝子操作して、TandAb(登録商標)デザインなどの構造として一本鎖二重特異性抗体(国際公開公報第WO99/57150号、米国特許公開第US2011/0206672号)、又は米国特許第US5869620号、国際公開公報第WO95/15388号、同第WO97/14719号、若しくは同WO11/036460号で開示されるもののような構造としての二重特異性scFVにすることができる。
【0337】
本発明の抗体のVL領域及び/又はVH領域を、二重特異性完全長抗体に遺伝子操作することもでき、ここで各抗体のアームは別個の抗原又はエピトープに結合する。そのような二重特異性抗体は、典型的には、米国特許第7,695,936号、国際公開公報第WO04/111233号、米国特許出願公開第2010/0015133号、米国特許出願公開第2007/0287170号、国際公開公報第WO2008/119353号、米国特許出願公開第2009/0182127号、米国特許出願公開第2010/0286374号、米国特許出願公開第2011/0123532号、国際公開公報第WO2011/131746号、国際公開公報第WO2011/143545号、又は米国特許出願公開第2012/0149876号、に記載されるものなどの技術を用いて、2つの抗体重鎖間のCH3相互作用を調節して二重特異性抗体を形成することによって作製される。
【0338】
例えば、本発明の二重特異性抗体は、2つの単一特異性ホモ二量体抗体のCH3領域で非対称突然変異を導入して、還元条件下で2つの親単一特異性ホモ二量体抗体から二重特異性ヘテロ二量体抗体を形成して、国際公開公報第WO2011/131746号に記載の方法に従って二硫化結合異性化を実現することによって、インビトロの無細胞環境下で生成することができる。これらの方法では、第1の単一特異性二価抗体(例えば本発明の抗IFN−α/ω抗体)及び第2の単一特異性二価抗体(例えば抗BLyS抗体、抗CD40L抗体、抗IL−6抗体、抗CD27抗体、抗BDCA2抗体、抗IL−12抗体、抗IL−23抗体、抗IFN−αD抗体、抗IL−17抗体、抗CD20抗体、抗IL−10抗体、抗CD22抗体、抗IL−21抗体、抗ICOS抗体、抗ICOSL抗体、又は抗IFN−γ抗体)を、ヘテロ二量体の安定性を促進する特定の置換をCH3ドメインに有するように遺伝子操作して、ヒンジ領域中のシステインをジスルフィド結合異性化させるのに十分な還元条件下で抗体を一緒にインキュベートして、それにより、Fabアーム交換によって二重特異性抗体を生成する。インキュベーション条件は、最適に非還元条件へと戻してもよい。用いられ得る例示的な還元剤は、2−メルカプトエチルアミン(2−MEA)、ジチオスレイトール(DTT)、ジチオエリスリトール(DTE)、グルタチオン、トリス(2−カルボキシエチル)ホスフィン(TCEP)、L−システイン、及びβ−メルカプトエタノールであり、2−メルカプトエチルアミン、ジチオスレイトール、及びトリス(2−カルボキシエチル)ホスフィンからなる群から選択される還元剤が好ましい。例えば、pH5〜8、例えばpH7.0又は7.4で、少なくとも25mMの2−MEAの存在下又は少なくとも0.5mMのジチオスレイトールの存在下で、少なくとも20℃で、少なくとも90分のインキュベーションを用いてもよい。
【0339】
二重特異性抗体の第1の重鎖及び第2の重鎖で用いられ得る例示的なCH3突然変異は、K409R及び/又はF405Lである。
【0340】
本発明の抗体のVL領域及び/又はVH領域が組み込まれ得る追加の二重特異性構造は、例えば、二重可変ドメイン免疫グロブリン(DVD)(国際公開公報第WO2009/134776号)、又は異なる特異性を有する2つの抗体アームを接続する様々な二量体化ドメインを含む構造(国際公開公報第WO2012/022811号、米国特許第5,932,448号、同第6,833,441号)である。DVDは、構造VH1−リンカー−VH2−CHを有する重鎖、及び構造VL1−リンカー−VL2−CLを有する軽鎖を含む完全長抗体であり、リンカーは任意である。
【0341】
二重特異性抗IFN−α/ω抗体に組み込まれるBLyS、CD40L、IL−6、CD27、BDCA2、IL−12、IL−23、IFN−αD、IL−17、CD20、IL−10、CD22、IL−21、ICOS、ICOSL、又はIFN−γに結合するVH及びVLは、本明細書に記載の方法を用いて新たに生成してもよく、あるいは既存の単一特異性抗体を遺伝子操作して生成してもよい。本発明の二重特異性抗体を生成するために用いられ得る例示的な抗BLyS抗体は、BENLYSTA(登録商標)である。使用し得る例示的なCD40L抗体は、米国特許第5,474,771号、同第5,747,037号、国際公開公報第WO01/68860号、同第WO06/033702号、又は同第WO08/118356号に記載されるものである。使用し得る例示的な抗IL−6抗体は、国際公開公報第WO06/119115号、同第WO10/056948号、同第WO10/088444号、又は同第WO07/076927号に記載されるものである。使用し得る例示的な抗CD27抗体は、国際公開公報第WO13/138586号、同第WO11/130434号、又は同第WO12/004367号に記載されるものである。使用し得る例示的なIL−12及びIL−23抗体はSTELARA(登録商標)であり、使用し得る例示的なIL−23抗体は、国際公開公報第WO07/005955号、同第WO07/027714号、同第WO08/103432号、同第WO07/106769号、同第WO07/147019号、又は同第WO08/134659号に記載されるものである。使用し得る例示的なIL−17抗体は、国際公開公報WO06/013107号、同第WO06/054059号、同第WO07/070750号、同第WO08/134659号、同第WO07/149032号、同第WO08/021156号、同第WO08/047134号、同第WO09/130459号、同第WO10/025400号、同第WO11/053763、及びWO12/095662号に記載されるものである。
【0342】
本明細書に記載され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の別の実施形態は、ヒトインターフェロンオメガ(IFN−ω)及び特定のVH及びVL配列を有する少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、それらの生物活性を中和する、単離された抗体であり、ここで抗体VHは第1のポリヌクレオチドによってコードされ、抗体VLは第2の合成ポリヌクレオチドによってコードされる。ポリヌクレオチドは相補的デオキシ核酸(deoxynucleic acid)(cDNA)であってもよく、また好適な宿主内で発現するために最適化されたコドンであってもよい。コドン最適化は周知の技術である。
【0343】
本明細書に記載のいくつかの実施形態、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、本発明の抗体VH又はVLをコードするポリヌクレオチドは、配列番号72、92、108、110、117、又は122の配列を含む。
【0344】
本発明の別の実施形態は、本発明の抗体の重鎖可変領域及び/又は抗体軽鎖可変領域のうちのいずれかをコードする単離されたポリヌクレオチドである。特定の例示的なポリヌクレオチドが本明細書に開示されるが、遺伝コードの縮重又は所与の発現系におけるコドンの好ましさを考慮すると、本発明の抗体をコードする他のポリヌクレオチドも本発明の範囲内に含まれる。例示的なポリヌクレオチドは、例えば配列番号72、92、108、110、117、又は122に示す配列を有するポリヌクレオチドである。本発明の抗体のVH若しくはVL又はそれらの断片をコードするポリヌクレオチド配列は、意図される宿主細胞におけるヌクレオチド配列の発現を可能にする、プロモーター又はエンハンサーなどの1つ又は2つ以上の調節因子に操作可能に連結され得る。ポリヌクレオチドはcDNAであってもよい。
【0345】
本発明の別の実施形態は、本発明のポリヌクレオチドを含むベクターである。そのようなベクターは、プラスミドベクター、ウイルスベクター、バキュロウイルス発現ベクター、トランスポゾン系ベクター、又は任意の手段によって所与の生物又は遺伝的背景に本発明の合成ポリヌクレオチドを導入するのに適した任意の他のベクターであってもよい。例えば、任意に定常領域に連結される本発明の抗体の軽鎖及び/又は重鎖可変領域をコードするポリヌクレオチドが、発現ベクターに挿入される。軽鎖及び/又は重鎖は、同じ又は異なる発現ベクターにクローニングされ得る。免疫グロブリン鎖をコードするDNAセグメントは、免疫グロブリンポリペプチドの発現を確実にする発現ベクター中の制御配列に操作可能に連結されてもよい。そのような制御配列は、シグナル配列、プロモーター(例えば、天然に会合する又は異種プロモーター)、エンハンサー因子、及び転写終結配列を含み、抗体を発現するように選択された宿主細胞と適合性があるように選択される。ベクターが適切な宿主内に組み込まれると、宿主は、組み込まれたポリヌクレオチドによってコードされたタンパク質の高レベル発現に適した条件下で維持される。
【0346】
好適な発現ベクターは典型的には、エピソーム又は宿主染色体DNAの不可欠な部分のいずれかとして宿主生物において複製可能である。通常、発現ベクターは、所望のDNA配列で形質転換されたこれらの細胞の検出を可能にするように、アンピシリン耐性、ヒグロマイシン耐性、テトラサイクリン耐性、カナマイシン耐性、又はネオマイシン耐性などの選択マーカーを含む。
【0347】
好適なプロモーター及びエンハンサー因子は当該技術分野において既知である。細菌細胞における発現の場合、例示的なプロモーターとしては、lacl、lacZ、T3、T7、gpt、lambda P、及びtrcが挙げられる。真核細胞における発現の場合、例示的なプロモーターとしては、軽鎖及び/又は重鎖免疫グロブリン遺伝子プロモーター及びエンハンサー因子、サイトメガロウイルス即時初期プロモーター、単純ヘルペスウイルスチミジンキナーゼプロモーター、初期及び後期SV40プロモーター、レトロウイルスからの長鎖末端反復配列に存在するプロモーター、マウスメタロチオネイン−Iプロモーター、及び様々な当該技術分野に既知の組織特異的プロモーターが挙げられる。酵母細胞における発現の場合、例示的なプロモーターは、ADH1プロモーター、PGK1プロモーター、ENOプロモーター、PYK1プロモーター等の構成的プロモーター、又はGAL1プロモーター、GAL10プロモーター、ADH2プロモーター、PH05プロモーター、CUP1プロモーター、GAL7プロモーター、MET25プロモーター、MET3プロモーター、CYC1プロモーター、HIS3プロモーター、ADH1プロモーター、PGKプロモーター、GAPDHプロモーター、ADC1プロモーター、TRP1プロモーター、URA3プロモーター、LEU2プロモーター、ENOプロモーター、TP1プロモーター、及びAOX1などの調節可能プロモーター(例えばピキアにおいて使用するため)である。適切なベクター及びプロモーターの選択は、十分に当業者のレベル内である。
【0348】
多くの好適なベクター及びプロモーターが当業者に既知であり、多くは、対象組み換え構築物を生成するために市販されている。例として以下のベクターを提供する。細菌性:pBs、phagescript、PsiX174、pBluescript SK、pBs KS、pNH8a、pNH16a、pNH18a、pNH46a(Stratagene,La Jolla,Calif.,USA);pTrc99A、pKK223−3、pKK233−3、pDR540、及びpRIT5(Pharmacia,Uppsala,Sweden)。真核:pWLneo、pSV2cat、pOG44、PXR1、pSG(Stratagene)pSVK3、pBPV、pMSG、及びpSVL(Pharmacia)。
【0349】
本発明の別の実施形態は、本発明の1つ又は2つ以上のベクターを含む宿主細胞である。用語「宿主細胞」は、ベクターが導入される細胞を指す。用語「宿主細胞」は、特定の対象細胞だけでなく、そのような細胞の後代、及び特定の対象細胞から生成された安定した細胞株も指すように意図されることを理解されたい。変異又は環境の影響のどちらかにより、特定の修飾が後の世代に起こる可能性があるため、そのような後代は親細胞と同一ではない可能性があるが、本明細書で使用される用語「宿主細胞」の範囲内に依然として含まれる。そのような宿主細胞は、真核細胞、原核細胞、植物細胞、又は古細菌(archeal)細胞であってもよい。
【0350】
原核宿主細胞の例は、大腸菌、バチルス・ズブチルスなどの桿菌、及びサルモネラ、セラチア、及び様々なシュードモナス種などの他の腸内細菌科である。酵母などの他の微生物も発現に有用である。好適な酵母宿主細胞の例は、サッカロマイセス(例えばS.セレビジアエ)及びピチアである。例示的な真核細胞は、哺乳類、昆虫類、鳥類、又は他の動物由来の真核細胞であり得る。哺乳類真核細胞には、不死化細胞株、例えばハイブリドーマ、又は骨髄腫細胞株、例えばSP2/0(American Type Culture Collection(ATCC)、Manassas、VA、CRL−1581)、NS0(European Collection of Cell Cultures(ECACC)、Salisbury,Wiltshire,UK、ECACC No.85110503)、FO(ATCC CRL−1646)及びAg653(ATCC CRL−1580)マウス細胞株が含まれる。ヒト骨髄腫細胞株の一例は、U266(ATTC CRL−TIB−196)である。他の有用な細胞系としては、CHO−K1SV(Lonza Biologics(Walkersville,MD))、CHO−K1(ATCC CRL−61)、又はDG44などの、チャイニーズハムスターの卵巣(CHO)細胞に由来するものが挙げられる。
【0351】
本発明の別の実施形態は、抗体が発現する条件下で本発明の宿主細胞を培養することと、宿主細胞によって生成された抗体を回収することとを含む、本発明の抗体の生成方法である。抗体を作成及び精製する方法は当該技術分野において周知である。合成されると(化学的又は組み換えのいずれかで)、全ての抗体、それらの二量体、個々の軽鎖及び/若しくは重鎖、又はVH及び/若しくはVLなどの他の抗体断片は、硫酸アンモニウム沈殿法、親和性カラム法、カラムクロマトグラフィー法、高速液体クロマトグラフィー(HPLC)精製法、ゲル電気泳動法などを含む標準的な手順により精製することができる(概要はScopes,Protein Purification(Springer−Verlag,N.Y.,(1982)を参照)。対象抗体は、実質的に純粋、例えば、対象抗体等以外の細胞残屑、巨大分子などの汚染物を含まない、例えば、少なくとも約80%〜85%純粋、少なくとも約85%〜90%純粋、少なくとも約90%〜95%純粋、又は少なくとも約98%〜99%以上純粋であり得る。
【0352】
本発明の別の実施形態は、ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)に結合し、それらの生物活性を中和する抗体の生成方法であり、この方法は、
抗体のVHをコードする第1のポリヌクレオチド及び抗体のVLをコードする第2のポリヌクレオチドを発現ベクターに組み込むことと、
発現ベクターを用いて宿主細胞を転換することと、
VL及びVHが発現して抗体を形成する条件下の培地内で宿主細胞を培養することと、
宿主細胞又は培地から抗体を回収することと、を含む。
【0353】
本発明の特定のVH配列又はVL配列をコードするポリヌクレオチドは、標準的な分子生物学法を用いてベクター内に組み込まれる。宿主細胞の形質転換、培養、抗体発現、及び精製は、周知の方法を用いて行われる。
【0354】
治療方法
本発明のIFN−α/ω抗体は、全身性紅斑性狼瘡(SLE)若しくは皮膚紅斑性狼瘡(CLE)を含む狼瘡などの免疫媒介炎症性疾患若しくは自己免疫疾患、又は乾癬、免疫性血小板減少症(ITP)、エカルディ−グチエール症候群(AGS)、全身性硬化症、シェーグレン症候群、筋炎、分類不能型免疫不全症(CVID)、自己免疫性甲状腺疾患、I型糖尿病、関節リウマチ、移植片拒絶反応、若しくは移植片対宿主病(GVHD)などの免疫媒介炎症性疾患の治療に利用され得る。これらの疾患は、IFN−α及び/若しくはIFN−ω、又はI型IFNシグネチャの生成の増加に関連し得る。
【0355】
本発明の一実施形態は、ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、それらの生物活性を中和する、単離された抗体の治療有効量を、それを必要とする患者に、免疫媒介炎症性疾患又は自己免疫疾患を治療するのに十分な時間投与することを含む、免疫媒介炎症性疾患又は自己免疫疾患の治療方法である。
【0356】
本発明の別の実施形態は、ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、それらの生物活性を中和する、単離された抗体の治療有効量を、それを必要とする患者に、狼瘡を治療するのに十分な時間投与することを含む、狼瘡の治療方法である。
【0357】
いくつかの実施形態では、狼瘡は、全身性紅斑性狼瘡(SLE)又は皮膚紅斑性狼瘡(CLE)である。
【0358】
いくつかの実施形態では、患者は、狼瘡腎炎を有する。
【0359】
いくつかの実施形態では、免疫媒介炎症性疾患又は自己免疫疾患とは、乾癬、免疫性血小板減少症(ITP)、エカルディ−グチエール症候群(AGS)、全身性硬化症、シェーグレン症候群、筋炎、分類不能型免疫不全症(CVID)、自己免疫性甲状腺疾患、I型糖尿病、関節リウマチ、移植片拒絶反応、又は移植片対宿主病(GVHD)である。
【0360】
本発明の別の実施形態は、ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、それらの生物活性を中和する、単離された抗体の治療有効量を、それを必要とする患者に、慢性ウイルス感染症を治療するのに十分な時間投与することを含む、慢性ウイルス感染症の治療方法である。
【0361】
IFN−Iは急性ウイルス感染症において保護的な役割を有することが周知である。近年、IFN−Iは、慢性ウイルス感染症において、少なくとも部分的にIL−10及びプログラム細胞死1リガンド1(PDL1)によって媒介される機構を通じて免疫抑制的役割を有することが実証された(Teijaroら、Science 340,207〜211,(2013)、Wilsonら、Science 340,202〜207,2013)。複数のIFN−αサブタイプ及びIFN−ωの複合遮断は、ウイルス存続を助長する免疫抑制環境を下方調節することによってHIV及びC型肝炎を含む慢性ウイルス感染症を有する患者に薬効を提供し得る。
【0362】
いくつかの実施形態では、慢性ウイルス感染症は、HIV又はC型肝炎である。
【0363】
「治療」又は「治療する」とは、治療的処置を意味する。治療され得る患者には、その障害を有する傾向があるか、又はその障害にかかりやすい患者、その障害が予防されるべき患者も含まれる。治療を必要とする個人としては、その障害又はその障害の症状を既に有している者が挙げられる。有益な又は望ましい臨床結果としては、感知可能又は感知不可能にかかわらず、症状の緩和、疾患程度の減少、病状の安定化(即ち悪化しない)、疾患進行の遅延又は緩徐化、病状の改善又は一時的緩和、及び寛解(部分的又は全体的にかかわらず)が挙げられる。「治療」は、治療を受けなかった場合に予期される生存と比較して、生存をより長引かせることも意味し得る。
【0364】
本発明の方法で用いられ得る例示的な抗体は、表9、13、15、17、19、21、22、23、24、25、26、又は27に示すVH、VL、HCDR、及び/又はLCDR領域、並びに抗体IFWM3308、IFWM3307、IFWM3410、IFWM3322、IFWM3385、IFWM3416、IFWM3310、IFWM3400、IFWM3321、IFWM3522、IFWM3524、IFWM3320、IFWM3304、IFWM3520、IFWM3399、IFWM3314、IFWM3331、IFWM3405、IFWM3442、IFWM3525、IFWM3423、IFWM3444、及びIFWM3421を含む。
【0365】
本明細書で説明され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の方法に用いられ得る他の例示的抗体は、ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプに結合し、それらの生物活性を中和する抗体であり、この抗体は、少なくとも残基F27、L30、及びR33において配列番号1のIFN−ωに結合する。
【0366】
本明細書で説明され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の方法に用いられ得る他の例示的抗体は、少なくとも残基S25、P26、F27、L28、L30、K31、R33、R34、及びD35において配列番号1のヒトIFN−ωに結合する抗体である。
【0367】
本発明の方法を用いて、任意の分類に属する動物患者を治療することができる。そのような動物の例としては、ヒト、齧歯類、イヌ、ネコ、及び家畜などの哺乳動物が挙げられる。
【0368】
本発明の抗体は、かかる治療のための薬剤の調製において有用であり得、薬剤は、本明細書で定める投薬量で投与するために調製される。SLEは、遺伝因子及び環境因子の両方がその発生に寄与する慢性の多臓器自己免疫疾患である。
【0369】
SLEは、複数の臓器にわたる組織損傷をもたらす病原性自己抗体の生成、及び免疫複合体の組織沈着を特徴とする。皮膚性、筋骨格性、血液性、神経性、及び腎性合併症の組み合わせは患者に見られ、これは拡大及び寛解の期間を経る。狼瘡腎炎は、SLEの症例として定義され、腎炎、蛋白尿、血尿、及び/又は腎不全の診断を伴う。狼瘡腎炎患者においては、腎障害は蛋白尿(>0.5g/24時間)及び/又は尿検体中の赤血球若しくは円柱を特徴とする。
【0370】
いかなる特定の理論による束縛も意図しないが、自己抗体免疫複合体といったSLEトリガが、IFN−α、及びIFN−ωとは関連するが、IFN−βとは関連しないI型IFN応答を引き起こすことが示唆されている。したがって、本発明のIFN−α/ω抗体は、狼瘡及び他の免疫媒介炎症性疾患に対し、IFN−ω及び複数のIFN−αサブタイプを広域に阻害し、同時に抗ウイルス防御により重要な役割を果たし得、またその分子が狼瘡中で生物学的関連(releavance)を全く有さない場合があるIFN−βの機能を留保する(spare)より効果的な治療を提供し得る。例えば、抗IFN−β抗体は、SLE及びAGS患者のいずれの患者血清活性の中和にも失敗しており、疾患はIFN−I活性及びIFNシグネチャの上昇にも関連していた(Hooksら、Arthritis and Rheumatism 25:396〜400,1982、Huaら、Arthritis and Rheumatism 54:1906(Jun,2006)、Riceら、Lancet Neurology doi:10.1016/S1474〜4422(13)70258〜8(2013))。
【0371】
SLEに加えて狼瘡の他のタイプとしては、皮膚紅斑性狼瘡(CLE)及び小児狼瘡が挙げられる。
【0372】
狼瘡に関連する症状としては、関節の痛み及びこわばり、非びらん性関節炎、筋肉痛、疼痛、衰弱、発熱、倦怠、口腔組織の潰瘍、皮膚症状(例えば鼻及び頬全体の蝶形発疹、太陽光により誘発された皮膚発赤)、異常な体重減少若しくは体重増加、貧血症、リンパ球及び/若しくは血小板数の低下、神経学的若しくは神経精神病学的症状(例えば思考障害、記憶障害、錯乱、抑うつ、頭痛、癲癇発作、卒中)、腎臓障害(例えば腎炎(例えば糸球体腎炎))、太陽若しくは光過敏症、脱毛、ストレス若しくは寒さによる指の紫化若しくは蒼白化、血管病変若しくは他の血管症状、又は心膜炎若しくは胸膜炎などの心肺症状が挙げられる。インターロイキン上昇レベルIL−1、IL−6、IL−10、Il−12、IL−17、IL−18、IL−5、及びIL−16、TNF−α又はI型インターフェロン、並びにIFN誘導性遺伝子の過剰発現が狼瘡患者において立証されている。患者は、二本鎖DNA(dsDNA)、リボ核タンパク質(RNP)、SS−a/Ro、SS−b/La、リン脂質、ヒストン、又はカルジオリピンといった、核及び細胞成分に対する自己抗体の高い濃度を有し得る。患者は、少なくとも1つの組織中に免疫複合体の堆積を有し得る。
【0373】
SLEは、例えばAmerican College of Rheumatology(ACR)の推奨する方法を使用して、あるいはClassification of Systemic Lupus ErythematosusのためのSystemic Lupus International Collaborating Clinics Criteria(SLICC)によって、診断又は分類することができる。例えば、2012 SLICC基準は、11の基準のうちの少なくとも4つ(うち少なくとも1つの臨床的基準及び1つの免疫学的基準)、又は抗DNA抗体(ADA)若しくは抗核酸抗体(ANA)の存在下における生検で実証された狼瘡腎炎を患者に要求している。臨床的基準とは、急性皮膚狼瘡、慢性皮膚狼瘡、口若しくは鼻潰瘍、非瘢痕性脱毛症、関節炎、漿膜炎、腎症状、神経症状、溶血性貧血、白血球減少症、又は血小板減少症(<100,000/mm
3)である。免疫学的基準としては、ANA、ADA、抗Sm、抗リン脂質抗体、低補体(C3、C4、又はCH50)、又は直接クームス試験(溶血性貧血の存在には含めない)(Petreら、Arthritis and Rheumatism Aug 2012)が挙げられる。活動性疾患は、1つのBritish Isles Lupus Activity Groupの「A」基準、又は2つのBILAG「B」基準、SLE Disease Activity Index(SLEDAI)、又はFurieらのArthritis Rheum 61(9):1143〜51(2009)で説明される全身性紅斑性狼瘡(SLE)レスポンダ指数(SRI)によって定義することができる。
【0374】
SLE重症度及び疾患活動性は、SLEの専門技術を有する医師によりBILAGスコアによって定義することができる。BILAG 2004指数は、BILAGスコアを決定するのに用いられる(YeeらのArthritis & Rheumatism 54:3300〜3305,2006、IsenbergらのRheumatology 44:902〜906;2005を参照されたい)。BILAG 2004指数は、9つの器官系領域(全身、皮膚粘膜、神経精神、筋骨格、心肺、胃腸、眼、腎臓、及び血液)にわたる97の臨床的兆候、症状、及び検査値を評価する。97の症状を、前月(4週間の)重症度に関して、また前検査からのあらゆる変化(新規、改善、安定、悪化、非存在)に関して評価する。続いて各器官系カテゴリーの検査結果から9つの各領域に対して単一のアルファベットスコア(A〜E)を導く。表2にBILAGカテゴリーを示す。
【0376】
CLEは、臨床的特徴並びに皮膚の病変、検査所見の異常、及び皮膚生検の組織構造の変化の発現に応じて、急性(ACLE)、亜急性(SCLE)、慢性(CCLE)、又は間欠性(ICLE)CLEに更に分類される。様々なCLE形態の分類及び臨床症状は、Kuhn及びLandmannのJ Autiommunity 48〜49:14〜19,2014で考察されている。
【0377】
I型IFNの遺伝子シグネチャは、狼瘡の臨床的特徴及び血清学的特徴の両方と正に相関することが報告されている(KarageorgasらのJ Biomed Biotechnol 273907,2011、BaechlerらのProc Natl Acad Sci USA 100:2610〜2615,2003、BennettらのJ Exp Med 197:711〜723,2003、Dall’eraらのAnn Rheum Dis 64:1692〜1697,2005、NiewoldらのGenes Immun 8:492〜502,2007)。そのクリアランス障害と関連した自己抗体の優勢によってIFN生成のフィードバックサイクルがもたらされ、Fc受容体に依存する免疫複合体から形質細胞様樹状細胞(pDC)への内在化によって、IFNの増量、ひいてはIFNシグネチャの確立がもたらされる。臨床試験では、IFNシグネチャを示す患者の大部分において、SLE患者における抗IFN−α抗体は、I型IFNシグネチャの部分的な低下、及び予備分析においてわずかな有効性を示した(PetriらのArthritis and rheumatism 65,1011(Apr,2013)、Merrill JらのAnnals of the rheumatic diseases 70,314(2011)、KennedyらのThe 10th International Congress on SLE,Buenos Aires,Argentina Oral Presentation 5,022,(April 20th,2013))。
【0378】
狼瘡管理における治療標準は、現行の承認済み臨床パターン、リウマチ学界(例えばAmerican College of Rheumatology、European League Against Rheumatism)により作成された認可済み指針書、及び治療を実践する医師の選択に基づく。狼瘡患者は、診断が下された後に適切な管理を施してもなお長期に渡り疾患活動性を継続して有し、多くの場合、新たな器官系又は特定の器官系の損傷を伴う。狼瘡の疾患活動性には、フレア(又は疾患活動性の寛解・再発)、慢性活動性疾患、及び長期静止状態の3つのパターンがある。これらの疾患パターンは、体系的臨床的評価、定期的な実験室試験、疾患活動性の標準化指標、並びにこれらの評価と健康状態及び生活の質に対する患者自身の認識との統合を用いて特徴付けされる。患者のフレアの兆候及び症状が持続又は悪化すれば、医師は薬剤及び/又は用量の変更が正当であることを見出し得る。狼瘡の制御に用いられる薬剤としては、(1)例えばナプロキセン(Aleve)、及びイブプロフェン(Advil、Motrin、他のもの)などの市販のNSAID、並びに処方により入手可能なより強力なNSAIDを含むNSAID、(2)例えばヒドロキシクロロキン(Plaquenil)などの抗マラリア剤、(3)例えばPrednisone及び他の種類のコルチコステロイドなどのコルチコステロイド、並びに(4)例えばシクロホスファミド(Cytoxan)、アザチオプリン(Imuran、Azasan)、ミコフェノール酸塩(Cellcept)、レフルノミド(Arava)、及びメトトレキサート(Trexall)などの免疫抑制剤が挙げられるが、こられに限定されない。
【0379】
本発明の抗体は、疾患関連IFN調製物を用いて、インビトロの疾患関連細胞におけるその有効性を試験してもよい。そのようなインビトロ試験は、例えば、全血中のSLE患者の免疫複合体によって誘導されたIFN産生の阻害の評価、あるいは本明細書に記載される全血中のIFNシグネチャを低下する抗体の能力の評価であり得る。糸球体腎炎を含むヒト狼瘡のいくつかの特徴を有する時間依存性かつ雌バイアスの疾患を示すNZB/NZW F1マウスなどの狼瘡の動物モデルを更に用いてもよい。しかしながら、マウスはIFN−ωを産生しないため、本発明の抗体の有効性を評価するためのこれらのモデルとしての利用はより制限される。
【0380】
いくつかの実施形態では、患者はI型インターフェロンシグネチャを示す。本明細書で使用される「I型インターフェロンシグネチャ」又は「インターフェロンシグネチャ」は、IFN−Iによって誘導された遺伝子のサブセットの上方調節を意味する。3〜27遺伝子の範囲の様々なI型IFNシグネチャが既知である。これらのシグネチャは、例えば、SLEの治療のため、かつSLE患者の層別化を目的としたI型IFN阻害剤の標的結合を評価するための薬力学的マーカーとして利用され得る。
【0381】
YaoらのArthritis and rheumatism 60,1785(Jun,2009)で説明される21の上方調節された(upreguated)遺伝子からなる例示的なI型インターフェロンシグネチャを表3に示す。他の例示的なI型インターフェロンシグネチャは、Tcherepanova,IらのAnnals of the rheumatic diseases 71(Suppl3)(2012)、及びRichardson,BらのDevelopment of A Quantitative PCR Method to Determine Interferon Signature Metric Status in SLE Patients:Distribution and Clinical & Serological Associations in Two Lupus Clinical Trials ACR/ARHP 2012 Annual Meeting Abstract 620(2012)で説明されている。
【0382】
いくつかの方法では、抗IFN−α/ω抗体は、二重特異性抗体である。
【0383】
いくつかの方法では、抗IFN−α/ω二重特異性抗体は、BLyS、CD40L、IL−6、CD27、BDCA2、IL−12、IL−23、IFN−αD、IL−17、又はCD20を中和する。
【0385】
投与/医薬組成物
本発明は、本明細書で説明する本発明の抗IFN−α/ω抗体を含む医薬組成物を提供し、以下に列記される番号付けされた実施形態の各々のいくつかの実施形態では、医薬的に許容される担体を提供する。治療上の使用では、本発明の抗IFN−α/ω抗体は、医薬的に許容される担体内の活性成分として、有効量の抗IFN−α/ω抗体を含有する医薬組成物として調製することができる。用語「担体」は、活性化合物と共に投与される希釈剤、補助剤、賦形剤、又はビヒクルを指す。そのようなビヒクルは、水、及び落花生油、大豆油、鉱物油、ゴマ油等の、石油、動物、植物、又は合成物起源のものを含む油等の液体であってもよい。例えば、0.4%生理食塩水及び0.3%グリシンを用いることができる。これらの溶液は滅菌され、一般には粒子状物質を含まない。これらは、通常の周知の滅菌技術(例えば、濾過)によって滅菌することができる。この組成物は、生理学的状態に近づける場合に必要な、pH調整剤及び緩衝剤、安定剤、増粘剤、平滑剤並びに着色剤等の医薬的に許容される補助物質を含有することができる。そのような医薬製剤中の本発明の分子又は抗体の濃度は幅広く変化してもよく、即ち約0.5重量%未満、通常は少なくとも約1重量%から最大で15若しくは20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、又は50重量%までであってもよく、また、選択される特定の投与方法に従って、主として必要とされる用量、液体の体積、粘度等に基づいて選択される。好適なビヒクル及び製剤(他のヒトタンパク質、例えばヒト血清アルブミンを含む)は、例えば、Remington:The Science and Practice of Pharmacy,21
st Edition,Troy,D.B.ed.,Lipincott Williams and Wilkins,Philadelphia,PA 2006,Part 5,Pharmaceutical Manufacturing pp 691〜1092に記載され、特にpp.958〜989を参照されたい。
【0386】
本明細書で説明され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の方法における抗IFN−α/ω抗体の投与方法は、例えば、皮内、筋肉内、腹腔内、静脈内、又は皮下、肺、経粘膜(経口、経鼻、膣内、直腸)などの非経口的投与、又は当該技術分野において周知の当業者に理解される他の手法などの任意の好適な経路であってもよい。
【0387】
本明細書で説明され、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における本発明の方法における抗IFN−α/ω抗体は、例えば静脈内(i.v.)注射、又は筋肉内若しくは皮下若しくは腹腔内ボーラス注入などの任意の好適な経路によって患者に投与してもよい。i.v.注射は、例えば15、30、60、90、120、180、又は240分間、又は1、2、3、4、5、6、7、8、9、10、11、又は12時間にわたって与えられてもよい。
【0388】
狼瘡などの免疫媒介炎症性疾患又は自己免疫疾患を有する患者に与える用量は、治療される疾患を緩和する、又は少なくとも部分的に阻止するのに十分な量(「治療有効量」)であり、場合によっては0.005mg/kg〜約100mg/kg(例えば約0.05mg/kg〜約20mg/kg、若しくは約0.1mg/kg〜約20mg/kg、若しくは約1mg〜約20mg/kg、若しくは約4mg/kg、約8mg/kg、約16mg/kg、又は約24mg/kg、又は例えば約1、2、3、4、5、6、7、8、9、若しくは10mg/kg)であってもよいが、例えば約15、16、17、18、19、20、21、22、23、24、25、30、40、50、60、70、80、90、又は100mg/kgなどのように更に高くてもよい。
【0389】
例えば、50、100、200、500、若しくは1000mgの固定単位用量が与えられてもよく、又はこの用量は、例えば500、400、300、250、200、若しくは100mg/m
2など、患者の表面積に基づいてもよい。狼瘡などの免疫媒介炎症性疾患の治療には通常1〜8用量(例えば1、2、3、4、5、6、7、又は8用量)を投与してもよいが、9、10、11、12、13、14、15、16、17、18、19、20用量、又はそれ以上の用量を投与してもよい。
【0390】
本発明の方法における、かつ以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における抗IFN−α/ω抗体の投与は、1日、2日、3日、4日、5日、6日、1週間、2週間、3週間、1ヶ月、5週間、6週間、7週間、2ヶ月、3ヶ月、4ヶ月、5ヶ月、6ヶ月以上後に繰り返すことができる。長期にわたる投与の場合、治療過程を繰り返すことも可能である。繰り返し投与は、同一用量であっても異なる用量であってもよい。例えば、本発明の方法における抗IFN−α/ω抗体は、静脈内注射により、1週間間隔で0.1mg/kg、1mg/kg、5mg/kg、8mg/kg、又は16mg/kgを8週間投与し、続いて2週間毎に8mg/kg又は16mg/kgを更に16週間投与し、続いて4週間毎に8mg/kg又は16mg/kgを投与してもよい。
【0391】
抗IFN−α/ω抗体は、本発明及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における方法で、例えば6ヶ月以上の期間で週1回などの維持療法によって投与してもよい。
【0392】
例えば、本発明及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における方法における抗IFN−α/ω抗体は、治療開始後第1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、若しくは40日目のうちの少なくとも1日に、若しくは1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、若しくは20週目のうちの少なくとも1週に、又はこれらの任意の組み合わせで、単回投与、若しくは24、12、8、6、4、若しくは2時間毎の分割投与、又はこれらの任意の組み合わせを用いて、1日に例えば0.5、0.9、1.0、1.1、1.5、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、40、45、50、60、70、80、90、又は100mg/kg/日などの約0.1〜100mg/kgの用量で提供してもよい。
【0393】
本発明及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における方法における抗IFN−α/ω抗体は、狼瘡などの免疫媒介炎症性疾患若しくは自己免疫疾患の発生リスクを低減させるために、自己免疫疾患の免疫媒介炎症性疾患の発症を遅延させるために、かつ/又は、狼瘡などの免疫媒介炎症性疾患若しくは自己免疫疾患が寛解中の再発リスクを低減させるために、予防的に投与することもできる。
【0394】
したがって、筋肉内注射用の本発明の医薬組成物は、1mLの滅菌緩衝水、及び約1ng〜約100mg/kg、例えば約50ng〜約30mg/kg、又はより好ましくは約5mg〜約25mg/kgの本発明の抗IFN−α/ω抗体を含むように調製することができる。
【0395】
例えば、本明細書で説明される本発明の方法、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における静脈内注射用の抗IFN−α/ω抗体を含む静脈内注射用医薬組成物は、80kgの患者に投与するためには、最大で約200mlの滅菌リンガー液及び約8mg〜約2400mg、約400mg〜約1600mg、又は約400mg〜約800mgの抗INF−α/ω抗体を含むように作製してもよい。非経口投与可能な組成物を調製する方法は周知であり、例えば、「Remington’s Pharmaceutical Science」(15th ed.,Mack Publishing Company,Easton,PA)に、より詳細に記載されている。
【0396】
免疫媒介炎症性疾患又は自己免疫疾患の治療に有効な本発明のIFN−α/ω抗体は、標準的な研究技術によって決定することができる。例えば、インビトロアッセイを用いて最適な用量範囲の特定に役立てることができる。任意に、SLEを含む狼瘡などの免疫媒介炎症性疾患又は自己免疫疾患の治療において有効であり得る本発明のIFN−α/ω抗体は、当該技術分野で周知の適切な動物モデルにIFN−α/ω抗体を投与することによって決定することができる。特定の有効用量の選択は、当業者であればいくつかの因子の考慮に基づいて(例えば臨床試験によって)決定することができる。そのような因子には、治療又は予防しようとする疾患、疾患症状、患者の体重、患者の免疫状態、及び当業者に既知の他の因子が含まれる。製剤に用いられる正確な用量は、投与経路、及び疾患の重篤度にも依存し、医師の判断及び各患者の状況に基づいて決定されなければならない。有効量は、インビトロ又は動物モデル試験系から導出される用量反応曲線から推定することができる。本発明の抗体の有効性及び有効量について、本明細書に記載したモデルのうちのいずれかを用いて試験することができる。
【0397】
本明細書で説明される本発明の方法、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における抗IFN−α/ω抗体は、貯蔵のために凍結乾燥した後に、使用前に好適な担体中で再構成することができる。この技術は、従来のタンパク質調製物に関して有効であることが示されており、既知の凍結乾燥法及び還元技術を用いることができる。
【0398】
本明細書で説明される本発明の方法、及び以下に列記される番号付けされた実施形態の各々のいくつかの実施形態における抗IFN−α/ω抗体は、第2の治療薬と併せて、同時に、逐次に、又は別個に投与することができる。
【0399】
第2の治療薬は、コルチコステロイド、抗マラリア剤、免疫抑制剤、細胞毒性剤、又はB細胞調節剤であってもよい。
【0400】
いくつかの実施形態では、第2の治療薬はプレドニゾン、プレドニゾロン、メチルプレドニゾロン、デフラザコート(deflazcort)、ヒドロキシクロロキン、アザチオプリン、メトトレキサート、シクロホスファミド、ミコフェノール酸モフェチル(MMF)、ミコフェノール酸ナトリウム、シクロスポリン、レフルノミド、タクロリムス、リツキシマブ(商標)、又はベリムマブ(商標)である。
【0401】
発明の更なる実施形態
以下に、本明細書の他の箇所に記載した開示に従った本発明の更なる特定の実施形態を列挙する。本明細書に開示される本発明に関連するものとして説明される上記の本発明の実施形態の特徴は、これらの番号付けされた更なる実施形態の各々及び全てにも関する。
【0402】
1)ヒトインターフェロンオメガ(IFN−ω)及び少なくとも3、4、5、6、7、8、9、10、又は11のヒトインターフェロンアルファ(IFN−α)サブタイプと結合し、それらの生物活性を中和する、単離されたモノクローナル抗体。
2)前記ヒトIFN−ω及び前記ヒトIFN−αサブタイプの前記生物活性が、シグナル伝達性転写因子2(STAT2)、インターフェロン調節因子9(IRF9)、及びSEAPを安定に発現するHEK293細胞におけるインターフェロン誘導性ISG54プロモーター下でのヒトIFN−ω又はヒトIFN−αサブタイプに誘導された分泌胚アルカリホスファターゼ(SEAP)の発現である、実施形態1に記載の抗体。
3)前記抗体が、少なくとも約1×10
-9M以下、約1×10
-10以下、約5×10
-11以下、又は約1×10
-11M以下のIC
50でヒトIFN−ωの生物活性を中和する、実施形態1又は2に記載の抗体。
4)前記抗体が、少なくとも約1×10
-10M以下のIC
50値で前記ヒトIFN−ωの前記生物活性を中和する、実施形態1〜3のいずれか一項に記載の抗体。
5)前記抗体が、約1×10
-10M〜約6×10
-12MのIC
50値で前記ヒトIFN−ωの前記活性を中和する、実施形態1〜4のいずれか一項に記載の抗体。
6)前記抗体が、少なくとも約1×10
-10M以下のIC
50値で少なくとも3、4、5、6、7、8、9、10、又は11のヒトIFN−αサブタイプの前記活性を中和する、実施形態1〜5のいずれか一項に記載の抗体。
7)前記IFN−αサブタイプが、IFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aからなる群から選択される、実施形態6に記載の抗体。
8)前記抗体が、それぞれ配列番号109、114、及び121の重鎖相補性決定領域(HCDR)1(HCDR1)、2(HCDR2)、及び3(HCDR3)のアミノ酸配列、並びに配列番号118、119、及び120の軽鎖相補性決定領域(LCDR)1(LCDR1)、2(LCDR2)、及び3(LCDR3)のアミノ酸配列を含む、実施形態7に記載の抗体。
9)前記抗体が、IFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aからなる群から選択される少なくとも6つのヒトIFN−αサブタイプを中和する、実施形態1〜5のいずれか一項に記載の抗体。
10)前記抗体が、それぞれ配列番号109、114、121、159、119、及び160のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む、実施形態9に記載の抗体。
11)前記抗体が、IFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αI、IFN−αJ1、IFN−αK、IFN−αWA、及びIFN−α4aからなる群から選択される少なくとも10のヒトIFN−αサブタイプを中和する、実施形態1〜5のいずれか一項に記載の抗体。
12)前記抗体が、少なくともアミノ酸残基F27、L30、及びR33において配列番号1のヒトIFN−ωと結合する、実施形態11に記載の抗体。
13)前記抗体が、それぞれ配列番号109、114、121、161、119、及び162のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3のアミノ酸配列を含む、実施形態1〜5のいずれか一項に記載の抗体。
14)前記抗体が、少なくとも前記ヒトIFN−αサブタイプのIFN−αA、IFN−αB2、IFN−αC、IFN−αF、IFN−αG、IFN−αH2、IFN−αJ1、及びIFN−α4aを中和する、実施形態11〜13のいずれか一項に記載の抗体。
15)前記抗体が、IFN−αI、IFN−αK、又はIFN−αWAを更に中和する、実施形態14に記載の抗体。
16)前記抗体が、
a)250U/mLのインターフェロンによって誘導された全血中での白血球インターフェロン誘導性IP−10放出を、10μg/mlの抗体の存在下で約50%以上阻害するか、又は
b)全血中の全身性紅斑性狼瘡(SLE)免疫複合体によって誘導されたIP−10の放出を、10μg/mlの抗体の存在下で約50%以上阻害する、実施形態1〜15のいずれか一項に記載の抗体。
17)前記抗体が、配列番号28と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、又は99%同一の重鎖可変領域(VH)アミノ酸配列、及び配列番号150と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、又は99%同一の軽鎖可変領域(VL)アミノ酸配列を含む、実施形態1〜16のいずれか一項に記載の抗体。
18)
a)配列番号109のHCDR1のアミノ酸配列、
b)配列番号111、112、又は113のHCDR2のアミノ酸配列、
c)配列番号115又は116のHCDR3のアミノ酸配列、
d)配列番号76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、又は91のLCDR1のアミノ酸配列、
e)配列番号93、94、又は95のLCDR2のアミノ酸配列、及び
f)配列番号96、97、98、99、100、101、102、103、104、105、106、又は107のLCDR3のアミノ酸配列を含む、実施形態1〜17のいずれか一項に記載の抗体。
19)配列番号、
a)それぞれ109、113、116、77、93、及び104、
b)それぞれ109、113、116、85、93、及び96、
c)それぞれ109、113、115、79、95、及び107、
d)それぞれ109、113、116、76、93、及び103、
e)それぞれ109、113、115、85、93、及び96、
f)それぞれ109、113、115、89、95、及び100、
g)それぞれ109、113、116、86、93、及び105、
h)それぞれ109、113、115、76、93、及び103、
i)それぞれ109、113、116、80、93、及び97、
j)それぞれ109、113、116、84、93、及び97、
k)それぞれ109、113、116、90、93、及び97、
l)それぞれ109、113、116、88、93、及び102、
m)それぞれ109、113、116、87、93、及び105、
n)それぞれ109、113、116、91、93、及び106、
o)それぞれ109、113、115、80、93、及び97、
p)それぞれ109、113、116、83、93、及び101、
q)それぞれ109、113、116、82、94、及び98、
r)それぞれ109、113、115、78、95、及び100、
s)それぞれ109、111、116、81、93、及び106、
t)それぞれ109、113、116、82、94、及び99、
u)それぞれ109、113、115、81、93、及び106、
v)それぞれ109、112、116、81、93、及び106、又は
w)それぞれ109、113、116、81、93、及び106のHCDR1、HCDR2、HCDR3、LCDR1、LCDR2、及びLCDR3の配列を含む、実施形態18に記載の抗体。
20)前記抗体が、ヒト化されている又はヒトである、実施形態1〜19のいずれか一項に記載の抗体。
21)前記ヒト抗体重鎖可変領域フレームワークがヒト生殖系列遺伝子IGHV5−51(配列番号155)由来である、実施形態20に記載の抗体。
22)前記ヒト抗体軽鎖可変領域フレームワークがヒト生殖系列遺伝子IGKV1D−39(配列番号156)由来である、実施形態21に記載の抗体。
23)前記抗体が、IgG1、IgG2、IgG3、又はIgG4サブタイプのものである、実施形態1〜22のいずれか一項に記載の抗体。
24)前記抗体がFc領域内に少なくとも1つの置換を有する、実施形態23に記載の抗体。
25)前記置換が、置換M252Y/S254T/T256E、V234A/G237A/P238S/H28A/V309L/A330S/P331S又はP238S/L234A/L235Aを含み、残基の番号付けがEU番号付けに準ずる、実施形態24に記載の抗体。
26)重鎖可変領域(VH)及び軽鎖可変領域(VL)を含み、
a)VHが配列番号28、31、157、又は158のアミノ酸配列を含む、実施形態1〜26のいずれか一項に記載の抗体。
27)前記VLが配列番号35、39、40、42、46、52、53、54、57、61、62、68、71、73、75、135、又は150のアミノ酸配列を含む、実施形態26に記載の抗体。
28)配列番号、
a)それぞれ28及び40、
b)それぞれ28及び39、
c)それぞれ31及び62、
d)それぞれ28及び54、
e)それぞれ31及び39、
f)それぞれ31及び68、
g)それぞれ28及び42、
h)それぞれ31及び54、
i)それぞれ28及び53、
j)それぞれ28及び73、
k)それぞれ28及び75、
l)それぞれ28及び52、
m)それぞれ28及び35、
n)それぞれ28及び135、
o)それぞれ31及び53、
p)それぞれ28及び46、
q)それぞれ28及び61、
r)それぞれ31及び57、
s)それぞれ157及び71、
t)それぞれ28及び150、
u)それぞれ31及び71、
v)それぞれ158及び71、又は
w)それぞれ28及び71、の前記VH及び前記VLを含む、実施形態27に記載の抗体。
29)前記抗体が二重特異性である、実施形態1〜28のいずれか一項に記載の抗体。
30)前記抗体が、BLyS、CD40L、IL−6、CD27、BDCA2、IL−12、IL−23、IFN−αD、IL−17、CD20、IL−10、CD22、IL−21、ICOS、ICOSL、又はIFN−γと結合する、実施形態29に記載の抗体。
31)実施形態1〜30のいずれか一項に記載の抗体と、医薬的に許容される担体と、を含む、医薬組成物。
32)前記抗体VH若しくはVL、又は実施形態1〜28のいずれか一項に記載の抗体VH及びVLをコードするポリヌクレオチド。
33)実施形態32に記載のポリヌクレオチドを含むベクター。
34)実施形態33に記載のベクターを含む宿主細胞。
35)実施形態19に記載の抗体の生成方法であって、前記抗体が発現する条件下で実施形態33に記載の宿主細胞を培養することと、前記宿主細胞によって生成された抗体を回収することとを含む、方法。
36)免疫媒介炎症性疾患又は自己免疫疾患の治療に使用するための、実施形態1〜30のいずれか一項に記載の抗体。
37)
a)前記免疫媒介炎症性疾患又は前記自己免疫疾患であって、任意選択的に狼瘡、乾癬、免疫性血小板減少症(ITP)、エカルディ−グチエール症候群(AGS)、全身性硬化症、シェーグレン症候群、筋炎、分類不能型免疫不全症(CVID)、自己免疫性甲状腺疾患、I型糖尿病、関節リウマチ、移植片拒絶反応、又は移植片対宿主病(GVHD)である、前記免疫媒介炎症性疾患又は前記自己免疫疾患、
b)慢性ウイルス感染症であって、任意にHIV又はC型肝炎感染症である、慢性ウイルス感染症に使用するための、実施形態36に記載の抗体。
38)狼瘡の治療に使用するための、実施形態1〜30のいずれか一項に記載の抗体。
39)狼瘡が全身性紅斑性狼瘡(SLE)又は皮膚紅斑性狼瘡(CLE)である、狼瘡に使用するための、実施形態38に記載の抗体。
40)治療される患者が、
a)狼瘡腎炎を有するか、又は
b)I型インターフェロンシグネチャを示す、免疫媒介炎症性疾患又は狼瘡の治療に使用するための、実施形態1〜30のいずれか一項に記載の抗体。
41)第2の治療薬と組み合わせて実施形態37〜40に従って使用するための、実施形態1〜30のいずれか一項に記載の抗体。
42)前記第2の治療薬が、
a)BLyS、CD40L、IL−6、CD27、BDCA2、IL−12、IL−23、IFN−αD、IL−17、CD20、IL−10、CD22、IL−21、ICOS、ICOSL、若しくはIFN−γと結合する抗体、
b)コルチコステロイド、抗マラリア剤、免疫抑制剤、細胞毒性剤、若しくはB細胞調節剤、又は
c)プレドニゾン、プレドニゾロン、メチルプレドニゾロン、デフラザコート(deflazcort)、ヒドロキシクロロキン、アザチオプリン、メトトレキサート、シクロホスファミド、ミコフェノール酸モフェチル(MMF)、ミコフェノール酸ナトリウム、シクロスポリン、レフルノミド、タクロリムス、リツキシマブ(商標)、又はベリムマブ(商標)である、実施形態41に記載の抗体。
43)前記抗体がIFN−αD、IFN−α1、及び/又はIFN−βを中和しない、実施形態1〜30のいずれか一項に記載の抗体。
【0403】
次に、本発明を以下の特定の非限定的な実施例を参照して説明する。
【0404】
材料及び方法
ISREレポーター遺伝子アッセイ(「ISREレポーター遺伝子アッセイ」)
完全に活性なI型IFNシグナル伝達経路を発現する(STAT2及びIRF9を安定に発現する)ように操作され、IFN−α/β誘導性ISG54プロモーターの制御下で、SEAPレポーター遺伝子でトランスフェクトされたHEK−Blue(商標)IFN−α/β細胞(InvivoGen(San Diego,CA)を使用した。これらの細胞を、10%ウシ胎児血清、100ug/mLのブラストサイジン、及び30ug/mLのゼオシンでDulbeccoの改変イーグル培地中のコラーゲンI型コーティングされたT150フラスコにて、37℃、5%CO
2で増殖させた。細胞を採取し、50,000細胞/mLの384ウェルプレートに、50μL/ウェルでプレーティングした。プレーティングした細胞を37℃、5%CO
2で24時間インキュベートした。試験したインターフェロン試料を調製し、使用済みのHEK ISRE無血清培地中で希釈し、IFN試料50μLを各ウェルに添加した。プレーティングした細胞を37℃、5%CO
2で20時間インキュベートした。室温で20分間インキュベートした後、60μL/ウェルのQUANTI−Blue(登録商標)を濾過水中に再縣濁した20μLのプレーティングした細胞上清から、アルカリホスファターゼが検出された。光密度をBiotek Synergyプレートリーダー上で、650nmで読み取った。
【0405】
いくつかのISREレポーター遺伝子アッセイを、以下のように96ウェルプレートで行った。HEK−Blue(登録商標)IFN−α/β細胞(InvivoGen(San Diego,CA)を、無選別培地(DMEM+Glutamax/10%(FBS,Gibco))100μL中の50,000細胞/ウェルでプレーティングし、37℃で終夜インキュベートさせた。翌日、I型IFN刺激因子を、別の96ウェルU底トランスファープレート(BD Falcon)において、I型IFN阻害剤あり又はなしで調製して(即ち組み換えインターフェロン、白血球IFN、ICによって誘導されたIFN調製物、血清など)、37℃で10分間予熱した。インキュベータから細胞プレートを取り出し、培地を取り除き、96ウェルU底トランスファープレートにおいて調製した100μLの適切な処置物と交換した。細胞を再び37℃で24時間置いた。翌日、40μLの上清を、160μLのQUANTI−Blue(登録商標)SEAP基材(Invivogen)を含む96ウェル平底プレート(BD Falcon)に移した。プレートを約15分間発色させ、650nmの吸光度で分光計を使用して読み取った。
【実施例】
【0406】
実施例1.SLE患者の血中に可溶性IFN−ωが存在し、かつ活性である
VeriPlexヒトインターフェロン多重ELISAキット(PBL Assay Science、カタログ番号51500−1)を用いた多重ELISAを用いて、製造業者の指示に従い、中国南京市出身の2つの独立したSLEコーホートの血漿、及び米国の白人コーホートから収集した血清を可溶性IFN−ω及びIFN−αに関して分析した。多重ELISAは多くのIFN−αサブタイプを検出するが、全てを検出せず、全IFN−α濃度対IFN−ωの量的な違いは正確に反映しない場合がある。
【0407】
IFN−αに加えてIFN−ωは、中国南京市出身のコーホート(
図1A)、及び白人コーホート(
図1B)の各コーホートの両方からの特定の患者において上昇したことが判明した。
図1Aは、上昇したIFN−α又はIFN−ωを有することが判明した患者のみの結果を示す。白人群の血清試料を、ISREレポーター遺伝子アッセイを用いてIFN−I活性に関して更にスクリーニングした。ELISAによって最高量の検出可能IFNタンパク質を示したドナーは、レポーター遺伝子アッセイにおいてISRE誘導の最高濃度を示した(
図1C)。
【0408】
実施例2.IFN−ω及びIFN−αの複合遮断は、IFN−αの遮断のみと比較してより優れたSLE免疫複合体によって誘導されたIFNの阻害をもたらす
SLE免疫複合体によって誘導されたIFN(SLEに存在するI型IFN環境をより良好に表わす刺激である)を減少させるためのIFN−αのみの阻害、又はIFN−ω及びIFN−αの両方の阻害の効果を評価した。ヒトPBMCを2名の個別のSLEドナーから調製した免疫複合体で刺激することにより、SLE免疫複合体によって誘導されたIFNを調製し、この馴化培地をIFN阻害剤及び対照の存在下のI型IFN誘導性レポーター遺伝子アッセイ(ISREレポーター遺伝子アッセイ)で利用した。
【0409】
免疫複合体の調製
タンパク質A/Gカラム(Thermo Scientific、カタログ番号89958)を使用し、製造業者の指示に従い、SLEドナー232及び293の血漿(IFN活性に関して予備スクリーニングした)、並びに健常対照の血漿(Astarte Biologics)をIgG精製に利用した。プールされた健常ドナーの調製物からの血清(Life Technologies、カタログ番号34005100)を、健常対照のIgGの精製に用いた。免疫複合体形成のための溶解物を生成するために、HEK293T細胞(ATCC、カタログ番号CRL−3216)を1×DPBS(Life Technologies、カタログ番号14190−250)中で5×10
7細胞/mlに濃縮した。溶解物を生成するために、10分間の凍結解凍を4サイクル実施し、30分間の初期凍結を除いては、−80℃で凍結し、37℃で解凍した。4回目の凍結解凍後、細胞残屑を400×gで5分間の遠心分離によって除去した。精製IgG調製物及び細胞溶解物を、続いてBCAタンパク質アッセイ(Pierce、カタログ番号23225)を用いて、製造業者の指示に従い定量した。免疫複合体で刺激した馴化培地調製物を生成するため、Cell Preparation管(BD Vacutainer、カタログ番号362753)を用いて健常ドナーのヘパリンナトリウム化血液からのPBMCを単離し、RPMI 1640(Life Technologies、カタログ番号11875−085)+10% FBS(Life Technologies、カタログ番号16140−063)培地で2×10
6細胞/mlに再懸濁して、2ml/ウェルの6ウェルプレートにプレーティングした。SLEからの精製IgG及び健常血清を細胞溶解物と各500ug/mlの同等の濃度でプレミックスし、RTで30分間インキュベートし、続いて2ml/ウェルでPBMCに添加し、37℃で24時間インキュベートした。プレートを1000rpmで5分間遠心分離にかけ、PBMC免疫複合体刺激馴化培地を回収し、アリコートし、将来の使用のために−80℃で保存した。
【0410】
活性アッセイ
HEK−Blue IFN−α/β細胞(Invivogen)を96ウェル平底プレート中の200μl DMEM(Life Technologies)+10%ウシ胎児血清(Life Technologies)に50,000細胞/ウェルでプレーティングし、37℃で5時間インキュベートして、細胞をプレートに付着させた。5時間後、HEK Blue細胞をインキュベータから取り出し、上清を、ドナー232 PBMC馴化培地の1:6希釈物、又はドナー293馴化培地1:81希釈物と交換し(希釈剤としてHEK Blue細胞培養培地を用いて)、0.4、2、10、50、及び100μg/mlの広域の抗IFN−αアンタゴニストmAb(M24、ヒトIgG1)に加えて固定濃度20μg/mlのアイソタイプ対照(R&D Systems、ネズミIgG1)、100μg/mlの抗IFN−αと組み合わせて20μg/mlの抗IFN−ωアンタゴニストmAb(eBioscience、クローンOMG5、ネズミIgG1)、又は100μg/mlのヒトIgG1アイソタイプ対照(Southern Biotech)と組み合わせた20μg/mlのネズミIgG1アイソタイプ対照、の処置を加えたか、又は加えなかった。細胞を37℃で終夜インキュベートした。翌日、各ウェルから40μlの細胞上清を取り除き、別個の96ウェル平底プレート中の160μlのQuanti−Blueアルカリホスファターゼ基質(Invivogen)に添加した。上清を基質と10分間反応させ、プレートを650nm波長の分光光度計で読み取った。GraphPad Prismで光学濃度をプロットした。
【0411】
IFN−αアンタゴニストの存在下でのIFN−ωの更なる遮断は、IFN−αのみの遮断と比較してSLE関連IFN−I活性の強化された抑制をもたらした(
図2)。予測通り、健常ドナーからの免疫複合体で刺激されたPBMCからの馴化培地(HV IC馴化培地)は、SLE患者の免疫複合体のインターフェロン産生能(interferogenic potential)を示す検出可能なISRE活性を有さなかった。
【0412】
実施例3.IFN−ωの免疫調節効果は、IFN−αのそれと同様である
ケモカイン分泌、IFN遺伝子シグネチャ、樹状細胞の成熟及び活性化、並びにB細胞の成熟を誘導するIFN−ωの能力を、IFN−αと比較して評価した。これらの研究では、最も広く用いられる治療的IFN−α分子であるIFN−αA及びIFN−α2を、代表的なIFN−αサブタイプ対照として主に用いた。いくつかのアッセイでは、IFN−αB2を用いた。
【0413】
ケモカイン分泌及びIFN遺伝子シグネチャの誘導
6名の健常ヒトドナーから単離したPBMCをIFN−αA(IFN−α2)又はIFN−ωで刺激し、上清及びペレット剤を回収して分析した。処置後3、6、及び24時間。25のサイトカインのパネル(L−1β、IL−1RA、IL−2、IL−2R、IL−4、IL−5、IL−6、IL−7、IL−8、IL−10、IL−12、IL−13、IL−15、IL−17、TNF−α、IFN−α、IFN−γ、GM−CSF、MIP−1α、MIP−1β、IP−10、MIG、Eotaxin、RANTES、及びMCP−1)を、Luminexイムノアッセイを用いて上清から測定した。IFN−ω及びIFN−α2はいずれも検出可能なIP−10、MCP−1、IL−1RA、IL−6、MIP−1α、及びMIP−1βのレベルを高めた。
図3は、IFN−ω及びIFN−α2によるIP−10の誘導を示す。IL−8の分泌は、これらの試験における両方の処置によって減少された。IFN−α又はIFN−ω処置によってIL−2R、IL−12、及びRANTESのレベルは変更されなかった(RANTESのみが上昇した1ドナーの例外を除く)。サイトカインパネルの他の全ての検体は、IFN−α又はIFN−ω処置に関連して変化することはなかった、又は検出限界を下回っていた。
【0414】
回収したペレットをRNAのために処理して21遺伝子IFNパネルシグネチャ(21-gene IFN panel signature)を用いてマイクロアレイによって評価し、IFN−ω及びIFN−αによって誘導された発現における可能な類似及び/又は差異を評価した。IFN−ωで処置したヒトPBMCは、IFN−αAで処置した細胞と比較して、ほぼ(neary)区別不能な定性的及び動的遺伝子発現応答を示した。未処置の対照に対してIFN−αA処置によって調節された遺伝子の92.5%を、3時間時点でIFN−ω処置で更に調節した。処置後6時間及び24時間時点で、IFN−α処置によって調節された遺伝子の97.83%及び99.25%を、それぞれIFN−ωによっても調節した(データは示さず)。
【0415】
要約すれば、6名の個別の健常ヒトドナーから得たPBMC調製物間のIFN−α及びIFN−ωによって誘導された区別不可能な定性サイトカイン放出及び遺伝子発現プロファイルは、これらは同様の免疫調節効果を付与し得ることを示す。
【0416】
IFN−ωは、IFN−ω遮断抗体によって阻害される樹状細胞の分化を誘導する。
【0417】
単球からDCへの分化及び機能性を誘導するIFN−ω及びIFN−αの能力を評価した。
【0418】
50μg/mlの抗IFN−α又は抗IFN−ωの存在下又は不在下で、GM−CSFのみの、又はIFN−α又はIFN−ωを伴った存在下で、標準的な方法を用いて3日間、精製単球をDCに分化した。細胞を採取し、8色FACSによって表面マーカーの発現に関して分析した。IFN−α及びIFN−ωは、特徴的なDC表面マーカー発現CD83、及びCD80、CD86、CD40、CD11cを誘導し、発現又は単球マーカーCD14を低減した。培養の開始時に抗IFN−α又は抗IFN−ωのいずれかを濃度50μg/mlで添加することによりDCの分化が部分的に阻害されたが、アイソタイプ抗体には何の効果もなかった(データ示さず)。
【0419】
混合リンパ球反応(MLR)を用いて分化したDCの機能性を実証した。分化したDCを採取し、洗浄し、新鮮培地で再懸濁し、精製したCD4+T細胞を用いてDC:CD4+T細胞比率1:10、1:20、及び1:100で培養した。6日目に上清を回収して、26サイトカイン/ケモカイン用の多重ビーズアッセイを用いて、分泌サイトカインに関して分析した。IFN−α又はIFN−ωのいずれかの存在下で分化されたDCは、T細胞特異性サイトカインIFN−γ及びIL−17の分泌によって示されるように、CD4+細胞を活性化した。抗IFN−α又は抗IFN−ω抗体のいずれかの存在下で分化されたDCは、CD4+T細胞の活性化を誘導しなかった。
図4Aは、抗IFN−α又は抗IFN−ω抗体の存在下で分化されたDCによって活性化されたCD4+細胞から誘導されたIFN−γ分泌物が欠如していることを示す。
図4Bは、抗IFN−α又は抗IFN−ω抗体の存在下で分化されたDCによって活性化されたCD4+細胞から誘導されたIL−17分泌物が欠如していることを示す。IFN−α及びIFN−ωは、IL−4、IL−5、IL−12p40、及びIL−13(データ示さず)の分泌も誘導した。全ての培養条件はGM−CSFを含んでいた。データは2つの研究を表す。エラーバーはLuminex3連のSDを示す。図に示す実験では、データは、1:20のDC:CD4 T細胞比が用いられたことを示した。
【0420】
IFN−ωは、T細胞に依存しないB細胞の活性化を誘導する。
B細胞は、病原性自己抗体及びサイトカインの生成を介して、またT細胞に抗原を提示することにより、狼瘡病原に決定的に重要な役割を果たす。B細胞の活性化及び機能的成熟は、T細胞依存性(TD)又はT細胞非依存性(TI)の方法で生じ得る。TIのB細胞の応答においては、TLRリガンド又は樹状細胞誘導サイトカインがT細胞のヘルプの代替となることができるために、B細胞はT依存性耐性対照(T-dependent tolerance control)から放出される。TLRリガンド(例えば二本鎖DNA)及びDC誘導サイトカイン(例えばI型IFN)が疾患病因に寄与すると考えられるSLEにおいては、TIのB細胞はおそらく適切な機構を示す。自己抗体の生成の他にも、自己反応性B細胞は、自己抗原をT細胞に提示して炎症促進性サイトカインを分泌することにより重要な病原性役割を果たすと考えられる。IFN−αは、T細胞誘導因子の不在下で、B細胞受容体(BCR)及びCpG(それぞれ特異的な抗原及びTLRシグナルを模倣する)に対する抗体によって活性化されたヒトB細胞によって炎症促進性IL−6の生成を増進することが報告されている。更に、形質球様DCとの同時培養も、可溶性因子に依存するCD86発現レベルによって決定されるB細胞の活性化を増進することが示されている。ヒトB細胞によるCD86発現及び炎症促進性サイトカインの生成を増進するIFN−ωの能力を、T細胞非依存性培養系を用いて調査した。示されるようにCpG(ODN−2006)、抗BCR、並びにCpG及び抗BCR、並びに様々な濃度のIFN−α2(α2b)又はIFN−ωを用いて、末梢血B細胞を培養した(IFN濃度の単位はU/ml)。3日後、フローサイトメトリーによってCD86発現(平均蛍光レベル)を決定し、上清を、IL−6を含む26−plexのLuminexイムノアッセイによって分析した。結果を複製試料±SDの平均値として表した。
【0421】
試験された両方のドナー試料で抗BCR及び抗BCR/CpG刺激でのCD86発現の用量依存的なIFN−ωによって誘導された上方調節が観察されたが、一方で刺激なしのBリンパ球の同時培養は弱い効果しか示さなかった。INF−ωは、IFN−α2Bと比較してより近いCD86の発現を誘導した。
図5Aは、1ドナーのB細胞からIFN−ωによって誘導されたCD86の発現を示す。IFN−ωは、試験した両方のドナー試料で、IFN−α2Bと比較してより近い程度のCpG及び抗BCR/CpG刺激によるIL−6の生成も用量依存的に誘導した。
図5Bは、1ドナーのB細胞からIFN−ωによって誘導されたIL−6の分泌を示す。
【0422】
IFN−ωはBLyS分泌を誘導する
BLyS(BAFF)はB細胞生存因子であり、臨床的に有効なヒトSLE中の標的である。IFN−α処置は、投薬から24時間後に患者から単離したPBMCをマイクロアレイ及びqPCR分析することによって決定されるように、インビボでBLyS遺伝子発現を誘導することが判明している。よって、BLySの分泌を誘導するIFN−ωの能力を評価した。
【0423】
PBMCを2つの正常な健常ドナーから単離した。同等の濃度のIFN−ω及びIFN−αを用いて細胞を72時間の間刺激し、その時点で上清を回収して、ELISAによって可溶性BLySに関して分析した。結果を複製試料±SDの平均値として表した。
【0424】
IFN−ω及びIFN−αは、インビトロでヒトPBMCのBLyS分泌を誘導する点では同様にコンピテントであった。1名のドナーからの結果を
図6に示す。
【0425】
実施例4.免疫付与、ファージパニング、抗体の特徴付け、及び結晶学研究に使用されるヒトI型IFN抗原の生成
表4に示す20の個別の組み換えヒトI型IFN−αをクローニングし、配列番号21〜25のようなシグナル配列を用い、標準的な方法を用いて、HEK 293細胞において発現させた。タンパク質は特に指示しない限りはヒトである。発現レベル及び可溶性を改善するために、ヒトIFN−ωの位置80の単一のアミノ酸突然変異体であるIFN−ωT80Eを生成し、HEK 293細胞において発現させた。T80E IFN−ω変異体(配列番号2)は、野生型タンパク質と同等の活性を有した。IFN−αD及びIFN−α1は、位置114の1つのアミノ酸が異なる(バリン対アラニン)。αA及びα2は、位置23の1つのアミノ酸が異なる(αAのリシン対α2のアルギニン)。α4は2つの形態4a及び4bを有し、これらは位置51(α4aのアラニン対α4bのスレオニン)及び114(α4aのグルタミン酸対α4bのバリン)の2つのアミノ酸が異なる。これらの変異は受容体結合領域外に位置し、活性に影響を及ぼさない。抗体は、これらの変異体の対(αD/α1、αA/α2、及びα4a/α4b)を等しく良好に中和しすることが判明し、その後のいくつかの実験では、各対1つの抗原のみを使用した。
【0426】
【表4】
【0427】
実施例5.IFN−α及びIFN−ωに結合する抗体の生成
IFN−α及びIFN−ωに結合するFabsを、ShiらのJ Mol Biol 397:385−96,2010、国際公開公報第WO2009/085462号;米国特許出願公開第US2010/0021477号で説明されるように新たなpIXファージディスプレイライブラリから選択した。要約すると、ライブラリは、ヒト足場を多様化することによって作製されたものであり、生殖系列VH遺伝子であるIGHV1−69
*01、IGHV3−23
*01及びIGHV5−51
*01を、H3ループを介してヒトIGHJ−4ミニ遺伝子で組み換え、そしてヒト生殖系列VLκ遺伝子であるO12(IGKV1−39
*01)、L6(IGKV3−11
*01)、A27(IGKV3−20
*01)及びB3(IGKV4−1
*01)をIGKJ−1ミニ遺伝子で組み換えることで、完全なVH及びVLドメインを構築した。多様化に際し、重鎖及び軽鎖可変領域内の、タンパク質抗原及びペプチド抗原と高頻度に接していると確認された位置に相当するH1、H2、L1、L2及びL3ループ周辺の位置を選択した。選択した位置での配列多様性は、それぞれのIGHV又はIGLV遺伝子のIGHV又はIGLV生殖系列遺伝子ファミリーそれぞれの位置で生じる残基に制限した。7〜14アミノ酸長の単鎖〜中鎖型の合成ループを利用することにより、H3ループにおいて多様性が発生した。H3でのアミノ酸分布を、ヒト抗体において観察されるアミノ酸の変動を模倣するよう設計した。ライブラリ設計の詳細は、ShiらのJ.Mol.Biol.397、385−96、2010年に記載されている。ライブラリを生成するために利用した足場は、これらのヒトVH及びVL生殖系列遺伝子起源に準じて命名した。IFN−及びIFN−に対するパニング実験では、3つの重鎖ライブラリを、4個の生殖系列軽鎖又は生殖系列軽鎖ライブラリと組み合わせることで12個の固有VH:VLの組み合わせを生成した。
【0428】
ライブラリを、ビオチン化ヒトIFN−α2又はビオチン化ヒトIFN−αGのいずれかに対してパニングした。3回のパニングの後、抗原としてヒトIFN−α2、IFN−αG、及びマカクザルIFN−ωを用いたポリクローナルファージELISA法を実施して、各パニング実験の特異的富化を検出した。IFN−α2、IFN−αG、及びIFN−ωに対する結合剤の富化を実証したこれらのパニング実験で回収されたファージを、モノクローナルFabのELISAで更にスクリーニングして、ここで個々のFabクローンから発現したFabタンパク質を結合剤として用いた。陰性対照の3倍である20nMのビオチン化抗原に対する結合シグナルを有するFabクローンを、2次Fabスクリーニングのために選択した。選択(select)FabをIgG1/κ背景にクローニングし、更にProteOn及びISREレポーター遺伝子アッセイを用いて特徴付けした。これらのアッセイから、mAb IFWM371を更なる改変及び親和性成熟のために選択した。
【0429】
表5は、様々なI型IFN及びIFN−βに対してProteOn及びISREレポーター遺伝子アッセイを用いて測定した、IFWM371の親和性(K
D)及びIC
50値を示す。IFN−α1(IFN−αD)を除き、全てのヒトIFN−αタンパク質に結合したIFWM371を、179pM〜10nMの範囲で試験した。抗体は、IFN−α1(IFN−αD)には結合しなかった。抗体は、ヒト、チンパンジー、及びマカクザルIFN−ωにも結合したが、IFN−βには結合しなかった。IFWM371は、抗体が中和しなかったIFN−α1(αD)を除いて、試験された全てのIFN−α分子に対する中和活性を示した。IFWM371はVH IFWH591(配列番号28)及びVL PH9L4(生殖系列O12)(配列番号29)を含む。
【0430】
【表5】
【0431】
実施例6.IFN−ω T80Eと複合したIFWM371の結晶構造
エピトープ及びパラトープ、IFN−αサブタイプ及びIFN−ωに対する広範な結合特異性の構造的基礎を明らかにし、親和性及び特異性を改善するための改変を支持するためするため、IFWM371のFabと複合したヒトIFN−ω T80Eの結晶学的研究を実施した。
【0432】
Hisタグ付けしたFab IFWM371(IgG1/カッパアイソタイプ)をクローニングし、HEK293細胞において発現し、アフィニティ、イオン交換、及びサイズ排除クロマトグラフィーを用いて精製した。Fabは、20mMのトリス(pH7.4)、50mMのNaClに受容された。C末端6xHisタグを有するヒトIFN−ω T80E変異体(以下、単にIFN−ωと呼ぶ)をHEK293細胞内で発現させた。タンパク質は、20mMのトリス(pH7.4)、50mMのNaClに受容された。
【0433】
複合体を、IFN−ωとFab IFWM371とを1.2:1.0のモル比(過剰IFN−ω)で混合し、4℃で終夜インキュベートし、20mm HEPES(pH7.5)、0.25MのNaClで平衡したSuperdex 200カラムで精製し、続いてAmicon−Ultra 10kDaカットオフを用いて9.96mg/mlに濃縮することによって調製した。X回折に適した結晶を、MMS播種した20%のPEG 3K、0.2Mの第二リン酸アンモニウムから得た(Obmolova,G.,Malia,T.J.,Teplyakov,A.,Sweet,R.& Gilliland,G.L.(2010)Promoting crystallization of antibody−antigen complexes via microseed matrix screening.Acta Crystallogr D Biol Crystallogr 66,927〜33.)。
【0434】
X線データ収集のために、IFN−ω/Fab IFWM371複合体の1つの結晶を、20%グリコールを補充した母液(20% PEG 3350、0.2M(NH
4)
2HPO
4、pH7.9)に数秒間浸漬し、100Kの窒素流中で急速凍結させた。X線回折データは、Osmic(登録商標)VariMax(登録商標)共焦点光学系、Saturn944CCD検出器、及びX−stream(商標)2000極低温冷却システム(Rigaku,TX)を備えたRigaku MicroMax(商標)−007HFマイクロフォーカスX線ジェネレータを用いて収集した。回折強度は1/4度画像の205度の結晶回転にわたって検出された。X線データをXDSプログラムで処理した。X線データ統計を表6に示す。
【0435】
IFN−ω/Fab IFM371複合体の構造を、Phaserを用いた分子置換法(MR)により解析した。MRの検索モデルは、Fab15(PDB ID 3NA9;Luo,J.,Obmolova,G.,Huang,A.,Strake,B.,Teplyakov,A.,Malia,T.,Muzammil,S.,Zhao,Y.,Gilliland,G.L.& Feng,Y.(2010)Coevolution of antibody stability and Vkappa CDR−L3 canonical structure.J Mol Biol402,708〜19)及びIFN−α4Aの結晶構造であった。しかしながら、IFN−ωのMR溶液は激しい分子間衝突のため得ることができなかった。Fab IFWM371のみに位相合わせ(phased)された電子密度マップの検査は、IFN−ω分子の半分超の電子密度が消失していることを示した。しかしながら、IFN−ω分子の残部はその密度に容易にフィットした。続いてPHENIXで構造を精密化し、COOTを用いてモデルの調整を実行した。
【0436】
【表6】
【0437】
IFN−ω/Fab IFWM371複合体の全体的な分子構造を
図7Aに示す。非対称単位中に1つの複合体が存在した。IFN−ω分子の分子構造モデルは、ヘリカルセグメントAB並びにヘリックスD及びEに対応する残基23〜39及び119〜153を含んでいた。残基の番号付けは、配列番号1に示されるIFN−ωアミノ酸配列に準ずる。ヘリックスA、B、及びC、並びに接続ループを無秩序化した。Fab分子構造モデルは、軽鎖に1〜212残基(配列番号29)、及び重鎖に1〜222残基(配列番号28)を含んでいた。C末端6xHisタグ、鎖間ジスルフィド結合、及び重鎖の137〜141の残基を無秩序化した。更に、抗体/抗原界面に広範な水素結合ネットワークを形成する多くの水分子が存在した(
図7B)。
【0438】
観察されたIFN−ω分子の部分は、公開されるIFN−ωの完全長モデル(PDB id 3se4、40の残基に関して0.54ÅのCα rmsd)の対応する部分とほぼ同一であり、また約40のCa原子に対して0.42Åの平均RMSDを有するIFN−α2(6つのIFN−α2分子、PDBコード1rh2)と非常に似通っていた。IFN−ω/Fab IFWM371中のIFN−ωのモデルは、ヘリックスC及びDの部分、並びに接続ループ(ループAB)のみを含んでいた。電子密度中に他の部分は存在しなかった。結晶パッキング分析は、消失したヘリックスのための十分な空間が存在しないことを示した。回折データを慎重に分析することにより、これが、双晶化又は不正確な空間群の割り当てなどの異常に起因するアーチファクトでないことが示された。したがって、これは、IFN−ωタンパク質が結晶化プロセス中に開裂した可能性が高い。
【0439】
Fab IFWM371は、ABループの残基(S25〜D35)、並びにヘリックスEのM146及びK150の残基からなる立体配座エピトープを認識した(
図8A)。パラトープはLCDR2を除く5つのCDRからの残基で構成されている。パラトープ残基は一連のポケットを形成し、そこに、IFN−ωの短いABへリックスの残基F27、L30、及びR33の側鎖がドッキングする。
図8Bは、IFWM371のVL及びVH中のパラトープ残基を示す。抗体と抗原との間の相互作用の大半が、ファンデルワールス(vdw)及び疎水性パッキング、並びに抗体−抗原間の水素結合であると考えられる。
図8Cは、IFN−ωとIFWM371との間の相互作用の2D相互作用マップを示す。図では、IFN−ωエピトープ残基は灰色で強調され、VLパラトープ残基は枠で囲まれ、VHパラトープ残基は円で囲まれている。図は、大半の抗原/抗体相互作用が、IFN−ωABヘリックスの3つのエピトープ残基F27、L30、及びR33によって形成されることを実証する。したがって、IFN−ωのこの領域がエピトープの主要部分を構成している。この複合体の別の特徴は、水分子が抗原識別を媒介する重要な役割を果たしていると考えられることである。3つの水クラスタ(WC)が界面に存在した。WC1は、HCDR3とIFN−ωのR34、F36、及びE147との間の水素結合相互作用に寄与した。WC2はVH/VL対合、並びにFvと主エピトープ残基L30、R33、及びその隣接残基との間の水素結合を媒介した。WC3水分子は界面の辺縁部に存在し、おそらく相互作用に対する重要性は低い。
【0440】
IFWM371は多くのIFN−αサブタイプ及びIFN−ωと強く結合するが、IFN−αD又はIFN−α1は除く。IFWM371はIFN−βとは結合しない。IFNの配列アラインメントを
図9に示す。IFWM371エピトープ残基は、サブタイプ間で大部分が保存されており、これはIFNM371の広範な特異性がエピトープ保存の結果であることを示している。しかしながら、IFWM371が結合しないIFN−αD又はIFN−α1は、F27ではなくS27を含み、これはF27側鎖の疎水性接触の大部分を喪失することにつながる。F27はHCDR2、HCDR3、及びLCDR3の残基によって形成された深いポケットにドッキングするため、側鎖接触の喪失は、IFN−αD及びIFN−α1タンパク質による結合が非常に少ないか又は存在しないためである可能性が最も高い。これは、F27が結合する「ホットスポット」残基のうちの1つであることを更に示す。P26は良好に保存されない残基である。His又はLeu残基はいくつかのIFN−αサブタイプにおいてこの位置を占める。寸法及び形状の違いのために、この残基はIFWM371とこれらの突然変異を有するIFN−αとの間の局所相互作用に大きな影響を及ぼし得る。
【0441】
実施例7.IFWM371のアラニンスキャン
IFWM371重鎖及び軽鎖CDR残基のアラニンスキャンを実施し、続く親和性成熟への取り組みに導いた。いくつかの溶媒曝露の低い又は溶剤に曝露されていない残基を除く、重鎖及び軽鎖両方のCDR中の全ての残基をアラニンと置換した。CDRの天然残基がアラニンである場合、チロシン及び/又はセリン及び/又はアスパラギン酸と置換した。可能性のある発生傾向を有する1つの位置(IFWH591中W104、配列番号28)をアラニン、チロシン、セリン、及びアスパラギン酸で置換した。突然変異させたmAbをHEK293細胞内で一時的に発現させ、細胞上清のIFNのパネルに対する結合活性をELISAによって試験した。2つのVH突然変異体、IFWH591 R59A(配列番号30)及びIFWH591 N103A(配列番号31)は、親mAbと比較して著しく改善された結合を有した。
【0442】
実施例8.IFWM371の親和性成熟
ライブラリ設計
2つの別個のVLライブラリ(PH9L4L2及びPH9L4L3)を設計して、親和性成熟IFWM371軽鎖PH9L4(O12)(配列番号29)に対して使用した。ライブラリPH9L4L2の多様化のために選択された位置は、抗タンパク質及び抗ペプチド複合体で頻繁に見られる残基位置に基づいた。各位置を多様化するために用いられた残基をIGKV遺伝子の生殖系列遺伝子ファミリー内でコードした(Shiら(2010)J.Mol.Biol.397:385−96)。ライブラリの複雑性は、親和性成熟の間に多様性が十分に評価されるように10
7ライブラリメンバーを超えないように制限された(実際のライブラリ複雑性は3.5
7)。表7は、ライブラリ中のVL
LPH9L4(O12)のLCDR1位置30、31、及び32、LCDR2位置50、並びにLCDR3位置91、92、93、94、及び96のライブラリ設計多様化スキームを示す。残基番号付けはKabatに準ずる。
【0443】
【表7】
【0444】
第2の軽鎖親和性成熟ライブラリPH9L4L3中で多様化する残基位置は、抗体−タンパク質複合体間の構造分析に基づいて選択し、各位置における多様性は、抗体−タンパク質構造、並びに各位置での生殖系列遺伝子中のアミノ酸の使用の分析に基づいて設計した(G.RaghunathanらのAntigen−binding site anatomy and somatic mutations in antibodies that recognize different types of antigens.J.Mol Recognit.25:103〜113(2012))。LCDR3の場合、各位置が異なる生化学的性質のアミノ酸(即ち、極性/無極性、正/負に帯電)を有するように、多様性を天然のレパートリーを超えて拡大した。更に、位置ごとの各アミノ酸の相対度数を変化させ、これをSloningライブラリ合成技術によって実現した。表8はPH9L4L3のライブラリ組成を示す。残基番号付けはKabatに準ずる。
【0445】
【表8】
【0446】
パニング及び特徴付け
軽鎖ライブラリPH9L4L2又はPH9L4L3と親重鎖IFWH591(配列番号28)とを組み合わせることにより、親和性成熟ライブラリを生成した。続いてライブラリを用いて高親和性抗体を選択するためにパニングした。いくつかの親和性成熟パニング実験は、IFN−ωのみ又はいくつかのIFN−αサブタイプのみのいずれかに対する結合に偏って改善したが、両方は改善しなかった。大半のIFN−αサブタイプ及びIFN−ωに関して改善されたIC
50を用いて広範な中和抗体を生成するために、互いに対してより多様化されたIFN−αサブタイプのサブセット(IFN−α2、IFN−α4a、IFN−αF、及びIFN−αG)を各パニングラウンド間でマカクザル又はヒトIFN−ωで交互にパニングした。各パニング実験に対して合計3ラウンドのパニングを実施した。
【0447】
各クローンのFabタンパク質をTG−1E大腸菌内で発現させ、バクテリア細胞溶解物をFabのELISAに用いて、IFWM371と比較したヒトIFN−α4a、IFN−αF、及びIFN−ωに対するこれらの親和性を決定した。IFWM371Fabはこれらの抗原に弱く結合したため、抗原に対するより高い親和性を有するFab IFWF477を比較のための代理Fabとして用いた。42のクローンを、ELISAの代理Fabと比較して数倍高い結合活性を示すものとして特定した。いくつかの変異体は、LCDR1に1つのアミノ酸挿入を含んでおり、これは原ライブラリ設計の一部ではないが、ライブラリ合成の間に挿入された。全体として、V
Lの親和性成熟は、代理Fabと比較して結合の顕著な改善をもたらした。2つのライブラリの最高のクローンのそれぞれが、ヒトIFN−ωに対し代理Fab IFWF477と比較して23倍を超える高さの結合活性を示した。
【0448】
更なる機能的及び生物物理学的特徴付けのため、ライブラリ由来の合計42の軽鎖と、親重鎖IFWH591(配列番号28)、並びに実施例7で説明したアラニンスキャン実験で特定された改善された結合活性を有する2つのV
H変異体のIFWH624(IFWH591 R59A配列番号30)及びIFWH629(IFWH591 N103A、配列番号31)とを組み合わせた。続いて、合計126の変換されたmAb(42の軽鎖と3つの重鎖との組み合わせ)を発現させて、更に特徴付けした。表9は、親及び選択(select)親和性成熟抗体、並びにこれらの重鎖及び軽鎖可変領域を示す。
【0449】
【表9-1】
【0450】
【表9-2】
【0451】
126の生成されたmAbのヒトIFN−ω及びヒトIFN−αサブタイプのパネルに対する親和性をProteOnによって測定した。48ウェルプレートのHEK293E細胞中でmAbを対照と共に一時的に3連でトランスフェクトし、細胞上清を本実験で使用した。アッセイのスループットを改善するために、個別の抗原の濃度を1つのみ使用した。表10は、親IFWM371及び選択(select)親和性成熟抗体に対するKD値を示す。mAbの大半は、試験された全ての抗原に対する結合親和性の顕著な改善を示した。それらのうちのいくつかは、親mAbと比較して100倍超の改善を示した。
【0452】
【表10-1】
【0453】
【表10-2】
【0454】
【表10-3】
【0455】
126のパネルの選択抗体を、そのIFN−αサブタイプ及びIFN−ωのスペクトルを阻害する能力に関してISREアッセイにおいて特徴付けし、また、これらの溶解度特性及び生物物理学的特性を評価した。選択抗体に関し、ISREアッセイのIC
50値を表11及び表12に示す。11の組み換えIFN−αサブタイプ及びIFN−ωに対するいくつかの抗体に関して、IC
50値は2桁以下のpMであった。これは、その抗原に対するIC
50が1桁から2桁のnMの範囲である親mAbのIFWM371と比較して100倍を超える改善を示す。親抗体として、親和性成熟された抗体はIFN−αD又はIFN−βを中和しなかった。最も強力な親和性成熟された抗体mAbのIFWM3423は、それが結合した全てのインターフェロンサブタイプに対して概ね1桁ピコモルのIC
50を有した。
【0456】
【表11】
【0457】
【表12】
【0458】
実施例9.翻訳後修飾リスクを最小化するための抗体の改変
中和活性、溶解度特性、及び生物物理学的特性に基づき、IFWM371、IFWM3331(IFWB3066)、IFWM3399(IFWB3134)、IFWM3421(IFWB3156)、及びIFWM3423(IFWB3158)の親和性成熟由来の4つのmAbを更に分析した。これらのmAbの重鎖はIFWH591(配列番号28)又はIFWH629(配列番号31)のいずれかからなり、これらの軽鎖はIFWL984(配列番号71)、又はIFWL1048(配列番号53)、又はIFWL1073(配列番号61)のいずれかからなる。
【0459】
どちらのVH鎖も、HCDR2の酸触媒加水分解配列モチーフ(D52−P53)、異性化モチーフ(D55−S56)を含むいくつかの潜在的翻訳後修飾(PTM)モチーフ、びにHCDR1(W33)及びCDR−H3(W104)に潜在的酸化部位をそのCDR内に含む。
【0460】
IFWL984(配列番号71)及びIFWL1048(配列番号53)のVLはLCDR1に1つの異性化モチーフ(D30−G31)を含み、一方でIFW1073(配列番号61)のVLはLCDR3(W92及びW94)に潜在的酸化部位、並びにLCDR1(N31−S32)に脱アミド部位を含む。
【0461】
重鎖CDRのPTMリスクを低減させるために、HCDR2中のD52を生殖系列残基チロシン(D52Y)に復帰突然変異させた。P53をアラニンに突然変異させた。HCDR3中のW104(VH_W104)をアラニン、チロシン、セリン、又はアスパラギン酸と置換した。突然変異させた重鎖を3つの異なる軽鎖と共発現させて、ISREアッセイで試験した。これらの実験から、重鎖IFWH615(配列番号157)及びIFWH617(配列番号158)を有する抗体を更に特徴付けした。
【0462】
VL IFWL984(配列番号71)及びIFWL1048(配列番号53)のPTMリスクを低減するために、実施例6で説明したIFWM371/IFN−ω複合体構造から得た構造的情報の案内に従い、潜在的PTMモチーフを除去するための一連の突然変異を設計した。更に、共通の軽鎖IFWL984を有するIFWM3421(IFWB3156)及びIFWM3423(IFWB3158)の溶解度特性を改善するために、抗体軽鎖全体の表面疎水性を低減させるために、これらのCDRにおけるいくつかの疎水性残基での一連の突然変異を発生させた。IFN−ω及び白血球IFNを阻害するため、実施例11で説明された方法を用いて、親IFWH591を有するHEK293E細胞内でIFWL984変異体を発現させ、細胞上清内で発現した抗体をISREレポーター遺伝子アッセイでスクリーニングした。結果として得られた抗体IFWB3196(D30E F32Y)、IFWB3201(D30S、G31S)、及びIFWB3202(D30S、G31S、F32Y)は良好な中和活性を保持した。表13は、親IFWH591重鎖可変領域(配列番号28)及び変異体IFWL984軽鎖を有する、生成された抗体のVL配列を示す。親IFWM3421はIFWH591のVHを有し、親IFWM3423はIFWH629のVHを有する。表14は、選択(select)発生された抗体IFN−ω及び白血球IFNを中和するためのIC
50値を示す。
【0463】
【表13】
【0464】
【表14】
【0465】
同様に、PTMリスクを低減するように26のIFWL1048の変異体を構築した。HEK293E細胞内で生成された軽鎖を重鎖IFWH591と共発現させ、抗体を含む上清をISREアッセイでスクリーニングした。表15は生成された抗体のVH及びVL配列を示し、表16はIFN−ω及び白血球IFNに対する抗体のIC
50値を示す。IFWB3210(D30S)、IFWB3211(D30E)、及びIFWB3223(D30S、G31S)を含むLCDR1中のDGモチーフ(D30−G31)が除去された、変異体IFWL1048鎖を有する結果として得られた抗体は、親mAb(IFWB3056(VL:IFWL1048、VH:IFWH591)、及びIFWB3134(VL:IFWL1048、VH:IFWH629))としての同様の中和活性を示した。しかしながら、IFWB3219(D30E、A32Y)、IFWB3227(D30S、G31S、F94L)、及びIFWB3230(D30S、G31S、A32Y、F94L)を含む、疎水性を低減するためにDGモチーフが除去され、かつ置換がなされた、変異体IFWL1048鎖を有する得られた抗体は、親mAbと比較してより低い活性を示した。
【0466】
【表15】
【0467】
【表16】
【0468】
IFWB3066のVL IFWL1073の潜在的PTMモチーフは、LCDR3(W92及びW94)上に潜在的な酸化部位を含んでいた。IFWL1073(QQGWDWPLT、配列番号98)のLCDR3を、多くの親和性成熟された抗体(QQSYDFPLT、配列番号154)のLCDR3中に存在することが特定されたコンセンサス配列LCDR3と置換した。更に、LCDR1の潜在的脱アミド部位(N31〜S32)に対処するためにいくつかの突然変異体を設計した。IFWL1073の14の生成された変異体をIFWH591と組み合わせ、48ウェルのHEK293Eの一過性トランスフェクションにて発現させた。細胞上清を、組み換えヒトIFN−ω及びウイルスによって誘導された白血球によって発現されたIFNに対する中和活性に関してISREアッセイで直接試験した。突然変異W93Y及び/又はW95Fを有するmAbは、いくらかの中和活性の改善を示した。CDR−L1を置換又は短縮することによってNSモチーフを除去する突然変異体は、中和活性の低減又は消失を示した。表17は生成された抗体のVH及びVL配列を示し、表18はIFN−ω及び白血球IFNに対するIC
50値を示す。
【0469】
【表17】
【0470】
【表18】
【0471】
PTMリスクを最小化させる組み換えの取り組みから誘導された選択VL変異体を、IFWH591又はIFWH629のいずれかと組み合わせ、発現及び精製のためにスケールアップした。表19は、抗体のVL/VH対合を示す。表20は、様々な組み換えIFN−αサブタイプ及びIFN−ωに対する選択得られた抗体のIC
50値を示す。
【0472】
【表19】
【0473】
【表20】
【0474】
実施例10.抗IFN−α/ω抗体の広範な中和能力
生成された抗体のうちのいくつかは、上記のISREアッセイを用いて測定された、100pM以下のIC
50でIFN−ω及び複数のIFN−αサブタイプを中和した。これらの抗体の可変領域配列を表21に示す。表22は抗体のLCDR1配列を示し、表23はLCDR2を示し、表24はLCDR3を示し、表25はHCDR1を示し、表26はHCDR2を示し、表27はHCDR3を示す。
図10はISREアッセイでの各I型IFNのIC
50値を示す。
【0475】
【表21】
【0476】
【表22】
【0477】
【表23】
【0478】
【表24】
【0479】
【表25】
【0480】
【表26】
【0481】
【表27】
【0482】
実施例11.抗IFN−α/ω抗体は白血球IFNを中和する
全血からのIFNによって誘導されたIP−10の放出を阻害する抗体の能力によって、白血球IFNを中和する抗体の能力を評価した。
【0483】
親和性成熟キャンペーンから、又はPTMリスクを最小化した後の選択抗体の内因性I型IFNを阻害する能力を更に特徴付けした。全ての特徴付けされた抗体はIgG1/κ型であった。抗体IFWM3522、IFWM3525、IFWM3399、及びIFWM3423をアッセイで使用した。
【0484】
IP−10放出アッセイ
240μlの全血(Biological Specialty Corporation)を、細胞培養培地(10%のHI FBS及び1%のペンストレップ(penn strep)を有するRPMI1640)中に希釈したIFN又はIFN含有馴化培地あり又はなしの30μIの抗体(抗IFN−α/ω又はアイソタイプ対照)を含む96ウェルのU底プレートの各ウェルに添加した。刺激のために、250U/ml(最終容量)のヒト白血球IFN(Sigma−Aldrich)、及び10μl/ウェルのSLE免疫複合体で処理した馴化培地を利用した。IFNと抗体との混合物を室温で20〜30分間プレインキュベートした後に、全血に添加した。プレートを37℃で20〜22時間かけて終夜インキュベートした。翌日、室温でプレートを400×gで5分間遠心分離にかけて血漿を除去し、−20℃で凍結させた。各処置からの複製試料をCXCL10/IP−10 ELISAキット(Qiagen)を用いて分析した。解凍時に、回収した血漿を、試料希釈緩衝液を用いて2.5倍に希釈して、アッセイで使用した。標準の希釈に関して以下のわずかな改変を加えた他は製造業者のプロトコルに従った。抗原標準の2倍希釈液を濃度4000pg/mlから開始して31.25pg/mlで完了して作製した。反応停止後30分以内に450nmの吸光度でプレートを読み取った。Softmax Proを用いて分析を実施した。
【0485】
結果
関連する細胞型中の内因性IFN−I調製物を中和する能力に関して選択抗体を特徴付けした。全血のIFN刺激はインビトロ及びインビボのIP−10(CXCL10)放出を誘導する(Arico,E.らのConcomitant detection of IFNalpha signature and activated monocyte/dendritic cell precursors in the peripheral blood of IFNalpha−treated subjects at early times after repeated local cytokine treatments.J Transl Med 9,67,doi:10.1186/1479〜5876〜9〜67(2011).、Mohty,A.M.らのInduction of IP−10/CXCL10 secretion as an immunomodulatory effect of low−dose adjuvant interferon−alpha during treatment of melanoma.Immunobiology 215,113〜123,doi:10.1016/j.imbio.2009.03.008(2010))。IP−10はSLE中で上昇し、いくつかの研究では疾患活性及び疾患の臨床症状と相関することが示されている(Bauer,J.W.らのInterferon−regulated chemokines as biomarkers of systemic lupus erythematosus disease activity:a validation study.Arthritis and rheumatism 60,3098〜3107,doi:10.1002/art.24803(2009)、Kong,K.O.らのEnhanced expression of interferon−inducible protein−10 correlates with disease activity and clinical manifestations in systemic lupus erythematosus.Clinical and experimental immunology 156,134〜140,doi:10.1111/j.1365〜2249.2009.03880.x(2009)、Rose,T.らのIFNalpha and its response proteins,IP−10 and SIGLEC−1,are biomarkers of disease activity in systemic lupus erythematosus.Annals of the rheumatic diseases 72,1639〜1645,doi:10.1136/annrheumdis−2012〜201586(2013))。
【0486】
全血中で白血球IFNによって誘導されるIP−10放出を阻害する抗IFN−α/ωmAbの能力をインビトロで検査した。IFN−Iは、感染の制御を助けるために、ウイルスなどの感染性因子に応答して急速に生成される。ヒト白血球IFNは、ウイルス感染後に白血球によって生成され、大半がIFN−αサブタイプ及びIFN−ωからなる、天然のIFNの混合物である。IFN−ωは、これらの調製物中の全IFN−I活性の約15%を構成すると考えられる。重要なことに、感染は、SLEの誘発及び増悪の両方に潜在的に寄与すると考えられる。この研究では、阻害剤又は対照の存在下でヒト白血球IFNを2名の健常ヒトドナーからの全血試料に添加し、血漿をIFN曝露から24時間後のIP−10放出に関して評価した。抗IFN−α/ωmAb:IFWM3522及びIFWM3525(
図11A)、並びにIFWM3399(
図11B)は全て、試験された両方のドナー中で、白血球IFNによって誘導されたIP−10放出を用量依存的に中和した。
【0487】
実施例12.抗IFN−α/ω抗体はSLE免疫複合体を中和する
SLEの顕著な特徴は、典型的には臨床的に定義された疾患の発生に先立つ、抗二本鎖DNA(抗dsDNA)などの自己抗体の存在である。核酸リガンドに結合した自己抗体は、SLE患者におけるI型IFNの内因性誘導因子であると考えられている。自己抗原のクリアランス障害と関連した圧倒的多数の自己抗体は、IFN生成のフィードバックサイクルに至り、形質細胞様樹状細胞(pDC)への免疫複合体のFc受容体依存性の内在化が、循環するIFNの増量及びIFN遺伝子シグネチャの確立につながる。
【0488】
我々は、より多くの疾患関連IFN調製物を中和する抗IFN−α/ωの能力を更に試験した。
【0489】
免疫複合体を本質的に実施例1に記載される方法で調製した。続いて、これらのSLE患者由来の免疫複合体を健常ドナーのPBMC及び細胞培養から回収したIFN含有馴化培地(IC92及びIC163)に添加した。次に、阻害剤又は対照の存在下で馴化培地を4名の健常ドナーからの健常ドナー全血に添加して、IFNによって誘導されたIP−10放出に対するIFN−α/ω中和の影響を決定した。IFWM3522、IFWM3525、及びIFWM3399は全て、両方のSLE免疫複合体によって誘導されたIFN調製物を用いた全ての全血ドナー中で、IP−10放出を用量依存的に中和した。
図12Aは、1名のドナー(SLEドナー92)からの抗体IFWM3522及びIFWM2525によりヒト全血中でSLE免疫複合体によって誘導されたIFNに刺激されたIP−10の放出を示す。
図12Bは、抗体IFWM3399及びアイソタイプ対照に関する結果を示す。
【0490】
実施例13.抗IFN−α/ω抗体はSLE血漿を中和する
抗IFN−α/ωmAbは、両方の滅菌リガンド(免疫複合体、実施例12)、及び微生物リガンド(白血球IFN、実施例11)への曝露後にヒト初代細胞から生成された内因性IFN−I調製物の強力な用量依存的中和を実証した。生理学的I型IFNを中和するIFN−α/ωmAbの効力を、SLE患者の血清及び血漿からのIFN−I活性を中和する抗体の能力によって更に評価した。この方法は、インビトロでは再現(recapitulate)が困難であり得るIFNスペクトルを含み得る患者からの実際に循環するIFN−I環境を中和する抗体の能力を評価する。
【0491】
SLE血清を用いるISREアッセイ
HEK Blue(α/β)細胞(InvivoGen)を50,000細胞/ウェル(合計容量200μlのDMEM+10% FBS)でプレーティングし、37℃で終夜インキュベートした。翌日、本アッセイにおける30分のインキュベーション後に1.0以上のOD達成を基準に予め選択されたプール血漿(3ドナー)又は血清(13ドナー)を解凍して、DMEM+10% FBSと1:1(v/v)の比率で混合した。予めプレーティングしたHEK Blue細胞から上清を除去して、100μlのSLE血漿又は血清/培地混合物と置き換え、37℃で終夜インキュベートさせた。翌日、40μlの馴化培地を除去し、新しいプレートに160μlのQuanti−Blue基質(InvivoGen)を添加して、30分間インキュベートさせた。分光光度計を用いて650ナノメートル波長でプレートを読み取り、GraphPad Prismを用いてIC
50値を計算した。
【0492】
結果
ISREアッセイを用いて、中国人患者のコーホート(SLEコーホート1)のSLE血清、及び主にアフリカ系アメリカ人コーホート(SLEコーホート2)のSLE血漿をIFN−I活性に関して予備スクリーニングした。1.0以上のODを有するSLEドナーの血清又は血漿試料は、アンタゴニスト抗体による阻害が容易に測定され得るように十分なIFN−I活性の窓を有していると決定された。続いてこれらのドナー試料をプールして、反復実験及び抗体の滴定を実現するのに十分な試料堆積を生成する血清又は血漿ストックを生成した。SLE患者における定性的かつ定量的IFN−I応答の潜在的な多様性をより良好に捕捉するために、様々な人種/民族コーホートからのSLE患者試料を利用した。アフリカ系アメリカ人及びアジア人ドナーは、白人ドナーと比較してより高いIFN−I活性を有すると考えられる。試験された抗IFN−α/ωmAbは、プールされたSLE患者の血清及び血漿試料中のIFN−I活性を用量依存的に中和した。両方のSLEコーホートからのプール試料を用いた2つの独立した実験からのIC
50値を表28に示す。
【0493】
【表28】
【0494】
実施例14.抗IFN−α/ω抗体はIFN遺伝子シグネチャを中和する
I型IFNは、健常対照と比較して一部のSLE患者でも過剰発現する遺伝子のスペクトルを誘導する。このIFN遺伝子シグネチャを示すSLE患者の血漿試料は、健常ドナーPBMC又は細胞株に添加されたときに同様の遺伝子のセットの過剰発現を誘導することができ、この活性は、IFN−αを標的とする抗体によって主に中和される(Huaら、Arthritis and rheumatism 54,1906〜1916,doi:10.1002/art.21890(2006))。
【0495】
SLE患者のヘパリン化全血中に存在するIFN−Iシグネチャの正規化への抗体の効果を決定するためのアッセイを開発した。IFN−I誘導性遺伝子MX1(ミクソウイルス耐性1)発現をIFN−I活性のマーカーとして用いた。
【0496】
材料
SLE又は健常血液をナトリウムヘパリン管に回収してから2〜4時間後に、240μlを抗IFN−α/ω抗体又はヒトIgG1アイソタイプ対照を含む96ウェルのU底プレートにプレーティングした。PBSに希釈した抗体を、240μlの血液に30μl/ウェルで添加した。37℃で24時間インキュベートした後、PAXgene安定試薬(QIAGEN)を96ディープウェルプレートに添加し、血液試料を移して、ピぺッティングにより十分に混合した。プレートを封止して、更なる処理のために−80℃で凍結した。解凍後、試料を2mlのSafe−Lock管(Eppendorf)に移して、5000×gで10分間回転させた。上清を吸引して、試料ペレットを渦動によって432μlのDNase/RNaseフリー水に再懸濁させた。試料を5000×gで更に遠心分離して、ペレットを350μlのBR1緩衝液に再懸濁させた。次に300μlのBR2緩衝液を添加し、続いて40μlのプロテイナーゼKを添加し、試料を55℃でインキュベートし、800rpmで10分間振盪した。精製の残部に関しては製造業者のプロトコルに従った(QIAGEN、カタログ番号762164)。各試料の全RNAのうち120ngをiScript cDNA Synthesisキット(BIO−RAD)を用いてcDNAに変換し、ヒトMX1及びβ−アクチニン(ACTB)用のプライマー/プローブ対(それぞれカタログ番号Hs00895608_m1及びHs01060665_g1)をqPCRに対して利用した。データをViia7 Real Time PCRシステム上に収集して、GraphPad Prismで分析し、ACTB(dCT)に対するMX1の発現の変化を示した。
【0497】
結果
患者の血中のIFN−Iシグネチャを低減させるIFN−α/ω抗体の能力を、MX1遺伝子発現をIFN−I活性のマーカーとして用いて評価した。
【0498】
MX1遺伝子発現は、健常対照と比較してSLE患者の血中で約7倍増加した。試験された抗IFN−α/ω抗体は、24時間のインキュベーション後、SLE患者血中のMX1発現を用量依存的に減少させ、最高の抗体濃度で、MX1の発現を健常対照で観察されるレベル近くに正規化した。
図13は、βアクチン発現に対して正規化された1名のSLEドナーにおけるMX1発現への抗体処置の効果を示し、これは健常対照と比較して上昇した基準MX1発現を有する複数名のドナーを表す。
【0499】
実施例15.抗IFN−α/ω抗体はカニクイザルI型IFNを中和する
様々なカニクイザルI型IFNを中和する選択抗IFN−α/ω抗体の能力を、ISREレポーター遺伝子アッセイを用いて評価した。
【0500】
マカクザルIFN−α2(PBL Assay Sciences)、IFN−α4(Sino Biological)、IFN−α8(Sino Biological)、及びIFN−α13(Sino Biological)を本アッセイで使用した。各IFNに対して予め決定されたEC75値を用いてIC
50値を決定した。(IFN−α2で0.078ng/ml、IFN−α4で2.68ng/ml、IFN−α8で0.66ng/ml、IFN−α13で18.4)。選択抗IFN−α/ωmAbのIC
50を表29に示す。表20のデータは2つの独立した実験の平均である。IFN−α/ωmAbのIFWM3525及びIFWM3522は、試験に利用可能なヒト抗原とオルソロガスマカクザル抗原との間で同様の交差中和特性を示した。この分子がヒトIFN−αDと同様に位置27(S27)にセリンを有するため、マカクザルIFN−α13の欠如が予期された。
【0501】
【表29】
【0502】
実施例16.IFN−ωT80Eと複合したIFWM3421の結晶構造
結晶化、X線データ収集、及び構造決定を、以下の変更を除いて本質的に実施例6で説明したように実施した。
【0503】
複合体はIFN−ωを混合することにより調製した。比1.05:1.00(過剰IFN−ω)のFabを4℃で終夜インキュベートし、続いて精製なしで50mMのTris(pH7.4)/20mMのNaCl中8.37mg/mLに濃縮した。X線データ収集の結晶をMMS播種したHEPES(pH7.5、0.2M Li2SO4、18% PEG3350)から得た。
【0504】
IFNω/Fab3186複合体のX線データ収集については、20%グリセロールを補充した合成母液(0.1M HEPES(pH7.5)、20% PEG3350、0.2M LiSO4)に結晶を浸し、液体窒素中で急速凍結させた。APS(Argonne National Lab)でX線データを収集した。ELN ATeplyak−2013−0014。回折データをXDSで処理した。構造精密化統計を表30に提供する。
【0505】
【表30】
【0506】
IFNω/Fab3421の結晶構造を1.9Åと決定した(表30)。IFN−ωモデルは23〜39及び118〜153の残基を含んでいた。IFN−ω分子の大半は電子密度を全く有さず、これらのための余地が結晶内に存在しなかったが、これはIFN−ωの開裂も起きたことを示す。
【0507】
IFN−ω/Fab3421複合体の全体的な構造は、IFNω/FabM371と非常に似通っていた。個別の成分(VH、VL、及びIFNω)の主鎖構造は全て、ほぼ同一であった(それぞれCα rmsd 0.17、0.23、及び0.36Å)。
【0508】
しかしながら、多くの有意な構造的差異が存在した。第1に、2つの構造をVL上に重ね合わせて、VHを4度回転させ、抗原を11度回転させ、その結果、IFN−ω分子をVLに対して大きくシフトさせる。第2に、水素結合及び水構造(特にWC2)は、2つの構造間で異なった(
図14A及び14B)。IFN−ωのR33は、患者のM371複合体内にHCDR3のD107との塩橋を含む6つの水素結合を作製した(
図14A)。成熟形態では、IFN−ωのR33及びVHのD107の両方の側鎖の電子密度の定義はさほど明確ではなく、これらは遠く離れており(図示せず)、したがって電荷−電荷相互作用の数及び強さを減少させるように考えられる(
図14B)。M371中のVHのH99に関与する水分子は、現在は存在しない(
図14A、14B)。第3に、HCDR3のF108は、抗原結合に関与していないが、これはVL/VH界面の一部である。これは存在する構造内に2つの代替的コンフォメーションを採用する(
図14C)。VLのL96I突然変異と共に、VL/VHドメインの相対回転が、これを単一の回転異性体に低減させた。したがって、これは成熟突然変異のその部分がより良好なFv対合をもたらしたと考えられる。第4に、成熟中に2つの位置をF(A50F及びY32F)に突然変異させた。Y32はIFN−ω主鎖を有する2つの水素結合を形成する。しかしながら、これらもFへの突然変異の結果として失われた(
図14D)。A50F変異は抗原との新たな接触を全く生じさせない。むしろ、フェニル環がVHのW104とスタックして、これが続いて抗原とパックする(packs)(
図14D)。LCDR3では、2つの更なる疎水性突然変異(T94L及びL96I)が、抗原のL30及びF27に対するより良好な疎水性ポケットを形成すると考えられる。2つの更なる負電荷突然変異(S39D及びS93D)は、溶媒に対する場合を除いていかなる相互作用も形成しない。全体的には、親和性の改善は、極性相互作用を低減させるが、抗原及びVL/VH対合と共に、より良好な疎水性パッキングを支持/強化する成熟プロセスの結果である。
【0509】
エピトープ及びパラトープ残基
図15は、IFN−ωとIFWM3421との間の2D相互作用mAbを示す。エピトープ残基はM371構造のものと同一である。パラトープ残基もほぼ同一である(
図15)。しかしながら、上述したように、成熟プロセスは、多くの構造的及び相互作用の差異をもたらし、これが結合親和性の改善の原因である可能性がある。
【0510】
実施例17.IFN−ω T80Eと複合したIFWM3525 1の結晶構造
結晶化、X線データ収集、及び構造決定を、本質的に実施例6で説明したように実施した。
【0511】
複合体を、IFN−ωとIFWM3525のFabとを1.05:1.0のモル比(過剰IFN−ω、1.92:1.12mg)で混合し、4℃で終夜インキュベートし、20mm HEPES(pH7.5)、0.25MのNaCl(10%グリセロール)で平衡したSuperdex 200カラムで精製し、続いて9.79mg/mlに濃縮することによって調製した。X回析に適する結晶を、IFN−ω/Fab3186結晶からの種を用いたMMS播種によって、18%PEG 3K、0.2Mクエン酸ナトリウムから得た。
【0512】
X線データ収集のために、IFN−ω/IFWM3525複合体の1結晶を合成母液(20% PEG3350、0.2Mクエン酸ナトリウム25%グリセロール)に数秒間浸漬し、液体窒素中で急速凍結させた。APS(Argonne National Lab)でX線データを収集した。回折データをXDS10で処理した。
【0513】
IFN−ω/IFWM3525複合体の構造を、Phaserを用いた分子置換法(MR)により解析した。MRの検索モデルは、IFN−ω/FabM371の結晶構造であった。続いてPHENIXで構造を精密化し、COOTを用いてモデルの調整を実行した。他の全ての結晶学的計算は、CCP4プログラムスイートを用いて行った。全ての分子グラフィックを、PyMolを用いて生成した。構造精密化統計を表31に提供する。
【0514】
【表31】
【0515】
IFN−ω/IFWM35258複合体の全体的な構造は、IFN−ω/FabM371と非常に似通っていた。IFN−ω分子の分子構造モデルはヘリカルセグメントAB並びにヘリックスD及びEに対応する残基23〜39及び119〜153を含む。ヘリックスA、B、及びC、並びに接続ループを無秩序化する。IFN−ωのこれらの失われた部分は、M371及びM3421複合体構造で判明した限定されたタンパク質分解のためである可能性がある。Fab分子構造モデルは、軽鎖の場合1〜213の残基、重鎖の場合1〜222の残基を含む。C末端6xHisタグ、鎖間ジスルフィド結合、及び重鎖の137〜141の残基を無秩序化する。低い回折分解能のため、溶媒水分子を含まなかった。
【0516】
図16はIFN−ωとIFWM3525のFabとの間の2次元相互作用マップを示す。Ab/Ag相互作用の大部分は、ABへリックスのエピトープ残基F27、L30、及びR33によるものである。したがって、IFN−ωのこの領域がエピトープの主な部分を構成していると考えられる。親M371と比較して、このエピトープは、IFWM3525のHCDR3との相互作用を形成するIFN−ωのヘリックスEからの残基をもう2つ含む。
【0517】
IFWM3525は、IFN−ω及びIFN−αサブタイプの大半に対して広範な結合特異性を有する。これは、IFNβ及びIFN−α−D/1には結合しない。IFNの配列アラインメント(
図9)は、IFN−ω及びIFN−αサブタイプの間でIFWM3525エピトープ残基の大半が保存されていることを示す。更に、IFN−α(PDBコード2RH2、(これは、PDB中でCαの痕跡のみが利用可能であったため、蓄積したデータを用いて再構成及び精密化した)及びIFN−ωのエピトープ残基の構造の比較は、エピトープ残基が非常に似通った主鎖及び側鎖構造を有することを示す。したがって、配列及び構造の保存(又はエピトープ保存)は、IFWM3525によるIFN−α/ωの広範な結合の原因であると考えられる。
【0518】
【表32-1】
【0519】
【表32-2】
【0520】
【表32-3】
【0521】
【表32-4】
【0522】
【表32-5】
【0523】
【表32-6】
【0524】
【表32-7】
【0525】
【表32-8】
【0526】
【表32-9】
【0527】
【表32-10】
【0528】
【表32-11】
【0529】
【表32-12】
【0530】
【表32-13】
【0531】
【表32-14】
【0532】
【表32-15】
【0533】
【表32-16】
【0534】
【表32-17】
【0535】
【表32-18】
【0536】
【表32-19】
【0537】
【表32-20】
【0538】
【表32-21】
【0539】
【表32-22】
【0540】
【表32-23】
【0541】
【表32-24】