特表2018-511788(P2018-511788A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ズィルコン コーポレーションの特許一覧

特表2018-511788物体の背後に隠れた目的物を検出するための方法及び装置
<>
  • 特表2018511788-物体の背後に隠れた目的物を検出するための方法及び装置 図000003
  • 特表2018511788-物体の背後に隠れた目的物を検出するための方法及び装置 図000004
  • 特表2018511788-物体の背後に隠れた目的物を検出するための方法及び装置 図000005
  • 特表2018511788-物体の背後に隠れた目的物を検出するための方法及び装置 図000006
  • 特表2018511788-物体の背後に隠れた目的物を検出するための方法及び装置 図000007
  • 特表2018511788-物体の背後に隠れた目的物を検出するための方法及び装置 図000008
  • 特表2018511788-物体の背後に隠れた目的物を検出するための方法及び装置 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2018-511788(P2018-511788A)
(43)【公表日】2018年4月26日
(54)【発明の名称】物体の背後に隠れた目的物を検出するための方法及び装置
(51)【国際特許分類】
   G01V 3/08 20060101AFI20180330BHJP
   G01B 7/00 20060101ALI20180330BHJP
【FI】
   G01V3/08 D
   G01B7/00 101C
   G01B7/00 102C
【審査請求】未請求
【予備審査請求】有
【全頁数】26
(21)【出願番号】特願2017-544665(P2017-544665)
(86)(22)【出願日】2016年2月12日
(85)【翻訳文提出日】2017年10月13日
(86)【国際出願番号】EP2016052956
(87)【国際公開番号】WO2016131711
(87)【国際公開日】20160825
(31)【優先権主張番号】102015202880.1
(32)【優先日】2015年2月18日
(33)【優先権主張国】DE
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ
(71)【出願人】
【識別番号】517288874
【氏名又は名称】ズィルコン コーポレーション
【氏名又は名称原語表記】ZIRCON CORPORATION
(74)【代理人】
【識別番号】100080816
【弁理士】
【氏名又は名称】加藤 朝道
(74)【代理人】
【識別番号】100098648
【弁理士】
【氏名又は名称】内田 潔人
(74)【代理人】
【識別番号】100119415
【弁理士】
【氏名又は名称】青木 充
(72)【発明者】
【氏名】ライメ、ゲルト
【テーマコード(参考)】
2F063
2G105
【Fターム(参考)】
2F063AA02
2F063AA03
2F063AA49
2F063BA14
2F063BA15
2F063BA17
2F063BB02
2F063BC03
2F063CA11
2F063CA34
2F063CB03
2F063CB04
2F063DA01
2F063DA05
2F063DA21
2F063DB04
2F063DB05
2F063HA03
2F063HA11
2F063LA01
2F063LA23
2G105AA02
2G105BB04
2G105EE02
2G105LL02
(57)【要約】
【課題】物体の背後に隠れた目的物の検出を、物体に対する装置の相対的位置から可及的に独立に目的物を検出できるように、改善すること。
【解決手段】物体(1)の背後に隠れた目的物(3)の検出方法であって、以下のステップ:第1交流電圧(5)を第1センサ(7)に印加すること;第2交流電圧(9)を第1センサ(7)に近接して配置された第2センサ(11)に印加すること;第1及び第2交流電圧(5、9)の少なくとも1つに対する物体(1)の作用の距離依存関数/作用相関を求めること;物体(1)に沿って第1及び第2センサ(7、11)が運動(19)する際に生じる距離依存関数/作用相関の変化(17)を求めること;距離依存関数/作用相関の変化に依存して目的物(3)を検出すること、を含む。
【選択図】図4
【特許請求の範囲】
【請求項1】
物体(1)の背後に隠れた目的物(3)の検出方法であって、以下のステップ
・第1交流電圧(5)を第1センサ(7)に印加すること、
・第2交流電圧(9)を第1センサ(7)に近接して配置された第2センサ(11)に印加すること、
・第1及び第2交流電圧(5、9)の少なくとも1つに対する物体(1)の作用の距離に依存する関数及び/又は作用相関(以下「距離依存関数/作用相関」という。)を求めること、
・物体(1)に沿って第1及び第2センサ(7、11)が運動(19)する際に生じる距離依存関数/作用相関の変化(17)を求めること、
・距離依存関数及び/又は作用相関の変化に依存して目的物(3)を検出すること
を含む、
検出方法。
【請求項2】
請求項1に記載の検出方法において、該検出方法は、
・測定交流電圧(21)を生成すること、
・位相シフト(23)を引き起こすフィルタ(25)によって測定交流電圧(21)をフィルタリングすること、及び、かくして、
・第1交流電圧(5)を生成すること
を含む、
検出方法。
【請求項3】
請求項2に記載の検出方法において、
・測定交流電圧(21)を測定電圧分圧器(27)に印加すること、
・第2交流電圧(9)を第2センサ(11)に印加するために、測定電圧分圧器(27)において第2交流電圧(9)を取り出すこと
を含む、
検出方法。
【請求項4】
請求項2又は3に記載の検出方法において、
フィルタ(25)は、測定電圧分圧器(27)と比べて、低い又は等しくないインピーダンスを有する、
検出方法。
【請求項5】
請求項1〜4の何れかに記載の検出方法において、該検出方法は、
・測定交流電圧(21)に対し180°だけ位相シフトされた参照交流電圧(29)を生成すること、
・参照交流電圧(29)を第1及び第2センサ(7、11)に並列接続された参照経路(31)に印加すること
を含む、
検出方法。
【請求項6】
請求項5に記載の検出方法において、
参照経路(31)には、第1及び第2センサ(7、11)、フィルタ(25)及び測定電圧分圧器(27)を有する測定経路(33)が並列接続されており、
参照経路(31)は測定経路(33)と同様に構成されている、
検出方法。
【請求項7】
請求項6に記載の検出方法において、該検出方法は、
・参照経路(31)の参照出力信号(35)と測定経路(33)の1次測定出力信号(37)を加算して2次測定出力信号(39)を生成すること
を含む、
検出方法。
【請求項8】
請求項7に記載の検出方法において、該検出方法は、
・2次測定出力信号(39)のための目標値(40)を予め設定すること、
・フィードバック制御器(43)の制御信号(41)によって目標値(40)に依存して2次測定出力信号(39)に影響を及ぼすこと、
・距離依存関数/作用相関を及び距離依存関数/作用相関の変化を求めるために制御信号(41)を評価すること
を含む、
検出方法。
【請求項9】
請求項8に記載の検出方法において、該検出方法は、
・物体(1)に対する第1及び第2センサ(7、11)の距離(13)に依存する制御信号(41)の推移(45)を求めること、及び/又は、
・制御信号(41)の位相空間(49)におけるベクトル解析(47)の形で前記推移(45)を求めること、及び/又は、
・目的物(3)を検出する前に、物体(1)への第1及び第2センサ(7、11)の接近(51)中に前記推移(45)を求めること
を含む、
検出方法。
【請求項10】
請求項9に記載の検出方法において、該検出方法は、
・位相空間(49)において推移(45)又はベクトル(117、119)によって画成される面(123)を求めること、
・該面(123)に依存する変化(17)を求めること
を含む、
検出方法。
【請求項11】
請求項9又は10に記載の検出方法において、該検出方法は、
・推移(45)のための閾値(53)を予め設定すること、
・制御信号(41)と閾値(53)を比較すること、
・制御信号(41)が閾値(53)を上回るよう推移(45)から外れると直ちに、目的物(3)を検出すること
を含む、
検出方法。
【請求項12】
請求項1〜11の何れかに記載の検出方法において、該検出方法は、
・物体(1)に沿った第1及び第2センサ(7、11)の運動(19)の際に生じる実際の距離依存関数/作用相関と、距離依存関数/作用相関と比べた実際の距離依存関数/作用相関の変化(17)を求めること、
・距離依存関数/作用相関と比べた実際の距離依存関数/作用相関の変化(17)に依存して目的物(3)を検出すること
を含む、
検出方法。
【請求項13】
請求項1〜12の何れかに記載の検出方法において、該検出方法は、
・求められた距離依存関数/作用相関を記憶すること、
・前記変化(17)を求めるために、物体(1)に沿った第1及び第2センサ(7、11)の運動(19)中に生じる実際の作用と、記憶された距離依存関数/作用相関を比較すること、
・前記比較に依存して目的物(3)を検出すること、
を含む、
検出方法。
【請求項14】
物体(1)の背後に隠れた目的物を検出するための測定装置(55)であって、該測定装置は、
・第1交流電圧(5)が印加可能に構成された第1センサ(7)、
・第1センサ(7)に近接して配置され、第2交流電圧(9)が印加可能に構成された第2センサ(11)、
・解析装置(57)
を有し、
解析装置(57)によって、第1及び第2交流電圧(5、9)の少なくとも1つに対する物体(1)の作用の距離に依存する関数及び/又は作用相関(以下「距離依存関数/作用相関」という。)が求められること又は少なくとも記憶されることが可能であり、物体(1)に沿って第1及び第2センサ(7、11)が運動(19)する際に生じる距離依存関数/作用相関の変化(17)が求められることが可能であり、及び、距離依存関数/作用相関の変化(17)に依存して目的物(3)が検出可能である、
測定装置。
【請求項15】
請求項14に記載の測定装置(55)において、該測定装置(55)は、
・第1及び第2センサ(7、11)を有する回路装置(59)、
・解析装置(57)に前置されると共に、回路装置(59)に対し入力側において後置されかつ出力側において並列接続されたフィードバック制御器(43)
を有し、
フィードバック制御器(43)の制御挙動は、距離依存関数/作用相関を及び/又は距離依存関数/作用相関の変化(17)を求めるために、解析装置(57)によって解析可能である、
測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願]
本願は、2015年2月18日に提出されたドイツ特許出願10 2015 202 880.1に基づく優先権に関連しかつこれを主張するものである。該ドイツ特許出願の開示内容はその全体が引用を以って本願に繰り込まれ、本願の対象とされるものとする。
本発明は、物体の背後に隠れた目的物を検出するための方法及び装置に関する。
【背景技術】
【0002】
物体の背後にある目的物の検出は既知である。相応の方法及び/又は装置は、例えば価値の高い物体(目的物)を発見するために、とりわけいわゆる埋蔵物(財宝)発見器として利用可能である。更に、いわゆる配管検出器又は間柱(スタッド)検出器が知られている。これらは、少なくとも1つの交流電圧によって発見されるべき目的物と相互作用することが可能な少なくとも1つのセンサを有する。該少なくとも1つのセンサは、誘導性又は容量性に構成可能である。その背後に目的物が隠されている物体は例えば木材及び/又は石膏ボードの形での壁面材であり得、他方、発見されるべき目的物は例えば桁ないし梁材(Balken)の形での支柱である。そのような応用例の場合、比較的弱い信号が生成される。そのような比較的弱い信号を処理するために、当該信号を増幅すること及び/又はフィードバック制御(Regelungen)によって補償することが知られているが、この場合、測定の評価のために、実際にセンサに生成する信号ではなく、補償フィードバック制御の制御信号が評価される。該制御信号は、制御素子として機能するパルス幅変調器によって生成可能な位相及び振幅を有する交流電圧であり得る。
【0003】
そのような制御信号を当該信号の位相空間で評価することが知られている。先に出願された特許出願DE 10 2013 226 887.4からは、例えば、少なくとも1つのターゲットを検出するための誘導性センサ装置及び方法が知られている。この場合、ターゲットは測定方向に沿って変化する形状又は構成を有し、かつ、フィードバック制御信号を4象限表示した場合、送受信コイルシステムの調整された(ausgeregelt)状態に対応するxy座標系の始点から出発し測定点に至るxy座標系のx軸に対する仮想ベクトルの角度は、測定方向におけるターゲットの運動の尺度(判断基準:Mass)であり及び/又は該仮想ベクトルの大きさ(Betrag)は、測定方向に対し垂直方向での送受信コイルシステムからのターゲットの距離の尺度(判断基準:Mass)である。
【0004】
更に、先に出願された特許出願DE 10 2014 007 491.9に基づく優先権を主張する先に出願された特許出願DE 10 2014 010 671.3は、(1つの)センサユニットによって少なくとも1つの物理パラメータを求める(検出する)方法であって、センサユニットの出力信号が実質的に励起(Anregung)の基本波に変えられ、少なくとも1つのパルス幅変調が可変のパルス幅と場合により可変の位相を有する補正信号を夫々1つ生成して、センサユニットの出力信号に加算し、かくして、出力信号を位相空間全体においてゼロにフィードバック制御し、補正信号のパルス幅及び/又は補正信号の位相が出力信号のゼロからの逸れ(偏位)によって決定される、方法に関する。
【0005】
DE 695 10 447 T2は、隔壁内の支柱の位置を検出する装置を記載している。
【0006】
更に、国際特許出願WO 2012/104086 A2には、金属製又は金属を含む目的物及び材料の位置を測定する方法が記載されている。
【0007】
特許出願DE 10 2009 057 439 A1は、エラーフリーの容量性の測定値検出のための装置及び方法に関する。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】DE 10 2013 226 887.4
【特許文献2】DE 10 2014 007 491.9
【特許文献3】DE 10 2014 010 671.3
【特許文献4】DE 695 10 447 T2
【特許文献5】WO 2012/104086 A2
【特許文献6】DE 10 2009 057 439 A1
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の課題は、物体の背後に隠れた目的物の検出を、とりわけ目的物の検出装置が手動で(手操作ないし手持ちで)物体の上方(ないし手前)を通過するよう案内される場合であっても、物体に対する装置の相対的位置、とりわけ角度位置から可及的に独立に目的物を検出(認識)することができるように、改善することである。
【課題を解決するための手段】
【0010】
この課題は、請求項1の特徴を有する物体の背後に隠れた目的物の検出方法によって及び請求項14の特徴を有する測定装置によって解決される。
【発明を実施するための形態】
【0011】
目的物を検出するために、有利には、目的物は、センサ(複数)と、原理的に既知の検出可能な相互作用をする。その際、センサ(複数)が目的物を隠している物体とも相互作用することが、システムに依存(規定)して行われる。物体に対するセンサ(複数)の距離の僅かな変化も、相互作用の変化を引き起こす。このことは、例えば装置が手操作で(手持ちで)案内される場合、物体に対する相対的な相応の装置の僅かな角度変化によっても起こり得る。物体に対するセンサ(複数)の距離に依存する作用を求める(決定する)ことができることが(本発明により)判明した。この依存作用を求めることは、有利には、原理的に現れる相互作用の評価及び/又は解析(分析)によって行われる。依存作用とは、関数、とりわけ数学的関数、及び/又は作用相関(Wirkzusammenhang)、とりわけ影響値(パラメータ)を目標値に形成する(Abbilden)ための因果関係として理解することができる。従って、有利には、依存作用は、作用相関及び/又は距離の関数として記述(規定)することができる。更に、測定エラーを引き起こし得る物体に対する相対的な装置の角度の僅かな変化は、この依存作用に相応すること、即ち関数ないし作用相関に従うことも(本発明により)判明した。更に、隠れた目的物が物体の背後に存在すると直ちに、依存作用は変化することないし最早有効でないことが(本発明により)判明した。従って、とりわけ依存作用の距離依存性及びこの距離依存性の変化が求められ、この変化に基づいて目的物を検出することができる。なぜなら、物体の背後に目的物が存在すると、距離依存性は最早有効ではない及び/又は変化されているからである。とりわけ、センサ(複数)に対する物体の作用の具体的距離依存性と、求められた距離依存性の目的物の存在による変化が求められる。変化は、任意の手段・方法によって求めることができ、例えば測定値、比較、数学的計算、非ファジィ又はファジィ論理基準、物体のみ又は物体及び目的物(の両方)及び測定装置を有するシステムのシステム挙動の変化等の形で求めることができる。求める(Ermitteln)とは、直接的に求めること、又は、時間的に前に(予め)求め、記憶し、後に呼び出すこと、場合によっては単に呼び出すこと、として理解することができる。
【0012】
従って、有利には、依存作用を求めることによって、まず、距離依存関数ないし作用相関を求めることができる。とりわけ、後者を、まず、記憶することができる。有利には、目的物が存在しない場合、測定値ないし相応の測定信号の値が常に依存作用に応じて、即ち関数ないし作用相関に応じて振舞うことを出発点とすることができる。かくして、依存作用に関する相応の出力信号を評価することができる。これは、有利には、とりわけ、出力信号が関数ないし作用相関に応じて振舞う限り、物体のみがセンサ(複数)の検出領域に存在することが推定できるように、実行されることができる。かくして、小さな角度変化及び/又はこれと結び付いた物体に対する相対的なセンサ(複数)の距離の変化は、測定信号の変化をもたらすものであるが、それにも拘らず、物体の背後に目的物が存在しないと評価されることができる。
【0013】
実際の(本来の)検出の際、センサ(複数)は物体に沿って、とりわけ物体の表面に沿って案内されること、とりわけ手操作で(手持ちで)案内されることができる。その際、有利には、隠れた目的物がセンサ(複数)の検出領域に存在する(入る)や否や、依存作用の変化を求めることができる。とりわけ、実際に生成される作用ないし実際に生成される測定信号と依存作用即ち関数及び/又は作用相関との比較を行うことができる。とりわけ、そのために、相応の比較を評価することができる。有利には、依存作用の変化に依存して(基づいて)、物体の背後に目的物が存在すると推定することができる。有利には、これは、とりわけ物体及び/又は目的物がセンサ(複数)の検出領域に存在する限り、少なくともある限界内において、センサ(複数)に対する物体の距離に依存して行うことができる。従って、有利には、まず、物体についてのセンサ(複数)の測定信号を評価し、それによって、較正を実行することができる。物体が引き起こす依存作用を認知することにより、有利には距離に依存して、目的物の存在を推定することができる。従って、依存作用の変化とは、2つの時点において又は2つの時点間において夫々実際に生成する測定信号の単なる変化として理解できるだけではなく、作用相関及び/又は距離依存関数の変化として理解することができる。従って、付加的な評価基準として、依存作用を考慮することができ、その際、第1の、とりわけより早い時点において求められる測定信号及び更なるないし第2の、とりわけ実際の測定信号が、依存作用に従う場合及び/又は依存作用に割当て可能及び/又は依存作用によって説明可能である場合には、測定信号に現れる変化は無視できる。他の場合には、変化された、とりわけ更なる、第2の及び/又は実際の、測定信号が付加的に最早依存作用に相応しない(従わない)ないし依存作用によって説明できない場合にはただちに、目的物を推定することができる。従って、相応の更なる、第2の及び/又は実際の測定信号に対しては、依存作用は適用されない。なぜなら、依存作用は目的物の存在によって既に変化されているからである。依存作用を部分的にのみ求めること、場合によっては更に、とりわけ補間法によって、完全なものにすることも可能である。
【0014】
依存作用を求めることは、有利には、複数の物体の実際の測定に先立って実行することができ、この場合、複数の物体に対し、例えば1つの参照テーブルが記憶されることができる。複数の物体は、とりわけカバーボード、とりわけ種々異なる厚み及び/又は種々異なる材料、とりわけ木材、ボール紙、石膏、モルタル(ないししっくい)、セメント等の板材ないし壁材(表装板)であり得る。目的物は、とりわけ種々の材料及び種々の太さ、とりわけ木材、金属、繊維複合材料等からなる支柱及び/又は支材であり得る。代替的に又は付加的に、相応の装置の運転開始後に、即ちこの場合本方法の開始時に、物体の対する距離に依存する作用を求めることも可能である。
【0015】
測定の開始時、有利には、まず、センサ(複数)は、物体も場合によっては隠れている目的物もその測定(検出)領域に存在するよう、物体の近くにもたらされる必要がある。有利には、この必然的に実行されるべきプロセスは、まず、物体に対するセンサ(複数)の距離に依存する作用を求めるために使用することができる。かくして、本方法は開始されることができる。この第1の接近後、まず、依存作用は記憶されることができ、この(記憶された)依存作用は、隠れた目的物がセンサ(複数)の測定領域に入るや否や、その際生じる作用の変化と比較され、その結果、隠れた目的物を検出することないし隠れた目的物が存在するとして表示することができる。代替的に又は付加的に、物体に対するセンサ(複数)の距離に依存する作用を求める、確認する及び/又は適合化するために、測定中に生じる僅かな距離変化を利用することも可能である。これは、有利には、目的物が物体の背後に存在しない測定区間において実行される。
【0016】
センサとは、交流電圧が印加可能でありかつ物体及び/又は目的物と相互作用する任意の電気的コンポーネント、とりわけコイル又は電極、として理解することができる。センサ(複数)の近接配置とは、複数のセンサが互い同士で相互作用できるよう、複数のセンサが互いに対し空間的に配置されていることと理解することができる。とりわけ、この近接配置は、これらのセンサが互いに対しキャパシタンスを有する及び/又は形成することとして理解することができる。好ましくは、センサ(複数)は、或る(1つの)面内における電極として配置されること、とりわけ互いに入れ子式に(ineinander)配置されること、とりわけ共通の面に配されて互いに対し同心的に配置されることができる。同心的配置の場合、有利には、物体及び/又は隠れた目的物に対する相対的なセンサ(複数)の運動方向から独立した(依存しない)測定を実行することができる。
【0017】
本方法の一実施形態では、測定交流電圧の生成、位相シフトを引き起こすフィルタによる測定交流電圧のフィルタリング、及び、それにより、第1交流電圧の生成が行われる。有利には、測定交流電圧は共通の交流電圧源によって生成されることができ、これ(測定交流電圧)は、第1交流電圧及び第2交流電圧が得られるよう、フィルタによって修正ないしフィルタリングされることができる。かくして、有利には、第1交流電圧と第2交流電圧の間の位相シフトを実現することができる。測定中、即ち、物体及び/又は隠れた目的物が測定領域に存在する間、物体及び/又は目的物、第1センサ及び第2センサは、これらのセンサ間に現れる位相シフトが変化するよう、相互作用することが(本発明により)判明した。有利には、位相シフトのこの変化は、依存作用を求めるために、その結果として、この依存作用の変化を求めるために使用することができる。
【0018】
本方法の更なる一実施形態では、測定電圧分圧器への測定交流電圧の印加、第2センサへの第2交流電圧の印加のための、測定電圧分圧器における第2交流電圧の取り出しが行われる。かくして、有利には、測定電圧分圧器と第2センサの間に並列回路が形成され、かくして、有利には、隠れた目的物の検出中に、測定電圧分圧器の出力電圧の変化が生じ、この変化は、有利には、隠れた目的物の測定ないし検出のために更に処理することができる。
【0019】
本方法の更なる一実施形態では、フィルタは、測定電圧分圧器と比べて、低いインピーダンスを有する。測定中、即ち隠れた目的物の検出中、センサ(複数)は、目的物が存在しない場合よりも、より強く互いに対し作用する。有利には、測定電圧分圧器における及び/又はかくして第2センサにおける電圧が第1センサの影響によってより強く影響を受けることが、異なるインピーダンスによって達成することができる。なぜなら、第1センサは低いインピーダンスを有するフィルタを介して電圧が供給されるからである。かくして、有利には、より高感度の測定を実行することができる。かくして、有利には、フィルタによって、第1センサに、有利には影響を受けることが殆どない比較的低インピーダンスの電磁界を生成することができる。この電磁界は、物体及び/又は目的物における相互作用によって、第2センサに、従って後置された(下流に配置された)比較的高いインピーダンスを有する測定電圧分圧器にも影響を及ぼす(印加される)ことができる。かくして、有利には、測定電圧分圧器において、比較的大きな程度の位相シフトも生成されることができる。従って、有利には、第2センサに、比較的高インピーダンスの電磁界が生成され、この電磁界は、有利には目的物が検出される場合、比較的強く影響を受け得る。
【0020】
本方法の更なる一実施形態では、測定交流電圧に対し180°だけ位相シフトされた参照交流電圧の生成、及び、センサ(複数)に並列接続された参照経路への参照交流電圧の印加が実行される。有利には、参照経路を介して、センサ(複数)の少なくとも部分的な補償を実行することができ、とりわけ、補償は、無負荷状態中に、即ち物体及び/又は目的物がセンサ(複数)の測定領域に存在しない間に、実行できる。
【0021】
本方法の更なる一実施形態では、参照経路には、センサ(複数)、フィルタ及び測定電圧分圧器を有する測定経路が並列接続されている。有利には、参照経路は、測定経路と比較されることができる。とりわけ、これは、信号(複数)の加算によって実行できる。有利には、とりわけ参照経路及び測定経路の出力信号の少なくとも部分的な打ち消し合い(Ausloeschung)が実行できるよう、測定交流電圧及び参照交流電圧は位相シフトされている。従って、有利には、とりわけ無負荷状態において、ゼロに補償された信号が生成される。有利には、そのような信号は、比較的大きな増幅を伴って更に処理することができる。かくして、有利には、目的物の格別に正確な及び/又は高感度の検出を実行できる。
【0022】
本方法の更なる一実施形態では、参照経路は、測定経路に対し類似に(analog)構成されている。類似に構成されるとは、これらの経路が同じ伝達挙動(応答)を有すること及び/又は同じ電気回路素子を有すること及び/又は同じ電気的特性値を有する電気回路素子を有することであると理解することができる。とりわけ、参照経路は、電気的特性値(複数)を、とりわけセンサ(複数)のインピーダンス及び/又はキャパシタンスを、構成することができる。とりわけ、その際、参照経路の伝達挙動は、これが無負荷状態に、即ち目的物及び/又は物体がセンサ(複数)の測定領域に存在しない場合に、相応するよう、調整されていることができる。代替的に、物体が測定領域に存在する限り、参照経路の伝達挙動が測定経路の伝達挙動に相応するよう、参照経路を設計することができる。かくして、有利には、ゼロ信号への上述の補償がセンサ(複数)の相応の測定状態において実行できる。ゼロ信号とは、場合によって含まれる雑音以外には全く情報が含まれていない信号として理解することができる。とりわけ、ゼロ信号は、交流電圧の場合、位相も、振幅も生じないものとして理解することができる。とりわけ、この意味では、直流電圧及び/又は雑音を含む直流電圧もゼロ信号として理解することができる。特別な場合としては、0ボルトを有する信号はゼロ信号として理解することができるであろう。
【0023】
本方法の更なる一実施形態では、参照経路の参照出力信号と測定経路の1次測定出力信号の加算による2次測定出力信号の生成が実行される。有利には、参照出力信号と1次測定出力信号は位相シフトに基づき測定状態に依存して少なくとも大幅に打ち消し合い、理想的な場合には、上述のゼロ信号を生成する。特に有利には、測定に基づき場合によって存在する2次測定出力信号の変化はフィードバック制御器(Regler)によってゼロ信号に(フィードバック)制御されることができる。有利には、参照経路の付加によって、比較的より大きな(フィードバック)制御領域が可能になる。尤も、代替的に、参照経路を省き、フィードバック制御器のみによってゼロ信号への相応の補償を実行することも可能である。
【0024】
本方法の更なる一実施形態では、2次測定出力信号のための目標値を(予め)設定すること、目標値に依存してフィードバック制御器の制御信号によって2次測定出力信号に影響を及ぼすこと、依存作用及び依存作用の変化を求めるために制御信号を評価すること、が行われる。かくして、有利には、目的物の検出のために、2次測定出力信号自体ではなく、制御信号のみを評価することができる。
【0025】
フィードバック制御器は、有利には測定経路の出力に作用し、この場合、測定経路の2次測定出力信号は、フィードバック制御器を有する制御回路の擾乱量(Stoergroesse)として把握することができる。従って、フィードバック制御器は、参照経路及び測定経路に前置及び後置することができる。制御量としては、2次測定出力信号が使用される。原理的には、2次測定出力信号を任意の信号形態に(フィードバック)制御することができる。尤も、2次測定出力信号を上述のゼロ信号に(フィードバック)制御するととりわけ有利であることが(本発明により)判明したが、この場合、有利にはフィードバック制御器によって専ら雑音のみを有する信号が生成される。有利には、フィードバック制御器の入力(端)として機能する相応のフィードバック制御測定経路によって、この雑音において変化を検出し、相応に補償することを極めて簡単に行うことができる。かくして、有利には、2次測定出力信号は比較的大きく増幅されることができる。かくして、有利には、目的物の格段に高感度の検出を行うことができる。特別な例では、本来の(eigentlich)測定経路、とりわけその出力(端ないし段)は、有利には該フィードバック制御の基礎をなす更なるフィードバック制御経路に後置されるフィードバック制御経路になる。フィードバック制御器は、従って、有利には、測定経路それ自体に作用するのではなく、測定経路の2次測定出力信号を制御信号の加算によって調整(設定)する。
【0026】
本方法の更なる一実施形態では、物体に対する(物体までの)センサ(複数)の距離に依存する制御信号の推移を求めることが実行される。有利には、まず、距離に依存する推移が求められる。代替的に、この推移は記憶及び/又はバッファリング(一時的に記憶)されることができる。有利には、これは、作用相関(Wirkzusammenhang)及び/又は距離の関数の形で実行することができる。従って、有利には、制御信号の変化が、場合により過誤によって生じる物体に対するセンサ(複数)の距離の変化によって生じているのか又は目的物の存在のために生じているのかを、制御信号及び依存性推移を介して推定することができる。
【0027】
本方法の更なる一実施形態では、制御信号の位相空間におけるベクトル解析の形で推移を求めることが実行される。位相空間では、既知の手段・方法で、制御信号の非時間依存性状態を記述することができる。これは、とりわけ、(1つの)座標系の4つの象限で実行することができるが、この場合、位相空間における1つの点は、それぞれ、制御信号の1つの非時間依存性のあり得る状態に対応する。有利には、推移を求めるために、複数のそのような点を求めることができ、この場合、これらの点は有利には位相空間においてグラフで表すことができる。これらの複数の点は、有利には、複数の物体の特定の1つに対し、距離に依存する制御信号の関数を表すことができる。従って、有利には、任意の時点において、瞬時的に記録された制御信号と推移を比較できる。これは、有利には、フィードバック制御回路ないしフィードバック制御器の定常状態において(in einem eingeschwungenen Zustand)実行される。従って、有利には、まず、フィードバック制御回路及び/又はフィードバック制御器の定常状態への移行(Einschwingen)ないし目標値の調整(設定:Einstellen)が行われる。その際、一致及び/又はほぼ一致が生じている限りにおいて、センサ(複数)の測定領域に物体のみが存在するという仮定のもとで、少なくとも定性的に(質的に)距離を推定(ないし推論)することができる。尤も、測定については、他の解釈、即ち、制御信号と推移の任意の点の一致が、目的物がセンサ(複数)の測定領域に存在しない又はその反対であることと同一視できるよう、制御信号が評価されるという解釈も格別に有利である。有利には、この決定は、物体に対するセンサ(複数)の実際の距離に依存しないで(独立に)行うことができる。従って、求められた推移を知っていれば、例えば手操作での案内及び/又は軽度の傾きによって引き起こされるような物体に対するセンサ(複数)の距離が過誤によって変化する場合にも、目的物は存在しないと推定することができる。従って、これを逆に解釈すれば、制御信号が最早推移と一致しない及び/又は少なくとも最早推移とほぼ一致しない程に制御信号が変化すると直ちに、目的物は存在すると推定することができる。
【0028】
本方法の更なる一実施形態では、目的物の検出の前に、物体へのセンサ(複数)の接近中における推移を求めることが実行される。求める(ないし検出する:Ermitteln)とは、位相空間における制御信号の点(複数)が接近中に求められかつ記憶されることとして理解することができる。これは、物体が検出されると直ちに、従って、位相空間において無負荷状態から逸れた点が現れると直ちに、実行できる。これは、推移を形成する点群を求めることができるように、複数回実行できる。有利には、推移(を求めること)は、本来的測定の直前に、従って検出の直前に行われ得る。代替的に、推移を目的物の検出の直前に求めるのではなく、複数の物体について予め試験を行うことも可能であり、この場合、個々の物体について夫々相応の推移を相応のテーブルに記憶しておくことができる。この場合、本来の測定中、推移を求めるとは、推移を測定することではなく、予め記憶されたテーブルから単に選択することであると理解することができる。この手段・方法により、同様に実際に存在する物体についても、位相空間における制御信号の適切な推移を求めることができる。
【0029】
本方法の更なる一実施形態では、位相空間において推移又はベクトルによって画成される面を求めること、及び、該面に依存する変化を求めることが実行される。依存作用は、少なくとも領域的(部分的)に(bereichsweise)及び/又は近似的に(naeherungsweise)一定の位相角を有するが、距離に依存する大きさを有する、位相空間における測定信号を表すベクトルとして記述(規定)できることが(本発明により)認識された。少なくとも、過誤により生じる距離変化によって引き起こされる角度変化は目的物の存在によって引き起こされる角度変化と比べて小さいことが想定できる。従って、目的物によって引き起こされるベクトルの変化は角度変化に影響を及ぼす。目的物が存在する場合であってもベクトルの大きさは同様に少なくとも大幅に距離のみに依存するため、目的物の存在は実質的に角度変化のみを引き起こすが、このことからして既に目的物の存在を推定することができるであろう。従って、測定中における大きさ変化は無視することができ、場合により過誤により引き起こされる距離変化に起因するものとみなすことができる。評価のためには、角度変化それ自体及び/又は目的物がある場合のベクトルと目的物がない場合の更なるベクトルによって画成される面を評価することができる。同様に、これは、上記の推移と目的物によって生成される更なる推移によって画成される面によっても可能である。かくして、有利には、角度変化は、たとえ距離の変化によって引き起こされる小さいものであっても、同様に、目的物の評価の際ないしその検出の際に度外視することができる。
【0030】
本方法の更なる一実施形態では、推移のための閾値を予め設定すること、制御信号と閾値を比較すること、及び、制御信号が閾値を上回るよう推移から外れると直ちに、目的物を検出すること、が実行される。閾値とは、個別の点及び/又は推移からの距離として理解することができる。とりわけ、推移を取り囲む周囲領域として理解することができるが、この場合、周囲領域は位相空間において記述(規定)することができる。閾値を上回る(閾値の超過)とは、周囲領域を離脱することと理解することができる。従って、有利には、閾値によって、依存作用の変化を求めることができる。依存作用とは、制御信号の推移として理解することができる。有利なことに、依存作用の変化は、周囲領域の離脱及び/又は閾値の超過と同等(同義)であることが(本発明により)認識された。代替的に、依存作用の変化とは、目的物が物体と一緒にセンサ(複数)の検出領域に存在する場合に、位相空間において解析可能な制御信号に対し異なる関数的関係が適用されることであると理解することも可能である。測定のために、有利には、この変化を求めることができる。代替的に又は付加的に、これを位相空間における制御信号の更なる関数として記述(規定)することも可能であり、その際、関数は、まず、推移の周囲領域を貫通し、次いで、これの外部に出るよう移動すると考えられる。尤も、原理的には、目的物の検出のためには、変化それ自体を求めること及びそれに基づいて目的物を表示ないし検出することのみが必要とされる。とりわけ、目的物と一緒にある物体についても、複数の関数的関係を求め、(参照)テーブルに組み入れることも可能であり、この場合、作用の変化は、テーブルの1つの値への割り当てによって行うことができ、かくして、目的物を検出することができる。
【0031】
本測定装置によって、有利には、目的物の検出は、センサ(複数)に対する物体の距離に実質的に依存しないで実行することができる。本測定装置は、とりわけ上述の方法を実行するために設計、調整、構成及び/又はプログラムされている。その限りにおいて、本測定装置は上述の各利点を有する。
【0032】
本測定装置の一実施例は、センサ(複数)を有する回路装置と、解析装置に前置されると共に、回路装置に対し入力側では後置されかつ出力側では並列接続されたフィードバック制御器を有し、作用及び/又は作用の変化を求めるためのフィードバック制御器の制御挙動は解析装置によって解析することができる。有利には、フィードバック制御器の制御挙動に依存して、作用及び/又は作用の変化を求めることができる。これは、とりわけ、(1つの)位相空間において実行できる。とりわけ(1つの)制御信号の評価によって行うことができるが、ここで、制御挙動とは、制御信号の信号推移として理解することができる。
【0033】
本発明の更なる利点は、従属請求項及び実施例についての後述の説明から明らかになる。
【0034】
以下に本発明を図面に記載した実施例を用いて詳細に説明する。
【図面の簡単な説明】
【0035】
図1】物体の背後に隠れた目的物の検出方法の一例のフローチャート。
図2図1に記載した方法を実行するための一測定装置の一例のブロック回路図。
図3図2に示した測定装置の回路装置(Schaltungsanordnung)の更なるブロック回路図。
図4図3に示した回路装置を詳細化した一実施例。
図5】物体への接近中における、図4に示した回路装置のセンサ。
図6】物体の背後に隠れた目的物を検出するための、物体に沿った運動中における、図5に示したセンサ。
図7】或る位相空間における、依存作用及び該依存作用の変化のグラフ。
【実施例】
【0036】
本発明を例示的に添付の図面を参照して詳細に説明する。尤も、実施例は、単なる例に過ぎず、本発明のコンセプトを特定の構成に限定することは意図されていない。本発明を詳細に説明する前に、(以下に説明する)装置の各部材及び方法の各ステップは、何れも変更(修正)可能であり、従って本発明はそれらに限定されていないことに留意すべきである。本願において使用する概念は、特定の実施例(複数)を説明するためにのみ特定されており、限定的には使用されていない。更に明細書において又は特許請求の範囲において単数形又は不定冠詞が使用される場合、文脈全体から一義的に別異のことが明確にされていない限り、これらは関連要素の複数(存在すること)も意味するものとする。
【0037】
図2は、物体の背後に隠れた目的物を検出するための測定装置55のブロック回路図を示す。測定装置55は解析(分析)装置57を有する。解析装置57を用いることにより、目的物3を検出するための測定装置55によって生成される信号の解析、とりわけベクトル解析を実行することができる。測定装置55は、更に、回路装置59を有する。回路装置59は、電気的ないし電子的構造要素に加えて、目的物の検出のために当該目的物と相互作用することが可能なセンサを有する。回路装置59は2次測定出力信号39を供給する。2次測定出力信号39は交流電圧の形で存在することができる。無負荷ないし補償された状態では、2次測定出力信号39は、とりわけ情報を含まない雑音のみを含むいわゆるゼロ信号(Nullsignal)として存在し得る。
【0038】
更に、測定装置55はフィードバック制御作用列(ないしチェーン:Regelungswirkkette)75を有する。フィードバック制御作用列75は、2次測定出力信号39のための目標値(基準値)40と比較するための目標値比較器77と、該目標値比較器77に後置された(下流に配置された)フィードバック制御器(Regler)43を有する。フィードバック制御器43は制御信号(Stellsihnal)41を生成する。制御信号41は、とりわけパルス幅変調の矩形波信号として生成されることができる。任意的に、フィードバック制御器43には復調器79が後置される。復調器79は例えば平滑化フィルタを有することができる。とりわけ、復調器79は制御信号41を基本波に復元することも可能である。とりわけ、制御信号41は3レベル信号ないし3位置信号(Dreipunktsignal)として存在する。尤も、代替的に又は付加的に、フィードバック制御器43が複数のパルス幅変調(器)を有し、そのため、これらが制御信号41に加算可能にすることも可能である。なお、この制御信号は多レベル信号(Mehrpunktsignal)として存在することも可能である。
【0039】
フィードバック制御作用列75には加算部81が後置されている。加算部81は、単純なケースでは、フィードバック制御作用列75の出力端と回路装置59の出力端の電気的コンタクト部であり得る。
【0040】
好ましい一実施例では、目標値比較器77には、2次測定出力信号39のための目標値40が供給されるが、これはゼロ信号に相当する。これに応じて、フィードバック制御器43は、制御信号41が2次測定出力信号39に対し逆相をなし、その結果、加算部81の下流において、両信号が加算されて有利にはゼロ信号になるよう、制御信号41を調整(設定)する。フィードバック制御作用列75は、加算部81の出力量として生成される制御量83の測定のための、目標値比較器77に前置される(上流に配置される)詳細には説明しないフィードバック制御測定経路(Regelungsmessstrecke)を有することができる。制御量83は、(フィードバック)制御が完了した状態(安定した状態)において、情報無しに調整されることができる、即ち、場合によっては、存在し得る雑音以外には、信号成分を、これを目標値40が(予め)規定して(与えて)いる限り、含まないことができると有利である。図2から分かる通り、目的物の実際の検出のために設けられた回路装置59は、フィードバック制御作用列75に対する擾乱(外乱)量(Stoergroesse)として作用する。目的物3の検出のために、制御信号41又は制御信号41に依存する信号は、解析装置57に供給されることができると有利である。解析装置57により、制御信号41又は制御信号に依存する信号の解析(分析)ないし評価によって、目的物が物体の背後に存在するか否かを求める(決定する)こと、即ち、依存作用15及び/又は依存作用の変化17を求めることができると有利である。
【0041】
図3は、図2に示した回路装置59のブロック回路図を詳細に示す。回路装置59には、図面参照符号85のみによって象徴的に表したクロック発生器によって生成されるクロック信号87が供給される。クロック信号87は、とりわけ、矩形波信号であり得る。更に、回路装置59には、更なるクロック信号89が供給される。更なるクロック信号89は、クロック信号87に対し逆相になっている。とりわけ、更なるクロック信号89は、相応の回路によってクロック信号87から生成することができる。クロック信号87及び89は、任意的に設けられる前置回路(Vorschaltung)91に供給される。任意的な前置回路91は、とりわけ、クロック信号87及び89の平滑化及び/又はこれらの振幅の増幅及び/又はこれらの周波数の変化のために設けることができる。
【0042】
出力量として、前置回路91は、とりわけ平滑化及び/又は増幅されたクロック信号87の形で存在する測定交流電圧21と、とりわけ平滑化及び/又は増幅された更なるクロック信号89として存在する参照交流電圧29を有する。とりわけ、平滑化後の測定交流電圧21及び参照交流電圧29は、正弦曲線状の又は少なくともほぼ正弦曲線状の推移(波形)を有する。
【0043】
測定交流電圧21は、測定経路(Messstrecke)33の入力量として使用される。参照交流電圧29は、参照経路(Referenzstrecke)31の入力量として使用される。参照経路31は、測定経路33に対し並列接続されており、とりわけ、予め設定された及び/又は予め設定可能な状態の測定経路33に対応するよう電気的に接続及び/又は構成されている。この状態は、とりわけ、測定経路33の無負荷状態、即ち、測定経路33が物体1も物体1の背後に隠れた目的物3も検出していない状態(場合)であり得る。
【0044】
測定経路33が目的物3の検出を目的として目的物3及び/又は目的物3を隠している物体1と相互作用できることは、図3に二重矢印93によって象徴的に示されている。図3には、物体1及び目的物3は部分的にしか記載されていない。物体1は、壁及び/又は間柱(スタッド)構造(Staenderbauweise)で構築された壁の壁面材(Beplankung)であり得る。目的物3は、そのような壁の対応する間柱(スタッド)、とりわけ木製桁材(Balken)及び/又は金属製スタッドであり得る。
【0045】
物体1及び/又は目的物3との相互作用の結果として、測定経路33は1次測定出力信号37を供給(生成)する。参照経路31は、二重矢印93によって象徴的に示された相互作用に依存しない参照出力信号35を供給(生成)する。参照出力信号35と1次測定出力信号37は加算されて、図2に記載された2次測定出力信号39になる。原理的には、参照経路31は不可欠ではないが、2次測定出力信号39が既述の通り回路装置59の予め設定された又は予め設定可能な状態におけるゼロ信号として、とりわけ更なる制御作用及び/又は影響なしに、生成可能である可能性を有利に提供する。
【0046】
図4は、図3に示した回路装置59の詳細図である。但し、前置回路91は図示されていない。回路装置59の測定経路33は、測定交流電圧21が印加されるフィルタ25を有する。フィルタ25は、測定交流電圧21の位相シフト23を引き起こし、出力量として第1交流電圧5を供給する。従って、第1交流電圧5は、測定交流電圧21に対し位相がシフトされている。フィルタ25は、任意の構造を有することができ、とりわけローパス(フィルタ)又はハイパス(フィルタ)として構成されることができる。フィルタ25の出力端は、測定経路33の第1センサ7に接続されている。従って、第1センサ7には、第1交流電圧5が印加される。第1センサ7は、好ましくは、電極である。第1センサ7の電極は、好ましくは、リング状の形状を有する。
【0047】
第1センサ7は、第2センサ11に近接して配置されている。第2センサ11は、好ましくは、円盤状(ディスク状)の形状を有し、第2センサ11は、好ましくは、第1センサ7の内部において同心状に配置されている。回路装置59の測定経路33は、第1インピーダンス95及び第2インピーダンス97を有する測定電圧分圧器27を有する。第1インピーダンス95と第2インピーダンス97の間において、第2交流電圧9を取り出すことができる。第2交流電圧9は第2センサ11に印加される。第2センサ11はとりわけ電極である。第1センサ7及び第2センサ11の接続関係を逆にすることも可能である。これらのセンサは互いに近接して配置されていると、従って互いに電気的に相互作用することができると有利である。
【0048】
参照経路31は、測定経路33に並列接続されており、好ましくは、測定経路33に類似する構造を有する。詳細には、参照経路31は、参照フィルタ99、第3インピーダンス101、第4インピーダンス103、第5インピーダンス105及び第6インピーダンス107を有する。
【0049】
インピーダンス95、97、101〜107は、好ましくは、コンデンサである。第3インピーダンス101は、好ましくは、測定経路33の第1インピーダンス95に相当する。第4インピーダンス103は、好ましくは、第2インピーダンス97に相当する。第5インピーダンス105は、好ましくは、第1センサ7と第2センサ11の間に生じるキャパシタンスを補償する。第6インピーダンス107は、好ましくは、第1センサ7のキャパシタンスに相当し、とりわけ、物体1及び/又は目的物3との相互作用時の第1センサ7のキャパシタンスに相当する。更に、好ましくは、参照フィルタ99の伝達(通過)特性は、測定経路33のフィルタ25の伝達(通過)特性に相当する。その結果、測定経路33の端部に存在する1次測定出力信号37と参照経路31の端部に存在する参照出力信号35は、測定交流電圧21と参照交流電圧29の並列接続及び逆相性のために、2次測定出力信号39に、場合によっては既述のゼロ信号の形で、加算されることができることは明らかである。2次測定出力信号39は、任意的に、図4に単に破線で示した増幅器109によって増幅され、詳細には記載されていない測定経路及び/又は該測定経路に後置された目標値比較器77に供給されることができる。回路装置59の矢印111で指された位置において、制御信号41が、場合によっては復調器79によって前処理されて、2次測定出力信号39に作用する様子が、矢印111によって図4に示されている。
【0050】
図5は、(断面をもって)模式的に記載された第1センサ7及び第2センサ11と、物体1及び目的物3の一部分を示す。図6は、図5に応じた一部分を示すが、図5とは異なって、第1センサ7及び第2センサ11が物体1に近接されている様子を示す。
【0051】
以下に、図5及び図6を用いて、物体1の背後にある目的物3の検出のための測定プロセスの実行を詳細に説明する。まず、物体1への第1センサ7及び第2センサ11の接近51を実行する。その結果、第1センサ7及び第2センサ11は物体1と相互作用する。接近51中、この作用を求めることができ、場合によっては記憶できると有利である。これは、物体1に対する第1センサ7及び第2センサ11の距離に依存して行うことができると有利である。次に、図6から分かるように、運動19が実行される。その際、第1センサ7及び第2センサ11は物体1の背後に隠れた目的物3の方向に移動される。目的物3が同様に第1センサ7及び第2センサ11の検出領域に位置する(入る)と直ちに、作用に変化が生じる。作用のこの変化に依存して、目的物3を検出することができると有利である。有利なことに、作用を定性的(質的)に求める(決定する)ことで十分である。物体1に対する第1センサ7及び第2センサ11の具体的な実距離に関する定量的(量的)表明(即ち出力:Aussage)は、有利なことに、必須ではない。
【0052】
以下に、図1を用いて、物体1の背後にある目的物3の検出方法を詳細に説明する。第1ステップ61では、第1交流電圧5が第1センサ7に印加される。第2ステップ63では、第2交流電圧9が第2センサ11に印加される。第3ステップ65では、距離13に依存する物体1の作用が求められる(決定される)。この作用は、図4では、二重矢印と図面参照符号15によって表されている。作用15を求めるために、物体1及び目的物3に対する第1センサ7及び第2センサ11の相対的な運動19が実行される。第1センサ7及び第2センサ11は、測定の開始時に、物体1に向って動かされる(近づけられる)と有利である。
【0053】
第4ステップ67では、距離13に依存する作用15の変化17が求められる。これは、とりわけ第1センサ7及び第2センサ11の手動による長手方向(に沿った)案内(Entlangfuehren)による、物体1に沿った、とりわけ物体1の表面に沿った第1センサ7の運動19中に実行されると有利である。作用15は、有利には距離13に依存し、とりわけ関数及び/又は作用相関(Wirkzusammenhang)として存在する。比較(ステップ)73では、とりわけ予め求められかつ記憶された依存作用15と、運動19中に現れる実際の作用ないし依存作用15の変化17(図2)の比較が行われる。とりわけ、比較73は、変化17と依存作用15との比較を可能にする閾値53に基づいて行われる。閾値53が上回られない場合、方法は、目的物3が第1センサ7及び第2センサ11の検出領域に存在しないことを示す第5ステップ69に分岐する。第5ステップ69は、分岐して第4ステップ67に戻る。これは、比較73の閾値53が上回られ、それによって方法が第6ステップ71に分岐するまでの間、繰り返し(zyklisch)実行される。第6ステップ71は、目的物3が第1センサ7及び第2センサ11の検出領域に存在すること、従って検出されていることを示す。とりわけ、複数の閾値を設定(定義)し、それらに基づいて比較を行うことも可能であり、その際、目的物3を検出するために、複数の閾値の幾つが超過されたかを示すことができる(超過された閾値の数に応じて目的物3の検出を判断することができる)。かくして、目的物3の位置をより正確に求めることができる。まず、変化17それ自体を例えば測定値(Masszahl)又はスカラー(値)の形で求め、これを比較73に供給することが考えられる。或いは、運動19中に現れる実際の作用に対する、求められかつ記憶された依存作用15の直接的な比較73を実行し、その結果、比較73によって変化17を求め、かくして目的物3の存在を推定可能にすることも考えられる。何れの場合でも、依存作用15の即ち距離依存関数及び/又は作用相関の変化17に依存する目的物3の検出が実行される。
【0054】
以下に、図2に示した解析装置57に関して本発明の方法を詳細に説明する。制御信号41又はこれに依存する信号は、位相空間49において、ベクトル解析47によって評価されることができる。ベクトル解析47の結果として、依存作用15は、位相空間49における推移(曲線)45として示されることができる。推移45は、とりわけ、フィードバック制御器43の制御信号41の複数の時間非依存性状態であり、これらの状態は物体1の方向への第1センサ7及び第2センサ11の接近中に生じる。従って、推移45の位相点(複数)は、距離13に依存する、物体1と第1センサ7及び第2センサ11の相互作用の、とりわけ定性的な、関数的関係を表す。有利には、物体1に対する第1センサ7及び第2センサ11の僅かな傾きは、制御信号41の変化を引き起こすが、専ら、推移45上又は推移45に沿った制御信号41の変化のみを引き起こす。
【0055】
ここで、目的物3が第1センサ7及び第2センサ11の検出領域に位置する(入る)と直ちに、変化17が、ベクトル解析47によって、推移45からの制御信号41の状態のずれ(偏位)として求めることができると有利である。この変化17は、位相空間49におけるベクトルの大きさ(Betrag)に非依存的に求めることができると有利である。寧ろ、位相空間49における制御信号41の相応のベクトルの角度のみが推移45からのずれとして規定的である(massgeblich)と有利である。とりわけ、閾値53として、ベクトル解析のそのような角度のための予設定値(Vorgabe)を使用することができる。代替的に又は付加的に、推移45が周囲領域(幅)を有すると理解することも可能であり、この場合、推移45の周囲領域に存在しない制御信号41の位相点は、依存作用15の変化17を表している、従って、目的物3を検出している(ことを表している)。
【0056】
図7は、位相空間49を詳細に表したグラフを示す。依存作用15は、推移45によって表されている。更に、図7には、変化17後に、従って物体1とその背後にある目的物3が第1センサ7及び第2センサ11の測定領域に位置している場合に生じる更なる推移113が点線で表されている。
【0057】
目的物3によって引き起こされる推移45の変化17が、推移45と点線で表された変化ライン115と新たに生じた推移113の間に(1つの)面が形成されるよう、ベクトルの角度変化を伴うととりわけ有利であることが分かった。これは、有利なことに、第1センサ7及び第2センサ11の傾き又は浮揚(離隔上昇)による第1センサ7及び第2センサ11と物体1の間の距離13が場合により変化する場合にも確実に可能である。更なる推移113は、推移45に近接して又は少なくとも実質的に平行に延在し及び/又は類似の湾曲を有する。変化ライン115は、とりわけ距離13が同一に維持される場合において、第1センサ7及び第2センサ11が目的物3に向ってシフトされて、当該目的物3の(図6の紙面)上方(ないし手前)を横切ってシフトされるときに生じる更なる関数的関係ないし変化関数として把握することができる。この場合、変化関数上に夫々位置する位相点(複数)を記述するベクトルの有利であると認識された角度変化も生じる。例えば、図7には、第1ベクトル117、第2ベクトル119及びこれらのベクトルによって張られる(画成される)角度121が記載されている。第1ベクトル117は、推移45において終端するが、これは、第1センサ7及び第2センサ11の測定領域に物体1のみが存在する状態を表している。第2ベクトル119は、更なる推移113において終端しているが、これは、第1センサ7及び第2センサ11の測定領域に物体1と目的物3が存在する状態を表している。従って、有利なことに、変化17を認識するための種々の可能性(バリエーション)が考えられる。
【0058】
第1のバリエーションとして、変化ライン115を求めることができる。この変化ライン115上をベクトルが通過している場合、変化17を推定することができる。
【0059】
更なるバリエーションとして、更なる推移113を求めることができる。この更なる推移113が求められかつ実際の測定信号の第2ベクトル119が当該更なる推移113を指している場合、変化17を推定することができる。
【0060】
更なるバリエーションとして、角度121を求めることができる。とりわけこの角度121が(或る)閾値を上回る場合、変化17を推定することができる。付加的に、角度の大きさ(尺度ないし判断基準:Mass)は、目的物3の(或る)特性に関する情報を与えることができる。
【0061】
特に有利なバリエーションとして、まず、推移45、変化ライン115及び更なる推移113を求めることができる。そして、これらから、面123を求めることができる。面123が求められているか又は面123が或る大きさ(判断基準:Mass)を超過している場合、変化17を推定することができる。かくして、面123の生成ないし面123を求めることによって、物体1の背後の目的物3の存在を検出することができる。面123を求めるために目的物3の横切り通過中にただ1つのステップで変化ライン115及び更なる推移113を求めることも考えられるが、この場合、両者の間の移行は流れるように(滑らかに)行われ得る。重要なことは、これら(変化ライン115及び更なる推移113)と推移45によって張られる(画成される)面123が生成することないし求められることのみである。明らかであるのは、距離13のその際生じる誤った変化は重要ではない(問題にならない)ことである。なぜなら、それとは独立に面123の変化が生じ、目的物3の本来の(実際の)検出のためには、面123の絶対的大きさ(Mass)は重要ではない(問題にならない)からである。代替的に又は付加的に、面123は、ベクトル117とベクトル119によって張られる面としても求めることができる。
【0062】
要約すると、ベクトル解析47によって、2つのパラメータ即ち物体1及び/又は目的物3に対する第1センサ7及び第2センサ11の位置(第1パラメータ)及び目的物3の存在(第2パラメータ)に関するシステム挙動が試験される。有利には、2つのパラメータは、区別可能なシステム挙動を生成する。この場合、単純化すれば、距離13を第1パラメータとみなすことができる。なぜなら、とりわけ、実用上現れるような小さい角度変化は少なくともほぼ距離変化の如くに作用し及び/又は距離変化をもたらすからである。即ち、依存作用15は、第1パラメータのみが変化する場合に現れる作用である。この作用は、有利にはとりわけベクトル解析47において推移45として現れる。第2パラメータも変化すると、即ち目的物3が第1センサ7及び第2センサ11と相互作用すると、ベクトル解析47によって、変化17を求めることができ、かくして、目的物3を推定することができる。
【0063】
換言すれば、これは、目的物3が予め記憶された推移45に対する変化17を引き起こしたとき、物体1の背後の目的物3が検出されることを意味する。目的物3によって引き起こされる推移45からのずれ(偏位)は、例えば従来技術から既知であるような本発明に基づかない装置の場合、目的物3の検出の際、単に、推移45がその終点から先に続けられる(進められる:fortgesetzt)であろうことのみを意味し得る。更に、傾きによって場合によって現れる物体1に対する第1センサ7及び第2センサ11の距離13の変化の結果、目的物3が依然として第1センサ7及び第2センサ11の検出領域に存在するにも拘らず、同様に、制御信号41は変化するであろうが、この場合、制御信号41は推移45に沿って始点ないし原点(Ursprung)に戻るよう移動するであろう。これは、制御信号41が、「最大に」変化された制御信号41の点から、同じベクトルによって、再びまず推移45の終点に戻るよう移動するであろうことを意味する。物体1に対する第1センサ7及び第2センサ11の距離13の変化が更に大きくなると、制御信号41は、推移45に沿った出発点に向うその進路を更に先に進めるであろう。このような挙動は、依存作用15の変化17として理解されるべきでないことは明らかである。なぜなら、原理的に、そのような装置が検出できるのは1つのパラメータのみだからである。この場合、そのようなパラメータは例えば測定領域に存在する物体(複数)/目的物(複数)の質量(Masse)又は距離である。なぜなら、本質的に、質量(Masse)の変化も距離の変化も同じシステム応答をもたらすからである。
【0064】
これに対し、本発明によれば、目的物3に起因する依存作用15の変化17を検出することができる。有利には、目的物3に起因する依存作用15の変化17は、従って推移45からの逸れ即ち第2パラメータの変化は、第1ベクトル117と第2ベクトル119の間の角度121の角度変化を常に伴い、その結果、目的物3が存在する場合に第1センサ7及び第2センサ11と物体1の間の距離13が変化する際、第1センサ7及び第2センサ11の傾き又は浮揚(物体からの離隔:Abheben)によっても、推移45と変化17と今や推移45とほぼ平行に延伸する新たな更なる推移113の間の面123が形成される。そして、この面123は、実用的な使用においては、物体1の背後に目的物3が存在することの証拠でもある。これとは異なり、第1パラメータのみの変化即ち距離13は、第1ベクトル117の量的(大きさ)変化又は少なくとも専ら比較的小さい角度変化を実質的に伴うが、同時に面123は生成されない。有利には、何れにせよ測定過程の際に現れる距離13の小さい変化は、面123を求めるために使用することができる。第1センサ7及び第2センサ11が測定の開始時に目的物3(の位置)にセットされている(配されている)場合、とりわけ、本方法を相応に較正するために及び/又はエラー通知を出すために、とりわけ利用者に対し第1センサ7及び第2センサ11を目的物3の隣に新たにセットすることを要求するために、付加的に角度変化の方向を求めることもできる。
【0065】
有利なベクトル解析に関しては、更に、本出願人の後に公開される出願(出願番号DE 10 2013 226 887.4、DE 10 2014 010 671.3)(公開番号も同じ)が参照される。これらの文献は引用を以って本願の内容を構成し、とりわけその図面、図面の説明及び特許請求の範囲が参照される。
【0066】
本発明によって、物体1の背後に隠れた目的物3の検出は、とりわけ目的物3の検出装置が手動で(手操作ないし手持ちで)物体1の上方(ないし手前)を通過するよう案内される場合であっても、物体1に対する装置の相対的位置、とりわけ角度位置から可及的に独立に目的物3を認識(検出)することができるように、改善される。
【0067】
本開示は、添付の請求の範囲に均等な範囲内において多種多様な修正、変更および適合化を施すことができることは自明である。
【符号の説明】
【0068】
1 物体
3 目的物
5 第1交流電圧
7 第1センサ
9 第2交流電圧
11 第2センサ
13 距離
15 依存作用
17 変化
19 運動
21 測定交流電圧
23 位相シフト
25 フィルタ
27 測定電圧分圧器
29 参照交流電圧
31 参照経路
33 測定経路
35 参照出力信号
37 1次測定出力信号
39 2次測定出力信号
40 目標値
41 制御信号
43 フィードバック制御器(Regler)
45 推移(Verlauf)
47 ベクトル解析
49 位相空間
51 接近
53 閾値
55 測定装置
57 解析(分析)装置
59 回路装置
61 第1ステップ
63 第2ステップ
65 第3ステップ
67 第4ステップ
69 第5ステップ
71 第6ステップ
73 比較(ステップ)
75 フィードバック制御作用列(チェーン)
77 目標値比較器
79 復調器
81 加算部
83 制御量
85 クロック発生器
87 クロック信号
89 更なるクロック信号
91 任意の前置回路
93 二重矢印
95 第1インピーダンス
97 第2インピーダンス
99 参照フィルタ
101 第3インピーダンス
103 第4インピーダンス
105 第5インピーダンス
107 第6インピーダンス
109 増幅器
111 矢印
113 更なる推移
115 変化ライン
117 第1ベクトル
119 第2ベクトル
121 角度
123 面
図1
図2
図3
図4
図5
図6
図7
【国際調査報告】