(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2017-533504(P2017-533504A)
(43)【公表日】2017年11月9日
(54)【発明の名称】自己修復機能を有するフィールド機器
(51)【国際特許分類】
G05B 23/02 20060101AFI20171013BHJP
【FI】
G05B23/02 302Z
【審査請求】有
【予備審査請求】未請求
【全頁数】14
(21)【出願番号】特願2017-517097(P2017-517097)
(86)(22)【出願日】2014年9月30日
(85)【翻訳文提出日】2017年5月25日
(86)【国際出願番号】IN2014000638
(87)【国際公開番号】WO2016051417
(87)【国際公開日】20160407
(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
(71)【出願人】
【識別番号】510332925
【氏名又は名称】エマソン・プロセス・マネジメント・エルエルエルピー
【氏名又は名称原語表記】EMERSON PROCESS MANAGEMENT LLLP
(74)【代理人】
【識別番号】110001508
【氏名又は名称】特許業務法人 津国
(72)【発明者】
【氏名】ダラル,メフル・ラジェスバイ
【テーマコード(参考)】
3C223
【Fターム(参考)】
3C223AA01
3C223BA03
3C223BB06
3C223BB11
3C223CC02
3C223DD03
3C223EA04
3C223EA06
3C223GG01
3C223HH02
(57)【要約】
フィールド機器は、コントローラとプロセス通信モジュールとを備える。コントローラは、少なくとも1つのプロセス制御に関する動作を実行するように構成され、且つまた少なくとも1つの自己修復動作を選択的に適用するように構成されている。プロセス通信モジュールは、コントローラに結合され、且つプロセス通信セグメントに結合されるように且つプロセス通信プロトコルに従って通信するように構成される。コントローラは、誤り状態を検出し、且つ検出された誤り状態に応答して少なくとも1つの自己修復動作を選択的に適用するように構成される。
【特許請求の範囲】
【請求項1】
フィールド機器であって、
プロセス制御に関する少なくとも1つの動作を実行するように構成され、且つまたフィールド機器に関する少なくとも1つの自己修復動作を実行するように構成された、コントローラと、
コントローラに結合された、並びにプロセス通信セグメントに結合するように且つプロセス通信プロトコルに従って通信するように構成された、プロセス通信モジュールと、
を備え、
コントローラは、誤り状態を検出するように、且つ検出された誤り状態に応答して少なくとも1つの自己修復動作を選択的に適用するように、構成される、
上記フィールド機器。
【請求項2】
コントローラは、検出された誤り状態に応答して通知を生成するように構成され、そして通知は、自己修復を許可する要求を含む、請求項1に記載のフィールド機器。
【請求項3】
コントローラは、もし自己修復許可がコントローラによって受信されるならば、少なくとも1つの自己修復動作を選択的に適用するように構成される、請求項2に記載のフィールド機器。
【請求項4】
さらに、コントローラに結合された、且つ少なくとも1つの自己修復動作を規定するデータを記憶する不揮発性メモリを備える、請求項1に記載のフィールド機器。
【請求項5】
データは、フィールド機器の機器記述内に記憶される、請求項4に記載のフィールド機器。
【請求項6】
自己修復動作は、フィールド機器内の機能ブロックとして実装される、請求項1に記載のフィールド機器。
【請求項7】
プロセス通信モジュールは、Fieldbusプロセス通信プロトコルに従って通信するように構成される、請求項6に記載のフィールド機器。
【請求項8】
プロセス通信モジュールは、Profibusプロセス通信プロトコルに従って通信するように構成される、請求項6に記載のフィールド機器。
【請求項9】
プロセス通信モジュールは、無線プロセス通信プロトコルに従って通信するように構成される、請求項1に記載のフィールド機器。
【請求項10】
コントローラは、自己修復動作が成功したか否かに関する結果を送信するように構成される、請求項1に記載のフィールド機器。
【請求項11】
フィールド機器は、センサに結合され、且つプロセス通信セグメントを用いてプロセス変数の表示を提供する、請求項1に記載のフィールド機器。
【請求項12】
フィールド機器を動作させるための方法であって、方法は、
フィールド機器内で誤り状態を検出すること、
フィールド機器に記憶された自己修復動作が誤り状態に適用できるか否かを決定すること、
誤り状態から回復するためにフィールド機器内の自己修復動作を選択的に適用すること、
を包含する、上記方法。
【請求項13】
さらに、フィールド機器が、プロセス通信セグメントを用いて誤り状態の表示を送るようにすること、及び自己修復動作を適用するための許可を要求すること、を包含する、請求項12に記載の方法。
【請求項14】
もし自己修復動作を適用する許可がフィールド機器によって受信されるならば、選択的に自己修復動作を適用することが実行される、請求項13に記載の方法。
【請求項15】
さらに、自己修復動作が成功だったか否かに関する結果の表示を、プロセス通信セグメントを用いて提供することを包含する、請求項14に記載の方法。
【請求項16】
さらに、自己修復動作が適用されている間、フィールド機器が休止中の状態に入るようにされること、を包含する、請求項12に記載の方法。
【請求項17】
さらに、自己修復動作の適用後、選択的にフィールド機器が再開始させられることを包含する、請求項12に記載の方法。
【請求項18】
選択的にフィールド機器を再開始させることが実行されることは、再開始の許可がフィールド機器によって受信されることである、請求項17に記載の方法。
【請求項19】
方法は、フィールド機器の機能ブロック内で実現される、請求項12に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
背景技術
プロセス制御システム、例えば化学、石油、又は別のプロセスにおいて用いられるようなシステムは、通常アナログの、デジタルの、又は組み合わされたアナログ/デジタルのバスを介して、少なくとも1つのホスト若しくはオペレータワークステーション及び1以上のフィールド機器へ通信可能に結合された中央プロセスコントローラを含む。フィールド機器、それは例えばバルブ、バルブポジショナ、スイッチ、及び送信器(例えば、温度、圧力、及び流速センサ)でありうる、は、プロセス内での機能、例えばバルブの開閉及びプロセスパラメータの計測、を実行する。プロセスコントローラは、フィールド機器によってなされたプロセス計測を表示する信号、及び/又はフィールド機器に関連する別の情報を受信し、制御ルーチンを実装するためにこの情報を用い、ひいてはプロセスの動作を制御するためにバス上をフィールド機器へ送信されるところの制御信号を生成する。フィールド機器及びコントローラからの情報は、通常、オペレータがプロセスに関して何らかの望みの機能、例えばプロセスの現在の状態を見ること、プロセスの動作を変更すること等、を実行することを可能にするオペレータワークステーションにより実行される1以上のアプリケーションについて利用可能にされる。
【0002】
過去において、従来のフィールド機器は、アナログバス又はアナログ回線を介してプロセスコントローラへ及び/又はプロセスコントローラからアナログ(例えば、4〜20mA)信号を送信及び受信するために使用されてきた。これ4〜20mA信号は、機器によってなされた計測の表示及び機器の動作を制御するために要求されたコントローラによって生成された制御信号であったという点で実際に制限されていた。しかし、最近では、スマートフィールド機器(マイクロプロセッサ又は同様のコンポーネントを含むフィールド機器)が、プロセス制御産業において普及している。プロセス内での主要な機能を実行することに加えて、スマートフィールド機器は、機器に関するデータを貯蔵し、コントローラ及び/又は別の機器とデジタル形式若しくはデジタルとアナログの組み合わされた形式で通信し、そして二次的なタスク、例えば自己較正、識別、診断など、を実行する。多数の標準かつオープンな通信プロトコル、例えば、Highway Addressable Remote Transducer (HART(登録商標))、FOUNDATION(登録商標) Fieldbus、Profibus(登録商標) World FIP(登録商標)、Device-Net(登録商標)、及びCANプロトコル、は、異なる製造業者により作られたスマートフィールド機器が同じプロセス制御ネットワーク内で一緒に用いられることを可能にするように開発されてきた。
【0003】
付加的なプロセス通信プロトコルは、FOUNDATION(商標)Fieldbus(以下、「Fieldbus」という)として知られるFieldbus財団によって公開された全デジタル2線式バスプロトコルである。Fieldbusプロトコルは、中央コントローラ内で以前に実行された制御動作を実行するために、異なるフィールド機器に配置された機能ブロックを使用する。特に、各Fieldbusフィールド機器は、1つ又は複数の機能ブロックを含み実行することができ、他の機能ブロック(同じフィールド機器内または異なるフィールド機器内のいずれか)からの入力を受信し及び/又はそれらに出力を提供し、そしていくつかのプロセス制御動作、例えばプロセスパラメータの計測または検出、デバイスの制御、又は制御動作の実行、例えば比例積分微分(PID)制御ルーチンの実行、を実行する。プロセス制御システム内の異なる機能ブロックは、相互に(例えばバスを介して)通信するように構成され、1以上のプロセス制御ループを形成する。
【0004】
スマートフィールド機器の登場により、プロセス制御システム内で発生する問題を素早く診断し解決することが、これまで以上に重要である。パフォーマンスの低下したループやデバイスを検出し補修することに失敗することは、プロセスの最適以下の性能に導き、生産される製品の質及び量の両方に関してコストがかかる可能性がある。
【0005】
スマートフィールド機器によって提供される進歩がプロセス制御を著しく改善したが、そのようなフィールド機器又はプロセス制御ループ若しくはセグメントが、誤りを有し又は修復、再構成が必要なときに、問題の原因及びそれらに対する解決策を特定することは時間がかかる。フィールド機器が壊れて誤り状態になると、プロセス制御オペレータは、しばしば、制御位置から数百メートル又は数千メートルにすら位置するフィールド機器の物理的位置に向かうための作業者/技術者を派遣しなければならず、そしてフィールド機器の適切な修復方法を特定しなければならない。場合によっては、プロセス制御オペレータは、問題を特定し及び/又は適切な修復方法を実施するためのサポートを受けるために、フィールド機器の製造業者に電話をすることすら必要とすることがある。したがって、フィールド機器において生じる簡単な誤り状態が、プロセス制御オペレータ及び/又は技術者の修理時間を依然としてかなり費やすことになる。
【発明の概要】
【0006】
フィールド機器は、コントローラ及びプロセス通信モジュールを備える。コントローラは、プロセス制御に関する少なくとも1つの動作を実行するように構成され、且つまたフィールド機器に関する少なくとも1つの自己修復動作を実行するように構成されている。プロセス通信モジュールは、コントローラに結合され、並びにプロセス通信セグメントに結合されるように且つプロセス通信プロトコルに従って通信するように構成される。コントローラは、誤り状態を検出するように、且つ検出された誤り状態に応答して少なくとも1つの自己修復動作を選択的に適用するように、構成されている。
【図面の簡単な説明】
【0007】
【
図1】本発明の実施態様が特に適用可能であるプロセス制御及び監視システムの概略図である。
【
図2A】従来の誤り修復方法を実行するために、ホストを介してオペレータと相互に作用をするフィールド機器の概略図である。
【
図2B】
図2Aに関して示された誤り修復方法を実施するために、ホストを介してフィールド機器と相互に作用をするオペレータを示す動作図である。
【
図3A】本発明の1実施態様による自己誤り修復方法を実行するフィールド機器と相互に作用をするオペレータの概略図である。
【
図3B】、本発明の1実施態様による、
図3Aに関して図示された自己修復方法を実行するフィールド機器と相互に作用するオペレータの動作図である。
【
図4】本発明の1実施態様による1つ以上の自己修復動作を実行するように構成されたコントローラを有するフィールド機器のブロック図である。
【
図5】、本発明の1実施態様によるフィールド機器が、自己修復を実行する方法のフロー図である。
【発明を実施するための形態】
【0008】
ここで
図1を参照する。プロセス制御システム10は、プロセスコントローラ12を含み、該コントローラ12は、ディスプレイスクリーン14を有するホストワークステーション又はコンピュータ13(パーソナル・コンピュータ又はワークステーションの任意のタイプでよい)に接続され、且つ入出力(I/O)カード26及び28を介してフィールド機器15〜22に接続されている。コントローラ12、例えばEmerson Process Managementによって提供されるDeltaV(登録商標)コントローラでありうる、は、例えばイーサネット(Ethernet)(登録商標)接続を介してホストコンピュータ13に通信可能に接続され、且つFieldbusプロトコル又は何らかの別の適切なプロセス通信プロトコルに関連する何らかの所望のハードウェア及びソフトウェアを用いて、デバイス15〜22に通信可能に接続されうる。コントローラ12は、その中に記憶され又は別にそれと関連付けられたプロセス制御ルーチンを実装し又は監督し、且つ機器15〜22及びホストコンピュータ13と通信し、任意の所望の仕方でプロセスを制御する。
【0009】
フィールド機器15〜22は、任意のタイプのデバイス、例えば、センサ、バルブ、送信器、ポジショナなど、であってもよく、一方I/Oカード26及び28は、Fieldbusプロトコル又は任意の別の適切なプロセス通信プロトコルに準拠する任意のタイプのI/Oデバイスであってもよい。
図1に示された実施態様において、フィールド機器15〜22は、スマートフィールド機器、例えば、Fieldbusプロトコル通信を用いてデジタルバスを介してI/Oカード28に通信するFieldbusフィールド機器、である。一般に、Fieldbusプロトコルは、フィールド機器を相互接続する2線式ループ又はバスに標準化された物理的インターフェースを提供する全デジタル、シリアル、双方向通信プロトコルである。Fieldbusプロトコルは、事実上プロセス内のフィールド機器のためのローカルエリアネットワークを提供し、それは、これらのフィールド機器が、プロセス施設全体に分散された位置でプロセス制御機能を(機能ブロック、例えばPID、Control Selector(制御セレクタ)などを使用して)実行し、そしてこれらのプロセス制御機能を実行する前後に互いに通信して、全体的な制御戦略を実施する。Fieldbusプロトコルは、当該技術では公知であり、テキサス州オースティンに本部を置く非営利団体であるFieldbus Foundation(フィールドバス財団)から出版、配布、かつ入手可能な多数の論文、パンフレット及び仕様に詳しく記載されている。結果として、Fieldbus通信プロトコルのほとんどの詳細は、ここでは詳細に説明されない。これらのプロセス制御機能の実行の前後に互いに通信して、全体的な制御戦略を実施することができる。Fieldbusプロトコルは当業界では公知であり、テキサス州オースティンに本部を置く非営利団体であるFieldbus Foundation(フィールドバス財団)から出版、配布、入手可能な多数の論文、パンフレット及び仕様に詳細に記載されている。結果として、フィールドバス通信プロトコルのほとんどの詳細は、ここでは詳細に説明されない。
【0010】
コントローラ12は、一般に機能ブロックと呼ばれるものを用いて制御ストラテジーを実施するように構成される。そこでは各機能ブロックは、全体的制御ルーチンの一部分(例えばサブルーチン)であり、且つ別の機能ブロックと(リンクと呼ばれる通信手段を介して)連携して動作し、プロセス制御システム10内にプロセス制御ループを実装する。機能ブロックは、通常、入力機能(例えば送信器、センサ、又は別のプロセス計測装置と関連付けられたもの)、制御機能(例えばPID、ファジー論理などの制御を実行する制御ルーチンと関連付けられたもの)、又は出力機能(プロセス制御システム10内のいくつかの物理的機能を実行するために幾つかの機器、例えばバルブ、の動作を制御する)の1つを実行する。勿論、機能ブロックのハイブリッドタイプ及び別のタイプが存在する。機能ブロックは、コントローラ12内に記憶され且つコントローラ12によって実行されてもよく、それは、これらの機能ブロックが標準的な4〜20mA機器及び幾つかのタイプのスマートフィールド機器について使用されるか又はそれらに関連付けられるときの場合に通常であり、また、Fieldbusデバイスの場合にはフィールド機器自体に記憶され且つフィールド機器自体によって実装される。制御システムの記載は、ここでは機能ブロック制御ストラテジーを用いて提供されるが、制御ストラテジーはまた、別の従来の論理、例えばラダーロジック、を使用して実装又は設計することも可能である。
【0011】
上述したように、スマートフィールド機器が誤動作した場合に、単純な誤りでさえ、診断して訂正するのにかなりの時間がかかりうる。そのような時間は、熟練技術者の時間の労働コスト及びシステム停止時間の点で特に価値がある。
【0012】
図2Aは、ホストワークステーション34を介してフィールド機器32と相互に情報を遣り取りするオペレータ30の概略図である。
図2Aに示されたように、ホストワークステーション34及びフィールド機器32はそれぞれ、プロセス通信ループ36に通信可能に結合される。プロセス通信ループ36は、プロセス通信プロトコル、例えばFieldbus、に従って動作し、一般的に危険な環境での動作に適している。しかし、プロセス通信ループ若しくはセグメントは、通常、従来のデータネットワークと比較して、いくらか帯域幅が制限されている。フィールド機器32が誤り状態にあるとき、誤りは、通常、プロセス制御ループ36を通り、ホストワークステーション34を介してオペレータ30に伝達される。オペレータ30が誤りに関する十分な情報を得て、特定の誤り状態に対して適切な修復方法を選択するか又は別に得るために、参照番号38で示されたようにオペレータ30とフィールド機器32との間で、行ったり来たりの多数の通信が行われうる。上述のように、修復方法を選択及び/又は取得をすることは、技術サポートを受けるためにフィールド機器32の製造業者の顧客ケア番号に電話をすることを要することさえある。ひとたび修復方法が確認されると、オペレータ30は、修復方法を実施するために、ホストワークステーション34を介してフィールド機器32と再び通信をする。場合によっては製造技術者が、極めて表面的な設定事項をデバッグするために存在しなければならないこともある。
【0013】
手動修復プロセスが、
図2Bの動作図において図式的に示されている。具体的には、フィールド機器32は、最初に誤り状態40を識別し、そして線42で示されるように、ホストワークステーション34に警告状態通知を提供する。ホストワークステーション34は、線44で示されるように、警告状態通知をオペレータ30に提供する。その後オペレータ30は、ループ46によって示されるように、誤った状態から修復するための適切な方法を決定しなければならない。上述したようにこの手動の工程は、オペレータ30のかなりの時間を消費し、且つプロセス制御システムの一部又は全部をオフラインにすることを要求する。ひとたび適切な修復方法が識別されると、オペレータ30は、線48で示されるように、ホストワークステーション34を介して修復方法工程を開始する。その後、ホストワークステーション34は、線50で示されるように、修復方法の工程を実施するために、プロセス通信ループを介してフィールド機器32に通信する。ひとたび修復方法ステップが、フィールド機器32によって実行されるか又は別に実装されると、そのような修復からの結果は破線52で示されるように、ホストワークステーション34に戻される。方法工程の結果を示す情報は、点線54で示されるように、ホストワークステーション34によってオペレータ30に提供される。修復方法工程は、修復方法が完了するまで繰り返される。理解されうるように、適切な修復方法を実施するためには、帯域幅が制約されたプロセス通信ループ若しくはセグメントを介するかなりの通信が必要である。
【0014】
図2Bに示されたように、オペレータは、フィールド機器32の誤り状態を解決するために、かなりのプロセス通信を伴った手作業で介入しなければならない。フィールド機器32は、誤り状態を線42及び44で示されたようにオペレータ30に通知した後、オペレータが修復方法工程48、50、52、及び54を繰り返してその状態を解決する。
【0015】
図3Aは、本発明の1実施態様による自己修復方法を実行するフィールド機器の概略図である。フィールド機器50は、プロセス通信ループ若しくはセグメント36を介してホストワークステーション34に通信可能に接続されている。
図3Bに示されたように、ホストワークステーション34は、オペレータ30と通信する。フィールド機器50が参照番号52に示されるような誤り状態に陥ると、線54に示されるように警告状態通知がホストワークステーション34に送信される。警告状態通知54は、
図2Bに関して与えられた警告状態通知42と同じでありうる。しかし警告状態通知はまた、フィールド機器50が警告に対して自己修復を実行するように構成されていることを示す情報を含むこともできる。しかし本発明の実施態様はまた、警告状態通知が単に警告情報を含む場合にも実施することができる。このような場合、ホストワークステーション34は、フィールド機器50が1以上の自己修復動作を実行する能力を示す情報を認識又は記憶する。こうして警告状態通知54がホストワークステーション34によって受信されるとき、オペレータ30に送信される通信は、必ずしも警告状態を示すものではなく、単にフィールド機器50が自己修復を試みることを許可する要求であることもある。オペレータ30は、次にフィールド機器50の1以上の自己修復動作を許可するか否かを決定できる。もしオペレータがフィールド機器に自己修復を許可しないならば、以前に行われたように、自己修復を手動で実行しなければならない。しかし、もしオペレータが、線56に示されるように自己修復を試みることを許可するならば、ホストワークステーション34は、線58に示されたように、プロセス通信を介してフィールド機器50にそのような許可を伝達する。一度許可されると、線60で示されるように、フィールド機器50は1以上の自己修復動作を試みるであろう。1以上の自己修復動作が完了すると、フィールド機器50は、線62で示されるように、プロセス通信ループを介してホストワークステーション34に修復結果を報告する。ホストワークステーション34はその後、線64に示されるように、結果をオペレータ30に伝達する。このようにして、フィールド機器が自己修復能力を有するとき、
図2Bに関して示され且つブラケット66内に参照のために示された様々な相互作用は、単純には要求されない。これにより、大幅なオペレータの時間と労力を節約するとともに、帯域幅に制約のあるプロセス通信ループ若しくはセグメントを通じて送信される通信量を削減する。いくつかの実施態様において、自己修復動作は、フィールド機器内の機能ブロックとして実施されうる。これは、フィールド機器がFieldbusプロセス通信セグメント上又はProfibusプロセス通信セグメント上で通信する実施態様において特にそうである。
【0016】
図4は、本発明の1実施態様によるフィールド機器のシステムブロック図である。フィールド機器100は、フィールド機器100が屋外に置かれ且つ温度、湿度、電磁的干渉などの気候的に極端な状態に耐えることができる頑強なハウジングを備えうる。フィールド機器100は、上述したようなプロセス通信プロトコルに従って通信する能力をフィールド機器100に提供するところのプロセス通信モジュール102を含む。
図4に示された実施態様において、プロセス通信モジュール102は、導体104、106を介して有線プロセス通信ループに結合するように構成されている。このような実施態様において、電力モジュール108は、フィールド機器100が電力モジュール108に基づいて、プロセス通信ループを介して受け取った電力のみで動作することができうるように、また導体104、106に接続可能でありうる。しかし、本発明の実施態様はまた、WirelessHART (商標)プロトコル(IEC62591)などの無線プロセス通信プロトコルを介して通信する無線フィールド機器を含む。そのような実施態様において、電力モジュール108は、フィールド機器100の構成要素に電力を供給するバッテリ及び適切な調整回路を含みうる。
【0017】
コントローラ110は、プロセス通信モジュール102に結合され、且つ不揮発性メモリ112を含むか、又は不揮発性メモリ112へ結合されている。不揮発性メモリ112は、適切に誤り状態が検出され且つ自己修復が許可されるときには、コントローラ110によって呼び出されるか又は別に実行されうる1以上の自己修復ルーチンを記憶している。いくつかの例において、1以上の修復動作は、コントローラ110内の又はコントローラ110に結合された不揮発性メモリ112に格納された命令に直接的に記憶されてもよい。しかし、修復動作はまた、フィールド機器100についての機器記述内に格納されうる。誤り状態が生じると、コントローラ110は、誤り状態を識別し、プロセス通信モジュール102を介して、そのような誤り状態に関連する警報を通信する。もしコントローラ110が、プロセス通信モジュー102又はローカルオペレータインターフェースを介して誤り状態に対する自己修復を試みるための許可を受信すると、不揮発性メモリ112に記憶された1以上の自己修復動作が調べられ実行される。引き続きコントローラ110は、自己修復方法又は動作が誤りから回復するのに成功したかどうかを判定し、結果をプロセス通信モジュール102を介して提供する。
【0018】
フィールド機器100は、参照番号114の点線で示されたセンサに含まれ又はセンサに結合されていてもよい、プロセス変数送信器を含む何らかの適切なフィールド機器であってよい。代替的又は追加的に、フィールド機器100は、参照番号116の点線で示されるように、1以上の適切なアクチュエータを含み又はアクチュエータに結合されてもよい。さらにフィールド装置100は、プロセス変数のローカル表示、例えばプロセス変数ディスプレイ又は診断モジュール、を単に提供してもよい。したがって本発明の実施態様は、プロセス通信ループを介して通信し、且つコントローラ、例えばコントローラ110、を含むところの任意のフィールド機器に適用可能である。
【0019】
図5は、本発明の1実施態様による、フィールド機器において実行する自己修復方法のフロー図である。方法200は、ブロック202で始まり、そこでは、フィールド機器、例えばフィールド機器100、が誤り状態を識別する。一度この識別が行われると、フィールド機器は、自己修復が誤り状態に対応する自己修復方法が利用可能であるかどうかを決定する。もし自己修復方法が、不揮発性メモリ、例えばフィールド機器の不揮発性メモリ112、内で識別されると、制御はブロック206に移る。しかし、もしブロック204が、修復方法がブロック202で識別された誤り状態に適応できないことが決定されるならば、次に制御はブロック208に移り、そこではオペレータは、従来技術に従って手動修復を実行しなければならないことを警告される。ブロック204に戻って、もし不揮発性メモリ112が、識別された誤り状態に対して適切な修復方法が利用可能であることを示すならば、次にコントローラ110は、プロセス通信モジュール102がプロセス通信ループ若しくはセグメントを介して、自己修復がオペレータによって許可されているか否かを決定することをオペレータに送るところの通信を生成する。もしオペレータが、自己修復が許可されていないことを示すことによってフィールド機器に応答すると、次に制御は、線210を介してブロック208に移り、修復は手動で実行されなければならない。しかし、もしオペレータが自己修復を認めるならば、制御はブロック212に移り、そこでは1以上の自己修復方法がフィールド機器のコントローラ110によって実行される。1実施態様において、フィールド機器が自己修復しようとするとき、フィールド機器は「運転休止中」又は「保守」モードになり、フィールド機器が保守中であることを特定する。さらに、フィールド機器は、修復方法中に自身を再起動させる必要があるが、そのような再起動の前にプロセス通信を介してオペレータに通知する。次にブロック214で、もし自己修復が成功しなかったときは、制御は、線216を介してブロック208へ移り、そこではオペレータが手動で修復方法を実行しなければならない。しかし、もし自己修復が成功すると、次に成功した修復がプロセス通信を介してオペレータに報告され、且つ方法200はブロック216で終了する。
【0020】
フィールド機器が自己修復を実行すること許可することは、フィールド機器の誤った状態に対処するのに必要な労力を大幅に低減し、且つ迅速な回復を容易にすることができる。ここで記載された方法は、フィールド機器の複雑さを増大させる可能性がある一方、ここで記載される実施態様は、オペレータが誤った状態を解決するのに要する労力を大幅に、ほぼ95%低減すると考えられる。1以上の自己修復動作を実行するフィールド機器による特別の許可が要求されないことによって、オペレータの相互作用及び努力は、さらに減らすことができる一方、そのような許可は、オペレータに自己修復のリスクを識別することを要求するためには重要である、と信じられている。しかし、本発明の実施態様は、フィールド機器が、誤った状態を識別し且つ1以上の自己修復動作を自動的に実行するという全自動化シナリオにおいて実現されることが可能である。
【0021】
自己修復動作は、いくつかの実施態様において、製造中にフィールド機器内にプログラム化される。そのような場合に、製造業者は、誤った状態が発生する可能性のある特定の場合を認識しえ、且つ個々のフィールド機器に合わせた解決策を提供しうる。しかし、フィールド機器が出荷された後でさえ、製造業者は、有用であり得る追加の自己修復動作を気付くことも可能である。そのような場合、本発明の実施態様は、フィールド機器の販売又は製造の後であっても作成又は生成された新規又はその後の自己修復動作を含めるために、フィールド機器の不揮発性メモリをアップデートすることを含む。また、異なる製造業者の機器は、他の製造業者の修復方法と互換性がありうる又は互換性がない特定の修復方法を有しうる。
【0022】
以下は、本発明の1実施態様による自己修復動作の1例である。例えば、オペレータが、フィールド機器及びそのスケーリングタイプを誤って構成したという状況が存在しうる。さらに、フィールド機器の製造者は、フィールド機器を製造する際に既に同様の誤りに気付きうる。この誤った設定は、フィールド機器を「休止中」モードにする。これにより、フィールド機器は、制御ループ/処理動作中に「正常」モードで動作することができない。しかし、フィールド機器の自己修復モジュールは、「休止中」モードで動作しているフィールド機器の理由を検出することができ、ユニット及びスケーリングを所望の値又は製造値に変更することによって、フィールド機器を誤った構成から修復することができる。
【0023】
以下は、本発明の1実施態様による自己修復動作の別の例である。フィールド機器は一般に、プロセスに必要とされる不揮発性データを記憶する。いくつかの場合には、チェックサムが、不揮発性メモリに記憶されたデータの完全性を検証するために実装されている。このチェックサムはまた、計算されたチェックサムと比較するために不揮発性メモリに記憶される。もし記憶されたチェックサムと計算されたチェックサムとが一致しなければ、フィールド機器は誤りを検出するであろう。そのような不一致は、多数の異なる原因を有しうる。例えば、記憶されたデータが変更されている可能性がある。チェックサム計算が不正確に実行された可能性があり、格納されたチェックサムが更新されずにデータが変更された可能性がある。ここで記載された自己修復の実施態様によれば、フィールド機器は1以上の修復動作を取ることができる。フィールド機器は、チェックサムが簡単に再計算され且つ記憶されたチェックサムに対して検証される再試行メカニズムを含みうる。データの小ブロックに対してチェックサムが計算され且つ記憶される場合、フィールド機器は、不揮発性メモリのどのブロックが壊されているかを検出できる。もし検出が可能であれば、フィールド機器は、不揮発性メモリにデフォルト値を再書き込みすることによって、不揮発性メモリの誤りを解決できる。再び、1実施態様において、自己修復のための特定のオペレータ許可が受信されなければならない。このことは、書き込まれるデータがプロセスにとって非常に重要な場合があるので、重要である。代わって、不揮発性メモリ内のデータは、別の場所に記憶されることができ、従って不揮発性メモリが二次(バックアップ)データを有することを可能にする。このバックアップは、不揮発性メモリの一次部分においてデータが更新されるときはいつでも実施されうる。フィールド機器が不揮発性メモリの誤りを検出すると、フィールド機器は二次メモリへ切り替えることができる。もし上記の動作のどれもが誤った状態の解決に成功しない場合は、上記のように、ホストワークステーションを介してオペレータに通知が送られうる。
【0024】
本発明の実施態様は、機能ブロック、例えばFOUNDATION(商標)Fieldbusプロトコル及びProfibusプロトコル、を採用するプロセス通信プロトコルに従って動作するフィールド機器に特に有用である。しかし、本発明の実施態様は、コントローラ又はマイクロプロセッサを使用し、適切な不揮発性メモリを含むか、又はそれに結合される何れかのフィールド機器で実施することができる。
【0025】
本発明を好ましい実施態様を参照して説明されてきたが、当業者は、本発明の精神及び範囲から逸脱することなく、変更が形態及び詳細において加えられうることを認識するであろう。
【国際調査報告】