(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2017-531483(P2017-531483A)
(43)【公表日】2017年10月26日
    (54)【発明の名称】医療デバイス、装置、および外科的方法
(51)【国際特許分類】
   A61B   5/0408      20060101AFI20170929BHJP        
   A61B   5/0478      20060101ALI20170929BHJP        
   A61B   5/0492      20060101ALI20170929BHJP        
   A61B  17/56        20060101ALI20170929BHJP        
   A61N   1/05        20060101ALI20170929BHJP        
   A61N   1/372       20060101ALI20170929BHJP        
【FI】
   A61B5/04 300J
   A61B17/56
   A61N1/05
   A61N1/372
【審査請求】未請求
【予備審査請求】未請求
【全頁数】47
      (21)【出願番号】特願2017-517644(P2017-517644)
(86)(22)【出願日】2015年10月2日
    (85)【翻訳文提出日】2017年5月25日
      (86)【国際出願番号】CH2015000150
    
      (87)【国際公開番号】WO2016049789
(87)【国際公開日】20160407
    
      (31)【優先権主張番号】01509/14
(32)【優先日】2014年10月3日
(33)【優先権主張国】CH
    (81)【指定国】
      AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
    
      
        
          (71)【出願人】
【識別番号】501485227
【氏名又は名称】ウッドウェルディング・アクチェンゲゼルシャフト
          (74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
        
      
      
        (72)【発明者】
          【氏名】エシュリマン,マルセル
              
            
        
        (72)【発明者】
          【氏名】メイヤー,ヨルク
              
            
        
        (72)【発明者】
          【氏名】バイス,マリオ
              
            
        
        (72)【発明者】
          【氏名】ニーダーハウザー,エイメリック
              
            
        
      
    【テーマコード(参考)】
      4C053
      4C127
      4C160
    【Fターム(参考)】
      4C053CC10
      4C127AA03
      4C127EE01
      4C127JJ03
      4C127LL08
      4C160LL07
      4C160LL22
    (57)【要約】
  EEGヘッドピースは、電極ピン(10)のアレイを含む。各電極ピンは、近位端面(14)によって形成される近位端と遠位端との間を延在しており、導電電極(12)および熱可塑性物質(11)を含む。熱可塑性物質は、少なくとも電極ピンの周辺のまわりに配されるか、または、中空空間から周辺へと押圧可能である。各電極ピンは、固体状態から流動状態に熱可塑性物質の少なくとも部分を液化するよう、近位端面から熱可塑性物質への特に機械振動エネルギーといったエネルギーの伝達のために備えられており、これにより、熱可塑性物質は、周辺を取り囲む組織部分(1)の構造に流れ込むことが可能であるとともに、熱可塑性物質の再凝固の後に、組織部分において電極ピンの係留部を形成することが可能である。
    
  【特許請求の範囲】
【請求項1】
  人間の頭部に埋め込まれる感知および/または送達ヘッドピースであって、前記ヘッドピースは相互作用ピンのアレイを含み、各相互作用ピンは近位端面によって形成される近位端と遠位端との間を延在しており、各相互作用ピンは相互作用要素および熱可塑性物質を含んでおり、前記熱可塑性物質は、少なくとも前記相互作用ピンの周辺のまわりに配されるか、または、中空空間から前記周辺へと押圧可能であり、各相互作用ピンは、固体状態から流動状態に前記熱可塑性物質の少なくとも部分を液化するよう、前記近位端面から前記熱可塑性物質への特に機械振動エネルギーといったエネルギーの伝達のために備えられており、これにより、前記熱可塑性物質は、前記周辺を取り囲む組織部分の構造に流れ込むことが可能であるとともに、前記熱可塑性物質の再凝固の後に、前記組織部分において前記相互作用ピンの係留部を形成することが可能である、ヘッドピース。
【請求項2】
  前記相互作用要素は電極である、請求項1に記載のヘッドピース。
【請求項3】
  前記電極は、近位相互作用電極と、前記近位相互作用電極に導電的に接続された遠位相互作用電極とを含む、請求項2に記載のヘッドピース。
【請求項4】
  前記電極の近位端、前記電極の遠位端、または、その両方は、非導電物質によってカバーされる、請求項2または3に記載のヘッドピース。
【請求項5】
  前記相互作用要素は、
  −マイクロ薬剤または栄養送達システムと、
  −アクチュエータと、
  −センサと、
  −超音波ソノトロードと、
  −圧電スピーカと、
  −光学センサと、
  −導光要素または発光要素と、
のうちの1つである、請求項1に記載のヘッドピース。
【請求項6】
  前記熱可塑性物質は透明であり、これにより、前記熱可塑性物質は、導光体であることにより前記相互作用要素を形成する、請求項5に記載のヘッドピース。
【請求項7】
  前記相互作用要素は、前記相互作用要素の遠位端に達するように配されるか、または、前記遠位端に対して2mm以下となるように配される、先行する請求項のうちのいずれか1項に記載のヘッドピース。
【請求項8】
  少なくとも15個の相互作用ピンを含む、先行する請求項のうちのいずれか1項に記載のヘッドピース。
【請求項9】
  前記相互作用ピンの少なくとも1つは、少なくとも1つの深さにおいて、前記熱可塑性物質が少なくとも前記液化の後に全表面を形成して、前記熱可塑性物質によって任意の機能部分が埋め込まれるか、または、前記熱可塑性物質が任意の機能部分のまわりにスリーブまたはカラーを形成するような態様で配されるように前記熱可塑性物質を含む、先行する請求項のうちのいずれか1項に記載のヘッドピース。
【請求項10】
  前記相互作用ピンは物理的に別個である、先行する請求項のうちのいずれか1項に記載のヘッドピース。
【請求項11】
  前記相互作用ピンの少なくとも1つは、空間的に別個の複数の相互作用要素を含む、先行する請求項のうちのいずれか1項に記載のヘッドピース。
【請求項12】
  前記相互作用ピンのうちの少なくとも1つは、外耳道のまわりの骨組織に埋め込まれるように構成される、先行する請求項のうちのいずれか1項に記載のヘッドピース。
【請求項13】
  前記頭部の外部から前記相互作用要素と相互作用するように適合される相互作用デバイスをさらに含む、先行する請求項のうちのいずれか1項に記載のヘッドピース。
【請求項14】
  前記相互作用デバイスは可逆的に取り外し可能である、請求項13に記載のヘッドピース。
【請求項15】
  前記相互作用デバイスは特に皮膚といった組織を介して前記相互作用要素と相互作用するように適合される、請求項13または14に記載のヘッドピース。
【請求項16】
  前記ヘッドピースは、相互作用ポイントのアレイを含み、相互作用ポイントの各位置は、相互作用要素の位置に対応する、請求項13〜15のいずれか1項に記載のヘッドピース。
【請求項17】
  前記相互作用デバイスは、外耳道に挿入されるように形状決めされたイヤーピースと、外耳道を取り囲む骨組織に埋め込まれた相互作用ピンと相互作用するように構成される相互作用ポイントとを含む、請求項13〜16のいずれか1項に記載のヘッドピース。
【請求項18】
  前記相互作用ピンの少なくとも1つは、前記相互作用要素に通信可能に結合されたプロセッサユニットをさらに含み、前記少なくとも1つの相互作用ピンは、前記プロセッサユニットとさらに別のユニットとの間での無線通信および/または無線エネルギー伝達のために備えられる、先行する請求項のうちのいずれか1項に記載のヘッドピース。
【請求項19】
  先行する請求項のうちのいずれか1項に記載のヘッドピースを埋め込む方法であって、各相互作用ピンのために穴をあらかじめ空け、その後、前記相互作用ピンを配置し、固体状態から流動状態に前記熱可塑性物質の少なくとも部分を液化するよう、前記相互作用ピンにエネルギーを作用させるとともに遠位方向に向かって押圧することを含み、これにより、前記熱可塑性物質は、前記周辺を取り囲む組織部分の構造に流れ込むとともに、これにより、前記熱可塑性物質の再凝固の後に、前記組織部分において前記相互作用ピンを係留する、方法。
【請求項20】
  頭蓋骨の下に概して平らな電極担持体を埋め込む方法であって、
  複数の接触電極を含む前記電極担持体を含むデバイスを提供することと、
  前記電極担持体のエリアより小さいエリアを有する貫通開口部を頭蓋骨に設けることと、
  前記貫通開口部を通って前記電極担持体を、脳と頭蓋骨との間において平坦になるまで、挿入することと、
  熱可塑性物質と、前記熱可塑性物質の少なくとも部分を一時的に液化させるエネルギーとの支援により、頭蓋骨に対して前記電極担持体を固定することとを含む、方法。
【請求項21】
  前記開口部は、前記電極担持体の横方向延在部のうちの1つよりわずかに大きい横方向延在部と、前記電極担持体の他方の横方向延在部より著しく小さい幅とを有するスリット状の開口部である、請求項20に記載の方法。
【請求項22】
  前記開口部は超音波切断によって設けられる、請求項20または21に記載の方法。
【請求項23】
  頭蓋骨に対して前記電極担持体を固定するために、
  −前記デバイスは前記電極担持体に物理的に接続される据付部分を含み、前記据付部分は熱可塑性物質を含み、前記据付部分は、前記熱可塑性物質が液化されて再凝固の後に係留部および密封部を形成するようにエネルギーに晒されるとともに前記組織に対して押圧されることにより、頭蓋骨の骨組織に係留されるために備えられることと、
  −前記デバイスは、前記電極担持体とは最初は別個であり頭蓋骨を通って到達する据付要素を含み、前記据付要素の遠位端は、前記電極担持体への機械的結合のために備えられることと、
  −前記電極担持体は熱可塑性物質を有するアンカーを含むか、または、前記電極担持体は熱可塑性部分を含み、前記スリット状の開口部を通って挿入される工具によって頭蓋骨の内側に据え付けられ、前記工具によって、エネルギーおよび外部に向かって方向付けられるプレス力が適用されることと、
のうち1つ以上が適用される、請求項20〜22のいずれか1項に記載の方法。
【請求項24】
  脳からの電気信号を感知するためのまたは脳を刺激するための外科デバイスであって、前記デバイスは電極担持体を含み、前記電極担持体は複数の接触電極を含み、前記デバイスはさらに、
  −前記電極担持体に物理的に接続され、熱可塑性物質を含み、かつ、前記熱可塑性物質が液化されて再凝固の後に係留部および封止部を形成するようにエネルギーに晒されるとともに前記組織に対して押圧されることにより、頭蓋骨の骨組織に係留されるために備えられる据付部分と、
  −前記電極担持体とは最初は別個であり頭蓋骨を通って到達するように備えられ、その遠位端が前記電極担持体への機械的結合のために備えられる据付要素と、
  −熱可塑性物質を有し、かつ、前記電極担持体および/または前記電極担持体の熱可塑性部分に結合されるために備えられるアンカーと、
のうちの少なくとも1つを含む、デバイス。
【請求項25】
  前記電極に通信可能に結合されるプロセッサユニットをさらに含み、前記デバイスは、前記プロセッサユニットとさらに別のユニットとの間での無線通信および/または無線エネルギー伝達のために備えられる、請求項24に記載のデバイス。
【請求項26】
  人間の脳において相互作用要素を深く埋め込むための方法であって、
  −脳深部相互作用要素担持体を提供することと、
  −前記相互作用要素が所望の位置に到達するまで前記相互作用要素担持体を挿入することと、
  −プロセスを使用することとを含み、前記プロセスは、
  ●係留体を係留し、頭蓋骨において前記相互作用要素をガイドおよび支持することと、
  ●前記所望の位置にある前記相互作用要素担持体の位置を頭蓋骨に対して固定することとのうちの少なくとも1つのために、
  ○係留部および/または固定要素の熱可塑性物質を液化するサブステップと、
  ○これにより液化された熱可塑性物質を流れさせた後で再度凝固させるサブステップと、を含む、方法。
【請求項27】
  前記脳深部相互作用要素担持体は、真っすぐな針状のピンである、請求項26に記載の方法。
【請求項28】
  前記相互作用要素が所望の位置に到達するまで前記相互作用要素担持体を挿入するステップは、たとえばイメージング法、位置決めフレームのような外部位置決め手段、および/または、患者の反応を観察することによって、実際の位置に関するフィードバックを得ることを含む、請求項26または27に記載の方法。
【請求項29】
  前記方法は、頭蓋骨に対して前記相互作用要素担持体の位置を固定するための係留体を使用することを含み、前記方法は、頭蓋骨上または内に前記係留体を埋め込むことを含む、請求項26〜28のいずれか1項に記載の方法。
【請求項30】
  前記相互作用要素の位置を固定するステップは、前記相互作用要素担持体の位置を前記係留体に対して固定すること、および/または、前記相互作用要素担持体をガイドする前記係留体の位置を頭蓋組織に対して固定することを含む、請求項29に記載の方法。
【請求項31】
  前記係留体は、頭蓋骨における貫通開口部を通って頭蓋下に埋め込まれ、前記貫通開口部は、その埋込の後で前記係留体によってカバーされるエリアより小さいエリアを有する、請求項30に記載の方法。
【請求項32】
  前記係留体は頭蓋骨の外部上に埋め込まれる、請求項30に記載の方法。
【請求項33】
  人間の脳に深く配置されるとともに脳と相互作用するために相互作用要素を含む外科デバイスであって、
  −少なくとも1つの相互作用要素を有し、かつ、脳に入るように貫通するよう頭蓋骨の外部から導入されるように構成される相互作用要素担持体と、
  −前記相互作用要素担持体と別個であり、かつ、頭蓋骨に据え付けられるように構成される係留体と、
  −熱可塑性物質を含む少なくとも1つの係留要素または固定要素とを含み、
  前記係留要素または固定要素は、
  ○前記熱可塑性物質の少なくとも部分を液化し、これにより液化された熱可塑性物質を頭蓋骨組織の構造に流れ込ませて再凝固の後にアンカーを作り出させることにより頭蓋骨組織において係留されることと、
  ○係留要素および/または固定要素の熱可塑性物質を液化し、これにより液化された熱可塑性物質を前記相互作用要素担持体、前記係留体、または、その両方の構造に流れ込ませ、その後、再凝固することを含むプロセスによって前記係留体に対して前記相互作用要素担持体を固定することと、
のうちの少なくとも1つのために構成される、デバイス。
【請求項34】
  神経系からの信号を感知するか、人体に信号を送達するか、または、前記人体に物質を送達するための感知および/または送達設備であって、前記設備は、信号感知、信号送達、または、物質送達のための少なくとも1つの相互作用要素を含み、前記設備は前記相互作用要素に通信可能に結合されるプロセッサユニットをさらに含み、前記設備は、前記プロセッサユニットとさらに別のユニットとの間での無線通信および/または無線エネルギー伝達のために備えられ、前記設備の少なくとも1つの要素は、構造に浸透するために液化されて再度凝固される熱可塑性物質の支援により、骨組織に据え付けられるために備えられる、設備。
【請求項35】
  前記相互作用要素は電極である、請求項34に記載の設備。
【請求項36】
  前記相互作用要素および前記プロセッサ要素を担持するインプラントを含み、前記インプラントは、前記プロセッサユニットとさらに別のユニットとの間での無線通信および/または無線エネルギー伝達のために備えられ、前記インプラントは、構造に浸透するために液化されて再度凝固される熱可塑性物質の支援により、骨組織に据え付けられるために備えられる、請求項34または35に記載の設備。
【請求項37】
  前記相互作用要素は電極であり、前記インプラントは、前記プロセッサユニットに通信可能に結合されるか、または、前記プロセッサユニットと統合されるアンテナを含み、前記プロセッサユニットは、前記電極から前記アンテナを切り離すように構成される、請求項36に記載の設備。
【請求項38】
  前記プロセッサユニットはアナログ−デジタル変換器を含む、請求項34〜37のいずれか1項に記載の設備。
【請求項39】
  前記プロセッサユニットに通信可能に結合されるか、または、前記プロセッサユニットと統合されるアンテナを含む、請求項34〜38のいずれか1項に記載の設備。
【請求項40】
  前記プロセッサユニットはRFIDプロセッサである、請求項39に記載の設備。
【請求項41】
  遠位シャフト部分および近位ヘッド部分を含み、前記ヘッド部分は前記シャフト部分より広く、前記アンテナは前記ヘッド部分に位置する、請求項39または40に記載の設備。
【請求項42】
  アンテナを有する送信機ユニットを含む、請求項34〜41のいずれか1項に記載の設備。
【請求項43】
  前記送信機ユニットは、各々が熱可塑性物質を含む複数の据付具によって頭蓋骨に据え付けられるために備えられる、請求項42に記載の設備。
【請求項44】
  前記据付具は、単皮質の係留のために構成される、請求項43に記載の設備。
【請求項45】
  据付部分を含むアクセスポートであって、前記据付部分は熱可塑性物質を含み、前記据付部分は、前記熱可塑性物質が液化されて再凝固の後に係留部および封止部を形成するようにエネルギーに晒されるとともに前記組織に対して押圧されることにより、頭蓋骨の骨組織に係留されるために備えられ、前記据付部分は貫通開口部を含み、前記貫通開口部に対して遠位側において、相互作用要素が存在するかまたは配置可能であり、近位側において、接触要素が配置可能であり、前記遠位側から前記近位側を封止要素が封止しており、前記封止要素は、前記接触要素によって前記相互作用要素と可逆的に接触することを可能にするような封止要素である、アクセスポート。
【請求項46】
  −前記封止要素は、突き通すことが可能であるが突き通した針の除去後には閉じる隔壁要素であるという条件と、
  −前記封止要素は、前記据付部分に封止するように固定され得る可逆的に取り外し可能な蓋部であるという条件と、
  −前記封止要素は、前記接触要素から前記相互作用要素へ、または、その逆に前記アクセスポートを通じて伝達される信号のための導体であるという条件と、
のうちの1つが適用される、請求項45に記載のアクセスポート。
【発明の詳細な説明】
【技術分野】
【0001】
  発明の分野
  本発明は、医療技術および人間−機械間の相互作用の分野に該当する。特に、本発明は、ニューロモデュレーションと、人間の脳の診断、監視および刺激とに関する。
 
【背景技術】
【0002】
  発明の背景
  脳波記録および脳の領域の電気刺激は、診断および治療における多くの用途についてますます重要になっている。
【0003】
  たとえば、パーキンソン病の患者および他の運動障害に対しては、脳深部刺激(DBS:deep brain stimulation)は非常に有効である。DBSでは、電極が脳へ挿入され、脳の中心におけるあるエリアを刺激する。脳刺激に基づくと、感情障害の治療を含む他の治療についても成功している。
【0004】
  脳波記録、すなわち脳の電気活性の記録は、多くの診断用途を有しているが、(たとえば癲癇のための)治療の一部としてまたは障害を補うためにもますます使用されている。たとえば、人間の脳電気信号による義肢の動きを制御することにおいて成功している。
【0005】
  脳の電気刺激および脳波記録(EEG)はともに、電極が脳に十分に近いところに位置することを必要としている。
【0006】
  先行技術に従った第1のアプローチによると、脳波記録のために、頭蓋骨上の電極が使用され、当該電極は頭皮に接触する。しかしながら、脳からの信号伝達能力および脳への信号伝達能力の両方は、信号が頭皮、頭蓋骨および髄膜を通って伝達されなければならないという事実と、環境からの外乱とにより限定されている。特に、電極と局所的な脳領域との間の異なる組織により、信号を測定するためおよび信号を誘導するための信号記録の空間分解能は限定されている。さらに、インピーダンスを低減するために、電極と皮膚との間で何らかの導電性ゲルを適用しなければならない。
【0007】
  したがって、いくつかの場合において、頭蓋骨上の電極から得られるEEGは十分ではない。第2のアプローチによれば、たとえば、頭蓋内脳波記録(皮質脳波記録)のために、頭蓋下の電極、特に、硬膜下の電極が使用される。これらの頭蓋内電極または深部電極は、頭蓋骨の内部で信号を測定するので、より有効である。しかしながら、当該電極は侵襲性である。すなわち、頭蓋内電極または深部電極は、埋め込む場合に外科手術を必要としており、当該外科手術は、非常に高価であり合併症につながり得る。外科手術は、頭蓋骨の全部分を一時的に除去することにより実行される。これは、開口部の各角部における頭蓋骨穴と、当該穴同士を接続する機械的なのこぎり引きとを必要とするか、または、頭蓋開口処置によるより大きなアクセス穴の作製を必要とする。頭蓋内電極の特定の問題は、外部から接触される必要があることであり、これは、不変的な感染症リスクを引き起こす。
【0008】
  脳深部刺激のためには、脳に深く埋め込まれた電極が必要である。これらの電極は、頭蓋骨にドリルで空けられた穴を通じて埋め込まれ、硬膜下電極と異なり、頭蓋骨が開かれることを必要としない。したがって、当該電極の適用はより容易である。しかしながら、これらの電極は、患者にとってはより多くの不快感を引き起こす。さらに、これらの電極は、単にドリル穴を必要するだけであるとしても、骨が暖かくなりすぎるのを回避するために、外科医がドリルによる穴空けをゆっくりでしか行うことができないので、それらの挿入は必ずしも迅速ではない。さらに、感染率は推定上約6%であり、当該インプラントの2.0〜2.5%について脳内出血につながっている。
【0009】
  また、電極を含むとともに、誘導によって頭皮の外部から電力および信号を受け取るためのアンテナを含むデバイスを埋め込むことが提案されている。しかしながら、これらにおいても、挿入のために頭蓋骨を開かなければならない。
 
【発明の概要】
【発明が解決しようとする課題】
【0010】
  発明の概要
  本発明の目的は、先行技術のアプローチの欠点を克服することであり、かつ、脳からの電気信号を感知するのに好適であるか、または、たとえば刺激のために脳に信号を送達するために好適である方法およびデバイスを提供することである。
 
【課題を解決するための手段】
【0011】
  第1に、本発明は、(時間にわたるか、もしくは、位置の関数としての電位の変化のような)電気信号を中枢神経系に送信することが可能であるか、または、中枢神経系によって発される電気信号を感知することが可能であるデバイスを埋め込む方法を提供する。
【0012】
  しかしながら、本発明はさらに、埋込デバイスに関する。上記埋込デバイスは、
  −マイクロ薬剤または栄養送達システムと、
  −たとえば電磁刺激器、圧電刺激器、または空気刺激器といったアクチュエータと、
  −たとえば頭蓋内圧または脳温度を測定するセンサと、
  −超音波ソノトロードと、
  −圧電スピーカと、
  −光学スペクトルの可視部分および/または近赤外線部分における光学的分析のための、カメラのような光学センサと、
  −たとえば、特に脳損傷患者の長期的な集中治療における、治療、または、酸素添加の測定、皮質における化学分析(新陳代謝分析)のための導光要素またはたとえばレーザダイオードのような発光要素と、
のうちの少なくとも1つを含み、
  これらのデバイスのうちのいずれか1つは、脳または神経系の他の部分と物理的に接触するように埋め込まれるか、または、そうでなければ脳または神経系の他の部分と相互作用するように配置される。
【0013】
  これらのアレイおよび/もしくは組合せ、ならびに/または、中枢神経系に電気信号を送信することが可能であるか、もしくは、中枢神経によって発される電気信号を感知することが可能であるデバイスのアレイおよび/もしくは組合せが可能である。
【0014】
  本発明のいずれかの局面において、埋込方法は、電極/センサ/刺激器/送達システム担持体またはそれとは別個の据付要素であり得る据付要素を提供することを含み得、据付要素は熱可塑性物質を含み、当該熱可塑性物質は、少なくとも据付要素の表面の範囲上に配されるか、または、開口部を通じて押し出され得る中空空間に配される。そのような据付要素は、再凝固の後に対象と確実な嵌合を形成するように熱可塑性物質が液体状態で押圧される構造を含む対象に係留されるように備えられる。そのような対象は特に骨組織であり得るが、デバイス自身の寸法的に安定的な要素であり得る。
【0015】
  これにおいて、熱可塑性物質の少なくとも部分は、その場で液化され、構造内へ押圧され、これによりエネルギーとプレス力との連合作用によって対象に浸透する。エネルギーは特に機械振動エネルギーであり得る。
【0016】
  本発明の第1の局面は、信号感知、信号送達、または、物質(薬剤もしくは栄養もしくはマーカ)送達のための感知および/または送達スポットのアレイ(規則的または不規則的なアレイ)の中枢神経系への適用に関する。そのようなアレイの例はEEG電極のアレイである。
【0017】
  本発明の第1の局面に従うと、(EEGヘッドピースのような)感知および/または送達ヘッドピースは、(たとえば電極ピンのような)相互作用ピンのアレイを含み、各相互作用ピンは、近位端面によって形成される近位端と遠位端との間を延在しており、各相互作用ピンは、(導電電極のような)相互作用要素および熱可塑性物質を含む。熱可塑性物質は、少なくとも相互作用ピンの周辺のまわりに配されるか、または、中空空間から周辺へと押圧可能である。各相互作用ピンは、固体状態から流動状態に熱可塑性物質の少なくとも部分を液化するよう、近位端面から熱可塑性物質への特に機械振動エネルギーといったエネルギーの伝達のために備えられている。これにより、熱可塑性物質は、周辺を取り囲む組織部分の構造に流れ込むことが可能であるとともに、熱可塑性物質の再凝固の後に、組織部分において相互作用ピンの係留部を形成することが可能である。
【0018】
  本発明の第1の局面はさらに、そのようなヘッドピースを埋め込む方法に関する。この方法は、各相互作用ピンのために穴をあらかじめ空け、その後、ピンを配置し、固体状態から流動状態に熱可塑性物質の少なくとも部分を液化するよう、遠位方向に向かって押圧される前および/または押圧される間の機械振動エネルギーのようなエネルギーをピンに作用させることを含み、これにより、熱可塑性物質は、周辺を取り囲む組織部分の構造に流れ込むとともに、これにより、熱可塑性物質の再凝固の後に、組織部分において相互作用ピンを係留する。より詳細に以下に記載されるような相互作用デバイスを有する実施形態においては、上記方法は相互作用デバイスを提供することをさらに含む。
【0019】
  先行技術のEEGデバイスは、スペクトル分解能(数センチメートルのみまで)および感度において論じられた限界を有する頭蓋骨上の電極を含むか、または、頭蓋骨の下もしくは電極が脳の内部で達する深さに配置される電極アレイ担持体を含む。後者の場合には、頭蓋骨を開くために頭蓋骨の実質的な部分を取り除かなければならず、これにより、埋込処置は非常に侵襲性になる。それとは対照的に、本発明の第1の局面に従ったアプローチでは、侵襲性は最小限である。しかしながら、所望の場合には、相互作用要素は脳に非常に接近し得、物理的に接触しさえし得ることが可能である。頭蓋骨に沿った相互作用要素の位置は、ほとんど任意に選択され得る。特に、先行技術の頭蓋内のEEGと比較すると、相互作用要素は、脳の相対的に小さな部分に制限されず、頭蓋骨全体にわたって分散され得る。
【0020】
  非侵襲性電極と比較して、このヘッドピースのこれらの電極ははるかに良好な信号品質を提供する。骨、皮膚および髪がなければ、従来の非侵襲性のEEG用途について問題を引き起こす信号ノイズおよび信号ひずみがはるかに小さくなり、また、インピーダンスはより低くなる。これらの用途と異なり、電極は、頭蓋骨の下(頭蓋内)での信号記録を提供する。
【0021】
  相互作用要素が電極であるEEGアプリケーションの場合、アレイは、人間の頭部の制限された部分または頭部全体にわたって分散する任意数の電極を含み得る。実施形態における相互作用ピンの数は、少なくとも6個、少なくとも10個、少なくとも15個、少なくとも25個、またはそれ以上であり得る。電極が脳に近いという事実により、空間分解能は、典型的なEEGの空間分解能より優れており、そのため、たとえば50個以上といったさらに多い相互作用ピンを配置することが理にかなう場合がある。
【0022】
  相互作用要素が電極である場合の電極は、脳信号がその近くから取得される(または脳の刺激がその近くから実行される)ように、特に相互作用ピンの遠位端に到達するよう配されるか、または、少なくとも遠位端の近く(たとえば遠位端からの2mm以内に)に配される。遠位端でのそのような配置は、他の相互作用要素についても有利であり得る。
【0023】
  相互作用ピンの長さは頭蓋骨の厚さに適合され得る。成人患者の場合、長さが5mmと8mmとの間であり得る。
【0024】
  好ましい実施形態に従うと、熱可塑性物質は、少なくとも1つの深さ(軸方向位置)において、少なくとも液化の後に、表面全体を形成するように配されるので、如何なる機能部分(たとえば熱可塑性物質と別個の場合は相互作用要素であり、適用可能な場合は、配線、制御部、機械的担持体などであり得る)も熱可塑性物質によって埋め込まれるか、または、熱可塑性物質がスリーブまたはカラーをそのまわりに形成する。
【0025】
  プロセスの間、液化物質は高温であり、エネルギーが機械エネルギーである場合に組織に接しているところでは特に高温であるので、これは、係留部位において滅菌性につながることになる。さらに、最も微細な組織構造への浸透を含む密接な接触により、頭蓋内領域から効果的に細菌を排除する封止効果が得られる。特に物質送達についての、ピン上に配される熱可塑性物質のこの封止効果および構成は、WO2011/029208に記載されている。
【0026】
  第1の局面の実施形態において、EEGまたは刺激のための電極を含むことに加えてまたはその代替例として、相互作用要素(たとえば機能コア)は、ピン内において頭部へ挿入される別の機能部分でもあり得る。ここでの相互作用要素の例は、
  −マイクロ薬剤または栄養送達システムと、
  −たとえば電磁刺激器、圧電刺激器、または、空気刺激器といったアクチュエータと、
  −たとえば頭蓋内圧または脳温度を測定するセンサと、
  −超音波ソノトロードと、
  −圧電スピーカと、
  −近赤外線のような光学的分析のためのカメラと、
  −たとえば、特に脳損傷患者の長期的な集中治療における、治療、または、酸素添加の測定、皮質における化学分析(新陳代謝分析)のための導光要素またはたとえばレーザダイオードのような発光要素と、である。
【0027】
  これらの要素(たとえば電極を有するいくつかの相互作用ピン、アクチュエータを有する他の相互作用ピン、および/または、たとえば、導光要素または発光要素を有する少なくとも1つの相互作用ピン)の組合せを有するアレイが可能である。
【0028】
  機能ピンによりここで提案されるような(超音波アレイによる)電磁または超音波治療は、既に頭蓋骨の外から適用されている(前者は経頭蓋磁気刺激(TMS:transcranial magnetic stimulation)として公知であり、後者は高密度焦点式超音波治療法(HIFU: high intensity focused ultrasound)と称される)。しかしながら、超音波は頭蓋骨によって屈折され、複雑な計算が必要になる。当該計算は、機能要素が頭蓋骨下に適用される場合、または、頭蓋骨の部分である場合、すなわち、遠位端にエフェクタを有する貫通到達ピンの部分である場合には、省略され得る。そのビームが脳の非常に特定のエリアにおいて集中した熱を作り出す超音波アレイのように、圧電スピーカからの音波も、アレイで適用されれば集中され得、刺激のために使用され得る。この場合、相互作用要素のうちの異なるもの同士によって引き起こされる、異なる位置から作用する音波同士の間の干渉を使用することの可能性が存在する。
【0029】
  診断および治療のための医療的使用に加えて、上記知覚用途から取得された情報は、研究、個人の健康監視、ゲーミング、思考制御の専門的な用途、パイロットのような重要な専門家の自動化された監視といった広範囲の他の用途に使用され得る。他の例として、癲癇患者は、刺激器ピンと組み合わされるいくつかの監視ピンを有し得るか、または、たとえばそれに加えてまたはその代わりに、発作を自動的に防止する薬送達ピンを有し得る。
【0030】
  ヘッドピースの相互作用ピンは、たとえばケーブルまたは可撓性担持体などによって物理的に接続され得る。代替的には、相互作用ピンは物理的に別個であり得る。さらに、相互作用ピンは、物理的に別個の場合、相互作用ピンが制御および/または評価ユニットに通信可能に接続されるという点において機能ユニットの部分になる。
【0031】
  相互作用ピンは、第1の可能性に従うと、物理的に接触され得る。そのようなケーブルを頭部から皮膚下で、たとえば胸に埋め込まれている埋込パルス発生器にガイドすることは、脳深部刺激から既に公知である。同様に、中央ユニットは、本発明の実施形態において、埋め込まれ、機能要素のアレイに接続され得る。
【0032】
  第2の可能性に従うと、相互作用ピンは、電子ユニットへの接点リードなしで、組織の下、たとえば皮膚の下、したがって完全に身体の内部に、埋められ得るような相互作用ピンであり得る。特に、相互作用ピンの目的は、感知または送達されるべき特定の信号または物質について、特に頭蓋骨といった骨によって構成された障壁を乗り越えることであり得る。
【0033】
  −たとえばEEGまたは刺激のための電気信号の場合、頭蓋骨がある厚さの誘電体である(これにより電位差を低減する静電「抵抗器」である)ことにより、脳または刺激電極の電位差によって引き起こされる電界が弱まる。さらに、空間分解能が低減される。
【0034】
  −たとえば超音波イメージングのための超音波について同様の考慮が適用される。
  −光学信号の場合、頭蓋骨は実質的に非透明であり、頭蓋骨を通って結合される光は、頭蓋骨にわたって非常に弱められる。
【0035】
  −物質の送達の場合、頭蓋骨は実質的に障壁である。
  第2の可能性に従うと、相互作用ピンの配置は、所望の種類の相互作用のためのブリッジの永久的なアレイを形成する。
【0036】
  第2の可能性を実現する実施形態の第1のグループに従うと、相互作用ピンは各々、近位相互作用ポイントと遠位相互作用ポイントとの間の導電ブリッジである「埋められた」電極の形態にある相互作用要素を含む。これによって、近位相互作用ポイントでの電位(相互作用ピンの近位端での電位またはその近くでの電位、したがってたとえば頭蓋骨の外面での電位またはその近くでの電位)は、遠位相互作用ポイントの電位(相互作用ピンの遠位端での電位またはその近くの電位、したがってたとえば頭蓋骨の内面での電位またはその近くの電位)と常に等しい。ここでの相互作用要素は、たとえば簡易な導電バーであり得るか、または、近位および遠位相互作用電極を含み得、当該相互作用電極は導電的に接続されている。代替的には、相互作用ピン自身の熱可塑性物質が、導電性熱可塑性物質から構成される相互作用要素/導電ブリッジであり得る。そのような導電物質はたとえば、十分な濃度の導電性フィラーを有するポリマーマトリクスを含み得る。
【0037】
  実施形態の第2のグループに従うと、相互作用ピンは、透明物質からなり得る(その場合には熱可塑性物質自身が相互作用要素を構成する)か、または、頭蓋骨によって構成される光障壁が乗り越えられるように透明物質のコアを含む。
【0038】
  実施形態のさらに別の第3のグループに従うと、相互作用ピンは、頭蓋骨の対応する抵抗を実質的に下回る、音響波に対する抵抗を有する物質を含み得る。たとえば、相互作用要素の音響インピーダンスは、振動が効果的に脳組織および後ろに結合され得るように、診断超音波イメージングについて通常の周波数において、脳組織の音響インピーダンスにほぼマッチングされ得る。
【0039】
  実施形態のさらに別のグループとして、相互作用ピンは、物質のための経路の形態にある相互作用要素を含み得、これにより、中枢神経系へのアクセスポートを効果的に形成する。
【0040】
  第3の可能性として、以下により詳細に記載される本発明の第4の局面に従うと、相互作用ピンは無線で接触され得る。
【0041】
  上記3つの可能性のうちのいずれか1つに従うと、頭蓋骨の信号減衰効果は、相互作用ピンによって乗り越えられ得る。第1の構成に従った実施形態において、この目的のために、頭蓋骨は、完全に貫通、すなわち穿孔される。相互作用要素の遠位端は、頭蓋骨の遠位面とほぼ面一であるか、または、当該遠位面から遠位方向に突出し得る。実施形態において、相互作用要素はさらに髄膜を突き通し、脳の中へと導かれる(以下に記載される第3の局面を参照)。
【0042】
  第2の構成に従った実施形態において、頭蓋骨は完全にはブリッジされず、特に内部(遠位)の骨ラメラ(lamella)のような部分が無傷のままとなる。これは、感染のリスクおよび一般的な外科的リスクが劇的に低減されるという利点を特徴とする。特に、内皮質骨部分が無傷の状態にされ得る。実施形態において、特に相互作用ピンがたとえば遠位脚部といったあまり強くない/堅くない部分のデリケートな構造を有することにより好適に形状決めされた場合、係留の間、内皮質骨部分は当接部分として機能する。その後、係留プロセスにより、内皮質骨の近位側上に熱可塑性物質がある程度広がることになる。たとえば、上述したオプションに従うと、これは、熱可塑性物質自体が導電性であり相互作用要素またはその部分を形成する場合、有効性を向上させることになる。
【0043】
  より一般的には、第2の構成の利点は、相互作用ピンの熱可塑性物質がエネルギーの影響によって柔らかくなり、内部のラメラに浸透するリスクなしで頭蓋骨の強く変化する厚さに局所的および個々に適合するということである。
【0044】
  最内部の骨ラメラは、稠密な皮質骨から構成されているが、血液が非常に供給される骨膜によってカバーされているという事実により、かなり良好な導電性を有する。したがって、このラメラによる付加的な電界抵抗は、頭蓋骨を完全に突き通すソリューションと比較すると、かなり小さい。
【0045】
  同様に、光学的な用途において、内皮質骨組織の近位方向において海綿骨組織に浸透した熱可塑性物質の遠位部分は、熱可塑性物質が十分に透明な場合、その達成された形状によって、光拡散器を形成する。熱可塑性物質が骨組織に浸透することにより光拡散器を作り出すこの原理は、WO2005/105208に記載されている。この方法によって得られる光拡散器の原理に関して、本明細書はWO2005/105208の教示を参照している。脳治療において、組織への光(可視光/赤外線放射または恐らく紫外線放射)の結合は、それ自体および/または適用される光活性化可能物質と一緒の場合、治療効果を有し得る。組織への光の結合はさらに診断目的のために好適であり得る。
【0046】
  第2の構成のさらに別のかなり一般的な利点は、内骨膜が無傷の状態のままであり、したがって、治癒プロセスにおいて、相互作用ピンの遠位端が(シールド効果を有する)組織によって押しのけられるリスクが低減されるということである。
【0047】
  (頭蓋骨を穿孔することを含む)第1の構成の変形例に従うと、第2の構成においてのように、止まり穴のみが頭蓋骨に設けられるが、止まり穴から小さな穿孔(微小穿孔)が最内部の骨ラメラに設けられる。これにより、液化した物質の小さな液滴が頭蓋腔へ入り、そこで凝固する。そのような液滴は、目的およびその物質の特性に依存して、電極または電球として機能し得る。そのような微小穿孔の非常に小さな寸法と、その周囲が液化された熱可塑性物質の影響によって滅菌されるという事実とにより、この変形例においても、感染のリスクは非常に小さい。
【0048】
  感知および/または送達ヘッドピースは、相互作用ピンのアレイに適合される相互作用デバイスをさらに含み得る。
【0049】
  たとえば、第1の可能性に従って相互作用ピンが物理的に接触することが可能である場合、相互作用デバイスは相互作用ピンの数に対応する数の接触部を有し得、当該接触部は相互作用ピンに適合される。たとえば、相互作用デバイスは、対応する数の、接触部を形成するプラグを有し得る。
【0050】
  第2または第3の可能性に従うと、相互作用ピンが物理的に接触されないような相互作用ピンである場合、相互作用デバイスは、アレイに適合されるデバイス相互作用ポイントのアレイを有し得る。例において、相互作用ピンのアレイが頭蓋骨に埋め込まれる場合、相互作用デバイスは、ユーザによって担持されることになるキャップを含み得、当該キャップはユーザに適合されているとともにデバイス相互作用ポイントを規定する相互作用電極のアレイを有しており、各相互作用電極は相互作用要素のうちの1つの位置に配置されている。実施形態において、そのような相互作用電極は、従来のEEG電極と同様であり得るが、相互作用ピンのアレイの利点からの利益とは対照的である。相互作用デバイスは、各々が対応するケーブルに固定される多くの相互作用電極(実施形態において、これも従来のEEG電極に同様であり得る)を有し得、これにより、電極は、オペレータによって相互作用要素の位置に一つずつ配置され得るということも可能である。
【0051】
  他の例において、相互作用ピンが外耳道の内部を頭蓋骨の内部に接続するように埋め込まれる場合、相互作用デバイスは、その表面上に相互作用ポイントが適切に配されている、補聴器のイヤーピースと同様であるイヤーピースを含み得る。その後、相互作用デバイスは、補聴器にさらに統合され得る。
【0052】
  外耳道からの埋込の特定の利点は、一方では、脳幹およびより深い脳領域に近くに到達することが可能になるということであり、他方では、図を参照して以下により詳細に説明されるように経頭蓋電位差を測定するために頭蓋帽(頭蓋冠)における基準電極と組み合せることの可能性があるということである。
【0053】
  相互作用デバイスは、相互作用ポイントが相互作用デバイスから制御され得るように、信号処理手段を有するデバイス制御部を含み得る。その後、外部デバイスへのインターフェイスが一般的であり得る。代替的には、インターフェイスは、制御が別個の外部デバイスから行なわれ得るように、相互作用ポイント毎にデータおよび/または電力リードを含み得る。
【0054】
  相互作用デバイスを設計することについて、まず相互作用ピンがセットされ、次いで、それらの位置が測定され、相互作用デバイスが、相互作用ピンの位置を適合するように特別に作製され得る。この目的のために、相互作用ポイントを構成する(デバイス相互作用電極のような)要素を担持する担持体が提供され得る。担持体は、ヘッドピースが適用される頭部の部分の形状を有し得る。担持体は、キャップ、イヤーピースを含み得るか、または、任意の他の好適な形状を有し得る。担持体は、柔軟または堅くてもよく、たとえばCAD/CAMまたは付加製造によってカスタムメイドされてもよい。
【0055】
  特別の実施形態において、相互作用ピンのうちの少なくとも1つにおいて、複数の空間的に分離された相互作用要素が存在し得る。たとえば、相互作用ピンは、たとえば2つ、3つ、4つ、4つ以上…の電極の小さな配置を含み得る。
【0056】
  その第1の局面に従った本発明を実施するための構成は、相互作用ピンのアレイに加えて、適用可能な場合、相互作用デバイスを含み得、さらに、
  −相互作用ピンの位置を規定するためのテンプレートと、
  −外部デバイスのためのソフトウェア、相互作用要素から信号を読み出すおよび/または相互作用要素によって信号/物質を送達するよう相互作用デバイスと協働するソフトウェア、ならびに、ユーザインターフェイスと、
  −この明細書において記載される態様でおよび/またはこの明細書に記載される位置にアレイを埋め込むことをユーザに教える情報と、
のうちの少なくとも1つを含み得る。
【0057】
  本発明の第2の局面に従うと、頭蓋骨の下に概して平らな電極担持体(電極担持体シート)を埋め込む方法と、対応するデバイスとが提供される。たとえば、電極担持体はアレイの形態で配される複数の電極を含む。当該電極は適切に接触される。当該方法は、電極担持体のエリアより小さいエリアを有する貫通開口部を頭蓋骨に設けることを含む。特に、開口部は、横方向延在部が電極担持体の横方向延在部のうちの1つよりわずかに大きいが、幅が電極担持体の他方の横方向延在部よりも著しく小さいスリット状の開口部であり得る。上記方法は、髄膜と本質的に平行に(髄膜上または恐らく髄膜の層同士間で)電極担持体が脳と頭蓋骨との間で平坦になるまで、貫通開口部を通って電極担持体を挿入することをさらに含む。その後、当該方法は、熱可塑性物質と、固体から液体状態に熱可塑性物質を液化させるエネルギーとの支援によって頭蓋骨に対して電極担持体を固定することを含み、液化された熱可塑性物質が、再凝固の後、頭蓋骨組織との確実な嵌合接続を形成するように、特に頭蓋骨の構造に浸透する。
【0058】
  組織への電極担持体の固定のために、以下の可能性のうちの1つ以上が使用され得る。
  −上記デバイスが、電極担持体に物理的に接続され、熱可塑性物質を含み、かつ、熱可塑性物質が液化されて再凝固の後に係留部および密閉部を形成するように、組織に対して押圧されている間および/または押圧される前に特に機械振動エネルギーといったエネルギーに晒されることによって頭蓋骨の骨組織に係留されるために備えられる据付部分を含み得る。
【0059】
  −上記デバイスが、電極担持体とは最初は別個であり頭蓋骨を通って到達する据付要素を含み得、据付要素の遠位端は、電極担持体への機械的結合のために備えられる。
【0060】
  −上記デバイスが、熱可塑性物質を有する別個の据付要素を含み得、電極担持体は、据付要素の熱可塑性物質との確実な嵌合接続を形成するのに好適な構造を有する非液化可能物質の据付部分を含み得る。据付要素は、この可能性に従って、骨組織と構造との間に押圧され、それらを互いに据え付けると同時に封止を提供し得る。そのような固定はたとえば、EP  2  063  793  B1に記載されている。
【0061】
  −電極担持体が、熱可塑性物質または熱可塑性の部分を含むアンカーを含み得、スリット状の開口部を通って挿入される工具によって頭蓋骨の内側に据え付けられる。当該工具によってたとえば機械振動エネルギーといったエネルギーと、外部に向かうよう方向付けられたプレス力とが適用される。
【0062】
  可能性によれば、スリット状の開口部は超音波切断によって切断される。超音波工具は任意の形状を有し得、円形形状に制限されない。さらに、超音波切断は、骨のような固い物質のみを切断するという大きな利点を有する。硬膜または脳のような軟らかい部分は、超音波周波数で振動する工具によって傷つけられない。今日の頭蓋骨穴ドリルは、軟らかい部分が傷つけられることを回避する特別の機能を有する。超音波によれば、これらの高価な技術はもはや必要ではない。
【0063】
  たとえば、電極担持体の電極は各々、電極担持体の導体経路に接触され得る。当該導体経路は、外部から開口部を通って接触可能であるか、プロセッサ要素につながっている。プロセッサ要素は、電極によって感知された信号を格納、処理、または読み出すことのうちの少なくとも1つが可能である。特に、読み出しは、本発明の第4の局面に従ったアプローチによって達成され得る。
【0064】
  第3の局面に従うと、DBS電極のような相互作用要素を人間の脳において深く埋め込むためのデバイスおよび方法が提供される。当該方法は、
  −たとえば真っすぐで薄い針状のピンである脳深部相互作用要素担持体を提供することと、
  −相互作用要素が所望の位置に到達するまで相互作用要素担持体を挿入することと、
  −プロセスを使用することとを含み、当該プロセスは、
    ○係留部および/または固定要素の熱可塑性物質を液化するサブステップと、
    ○これにより液化された熱可塑性物質を流れさせた後で再度凝固させるサブステップとを含み、
  固定のために、相互作用要素担持体の位置は、頭蓋骨に対して所望の位置にある。
【0065】
  ここでは、相互作用要素が所望の位置に到達するまで相互作用要素担持体を挿入するステップは、たとえばイメージング法、位置決めフレームのような外部位置決め手段、および/または、患者の反応を観察することによって、実際の位置に関するフィードバックを得ることを含み得る。
【0066】
  この固定方法の利点は、インプラント固定部が非常に薄くなり得ることである。薄い固定部は、外部からの意図しない操作のリスクにインプラントを晒すことを低減する。
【0067】
  頭蓋骨に対して相互作用要素担持体の位置を固定するために、特に、係留体が使用されてもよい。
【0068】
  その後、相互作用要素担持体の位置を固定するステップは、相互作用要素担持体の位置を係留体に対して固定すること、および/または、相互作用要素担持体をガイドする係留体の位置を頭蓋の組織に対して固定することを含み得る。
【0069】
  そのような係留体は、第1の例に従うと、相互作用要素担持体の挿入に先立って、頭蓋骨のスリット状の開口部を通って頭蓋下に埋め込まれ得る。相互作用要素担持体は、挿入されると、係留体によってガイドされる。
【0070】
  第2の例に従うと、係留体は、頭蓋骨の外側に埋め込まれ得る。係留体に対して相互作用要素担持体を固定するために、熱可塑性物質を含む固定アンカーが使用され得る。
【0071】
  第3の局面に従ったデバイスは、少なくとも1つの相互作用要素を有する相互作用要素担持体を含み、相互作用要素担持体は、頭蓋骨の外部から脳に浸透するように導入されるように構成されており、上記デバイスはさらに、相互作用要素担持体とは別個の係留体を含み、係留体は、頭蓋骨と少なくとも1つの係留要素または固定要素とに据え付けられるように構成されており、係留要素または固定要素は熱可塑性物質を含み、係留要素または固定要素は、
  −熱可塑性物質の少なくとも部分を液化し、これにより液化された熱可塑性物質を頭蓋骨組織の構造に流し込み再凝固の後にアンカーを作り出させることにより頭蓋骨組織において係留されることと、
  −係留部および/または固定要素の熱可塑性物質を液化し、これにより液化された熱可塑性物質を相互作用要素担持体、係留体、または、その両方の構造に流れ込ませ、その後、再凝固することを含むプロセスによって係留体に対して相互作用要素担持体を固定することと、
のうちの少なくとも1つのために構成される。
【0072】
  本発明の第1の局面、第2の局面または恐らく第3の局面と組み合わされ得る第4の局面に従うと、(EEG電極インプラントのような)感知および/または送達設備が提供される。上記設備は、信号感知、信号送達、または、物質(薬剤、栄養、もしくはマーカ)送達のための少なくとも1つの相互作用要素(たとえば電極)を含み、上記設備は相互作用要素に通信可能に結合されるプロセッサユニットをさらに含み、設備は、プロセッサユニットとさらに別のユニットとの間での無線通信(アクティベーションを含み得る)および/または無線エネルギー伝達のために備えられる。さらに、設備の少なくとも1つの要素は、構造に浸透するために液化されて再度凝固される熱可塑性物質の支援により、骨組織に据え付けられるために備えられる。
【0073】
  これにおいて、インプラントが据え付けられ得る骨組織は、頭蓋骨組織または脊髄の組織であり得る。代替的には、インプラントが据え付けられる骨は、肋骨、鎖骨または任意の他の骨といった他の骨であり得る。たとえば、相互作用要素を肋骨の内部に据え付けることは、心臓および/または肺の機能の監視のために使用され得る。一般に、骨格は、信号を感知および送達するためのまたは物質を送達するための優れた基準点を提供する。
【0074】
  上記設備はインプラントを含み得、当該インプラントは相互作用要素およびプロセッサ要素を含み、当該インプラント自身がプロセッサユニットとさらに別のユニットとの間での無線通信および/または無線エネルギー伝達のために備えられており、当該インプラントは、構造に浸透するために液化されて再度凝固される熱可塑性物質の支援により、骨組織に据え付けられるために備えられる。
【0075】
  プロセッサユニットは特にアナログ−デジタル変換器(A/D変換器)を含み得る。これは、デジタル信号を読み出すことがより容易になるという利点を特徴とする。
【0076】
  無線通信のためのインプラントはアンテナを含み得る。
  相互作用要素が(EEGのような)感知用途の電極である場合、プロセッサユニットは、特にアンテナによって取得された信号が電極電圧に如何なる影響も与えないように、電極からアンテナを切り離すようなプロセッサユニットであり得る。そのようなアンテナは、プロセッサユニットに統合されるか、または、プロセッサユニットとは別個であり得る。
【0077】
  実施形態において、インプラントは遠位シャフト部分および近位ヘッド部分を含み、ヘッド部分はシャフト部分より幅が広い。ここでのアンテナは、シャフト部分の寸法と比較してアンテナのアクティブエリアが大きくなるように、ヘッド部分に位置し得る。プロセッサユニットはヘッド部分および/またはシャフト部分に存在し得、相互作用要素は、シャフト部分の遠位端に到達するか、または、少なくとも当該遠位端の近くにあるように、配置される。
【0078】
  特に、プロセッサユニットは、特に受動RFIDトランスポンダとしてアンテナと一緒に、RFID通信のために備えられ得る。
【0079】
  記載された種類のインプラントを含むことに加えてまたはその代わりとして、上記設備は、アンテナを有する(別個の)送信機ユニットを含み得る。この送信機ユニットは、たとえば送信機ユニットとは別個であるかまたは送信機ユニットと一体である据付具によって、構造に浸透するために液化されて再凝固される熱可塑性物質の支援により骨組織に据え付けられるために備えられ得る。
【0080】
  本発明はさらに、液化可能な物質とそれに作用するエネルギーおよびプレス力とによって、第4の局面に従った感知および/または送達設備を埋め込む方法に関する。
【0081】
  本発明の局面の多くの実施形態は、デバイスまたはデバイスの部分を係留する熱可塑性物質を液化するために、埋め込まれたデバイスに機械振動エネルギーを結合することを含む。機械的振動によって作り出される摩擦熱によるポリマーの液化を含む本発明の実施形態に従ったデバイスおよび方法に好適な機械的振動または発振は、好ましくは2kHzと200kHzとの間(さらに好ましくは10kHzと100kHzとの間または20kHzと40kHzとの間)の周波数を有し、アクティブ表面の1平方ミリメートル当たり0.2〜20Wの振動エネルギーを有する。振動要素(ソノトロード)はたとえば、その接触面が、1μmと100μmとの間の振幅、好ましくは約10μm〜30μmの振幅で、要素軸の方向に主に振動(縦振動)するように設計される。回転方向振動または径方向振動も可能である。
【0082】
  デバイスの特定の実施形態の場合、機械的振動の代わりに、係留物質の液化に必要とされる指定される摩擦熱を作り出すための回転運動を使用することも可能である。そのような回転運動は好ましくは、10,000〜100,000rpmの範囲のスピードを有する。
【0083】
  所望の液化のために熱エネルギーを作り出すためのさらなる方法は、埋め込まれるべきデバイス部分のうちの1つに電磁放射を結合することと、当該電磁放射を吸収することができるようにデバイス部分のうちの1つを設計することとを含み、そのような吸収は好ましくは、液化されるべき係留物質内またはそのすぐ近傍において行なわれる。好ましくは、可視または赤外線周波数範囲における電磁放射が使用され、好ましい放射線源は対応するレーザーである。デバイス部分のうちの1つの電気的加熱も可能であり得る。
【0084】
  この明細書において、「熱可塑性物質」(または「液化可能物質」)という表現は、熱可塑特性を有する物質を指す。これは、熱可塑性ポリマーと、たとえばそれ自体が熱可塑特性を有さない物質のフィラーといったような付加成分を有する熱可塑性ポリマーとを含む。したがって、「熱可塑性物質」は、少なくとも1つの熱可塑性成分を含む物質を説明するために使用される。当該物質は、加熱されると、詳細には、摩擦により加熱されると、すなわち、互いに接しているとともに互いに対して振動または回転により移動される表面(接触面)の対のうちの1つに配されると、液体になるかまたは流動性のある状態になる。当該振動の周波数は2kHzと200kHzとの間であり、好ましくは20kHzと40kHzとの間であり、振幅は1μmと100μmとの間であり、好ましくは約10μm〜30μmである。そのような振動は、たとえばKLSmartinグループによるSonicWeld RX(登録商標)システムにおいて、たとえば歯科医術用途またはCMF骨接合用途について公知である超音波デバイスによって作り出される。組織に対して荷重支持接続を構成することができるようにするために、上記物質は0.5GPaより大きく、好ましくは1GPaより大きい弾力係数を有する。少なくとも0.5GPaの弾力係数はさらに、内部液化、したがって、液化可能要素の不安定化が発生しないように、すなわち、液化可能物質が液化界面において停止面までに存在するところにのみ液化が発生するように、液化可能な物質が超音波発振を減衰がほとんどない状態で伝達することができることを保証する。可塑化温度は、好ましくは、200℃まで、200℃と300℃との間、または、300℃より高い。
【0085】
  要件(たとえば、熱可塑性物質による係留が骨内部成長によってゆっくり置換されることになるかどうか)に依存して、液化可能な熱可塑性物質は、再吸収可能であってもよく、または、再吸収可能ではなくてもよい。
【0086】
  好適な再吸収可能なポリマーはたとえば、乳酸および/もしくはグリコール酸(PLA、PLLA、PGA、PLGAなど)またはポリヒドロキシアルカン酸(PHA)、ポリカプロラクトン(PCL)、多糖類、ポリジオキサノン(PD)、ポリ酸無水物、ポリペプチド、または対応する共重合体または混合ポリマーまたは上記のポリマーを含んでいる複合物質に基づく。なぜならば、再吸収可能な液化可能物質として成分が好適であるからである。たとえば、ポリオレフィン、ポリアクリレート、ポリメタクリレート(polymetacrylates)、ポリカーボネート、ポリアミド、ポリエステル、ポリウレタン、ポリスルホン、ポリアリールケトン、ポリイミド、ポリフェニルスルファイド(polyphenyl sulphides)または液晶ポリマー(LCPS:liquid crystal polymers)、ポリアセタール、ハロゲン化ポリマー、詳細には、ハロゲン化ポリオレフィン(polyoelefins)、ポリフェニレンスルファイド、ポリスルホン、ポリエーテル、ポリプロピレン(PP)、または対応する共重合体または混合ポリマーまたは上記ポリマーを含んでいる複合物質といった熱可塑性物質は、成分が非再吸収可能ポリマーとして好適である。好適な熱可塑性物質の例は、Boehringer Ingelheim社によるポリラクチド製品LR706(アモルファスポリ−L−DLラクチド70/30)、L209またはL210Sのいずれかを含む。
【0087】
  分解性物質の特定の実施形態は、すべてBoehringer社のLR706  PLDLLA  70/30、R208  PLDLA  50/50、L210S、およびPLLA  100%  Lのようなポリラクチドである。好適な分解性ポリマー物質のリストは、Erich Wintermantel und Suk−Woo Haa, "Medizinaltechnik mit biokompatiblen Materialien und Verfahren", 3. Auflage, Springer, Berlin 2002(以下において「Wintermantel」と称される),200頁において発見され、PGAおよびPLAの情報については、202頁以降を参照、PCLの情報については、207頁を参照、PHB/PHV共重合体の情報については、206頁を参照、ポリジオキサノンPDSの情報については、209頁を参照のこと。さらに別の生体吸収性物質の議論はたとえば、CA Bailey et al., J Hand Surg [Br] 2006 Apr;31(2):208−12において発見され得る。
【0088】
  非分解性物質の特定の実施形態は、ポリエーテルケトン(PEEK Optima、グレード450および150、Invibio社)、ポリエーテルイミド、ポリアミド12、ポリアミド11、ポリアミド6、ポリアミド66、ポリカーボネート、ポリメチルメタクリレート、ポリオキシメチレン、またはポリカーボネートウレタン(詳細には、特にBionate 75DおよびBionate 65DといったDSM社によるBionate(登録商標)。対応する情報は、たとえばAutomation Creations社による
www.matweb.comを介して公にアクセス可能なデータシート上で入手可能である)である。ポリマーおよび用途の概略表がWintermantelの150頁においてリスト化されており、特定の例が、Wintermantelにおける161頁以降(PE, Hostalen Gur 812, Hochst AG),164頁以降(PET)169頁以降(PA、すなわちPA6およびPA66)、171頁以降(PTFE)、173頁以降(PMMA)、180頁(PUR、表を参照)、186頁以降(PEEK)、189頁以降(PSU)、191頁以降(POM、すなわち、ポリアセタール(商品名Delrin,Tenac)もProtec社による人工骨頭において使用されている)において発見され得る。
【0089】
  熱可塑特性を有する液化可能物質は、さらに別の機能を提供する外因性フェーズ(foreign phase)または外因性化学物質を含み得る。特に、熱可塑性物質は、たとえば治療効果または他の所望の効果を有し得る粒状フィラーのような混合フィラーによって増強され得る。熱可塑性物質はさらに、その場で展開または溶解(穴を作り出す)成分(たとえばポリエステル、多糖類、ヒドロゲル、リン酸ナトリウム)、または、その場で解放されたとえば治癒および再生の促進といった治療効果を有する化合物(たとえば成長因子、抗生物質、酸分解の悪影響に対するリン酸ナトリウムまたは炭酸カルシウムのような炎症抑制剤または緩衝剤)を含み得る。熱可塑性物質が再吸収可能な場合、そのような化合物の解放は遅延される。
【0090】
  液化可能物質は、振動エネルギーの支援ではなく電磁放射の支援により液化される場合、たとえばリン酸カルシウム、炭酸カルシウム、リン酸ナトリウム、酸化チタン、雲母、飽和脂肪酸、多糖類、グルコースまたはその混合物といった、特定の周波数範囲(特に可視または赤外線周波数範囲)の放射を吸収することができる化合物(粒状または分子)を局所的に含み得る。
【0091】
  使用されるフィラーは、β−リン酸三カルシウム(TCP)、ハイドロキシアパタイト(HA<90%の結晶度、または、TCP、HA、DHCP、バイオガラスの混合物(Wintermantelを参照))を含む、分解性ポリマーにおいて使用される分解性骨刺激(Osseostimulative)フィラーを含み得る。非分解性ポリマーのための、単に部分的に分解性であるか、または、ほとんど分解性のない骨結合刺激フィラーは、バイオガラス、ハイドロキシアパタイト(>90%の結晶度)、HAPEX(登録商標)を含む(SM Rea et al., J Mater Sci Mater Med. 2004 Sept;15(9):997−1005を参照。ハイドロキシアパタイトについては、L. Fang et al., Biomaterials 2006 Jul; 27(20):3701−7、M. Huang et al., J Mater Sci Mater Med 2003 Jul;14(7):655−60、および、W. Bonfield and E. Tanner, Materials World 1997 Jan; 5 no. 1:18−20も参照)。生物活性フィラーの実施形態およびそれらの議論はたとえば、X. Huang and X. Miao, J Biomater App. 2007 Apr; 21(4):351−74)、JA Juhasz et al. Biomaterials, 2004 Mar; 25(6):949−55において発見され得る。粒状フィラータイプは、粗タイプ:5〜20μm、(含量は優先的に10〜25体積%)、サブミクロン(析出によるナノフィラー、優先的にアスペクト比>10、10〜50nm、含量0.5〜5体積%のようなプレート)を含む。
【0092】
  熱可塑性物質を導電性にする機能を有するフィラー物質は、上で記載されるように、理想的には、熱可塑性物質が浸出するすなわち粒子間接触を形成するのに十分な充填度で提供される。そのようなフィラー粒子は、金属繊維、ウイスカまたはプレートレット(金、プラチナなど)、黒鉛プレートレット、カーボンナノチューブなどであり得る。熱可塑性物質が異種組成物を有することも実現可能である。当該異種組成物は、たとえば、近位遠位導電ブリッジを与えるように中心領域において高い充填グレードを有し、かつ、異なる充填グレードを有するおよび/または他の特性について最適化された異なるフィラーを有するマントル領域を有する。当該他の特性は、たとえば、流れによって引き起こされる確実な嵌合を最適化する流れ特性、および/または、骨結合特性である。特に、そのようなマントル領域は、CaPまたは骨結合を促進する他のフィラーによって充填され得る。
【0093】
  実験が実行された物質の特定の例は、特に有利な液化挙動を示した30%(重量パーセント)の二相Caリン酸塩を含むPLDLA  70/30であった。
【0094】
  機能コア部分の物質は、たとえば金属といった、熱可塑性物質の溶解温度で溶解しない任意の物質であり得る。電極について好ましい物質は、金、チタンおよび炭素である。
【0095】
  この明細書に記載される実施形態は主として、相互作用要素として電極に注目しており、また、各相互作用ピンが1つの電極のみを担持し、各要素担持体が電極のみを担持する実施形態に注目している。しかしながら、複数の相互作用要素を有する相互作用ピン/要素担持体、および/または、異なる種類の相互作用要素を有する相互作用ピン/要素担持体を提供することも可能である。
【0096】
  以下において、本発明および実施形態を実施する態様が図面を参照して記載される。図面はすべて概略的であり、尺度決めされていない。図面において、同じ参照番号は同じまたは類似する要素を指す。
 
 
【図面の簡単な説明】
【0097】
【
図1】人間の頭蓋骨の部分と、埋込の前の相互作用ピンとの断面図である。
 
【
図2】人間の頭蓋骨の部分と、埋込の後の相互作用ピンとの断面図である。
 
【
図3】相互作用ピンのアレイを含むヘッドピースを有する頭蓋骨の図である。
 
【
図4】RFIDチップおよびアンテナを有する相互作用ピンの変形例の図である。
 
【
図5】RFIDチップおよびアンテナを有する相互作用ピンのさらに別の変形例の図である。
 
【
図6】相互作用ピンのアレイと通信する中央リーダユニットの図である。
 
【
図7】送信機ユニットを据え付ける可能性の図である。
 
【
図8】送信機ユニットを据え付ける可能性の図である。
 
【
図9】送信機ユニットを据え付ける可能性の図である。
 
【
図10a】電極担持体および据付部分を有するデバイスと、そのようなデバイスの外縁部の変形例とを側面図において示す図である。
 
【
図10b】電極担持体および据付部分を有するデバイスと、そのようなデバイスの外縁部の変形例とを側面図において示す図である。
 
【
図10c】電極担持体および据付部分を有するデバイスと、そのようなデバイスの外縁部の変形例とを上面図において示す図である。
 
【
図10d】電極担持体および据付部分を有するデバイスと、そのようなデバイスの外縁部の変形例とを上面図において示す図である。
 
【
図12】埋め込まれた状態の、電極担持体および据付要素を含むデバイスの図である。
 
【
図13】脳深部刺激のための電極固定の第1の例としての、人間の頭蓋骨の部分とDBSとの断面図である。
 
【
図14】頭蓋骨の内部からの係留体または電極担持体の固定のための工具の図である。
 
【
図15】脳深部刺激のための電極固定の第2の例の図である。
 
【
図16】脳深部刺激のための電極固定の第3の例の図である。
 
【
図17】単一のアンカーによって構成される係留体による、脳深部刺激についての電極固定のための第4の例の図である。
 
【
図18】単一のアンカーによって構成される係留体による、脳深部刺激についての電極固定のための第4の例の図である。
 
【
図19】特に皮膚といった組織の下に埋め込まれるのに好適な相互作用ピンの図である。
 
【
図20】特に皮膚といった組織の下に埋め込まれるのに好適な相互作用ピンの図である。
 
【
図21】組織の下に埋め込まれるのに好適であり、複数の相互作用要素を含む相互作用ピンの図である。
 
【
図22】頭部に埋め込まれた相互作用ピンのアレイの位置の図である。
 
【
図23】
図22のアレイについての相互作用デバイスの図である。
 
【
図24】複数の相互作用要素を含み、単一のインプラントとして好適である相互作用インプラントの図である。
 
【
図25】外耳道から頭蓋骨に埋め込まれた相互作用ピンの配置と、対応する相互作用デバイスとの図である。
 
【
図26】外耳道の位置を示す、頭蓋骨の横断面図である。
 
【
図27】外耳道から埋め込まれた電極および基準電極の可能な位置を概略的に示す脳の縦断面図である。
 
【
図29a】
図28aおよび
図28bにおいて示されるように、相互作用ピンのための、頭蓋骨における止まり穴の穴あけの図である。
 
【
図29b】
図28aおよび
図28bにおいて示されるように、相互作用ピンのための、頭蓋骨における止まり穴の穴あけの図である。
 
【
図30】頭蓋骨が突き通されない場合における相互作用ピンの遠位端の図である。
 
【
図31】相互作用ピンのさらに別の実施形態の図である。
 
【
図32】頭蓋骨に埋め込まれた相互作用ピンの他の構成の図である。
 
【
図33】頭蓋骨に埋め込まれた相互作用ピンのさらに別の構成の図である。
 
【
図34】相互作用ピンのさらに別の実施形態の図である。
 
 
【発明を実施するための形態】
【0098】
  好ましい実施形態の説明
  
図1は、頭蓋骨1と頭皮2とを非常に概略的に示しており、頭皮の下の髄膜3および脳4を非常に概略的に示している。EEGヘッドピースの相互作用ピン10が、あらかじめ設けられた穴5に挿入される。相互作用ピンは電極12を含んでおり、電極12は、示されている形態において、遠位端から近位端に貫通するように到達するのが示されている。
 
【0099】
  相互作用ピン10の長さは、たとえば5mmと8mmとの間の長さ、特に約7mmの長さを有することにより、成人患者の全頭蓋骨を本質的に貫通して達するように選択され得る。特に、相互作用ピン10は、電極12の遠位端が、頭蓋骨の内面と本質的に面一になるか、または、若干その遠位方向に位置するような長さであるが、髄膜の硬膜を貫通しない長さを有し得る。
 
【0100】
  当該電極は、相互作用ピン10の熱可塑性部分11に取り囲まれている。特に、熱可塑性部分は、少なくとも1つの軸方向(近位遠位)位置において(電極を含むかまたは電極に接続される)機能コアを完全に取り囲むように配されており、機能コアを埋め込むことにより取り囲むように、または、少なくともそのまわりにカラーを形成することにより取り囲むように配されている。
 
【0101】
  頭蓋骨において相互作用ピンを係留するために、係留ピンが穴5に挿入され、特にソノトロード20といったような適切な工具によって機械振動エネルギーが係留ピンに結合される間および/または結合された後に、遠位方向に向かって押圧される。この目的のために、ソノトロード20は、相互作用ピン10の近位方向に面する端部によって形成される近位結合面に対して押圧される。相互作用ピンの近位端は、挿入中にピンおよびソノトロードを互いに対してガイドするために、ソノトロードの対応して嵌合する構造21と協働する軸方向凹部または他の構造を随意に含んでもよい。
 
【0102】
  相互作用ピン11へエネルギーを結合し振動を適用するステップは、押圧力および機械的振動の影響によって、熱可塑性物質における外部および内部摩擦により、少なくとも周辺部における熱可塑性物質が流動的になり、頭蓋骨組織の構造内へ押圧されるまで、行なわれる。これにより、確実な嵌合の態様で、熱可塑性物質の再凝固の後に、組織において相互作用ピンが係留されることになる。
 
【0103】
  図2に示されるように、この係留プロセスでは、熱可塑性部分11の物質が骨組織に浸透することになる。以下により詳細に説明されるように、頭蓋骨は、緻密骨(皮質骨)の2つの同等に薄い層の間に挟まれる海綿骨(網状骨)を有する扁平骨である。頭蓋骨は、骨膜によってカバーされた両側上に存在する。当該係留プロセスは、液化および再凝固された熱可塑性物質による海綿骨組織の相互浸透により、海綿骨における特に効率的な固定を提供する。液化された物質は当該プロセス中において高温であるので、これは、係留部位における滅菌性の向上につながることになる。さらに、最も微細な組織構造への浸透も含む密接な接触により、頭蓋内領域から効果的に細菌を排除する封止効果が得られる。
 
【0104】
  図1および
図2の実施形態において、電極12は、たとえばワイヤーが接続され得るように、近位端から物理的に接触可能であるように示されている。そのようなワイヤーは、頭皮を通って頭蓋骨の外部から電極に接触するように直接的に到るよう配され得るか、または、たとえば頭蓋骨の周辺、胸の上、または他の位置における適切な埋込デバイスに接触されるように皮下に配され得る。
 
【0105】
  物理的に接触可能であることの代替例として、相互作用ピンは、電磁界によって、たとえば電磁誘導および/または電磁波によって、特にRFIDによって、無線接触されるように備えられ得る。
 
【0106】
  図3は、頭蓋骨に埋め込まれた相互作用ピン10のアレイを示す。実際上、そのようなアレイは、人間の頭部の制限された部分にわたって分散される、または、頭部全体にわたって分散される任意数の電極を含んでもよい。実施形態における相互作用ピンの数は少なくとも6個、少なくとも10個、少なくとも15個、少なくとも25個、または、それ以上であってもよい。潜在的に多くの電極にもかかわらず、埋め込みは、ほとんど侵襲性でなく、迅速であり、簡単であり、感染症のリスクが最小である。
 
【0107】
  図4は、無線で接触されるために備えられる相互作用ピン10をさらに示す。相互作用ピン10は、ヘッド部分14およびシャフト部分15を含む。無線通信と、さらに、外部からの電力供給とのために、ヘッド部分における相互作用ピンは、プロセッサユニット16(すなわちRFIDチップ)と、アンテナ17とを含む。アンテナは、そのアクティブエリアを最大限にするためにヘッド部分14に配される。プロセッサユニットは、電極12と接触し、それによって取得される電圧信号を読み出す。プロセッサユニットは、読み出された信号が、受動RFID通信によって外部装置にデジタルで送信され得るように、アナログ―デジタル変換器を含む。
 
【0108】
  図5に示される変形例は、この変形例においてヘッド部分のない細長いピン形状部分からなる相互作用ピン10内に配される集積プロセッサユニット16と、アンテナ17とを含む。
 
【0109】
  図6は、各々がRFIDアンテナを含む相互作用ピンと通信することができる中央リーダユニット31を概略的に示す。受動トランスポンダ(バッテリのような電源を含まなければ、これらの実施形態における相互作用ピンが受動RFIDトランスポンダを構成する)とのRFID通信の範囲は、アンテナおよび他のファクタに依存して、数メートルの大きさのオーダであるので、中央リーダユニット31はたとえば身体において、頭蓋骨またはたとえば胸もしくは上腕のような他の位置上に取り付けられ得る。そのような中央リーダユニットは、皮下に埋め込まれ得るか、または、ユーザによって身体上に装着され得るのがしばしば好ましい。随意に、特に範囲が小さい場合、当該装置は、ユーザによって装着されるキャップを含み得、当該キャップには、複数の読取書込アンテナが統合される。
 
【0110】
  図7はさらに、増幅器と共に用いられる可能性がある送信機ユニット34を示す。送信機ユニット34は、頭蓋骨の外側に配置され、(上で記載された種類または他の種類の)相互作用要素と協働し、かつ、さらに別のユニットと通信するように構成されている。送信機ユニット34は、アンテナ17を有するとともにデジタルアナログ変換器および/または増幅器のような他の電子要素を有し得る担持体35を含む。担持体は、複数の据付具36によって骨組織に据え付けられる。
 
【0111】
  据付具は各々、骨組織に係留するための熱可塑性物質を含む。
図8により詳細に示されるように、据付具はかなり短く、頭蓋骨の全厚を貫通しないように構成されている。より詳細には、頭蓋骨は、外皮質層1.1と、骨梁領域1.2と、内皮質層1.3とを有しており、据付具36は内皮質層1.3を貫通しないように構成されている。さらに、随意に、据付具の遠位端は、内皮質層1.3に接触して存在するように構成されており、これにより、
図9にさらに示されるように、係留プロセスの結果拡張する。
 
【0112】
  図8において破線によって示されるように、据付具36は、別個の部分であり得るか、または、担持体35と統合され得る。
図8はさらに、担持体によって担持されるとともに担持体物質によって埋め込まれる電子ユニット38を示す。
 
【0113】
  据付については、以下のプロセスが使用され得る。
  −第1の可能性に従うと、最初に、穴が外皮質層1.1に設けられ、当該穴が海綿骨1.2において少なくとも何らかの深さまで設けられ、その後、据付具がそこに配置される。その後、担持体が据付具に対して配置され、据付具は、担持体を介してそれぞれの据付具へエネルギーおよびプレス力を結合するソノトロード20によって、一つずつ係留される。据付具に対する担持体の据付は同時に行なわれ得、(たとえば接合に帰着する)同じプロセスによって潜在的に行なわれ得るか、または、別々におよび/もしくは他のプロセスによって行なわれ得る。
 
【0114】
  −第2の可能性に従うと、据付具は担持体に統合される。これにおいても、まず穴が外皮質層1.1に設けられる。この結果、担持体はドリリングテンプレートを搭載し得る。その後、据付具を有する担持体は穴に対して配置され、第1の可能性と同様のように、据付プロセスが行なわれる。
 
【0115】
  −第3の可能性に従うと、まず穴が外皮質層に設けられ、その後、たとえばWO02/069817に記載されるように、据付具がまた、たとえばソノトロードおよび機械的振動によって配置および係留される。その後、担持体はたとえば、WO2008/128367に記載されるように接合または他の方法によってアンカーに据え付けられる。
 
【0116】
  図7〜
図9を参照して示されたようなこの原理は、2つの局面を可能にする。第1に、わずかに侵襲性のある態様で、頭蓋骨上に電子部品を直接的に含み得るやや平らな対象物を据え付けることが可能である。第2に、外皮質層のみが開かれるので、脳および髄膜の損傷および感染からの保護がより良好になることが可能になる。
 
【0117】
  上述したように、
図1〜
図9に示されるもののような実施形態において、EEG電極を含むことまたはEEG電極と協働することに加えて、または、その代わりとして、相互作用ピンはさらに、
  −マイクロ薬剤または栄養またはマーカ送達システムと、
  −たとえば電磁刺激器、圧電刺激器、または、空気刺激器といったアクチュエータと、
  −複雑な脳損傷を有する患者の長期的な集中治療のための高解像度MRIのためのセンダー(発信機)コイルと、
  −たとえば頭蓋内圧または脳温度を測定するセンサと、
  −超音波ソノトロードと、
  −圧電スピーカと、
  −カメラのような、近赤外線のような光学的分析のための光センサと、
  −導光要素、または、たとえばレーザダイオードのような発光要素と、
のうちの少なくとも1つを含み得る。
 
【0118】
  特に、薬剤送達システム、または、脳深部刺激器、電磁刺激器、圧電刺激器、もしくは、空気刺激器のようなアクチュエータのうちの少なくとも1つと電極との組合せは、たとえば癲癇性発作を予想および防止する際に治療に有利であり得る。
 
【0119】
  本発明の第2の局面に従った電極担持体デバイスの例が
図10aおよび
図10bに示される。当該デバイスは、据付部分41および電極担持体42を含む。電極担持体は、生体適合物質のフレキシブルで湾曲可能である回路基板として提供されており、導体経路46によって処理ユニット45と接続される電極12のアレイを担持する。さらに、導体経路(晒される場合)および電極12は、たとえば金または恐らくチタンもしくは炭素といった生体適合物質から構成されている。処理ユニット45はアンテナに接続されており、これにより電力供給され、リーダユニットによって読み出される。
 
【0120】
  図10cおよび
図10dは、骨組織1とともに、据付部分41の周縁部の異なる変形例を示す。据付部分もしくは骨と、それぞれ骨もしくは据付部分のテーパとの段差機構の組合せ、または、骨組織に対するデバイスの順方向経路を制限する両方または任意の他の断面の段差機構またはテーパの組合せによって、据付部分の全周辺部に沿った密封と、わずか0.2mmと2mmとの間の非常に短い据付経路(エネルギーが作用している間に据付部分によって遠位方向に作り出される経路)との両方がもたらされる。これにより、損傷から軟組織が保護される。さらに、時間および経路の点からエネルギー(特に機械振動エネルギー)に対して晒されることが小さく保たれ、熱に対して晒されることは、据付部分の周辺のまわりにおいて非常に局所的であり、硬膜から遠く離れている。
 
【0121】
  図11は、埋め込まれた状態における、
図10aおよび
図10bにおいて示された種類のデバイスを示す(頭皮は
図11に示されていない)。頭蓋骨1には、電極担持体42が挿入されるスリット状の貫通開口部50が設けられる。据付部分41は、組織に対して押圧されている間および/または押圧される前に、特に機械振動エネルギーのようなエネルギーに晒されることにより、頭蓋骨の骨組織に係留される。そのため、熱可塑性物質が液化され、再凝固の後、係留部および密封部を形成する。
 
【0122】
  据付部分41に取り付けられることに加えて、電極担持体42はさらに、たとえば、さらに詳細に以下に説明されるように、頭蓋骨の内側に取り付けられるか、または、別個の要素に取り付けられることによって、組織に固定され得る。代替的には、電極担持体は単に、据付部分41と、髄膜3と頭蓋骨1との間に空間が存在するという事実とによって適切な位置に保持され得る。髄膜と頭蓋骨との間に配されることの代替例として、硬膜下または脳の近くに電極担持体が係留され得る場合がある。
 
【0123】
  図12に示される変形例に従うと、デバイスは、頭蓋骨1を貫通して到達する据付要素51を含む。据付要素51の遠位端は、たとえば磁石によって構成されるメカニカルカプラまたは係合メカニズムを含む。電極担持体42はまた、スリット状の開口部50を通って挿入される。電極担持体42はさらに、据付要素51のメカニカルカプラに対応する嵌合メカニズム(磁石/磁化可能物質、係合構造など)を含むことによって据付要素に固定される。据付要素自身は、上で記載された相互作用ピンに同様に係留されることが可能であるように、少なくともその外側上に熱可塑性物質を含む要素として形成され得る。さらなる代替例として、例示される実施形態におけるような据付要素51は、液化可能でない物質であってもよいが、熱可塑性物質を含むとともに、実質的にWO02/069817に記載されるようなプロセスによって係留されるアンカー52(係留ピン)によって係留されてもよい。代替的には、EP  2  063  793  B1に従うもののような固定が考えられ得る。特に、熱可塑性物質を含むくさび形の係留要素は、熱可塑性物質が少なくとも部分的に液化され骨組織に係留されるまでエネルギーが作用している間に、スリット状の開口部に押し込まれ得、これにより、係留および滅菌封止の両方に繋がる。
 
【0124】
  電極担持体は、
図11に示されるような態様で、組織にさらに固定され得、これにより外部から封止された内部にさらに固定され得るか、または、代替的には、封止は従来の手段によって実現され得る。電極担持体は
図10aに示されるような処理ユニットを含み得るか、または、たとえば電極がプラグ−ソケット間接続によって接触可能であるように、電極からの導体経路が電極と外部との間のガルヴァニック接続を提供し得る。
 
【0125】
  据付要素に機械的に結合されることに加えてまたはその代わりに、電極担持体は、熱可塑性物質または熱可塑性部分を含むアンカーを含み得、本発明の第3の局面について以下に記載される態様で頭蓋骨の内側に据え付けられ得る。
 
【0126】
  図13は、脳深部刺激のための電極固定の第1の例を示す。
図13は、固定の間の頭蓋骨の部分と挿入されるDBS電極担持体61とを示しており、当該挿入物(点線ボックス)は頭皮のない頭蓋骨上の上面図を示す。DBS電極担持体は、軸に沿って真っすぐに延在する細長い針状のピンである。DBS電極担持体は、遠位端に向かう領域において、少なくとも1つの電極12、すなわち、示された実施形態においては4つの電極を担持する。DBS電極担持体は、電気的絶縁物質で構成されているか、または、電極はDBS電極担持体から電気的に絶縁される。電極は、DBS電極担持体61の内部を延在する導体によって、近位側から電気的に接触される。
 
【0127】
  DBS電極担持体は、頭蓋骨組織に部分的に埋没するピンヘッドを含む。当該ピンヘッドから、電極と接触する電気ケーブル68が、たとえば皮下において、外部処理ユニットにつながる。特にDBS電極が刺激を主としてではなく測定を主とする目的のために使用される場合、電気ケーブルの代替例として、無線接続のためにデバイスがさらに備えられ得る。無線接続の場合、特に無線読出の場合、当該デバイスはたとえば、上で記載された実施形態におけるように、集積化プロセッサユニットおよびアンテナを含み得る。
 
【0128】
  デバイスはさらに、組織においてDBS電極担持体61を係留するよう、DBS電極担持体61と協働する係留体62を含む。
図13の実施形態において、係留体62は、頭蓋骨の真下を延在しており、頭蓋骨に取り付けられる。係留体を取り付けるために、デバイスは、各々が熱可塑性物質を含む複数のアンカー66を含む。
 
【0129】
  デバイスは以下のように埋め込まれる。
  第1のステップにおいて、DBS電極の挿入について公知のように、穴が頭蓋骨にドリルにより空けられる。さらにこの前またはこの後に、ドリルにより空けられた穴の近傍において、スリット状の貫通開口部50が頭蓋骨に設けられる。これはたとえば、超音波切断によって行われ得る。
 
【0130】
  その後、係留体62は、係留体62のガイド開口部が上記穴とほぼ整列するように、スリット状の開口部50を通って挿入される。変形例において、たとえばイメージング法によって係留体を正確に特定することを可能にする場合、係留体は、ドリルによる穴空けに先立って配置されてもよく、これにより、係留体はさらに、ドリルステップの間にガイドとして機能し得る。
 
【0131】
  その後、DBS電極担持体61は穴を通って挿入される。挿入の間、たとえばDBS電極担持体61の方位を調節することによって、係留体62の位置は調節され得る。DBS電極埋込から公知のように、患者自身から、または、MRIのようなイメージング法によって、DBS電極の配置についてのフィードバックが得られ得る。
 
【0132】
  DBS電極がその最終位置(
図13)に到達した後、係留体62が頭蓋骨に据え付けられる。この目的のために、少なくとも1つのアンカー66、示された構成においては2つのアンカー、が係留体を据え付けるために骨組織に係留される。係留のために、アンカー66のうちの1つが組織に対して配置され、工具64が、近位方向に向けられたプレス力および機械振動エネルギーをアンカーへと結合するために使用され、これにより、熱可塑性物質は少なくとも局所的に液化されるとともに骨組織の構造内へ押圧され、再凝固の後に骨と確実な嵌合接続を形成する。この目的のために、工具(ソノトロード)64がスリット状の貫通開口部を通って挿入される。工具64は、近位方向を向く出結合突出部(outcoupling protrusion)69を含む。出結合突出部69は、目標とされた態様で力および振動を加えることを可能にする。
図14にさらに示されるように、工具64はさらに、たとえば出結合突出部のための開口部を有するスリーブの形態にある保護スクリーン65を含み得る。保護スクリーン65は、工具64の遠位方向にある組織を振動から保護する。
 
【0133】
  (組織に対して係留体62を固定するためのヘッドを有する)別個のピン状のアンカーを含むデバイスの代わりに、係留体自身が熱可塑性物質の領域を含んでもよく、出結合突出部は、骨組織に局所的に係留体62を付加するために使用されてもよい。
 
【0134】
  図13/
図14に示されたものと同様の構成が、
図10a〜
図12を参照して記載された種類の電極担持体を骨組織に対して固定するために随意に使用されてもよい。
 
【0135】
  図15の実施形態において、
図13の実施形態とは対照的に、係留体62は、頭蓋骨組織の外側に据え付けられるように構成される。結果として、スリット状の開口部は必要ではない。
 
【0136】
  埋込のために、DBS電極担持体61のための穴が設けられ、係留体62は、係留体62の貫通開口部が当該穴に対して整列された状態で頭蓋骨1の外面上に配置される。アンカー担持体を組織に据え付けるために据付アンカー71が使用され得る。これにおける据付アンカー71は、熱可塑性物質を含み得、アンカーについて上で記載されたような震動エネルギーによって据え付けられ得る。この種の係留は、特に迅速かつ経済的であり、かつ、再吸収可能な物質を使用することが可能であるという利点を有する。代替的には、骨ねじなどのような他の種類のアンカーが使用されてもよい。
 
【0137】
  DBS電極担持体61は、アンカー担持体を通って挿入される。ボールジョイント状の表面により、破線で示される変形例によって概略的に示されるように、さまざまな異なる角度に電極担持体61を挿入する可能性が残される。この実施形態においても、挿入の間に、DBS電極担持体61の位置が調節され、電極担持体の配置についてのフィードバックが、イメージング法および/または患者の反応によって得られる。
 
【0138】
  DBS電極担持体が挿入された後、アンカー担持体に対するその方位が2つの固定アンカー72によって固定される。固定アンカー72は、骨組織に係留体62をさらに据え付けることに加えて、アンカー担持体61に対するDBS電極担持体61の如何なる残存する回転自由度もブロックする。
 
【0139】
  後で頭皮によってカバーされるデバイスの表面が平滑であることを保証するための固定の後に、カバー75がアンカー担持体に適用され得る。
 
【0140】
  図15はさらに、電極と接触するための電気ケーブル68を有するデバイスを示す。
図15の実施形態、および、以下に記載される
図16の実施形態は、電気ケーブルの代替例として、特にDBS電極が、主として刺激のためにではなく、主として測定目的に使用される場合、無線接続のために備えられる。
 
【0141】
  図16はさらに、
図15の実施形態と同様の原理に基づいているがDBS電極15の深さを調節する可能性を有する実施形態を示す。この目的のために、調整可能な長さのDBS電極担持体が使用される。より詳細には、DBS電極担持体61には余剰長が設けられている。(たとえば上記において言及された種類のアンカー71による)係留体62の配置および係留の後に、DBS電極担持体が適切な深さに到達するまで導入される。DBS電極担持体には、電気ケーブル68が内部からガイドされるスリット開口部82が設けられる。適切な深さに到達したらすぐに、固定アンカー85は、係留体に対してDBS電極担持体を固定するために使用されてもよい。その後、DBS電極担持体61の余剰長は切断され、DBS電極担持体の内部から電気ケーブルがガイドされるスリット開口部82が密閉される。
 
【0142】
  固定アンカー85および恐らくは
図15の固定アンカー72のために、係留体62は、固定アンカーの液化された熱可塑性物質が浸透し得る構造、たとえば開かれた多孔質構造、を局所的に有し得る。適切なそのような構造はWO2008/034276に記載されている。液化された熱可塑性物質によるそのような構造の浸透は、再凝固の後、確実な嵌合接続につながる。そのような確実な嵌合接続の代わりとしてまたは確実な嵌合接続に加えて、たとえば接着接続のような他の種類の接続がさらに使用されてもよい。
 
【0143】
  図17は、係留体が加熱可塑性アンカーからなるさらに別の実施形態を示す。ここでの熱可塑性アンカー91は、
図7〜
図9を参照して記載されたアンカーと同様に、単皮質(unicortically)に係留される。しかしながら、アンカー91は、電極担持体61がそこを通って延在するとともに電極担持体61がガイドされる中央軸開口部を含む。電極担持体61はさらに、内皮質層1.3における開口部を通るようにガイドされ、電極が所望の位置に到着するまで軸方向においてアンカー91に対して変位され得る。その後、当該相対位置は、たとえば近位側に適用される接着剤のような適切な手段によって、または、別個のクランプ機構などによって、固定される。さらに別の代替例として、当該固定は、特に液化された熱可塑性物質による浸透によって、再凝固の後に確実な嵌合接続が与えられることが可能になる表面構造を電極担持体が有する場合、エネルギーが作用している間、電極担持体とアンカーとの間で押圧される別個の熱可塑性の固定要素によって行なわれ得る。同時に、熱可塑性物質がアンカー91に接合され、これにより、アンカーおよび電極担持体が互いに対して固定される。
 
【0144】
  熱可塑性アンカーが係留されるプロセスは、電極担持体61のために内皮質層に開口部を設けるプロセスと組み合わせられ得る。
図18は、アンカー91が位置するガイドおよび突通針22を有するソノトロードである工具を示す。アンカー91の軸方向延在部xと針22の軸方向延在部との間の差yは、ニーズに従って選択され得る。xが頭蓋骨の厚さとほぼ等しい場合、yは小さくなるはずであり(たとえば1mm以下)、両皮質の係留が得られることになる。xがより小さい場合、yはこれによりより長くなり得(たとえば2〜5mmの間)、針が電極担持体のための穴を設けて、(
図17のような)単皮質の係留が得られることになる。
 
【0145】
  図19は、近位相互作用ポイントと遠位相互作用ポイントとの間に導電ブリッジの形態にある相互作用要素101を有する相互作用ピン10の例を示す。示された実施形態において、近位および遠位の相互作用ポイントは各々、相互作用電極102,104を有しており、当該電極は接続導体103によって導電的に接続されている。脳活動によって引き起こされる内部の電位変動は、遠位電極の電位に影響を及ぼし、これにより近位電極の電位にも影響を及ぼす。実際、これは、小さな電荷が近位電極と遠位電極との間を流れて、内部の電界によって引き起こされる内部と外部との間での起こり得る電位差を補償し、これにより、導電ブリッジの遠位方向にある電界(正確には近位遠位方向に沿ったその成分)を効果的に導電ブリッジの近位方向に移動するということを示す。導電ブリッジの電位を感知するために、近位電極に近い読出デバイスが使用され得る。そのような読出デバイスは、たとえば、相互作用ピンの近位端面をカバーする皮膚組織の上に配置され得る。
 
【0146】
  もちろん、同様の考慮は逆にも当てはまる。すなわち、信号が中枢神経系に送達されるべき場合、信号供給デバイスが近位電極の近くに配置され得、この信号供給デバイスによって適用される電位変動は、導電ブリッジによって頭蓋骨の内部へと伝達され得る。より一般的には、近位電極は、ほとんどの場合に個々に各相互作用要素と相互作用することが可能である相互作用デバイス、すなわち、隣接する相互作用要素同士の間の距離に少なくとも対応する分解能を有する相互作用デバイスと相互作用する。
 
【0147】
  導電ブリッジは、遠位端および/または近位端に到達し得、それぞれの端面の部分を形成し得る。代替的には、導電ブリッジは、たとえば
図19において近位電極102について示されるように、非導電材に埋め込まれ得る。
 
【0148】
  図20は、外側段差ならびに/または他のエネルギー方向付けおよび/もしくは物質フロー方向付け機構が熱可塑性部分11に設けられている変形例を示す。より一般的には、導電ブリッジ(「埋められた電極」)を有する実施形態は、特に機械振動エネルギーといったエネルギーおよびプレス力のジョイント効果によって組織に係留されるのを好適にする任意の好適な形状の相互作用ピンで実現され得、これにより、熱可塑性物質の部分が流動性があるようになり、係留部を与えるよう組織の構造内に押圧される。これは、この明細書に記載される他の実施形態を参照して開示された構造と、本願明細書において引用された参考文献から公知の構造とを含むがこれらに限定されない。
 
【0149】
  図21は、1つの相互作用ピン10が複数の相互作用要素101を有する実施形態を示しており、当該相互作用要素101の各々は、たとえば
図19および20を参照して記載された種類のものである。1つのピンに対して複数の相互作用要素を有する実施形態は、たとえば患者の手術部位の数が限定的である必要がある場合などといった特殊な状況において有利であり得る。
 
【0150】
  図22は、人間の頭蓋骨上の個々の相互作用ピン10の配置を示しており、たとえば相互作用ピン10は各々
図19および
図20の種類のものである。実際には、相互作用ピンは、頭皮によってカバーされるので、外部から見ることはできない。
 
【0151】
  中枢神経系との頻繁な相互作用を必要とするある症状を患う患者について、相互作用ピンによって形成されるブリッジは純粋に受動的であるので、相互作用ピンの配置は、一回埋め込まれ、任意の後処理またはメンテナンスを必要とすることなく、たとえば何年といった長いタイムスパンの間そこに残る。少なくとも相互作用要素は不活性物質である。熱可塑性物質も不活性である(再吸収可能でない)ように選択され得る。特別の実施形態において、相互作用要素には骨結合に好適な物質および/または構造が与えられ得、熱可塑性物質は再吸収可能であり得る。そのため、ある程度の時間の後、熱可塑性物質は消失し、相互作用要素は骨結合によって頭部に係留される。そのような場合、たとえばWO2004/017857に教示されるような熱可塑性物質の特別な配置が有益であり得る。
図23は、
図22の相互作用要素のアレイに嵌合するキャップの形態にある相互作用デバイス120を示す。相互作用デバイスは、ここでは相互作用要素の位置に対応する位置に位置する接触電極121の形態にあるデバイス相互作用ポイントのアレイを含む。デバイス相互作用ポイントは、たとえば可撓性のある担持体のような担持体上に配される。相互作用デバイスは、データ通信および/または電力供給のためのインターフェイス125を含む。接触電極は、たとえばEEGから公知であるような従来の電極であり得る。代替的には、第4の局面を参照して記載されるように、接触電極は、無線信号送信が可能であるものであり得る。
 
【0152】
  示される実施形態における相互作用デバイスは、信号処理手段を有するデバイス制御部を含み、外部デバイスに対するインターフェイス125は一般的である。
 
【0153】
  図24は、たとえば
図21に示されたような上で記載された種類の相互作用ピンと同様である相互作用インプラント130を示しており、相互作用インプラント130は複数の相互作用要素101を有する。しかしながら、相互作用ピンとは対照的に、相互作用インプラント130は、より大きなエリアを有しており、これにより、恐らく同様のインプラントのアレイに属することなく、中枢神経系への(電気的、光学的、または他の種類の)永久的な窓部を構成する単一のインプラントとして機能するのに好適である。相互作用インプラント130の形状は、相互作用インプラント130が埋め込まれる骨組織の形状および/または相互作用インプラント130が置換する骨組織の形状に適合され得る。
 
【0154】
  実施形態において、感知および/または送達ヘッドピースは、外耳道から埋め込まれる1つ以上の相互作用ピンを含み得る。この位置は、中央の脳領域に侵入する必要なく、中央の脳領域との相互作用が可能になる特別の利点を特徴とする。
図25は、外耳道141、鼓膜142および中耳142を有する人間の耳を例示しており、そのような実施形態を示している。たとえば
図19および
図20に示された種類の相互作用ピン10が、外耳道を取り囲む骨組織を異なる方向に貫通しており、たとえば、外耳道の周りに3次元配置が可能である。
 
【0155】
  図24の下側区画に示されるような相互作用デバイス120は、耳型の形状を有し得るか、または、(たとえばシリコーンなどの)可撓性要素として構成され得る。より一般的には、相互作用デバイス120は、補聴器のイヤーピースから公知である種類の担持体を有し得る。さらに、相互作用ポイント121(ここでは電極)の配置は、相互作用要素の配置に適合され得る。
図24はさらに、相互作用要素を制御するためのプロセッサユニット127を示す。
 
【0156】
  相互作用デバイスを設計する(これは、相互作用ピンが外耳道とは異なる位置に存在するおよび/または組み合わされた用途のために存在する実施形態に関係している)ためには、たとえば、まず相互作用ピンがセットされ、その後、それらの位置が測定され、相互作用ピンの位置に適合するよう相互作用デバイスが特別に作製され得る。付加的または代替例としては、相互作用ピンのセッティングのためにテンプレートが使用されてもよい。付加的またはさらに別の代替例としては、相互作用デバイスは、相互作用ポイントのフレキシブルな位置を有してもよく、相互作用要素同士の位置を区別するために、十分な分解能を有するエリアに渡る相互作用フィールドを有してもよい。
 
【0157】
  外耳道から相互作用要素(電極、導光体、光学的活性要素など)を埋め込む利点(これは第2の局面(相互作用要素が電極によって構成される)、第3の局面、第4の局面を含む本発明のすべての局面に関係する)は、
図26および
図27から特に明らかになる。
図27は、終脳4.1と、脳幹4.2と、小脳4.3と、概略的に示される大脳辺縁系4.4の位置とともに概略的に脳を示す。外耳道141は、脳幹4.2、小脳4.3および大脳辺縁系4.4のすべてに近い位置をアクセス可能にしており、そうでなければ、脳幹4.2、小脳4.3および大脳辺縁系4.4のすべてに近い位置は、脳を通らない電極または他の相互作用要素では到達するのが非常に難しかったであろう。
 
【0158】
  図26は、相互作用要素の例としての電極の可能な位置144に加えて、本発明の局面に従って形成および埋め込まれ得る基準電極の位置146を概略的に示す。頭蓋骨上の位置に対して代替的には、脳のどの領域がアクセスされるべきかに依存して、他の位置が可能であり、当該他の位置は、後部位置、(小脳および脳幹にアクセスするための)後尾位置、(たとえば視覚中枢についての)前部位置、または、信号の左右分解能を得る可能性を含む横方向位置を含む。
 
【0159】
  図28aおよび
図28bは、頭蓋骨は完全には貫通されないがインプラント(相互作用ピン10)が組織において止まり穴に埋め込まれる構成において、特に本発明の第1の局面に従った相互作用ピンのような相互作用要素を担持するインプラントを提供する可能性を示す。内部皮質骨組織1.3は無傷のままとなる。相互作用ピン10は、プレス力およびエネルギー(特に機械振動エネルギー)を作用させる影響の下で相互作用ピンの遠位端がより稠密な皮質骨と接触するとすぐに、遠位端部分の変形をサポートする遠位脚部151を有する。結果生じる変形は、
図28bに示される。
 
【0160】
  示される相互作用ピン10は、導電ブリッジの形態にある相互作用要素101を有するのが示されており、変形により、遠位側における内部上の相互作用表面の増加が引き起こされる。しかしながら、
図28aおよび
図28bにおいて概略的に示される構成はさらに、少なくとも部分的に透明な光学的相互作用ピン、または、熱可塑性物質自身が相互作用要素である導電熱可塑性物質の相互作用ピンを含む他の種類の相互作用ピンについても機能する。
 
【0161】
  図29aおよび
図29bは、頭蓋骨の厚さが十分な精度で分かっていなくても、どのように
図28に示されるような止め穴開口部が製造され得るかを非常に概略的に示す。外皮質骨層1.1が局所的に除去された後、平らな遠位端および力リミッタ162を有するドリル工具161が用いられ得る。より稠密な内皮質骨層1.3の抵抗が海綿骨1.2の抵抗よりはるかに高いので、力リミッタ162は、ドリル加工を確実に停止する。随意のその後のステップ(
図29b)において、面取り工具163は止まり穴を面取りするように使用され得る。
 
【0162】
  図30は、内皮質層が無傷の状態で止まり穴に埋め込まれた相互作用ピン(または他の相互作用インプラント)の遠位端の近接図を示す。熱可塑性物質11は、海綿骨に浸透し、皮質骨1.3の凹凸に到達し得るが、他方の側に到達せず、特に内骨膜1.5を無傷なままにしておく。
図30の構成のような構成において、熱可塑性物質11は(非常に薄い残存する骨層を通って脳へ光を結合するために)透明であり得るか、または、電極として機能するために導電性であり得る。
 
【0163】
  図31は、上で論じられた種類のうちのいずれか1つの相互作用ピンの遠位端の変形例を示しており、相互作用ピンは複数の脚部を有する。随意に、異なる脚部は、異なる電極のような異なる相互作用要素を形成または含み得る。この場合、当該電極は互いから電気的に絶縁され得る。
 
【0164】
  相互作用要素の遠位端が頭蓋骨を通って到達するのが望ましい、
図1aおよび
図1bを参照して示されたような構成が存在する。
図32は、相互作用ピン10の遠位端部分および内皮質骨層1.3の開口部171がこれによって互いに適合し、開口部171の寸法は、その周りにおいて封止および係留が行なわれる外皮質骨層1.1の開口部の寸法より小さくあり得る、さらに別の対応する例を示す。
 
【0165】
  図33は、非常に小さな穿孔181のみによって頭蓋骨の最内部のラメラが穿孔される、止まり穴を有する構成の変形例の実施形態を示す。たとえば
図28a、
図28bおよび
図30を参照して上で記載されるように、相互作用ピン10(または他の相互作用インプラント)の係留が行なわれ得る。しかしながら、何らかの熱可塑性物質は、穿孔181から漏れて頭蓋内の空間に入る。この部分は、外方向への伝搬の際に摩擦がないため急速に冷却するので、液滴のような形態を取ることになる。この液滴部分182は、熱可塑性物質が導電性の場合、たとえば電極として機能し得、または、デバイスが熱可塑性物質へ光を結合するための手段を含むとともに熱可塑性物質が十分に透明である場合、「電球」(光供給部分)として機能し得る。
 
【0166】
  これにおいて、および、熱可塑性物質を介して脳組織に照射するための方策を含む他の実施形態において、相互作用ピン(または他の相互作用インプラント)の近位端が、光ガイドに結合されるか、または、アクセス可能な接触面を介してもしくは以下に記載されたアクセスポートを介して直接的に光源に結合されるように、備えられ得る。代替的には、相互作用ピン(または他の相互作用インプラント)は、
図34に概略的に示されるように、光源191自体を含み得る。
図34は、この実施形態においてデータ通信アンテナとして主として機能しないが、LEDとしてここで示されている光源191のための電磁誘導電力を受け取ることができるコイル要素17に結合される光源を示す。骨構造に浸透した物質の遠位端部分192は、上記のWO2005/105208に記載されるように、光のための拡散器として機能する。
 
【0167】
  図35はさらに、アクセスポートの形態にあるインプラントを示す。インプラントは、上で記載されるような方法によって頭蓋骨1における貫通開口部に係留される基本的に円盤状の熱可塑性部分11を有する。熱可塑性係留部分11は、直接的にまたは担持体152を介して間接的に、たとえば脳深部刺激電極担持体61または上で記載された種類の電気ブリッジ101といった電極12または他の相互作用要素を担持する。相互作用要素の近位方向に、隔壁要素151が配される。隔壁要素151は、その近位方向における任意の領域から、その遠位方向における部分を封止する。たとえば針のような接触要素154は、隔壁要素151を突き通して、永久的に埋め込まれた相互作用要素に対する可逆的なアクセスを提供するために相互作用要素と接触するよう使用され得る。
 
【0168】
  図35に示される概念の変形例において、隔壁要素151は、頭蓋内の空間の内部に可逆的にアクセスすることを可能にする取外し可能な対応するキャップ要素によって置換され得る。
 
【0169】
  さらに、
図36の実施形態は、永久的に埋め込まれた相互作用要素12;61;101に可逆的にアクセスするためのアクセスポートを提供する概念に基づく。
図35の実施形態およびキャップ要素を有するその変形例とは対照的に、たとえば電極のような相互作用要素は、接触要素154から永久的に封止されたままである。この目的のために、送信される信号については導体であるが別の態様で密封部を形成する膜201が、取り外し可能な接触要素154から相互作用要素を分離する。相互作用要素が電極である場合、したがって膜が導電性であり、かつ、相互作用要素が光を透過する場合、当該膜は、透過されるべき光について透明である。
 
【0170】
  図36に示されるようなデバイスの埋め込みは以下のように行なわれる。第1のステップにおいて、熱可塑性物質を含む担持体11,41,62は、上で記載されこの明細書の全体にわたって使用されている方法によって埋め込まれる。埋め込みの際、エネルギーおよびプレス力が担持体に作用して、熱可塑性物質の部分を液化させ、骨組織の構造に浸透させ、再凝固の後に組織との確実な嵌合接続を形成させる。担持体は最初は、
図36に示されるように、近位遠位方向に延在する中央貫通開口部を有し得る。次いで、相互作用要素が挿入され、その後、たとえば接合によって、膜201が封止する態様で担持体に据え付けられる。アクセスポートは、接触要素154によって可逆的にアクセスされ得る。この目的のために、頭皮は、デバイスの上で治癒している場合には、突き通されなければならない場合がある。
 
【0171】
  図36はさらに、担持体の嵌合保持構造157と協働し、これにより可逆的な接続がスナップイン接続となる保持構造156を示す。
 
【0172】
  膜201は、導電性の場合、
図37に示されるように、金属フィラーによってドープされる熱可塑性物質であってもよく、または、
図38に示されるように導電ブリッジ203を含んでもよく、または、完全に金属であってもよい。
 
【0173】
  したがって、さらに別の第5の局面に従った本発明は、据付部分(担持体)を含む、特に
図35〜
図38を参照して記載された種類のアクセスポートに関する。当該据付部分は、熱可塑性物質を含んでおり、当該熱可塑性物質が液化されて再凝固の後に係留部および封止部を形成するようにエネルギーに晒されるとともに組織に対して押圧されることにより頭蓋骨の骨組織において係留されるために備えられる。これにおいて、据付部分は貫通開口部を含む。貫通開口部に対して遠位側では、(相互作用電極のような)相互作用要素が存在するかまたは配置可能であり、近位側では、封止要素が遠位側から近位側を封止する状態で、たとえば接触電極のような接触要素が配置可能である。封止要素は、(相互作用物質または信号の伝達を可能にする態様で)接触要素によって可逆的に相互作用要素に接触することを可能にするような封止要素である。これは特に、
  −封止要素は突き通すことができるが突き通した針の除去後に閉じる隔壁要素であり、ここでの封止要素は、たとえば物質接続(接合、接着接続など)によって固定部分に封止するように据え付けられ得るという方策と、
  −封止要素は、据付部分に封止するように固定され得る可逆的に取外し可能な蓋部であるという方策と、
  −封止要素は、伝達されるべき信号のための導体であり、特に、導電膜であり得、ここでも、封止要素は、たとえば物質接続(接合、接着接続など)によって据付部分に封止するように据え付けられ得るという方策と、
のうちの1つにより得る。
 
【0174】
  本発明はさらに、記載されたプロセスによってそのようなデバイスを埋め込む方法に関する。
 
【0175】
  図34の例を除いた記載された例は、相互作用要素として電極または電気ブリッジを示しているが、この明細書に記載されている種類の他の相互作用要素を使用することは容易に可能である。
 
 
【国際調査報告】