(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US
患者の目の白内障手術を計画するための改善されたデバイス、システム及び方法は、以前の矯正手術由来のデータに基づき有効な手術ベクトル関数を導出することにより、以前の矯正手術の結果を、特定の患者の計画した白内障手術に組み込む。例示的な有効な手術ベクトルは、影響マトリクスを用い、これにより、白内障手術中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータを特定することにより、白内障手術の全体的な有効性が増加するように、改善された屈折矯正の生成が可能となる。
前記患者の目の前記計画した手術は、計画した手術ベクトルによって特徴付けられ、前記影響マトリクスは、前記入力ベクトルの複数の成分がそれぞれ前記計画した手術ベクトルの複数の成分を変化させるように導出される、請求項6に記載の方法。
前記患者の目の前記計画した手術は、計画した手術ベクトルによって特徴付けられ、前記影響マトリクスは、複数の前記計画した手術ベクトル成分が、前記入力ベクトルの複数の成分によりそれぞれ変化するように導出される、請求項6に記載の方法。
前記術前ベクトル及び前記入力ベクトルは、屈折、前記患者及び/又は手術の設定を特徴付ける非屈折性補助因子、並びに前記目の前記高次収差を特徴付ける、請求項1に記載の方法。
前記眼内レンズの前記1つ以上のパラメータは、前記有効な手術ベクトル関数の前記影響マトリクスに前記入力ベクトルを乗じて、条件付き入力ベクトルを定義することにより導出され、前記条件付き入力ベクトルのマトリクス成分により前記白内障手術を計画することにより導出される、請求項6に記載の方法。
前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータは、前記IOLの度数と、前記IOLが配置される前記患者の目の中の位置と、を含む、請求項1に記載の方法。
患者の目の白内障手術を計画するための方法であって、影響マトリクスは、関連する目のそれぞれの以前の矯正手術に関して、前記関連する目の目標屈折を判定することと、前記関連する目の測定術前高次収差と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により複数の以前の矯正手術から導出されており、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出され、前記方法は、
前記患者の目の測定術前高次収差と前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信することと、
前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節することと、を含む、方法。
前記プロセッサは、前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータの前記導出を実施するための機械可読命令を具現化する有形媒体を含む、請求項14に記載のシステム。
前記プロセッサは、前記白内障手術により誘導される前記患者の目の目標屈折に応じて、前記患者の目についての入力ベクトルを、前記患者の目の測定術前収差と前記目標との間の差を特徴付ける目的の屈折矯正(IRC)を判定することにより、生成するように構成されている、請求項14に記載のシステム。
前記プロセッサは、前記関連する目の目的の屈折矯正ベクトル(IRC)に応じて、以前の矯正手術から前記有効な手術ベクトル関数を導出し、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定するように構成され、それぞれのSIRCは、関連する目の前記測定術前収差と前記術後収差との間の差を特徴付ける、請求項17に記載のシステム。
前記患者の目の前記計画した白内障手術は、計画した手術ベクトルを含み、前記入力ベクトルの複数の成分はそれぞれ、前記計画した手術ベクトルの複数の成分を変化させ、かつ/又は複数の前記計画した手術ベクトル成分は、前記入力ベクトルの複数の成分によりそれぞれ変化する、請求項22に記載のシステム。
前記入力ベクトルは、前記患者の目の屈折を特徴付ける屈折成分、前記患者及び/又は治療の設定を特徴付ける非屈折性補助因子、並びに前記目の前記高次収差を特徴付ける高次成分を含む、請求項22に記載のシステム。
前記プロセッサは、前記有効な手術ベクトル関数の前記影響マトリクスに前記入力ベクトルを乗じることにより、前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータを導出するように構成されている、請求項22に記載のシステム。
前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータは、前記IOLの度数と、前記IOLが配置される前記患者の目の中の位置と、を含む、請求項26に記載のシステム。
患者の目の白内障手術を計画するためのシステムであって、影響マトリクスは、関連する目のそれぞれの以前の矯正手術に関して、前記関連する目の目標屈折を判定することと、前記関連する目の測定術前高次収差と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により、複数の以前の矯正手術から導出されており、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出され、前記システムは、
前記患者の目の測定術前高次収差と前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信するための入力部と、
前記入力部に連結されたプロセッサであって、前記プロセッサは、前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節するように構成されている、プロセッサと、を備える、システム。
前記測定術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される要素を含む、請求項29に記載の方法。
前記患者の目の前記計画した白内障手術は、計画した手術ベクトルにより特徴付けられ、前記影響マトリクスは、前記入力ベクトルの複数の成分がそれぞれ、前記計画した手術ベクトルの複数の成分を変化させるように導出される、請求項35に記載の方法。
前記患者の目の前記計画した白内障手術は、計画した手術ベクトルにより特徴付けられ、前記影響マトリクスは、複数の前記計画した手術ベクトル成分が、前記入力ベクトルの複数の成分によりそれぞれ変化するように導出される、請求項36に記載の方法。
前記患者の目の前記計画した白内障手術は、計画した手術ベクトルにより特徴付けられ、前記影響マトリクスは、前記患者の目の屈折形状を特徴付ける前記入力ベクトルの全成分が、前記患者の目の前記屈折形状の変化を特徴付ける前記計画した手術ベクトルの全成分を変化させることができるように導出される、請求項36に記載の方法。
前記術前ベクトル及び前記入力ベクトルは、屈折、前記患者及び/又は白内障手術の設定を特徴付ける非屈折性補助因子、並びに前記目の前記光学特性を特徴付ける、請求項29に記載の方法。
前記患者の目の前記白内障手術において、前記患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータは、前記有効な手術ベクトル関数の前記影響マトリクスに前記入力ベクトルを乗じて、条件付き入力ベクトルを定義することにより導出され、前記条件付き入力ベクトルのマトリクス成分により前記白内障手術を計画することにより導出される、請求項36に記載の方法。
前記関連する目のそれぞれの以前の矯正手術に関して、前記IRCは、測定術前低次収差と目標低次収差との間の差を特徴付けるように更に判定され、前記患者のIRCベクトルは、測定術前低次収差と前記目標屈折との間の差を特徴付けるように更に定義される、請求項41に記載の方法。
前記調節されたIRCに基づいて、前記患者の目の前記白内障手術において前記患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータを選択することを更に含む、請求項42に記載の方法。
患者の目の白内障手術を計画するための方法であって、影響マトリクスは、関連する目のそれぞれの以前の矯正手術に関して、前記関連する目の目標屈折を判定することと、前記関連する目の測定術前光学特性と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、前記関連する目の前記測定術前光学特性と測定術後光学特性との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により、複数の以前の矯正手術から導出されており、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出され、前記方法は、
前記患者の目の測定術前光学特性と前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信することと、
前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節することと、を含む、方法。
前記患者の目の前記術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される少なくとも1つの要素を含み、
前記複数の以前の矯正手術のそれぞれに関して、前記術前ベクトルは、手術前の前記関連する目の光学特性を特徴付け、前記光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される1つ以上の要素を含み、前記術後ベクトルは、手術前の前記関連する目の光学特性を特徴付け、前記光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される1つ以上の要素を含む、請求項45に記載のシステム。
前記白内障手術において前記患者の目に埋め込まれる前記IOLの前記1つ以上のパラメータは、前記IOLの度数と、前記IOLが埋め込まれる前記患者の目の中の位置と、を含む、請求項46に記載のシステム。
前記プロセッサは、前記白内障手術により誘導される前記患者の目の目標屈折に応じて、前記患者の目についての入力ベクトルを、前記患者の目の測定術前収差と前記目標との間の差を特徴付ける、目的の屈折矯正(IRC)を判定することにより、生成するように構成されている、請求項45に記載のシステム。
前記入力部に連結された収差計を更に備え、前記収差計は、前記目の前記低次収差及び目の前記高次収差を感知し、前記低次収差及び前記高次収差を前記プロセッサに送信する、請求項45に記載のシステム。
前記入力部に連結された光干渉断層撮影測定装置を更に備え、前記光干渉断層撮影測定装置は目の前記光学特性を感知し、前記光学特性を前記プロセッサに送信する、請求項45に記載のシステム。
前記入力部に連結された角膜曲率測定装置を更に備え、前記角膜曲率測定装置は、目の前記光学特性を感知し、前記光学特性を前記プロセッサに送信する、請求項45に記載のシステム。
前記プロセッサは、前記関連する目の目的の屈折矯正ベクトル(IRC)に応じて、以前の矯正手術から前記有効な手術ベクトル関数を導出し、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定するように構成され、それぞれのSIRCは、関連する目の前記測定術前収差と前記術後収差との間の差を特徴付ける、請求項48に記載のシステム。
前記患者の目の前記計画した白内障手術は、計画した手術ベクトルを含み、前記入力ベクトルの複数の成分はそれぞれ、前記計画した手術ベクトルの複数の成分を変化させ、かつ/又は複数の前記計画した手術ベクトル成分は、前記入力ベクトルの複数の成分によりそれぞれ変化する、請求項48に記載のシステム。
前記入力ベクトルは、前記患者の目の屈折を特徴付ける屈折成分、前記患者及び/又は手術の設定を特徴付ける非屈折性補助因子、並びに前記目の前記光学特性を特徴付ける成分を含む、請求項48に記載のシステム。
前記目の前記光学特性を特徴付ける前記成分は、前記目の高次収差を特徴付ける高次成分、前記目の低次収差を特徴付ける低次成分、前記目の角膜トポグラフィ測定値を特徴付ける角膜トポグラフィ測定成分、前記目の光干渉トポグラフィ測定値を特徴付ける光干渉断層撮影測定成分、及び前記目の角膜曲率測定値を特徴付ける角膜曲率測定値成分からなる群から選択される要素を含む、請求項59に記載のシステム。
前記プロセッサは、前記有効な手術ベクトル関数の前記影響マトリクスに前記入力ベクトルを乗じることにより、前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータを導出するように構成されている、請求項58に記載のシステム。
前記患者の目の前記術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される少なくとも1つの要素を含み、
前記複数の以前の矯正手術のそれぞれに関して、前記術前ベクトルは、手術前の前記関連する目の光学特性を特徴付け、前記光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される1つ以上の要素を含み、前記術後ベクトルは、手術後の前記関連する目の光学特性を特徴付け、前記光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される1つ以上の要素を含む、請求項62に記載のシステム。
前記患者の目の前記測定術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される要素を含む、請求項62に記載のシステム。
前記白内障手術において前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータは、前記IOLの度数と、前記IOLが埋め込まれる前記患者の目の中の位置と、を含む、請求項62に記載のシステム。
患者の目の白内障手術を計画するためのシステムであって、影響マトリクスは、関連する目のそれぞれの以前の矯正手術に関して、前記関連する目の目標屈折を判定することと、前記関連する目の測定術前光学特性と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により、複数の以前の矯正手術から導出されており、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出され、前記システムは、
前記患者の目の測定術前光学特性と、前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信するための入力部と、
前記入力部に連結されたプロセッサであって、前記プロセッサは、前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節するように構成されている、プロセッサと、を備える、システム。
前記関連する目の前記測定術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される要素を含む、請求項66に記載のシステム。
【発明を実施するための形態】
【0066】
本発明は、全般的には、患者の目の屈折構造を診断し、屈折構造の治療を計画及び/又は治療するための改善されたデバイス、システム及び方法を提供する。本発明の例示的実施形態では、目の屈折性の測定における最近の動向、及び、特に、ヒトの患者の目の高次収差を特定及び特徴付ける、現在利用可能な(かつ/又は現在開発されている)ツールを使用する。目の光学系全体にわたって収差を測定するために使用する、現在幅広く用いられているハルトマンシャック波面センサ及び他の波面センサに加えて、本発明の実施形態で用いられる測定データ及びシステムは、トポグラフィ、パキメトリー、瞳孔測定値、角膜曲率測定値、屈折率測定値、生体測定値などを含んでもよい。本明細書に記載する方法及びシステムにより用いられる視覚組織治療の種類としては多くの場合、アブレーションによるレーザ治療(典型的にはエキシマレーザ又は固体レーザを用いる)が挙げられるが、代わりに、角膜の形状を変更するように切開を形成する、基質内フェムト秒レーザ治療などの組織内光変化技術を用いることもできる。また更なる代替治療法は、例えば、水晶体を変更又は置き換える、水晶体嚢の構造を変更することなどにより、角膜以外の目の視覚組織の効果的な形状又は機能を変更することを目的とし得る。したがって、様々な測定及び/又は治療の種類を、本発明の様々な実施形態で用いることができる。
【0067】
本明細書に記載する本発明の実施形態は、視覚屈折治療の形状と、関連する高次収差の潜在的な誘発との間の具体的な連関を特定及び特徴付ける以前の試みに勝ることとなる。例示的実施形態では、患者の全体的な視認能力を向上させる、目の治療前屈折誤差モードと、関連する処方後の形状修正との間の複雑な相互関係を特定及び正確に特徴付けることができる。これらの収差/治療済みの目のモード間の関係は、少なくとも部分的には、目の治療の種類(例えば、レーザ眼科手術システムによって目をアブレーションにより再び切削すること)に特異的であるか、特定の治療実行ハードウェアの構造に(例えば、特定のエキシマレーザ形状、及びアセンブリのデザイン、視覚訓練、走査メカニズムなどに)、又は更には、特定の治療を制御するソフトウェアパッケージに(例えば、所望の全体的な、再び切削する屈折治療形状に近似するように、エキシマレーザショットを特定するショートパターン生成ソフトウェアパッケージなどに)特異的であることができる。連関は、目の治癒効果とも関係している場合があるため、収差/治療済みの目の連関に対する代償は、治療が完了した数時間、数週間、及び/又は理想的には数ヶ月後に生じる、組織のゆっくりとした変化による以前の経験から恩恵を受ける場合がある。
【0068】
全体的な処方の実際の効果を、より効果的に測定及び特徴付けるために、本発明の実施形態は、多くの場合、多数の異なる以前の治療からの測定値を使用することとなる。以前の治療では、特定の患者の目で計画される屈折治療について、共通の構成要素、技術などが共有されている測定及び/又は治療システムが用いられることが好ましい。多くの場合、情報が導出されることとなる以前の治療の少なくともいくつかは、計画される屈折治療のものとは異なる治療構成要素、技術を用いて、かつ/又は計画される屈折治療のものとは異なる状況下にて診断及び/又は治療されていてもよい。それにもかかわらず、以前の治療からの正確なデータを集めることにより、計画される治療の精度が向上し得る。より具体的には、目を特徴付ける正確な治療前データを入手することに加えて、本明細書に記載する方法及びシステムの実施形態は、複数の目の治療後に得られる高次収差測定値から多くの恩恵を受け、治療後データは理想的には、治療が行われて、目が実質的に安定し、治療した組織の屈折変化の治癒反応が実質的に終了した後で、十分な時間で得られる。理想的には、影響マトリクスアプローチを使用した、治療前高次収差測定値と治療後高次収差測定値のベクトル分析により、目的の屈折治療と、全体的に有効な屈折治療との間の複雑な連関が、特定の患者の目の将来計画されている治療のために、特定及び使用されることが可能となる。
【0069】
治療前測定値と治療後測定値に加えて、様々な補助因子が本発明の多くの実施形態で用いられるベクトル分析及び計算に含まれてもよい。組織応答及び治癒効果は、患者の年齢、性別、人種、及び/又はその他などの生体測定補助因子により影響を受ける場合がある。測定及び/又は治療システムの構成要素の特定の識別が、治療レーザシステムモデル、測定システムの種類識別子、具体的な測定システムの特定、診断及び/又は治療医師の特定、治療及び/又は測定の周囲室温及び湿度、日中の測定又は治療時間、患者の理解レベルなどの特定による補助因子の中に含まれていてもよい。例示的実施形態によって更に、医師の経験ごとに全体の屈折処方を変更するように、入力調節因子及びノモグラム調節を医師が行えるようにすることが可能である。有利には、全体的に所望する屈折処方形状を近似させるように、ショット数及び場所の算出に使用される、除去ベースのアブレーションショット組織及びデータは、本明細書に記載する本発明により提供される改善を利用するために変更する必要はない。更に、本明細書に記載する全体的なベクトル関数のアプローチは、患者の目の屈折性の目的の変化と、得られる高次変化との間の具体的な連関に影響を及ぼす因子の、より具体的な分析と適合性があるため、影響関数の成分の分析(又は他のマトリクス分析成分)を行うことができ、更に値を予め変更して、全体的な測定及び/又は治療構成要素の新しい変化を反映することができる。
【0070】
図1は、本発明の実施形態に従った、簡略化したシステム0を概略的に示す。システム0は、測定処置中に使用される測定デバイス1、及び治療処置中に使用されるレーザ手術システム5を備える。特定の目に対する測定及び診断処置は、その目の治療処置に数分、数時間、数日、又は数週間先行してもよい。一連の時間の測定を行うことができ、測定と測定との間の時間は任意選択的に極めて短いが、場合によっては、数日又は数週間離れる場合があり、これにより測定の安定性を確認することができる。測定はまた多くの場合、治療の完了後に行われ、測定の少なくともいくつかは、治療後、相当の時間がかかり、これによって治療に対する治癒及び任意の他の組織応答が完全に進行し、治療済みの目が実質的に安定した屈折系に戻ることが可能となる。
【0071】
例示的測定システム1は、ハルトマンシャック波面収差計などの、波面測定デバイス2を含む。波面測定デバイス2が、測定処置において、ビーム3を患者の目15に向ける(目が撮像と測定との間、移動しないように)、実質的に同時に目の画像を捕捉するための、撮像アセンブリ25もまた含まれる。レーザビーム3を向けること、測定データを得ること、画像及び他の測定パラメータを捕捉することは、システム0のコンピュータシステム35全体の指令のもとで行われる。波面測定値及び画像は実質的に同時に存在するため、そして、測定デバイス内の撮像アセンブリの構造は光学的に、かつ/又は機械的に連結されているため、画像及び測定値に含まれる位置情報を関連付けることができる。
【0072】
いくつかの実施形態において、画像捕捉デバイス1のコンピュータシステム35はまた、計画したアブレーションプロファイル又はレーザによる所望の再切削などの、追加の治療情報を生成及び保存することができる。このような治療情報は、波面測定デバイス2により得られるデータから生成することができ、測定システム1からレーザ治療デバイス5のプロセッサ22にダウンロードすることができる。好適な測定システムとしては、Abbott Medical Optics,Inc.(AMO)(Santa Ana,CA)から市販されているWaveScan Wavefront(登録商標)などの(又はこれに基づく)構造体;Bosch and Lomb(Rochester,NY)から市販されているZyoptix(登録商標)測定ワークステーションなどを挙げることができる。例示的な測定システムとしては、TopCon Corporation(Japan)により商用及び臨床用途のために開発されているもの、例えば、Abbott Medical Optics(California)により開発されているiDesign Systemなどの、一体化波面及びトポグラフィシステムを挙げることができる。したがって、目の光学系全体にわたる、収差の全体的な測定に加えて、収差データはより具体的に、例えば角膜の前面のトポグラフィ測定、(光干渉断層法、OCTによる)角膜の後面測定、水晶体のサイズ、形状及び収差の測定などにより、収差の発生源を特定することができる。
【0073】
レーザシステム5は、例えば、エキシマレーザ、フェムト秒レーザなどのレーザ55を含む。撮像アセンブリ6は、目の画像を入手し、画像はレーザ55を使用する目の屈折治療と実質的に同時に入手することができるため、撮像アセンブリ6からの治療画像、及び撮像アセンブリ25からの測定画像を登録することにより、治療用レーザビーム65を正確に目15に向けることができる。画像の登録、及びレーザビームを向けることは、プロセッサ22により実施される。例示的実施形態において、角膜の容積測定の再調をもたらすように、プロセッサ22は、エキシマレーザエネルギーを角膜の間質組織に向ける。代替の屈折レーザシステムでは、フェムト秒パルスを用いて切開を形成することができ、いくつかの実施形態においては、別のレーザを用いて、まず、角膜のフラップを切断して上皮組織の下にある間質を露出させ、その後に露出した間質を容積測定して再び切削し、目15の屈折特徴を変更することができる。いくつかの実施形態において、アブレーションプロファイルは、治療システム5の構成要素内の、所望の屈折矯正の計算のためのプロセッサ22の他の構成要素により生成される。したがって、組み合わせたデバイスの総合コンピュータシステムは、一般に、単一のコンピュータシステム35と称することができ、プロセッサ22は、コンピュータシステム35の構成要素である。具体的な処理タスクは、様々なプロセッサのいずれかにより、かつ/又は様々なサブルーティンに編成されたソフトウェアにより実施することができる。
【0074】
ここで、
図1Aを参照すると、レーザ眼科手術システム10を、
図1の概略における治療システム5として使用することができる。レーザ眼科手術システム10は、レーザビーム14を生成するレーザ12を備える。レーザ12は、レーザ送達光学素子システム16に光学的に連結し、システム16は、患者Pの目にレーザビーム14を向ける。(ここでは明確に図示されない)送達光学素子支持構造体は、レーザ12を支持するフレーム18から延在している。顕微鏡20は、送達光学素子支持構造体に固定され、顕微鏡は、多くの場合、目の角膜を撮像するために使用される。
【0075】
レーザシステム10のプロセッサ22は、キーボード、ディスプレイモニタなどの標準的なユーザインターフェースデバイスを含む従来のPCシステムを含むことができる(又はこれをインターフェースで接続することができる)。プロセッサ22は典型的には、磁気ディスクドライブ又は光ディスクドライブなどの入力デバイス、インターネット接続などを含む。多くの場合、このような入力デバイスを使用して、コンピュータが実行可能なコードを、本発明の方法のいずれかを具現化する有形の記憶媒体29からダウンロードすることとなる。有形の記憶媒体29は、フロッピーディスク、光学ディスク、データテープ、揮発性又は不揮発性メモリ、RAMなどの形態をとることができ、プロセッサ22は、このコードを記憶及び実行するための、現代的なコンピュータシステムのメモリボード及び他の標準的な構成要素を含む。有形の記憶媒体29はまた、任意選択的に、波面センサデータ、波面傾斜、波面隆起マップ、治療マップ、角膜隆起マップ、及び/又はアブレーション表を具現化することができる。有形の記憶媒体9は多くの場合、プロセッサ22の入力デバイスと合わせて直接使用されるものの、記憶媒体はまた、インターネットなどのネットワーク接続により、かつ、例えば、赤外線、Bluetoothなどのワイヤレス手段により、プロセッサと遠隔で操作できるように連結されることもできる。多くの他のハードウェアシステム構造もまた、実装することができる。
【0076】
レーザ12及び送達光学素子16は通常、プロセッサ22の指令のもと、患者Pの目にレーザビーム14を向ける。プロセッサ22は多くの場合、レーザビーム14を選択的に調節して、角膜の部分をレーザエネルギーのパルスに曝露し、角膜の所定の切削をもたらして、目の屈折特徴を変化させる。多くの実施形態において、レーザビーム14とレーザ送達光学素子システム16の両方は、プロセッサ22のコンピュータ制御下において、所望のレーザ切削プロセスをもたらすこととなり、プロセッサは、レーザパルスのパターンに影響を及ぼす(そして任意選択的にパターンを修正する)。パルスのパターンは、治療表の形態で、有形の記憶媒体29の機械可読データにまとめられることができる。
【0077】
様々な代替メカニズムを用いながら、レーザビーム14を調節して、所望の切削をもたらすことができる。1つ以上の可変アパーチャを使用して、レーザビーム14を選択的に制限することができる。眼軸からの、レーザ光点のサイズ及びオフセットを変化させることにより、レーザビームを必要に応じて調整することもできる。目の表面でレーザビームを走査すること、並びに各位置においてパルスの数及び/又は滞在時間を制御すること、レーザビーム14の光路にて、アブレーションにより角膜でのビーム発射プロファイルを変化させるマスクを使用すること、(典型的には、幅が可変のスリット及び/又は直径が可変の虹彩隔膜により制御される)様々なサイズのビームが角膜にわたって走査されるハイブリッドプロファイル走査システム、などを含む、なお更なる代替策が可能である。これらのレーザパターンを調整する技術用の、光学及び電気機械コンピュータプログラム、ハードウェア、及び制御法が特許公報に十分に記載されている。
【0078】
当業者により理解されるはずであるように、追加の構成要素及びサブシステムが、レーザシステム10と共に含まれることが可能である。例えば、レーザビーム内のエネルギー分布を制御するための、空間及び/又は時間積算器が含まれてもよい。光学アブレーションによる排出物吸引器/フィルタ、アスピレータ、及びレーザ手術システムの他の付随的な構成要素が、当技術分野において既知である。好適なシステムとしては、Abbott Medical Optics、Alcon、Bausch & Lomb、Nidek、WaveLight、LaserSight、Schwind、Carl Zeiss Meditec AGなどにより製造及び/又は販売されている、市販の屈折レーザシステムもまた挙げることができる。
【0079】
図2は、本発明のシステム0(
図1及び
図1Aを参照)により使用可能な、例示的な総合コンピュータシステム35の簡略化したブロック図である。コンピュータシステム35は典型的には、バスサブシステム54を介して多数の周辺デバイスと通信可能な、少なくとも1つのプロセッサ52(及び任意選択的に、プロセッサ22)を含む。これらの周辺デバイスとしては、メモリサブシステム58及びファイルストレージサブシステム60を含むストレージサブシステム56、ユーザインターフェース入力デバイス62、ユーザインターフェース出力デバイス64、並びにネットワークインターフェースサブシステム66を挙げることができる。ネットワークインターフェースサブシステム66は、外部ネットワーク68及び/又は他のデバイス、例えば、波面測定システム30へのインターフェースを提供する。
【0080】
ユーザインターフェース入力デバイス62としては、キーボード、ポインティングデバイス(マウス、トラックボール、タッチパッド、又はグラフィックス端末)、スキャナ、フットペダル、ジョイスティック、ディスプレイに組み込まれたタッチスクリーン、オーディオ入力デバイス(声認識システム、マイクロフォン、及び他の種類の入力デバイスなど)を挙げることができる。多くの場合、ユーザ入力デバイス62を使用して、コンピュータが実行可能なコードを、本発明の方法のいずれかを具現化する有形の記憶媒体29からダウンロードすることとなる。一般に、用語「入力デバイス」の使用は、情報をコンピュータシステム35に入力するための、様々な従来の、専有デバイス及び方法を含むことを意図している。
【0081】
ユーザインターフェース出力デバイス64としては、ディスプレイサブシステム、プリンタ、ファックスマシン、又は音声出力デバイスなどの非表示装置を挙げることができる。ディスプレイサブシステムは、陰極線管(CRT)、液晶ディスプレイ(LCD)などのフラットパネルデバイス、投射デバイスなどであることができる。ディスプレイサブシステムは、音声出力デバイスなどの非表示装置もまた提供することができる。一般に、用語「出力デバイス」の使用は、情報をコンピュータシステム35からユーザに出力するための、様々な従来の、専有デバイス及び方法を含むことを意図している。
【0082】
ストレージサブシステム56は、本発明の様々な実施形態の機能性を付与する、基本的なプログラミング及びデータ構築物を保管することができる。例えば、本明細書に記載するように、本発明の方法の機能性を実装するデータベース及びモジュールを、ストレージサブシステム56に保管することができる。これらのソフトウェアモジュールは一般に、プロセッサ52により、かつ/又はプロセッサ22により実行される(
図1及び
図1Aを参照)。配置された環境において、ソフトウェアモジュールは、複数のコンピュータシステム22、35上で分離されて保管され、複数個のコンピュータシステムのプロセッサにより実行されることができる。ストレージサブシステム56は典型的には、メモリサブシステム58及びファイルストレージサブシステム60を含む。
【0083】
メモリサブシステム58は典型的には、プログラムの実行中の指令及びデータを記憶するための、メインランダムアクセスメモリ(RAM)70、並びに不変の指令が記憶される読出し専用メモリ(ROM)72を含む多数のメモリを含む。ファイルストレージサブシステム60は、プログラム及びデータファイル用の持続性(不揮発性)ストレージを提供し、有形の記憶媒体29を含むことができ(
図1A)、任意選択的に波面センサデータ、波面傾斜、波面隆起マップ、治療マップ、及び/又はアブレーション表を具現化することができる。ファイルストレージサブシステム60としては、ハードディスクドライブ、関連する取り外し可能なメディアが付いたフロッピーディスクドライブ、コンパクトデジタル読出し専用メモリ(CD−ROM)ドライブ、光学ドライブ、DVD、CD−R、CD−RW、取り外し可能なSSD、及び/又は他の取り外し可能なメディアカートリッジ若しくはディスクを挙げることができる。1つ以上のドライブは、コンピュータシステム35に連結した、他の場所にある他の接続したコンピュータの遠隔位置に位置することができる。本発明の機能性を実装するモジュールは、ファイルストレージサブシステム60により記憶することができる。
【0084】
バスサブシステム54は、コンピュータシステム35の様々な構成要素及びサブシステムが互いに、意図したとおりに通信可能になるメカニズムを提供する。コンピュータシステム35の様々なサブシステム及び構成要素は、同じ物理的位置にある必要はないが、配置されたネットワーク内の様々な位置に配置されることができる。バスサブシステム54は、概略的に1つのバスとして示されているが、バスサブシステムの代替の実施形態では、複数のバスを使用することができる。
【0085】
コンピュータシステム35自体は、パーソナルコンピュータ、ポータブルコンピュータ、ワークステーション、コンピュータ端末、ネットワークコンピュータ、波面測定システム若しくはレーザ手術システムの制御システム、メインフレーム、又は任意の他のデータ処理システムなどの様々な種類であることができる。コンピュータ及びネットワークの性質は刻々と変化するために、
図2で示すコンピュータシステム35の説明は、本発明の一実施形態を表す目的のための1つの単なる例として意図されている。
図2に示すコンピュータシステムより多くの構成要素、又はより少ない構成要素を有するコンピュータシステム35の多くの他の構成が可能である。
【0086】
ここで、
図3を参照すると、波面測定システム30の一実施形態が、簡略化した形態で概略的に示されている。非常に一般的に言えば、波面測定システム30は、患者の目から出る傾斜マップの局所勾配を感知するように構成されている。ハルトマンシャックの原理に基づくデバイスとしては一般に、アパーチャにまたがり傾斜マップを均一にサンプリングするレンズレットアレイが挙げられ、これは通常、目の射出瞳である。その後、波面表面又はマップを再構築するために傾斜マップの局所勾配を分析する。
【0087】
より具体的には、ある波面測定システム30は、レーザなどの像源32を含み、像源32は、目Eの視覚組織34を通って元の像を投射して、像44を網膜Rの表面に形成する。網膜Rからの像は目(例えば、視覚組織34)の光学系により伝えられ、システム光学素子37により波面センサ36に像が結ばれる。波面センサ36は、視覚組織34における視覚誤差の測定、及び/又は視覚組織のアブレーション治療プログラムの測定のために、信号をプロセス22’に伝達する。プロセス22’は、総合コンピュータシステム35に組み込まれることができ、任意選択的に、
図1、
図1A及び
図2に図示されているプロセッサ22及び/又は52と同一又は類似のハードウェアを使用することができる。プロセッサ22’は、レーザ手術システム10に指令を送るプロセッサ22と通信することができ、あるいは、波面測定システム30のコンピュータシステム35のいくつか又は全ての構成要素及びレーザ手術システム10は組み合わさっていても、分離していてもよい。所望する場合、波面センサ36からのデータを、有形媒体29を介して、I/Oポートを介して、イントラネット若しくはインターネットなどのネットワーキング接続66を介して、又は他の方法を介して、レーザプロセッサ22に伝えることができる。
【0088】
波面センサ36は一般に、レンズレットアレイ38及び画像センサ40を含む。網膜Rからの像が視覚組織34を通って伝わり、画像センサ40の表面で画像化し、目の瞳Pの像が同様に、レンズレットアレイ38の表面で画像化すると、レンズレットアレイが、伝わった像をビームレット42のアレイに分離し、(システムの他の光学部品と組み合わさって)分離したビームレットをセンサ40の表面で結像させる。センサ40は通常、電荷結合素子、すなわち「CCD」を含み、これらの個々のビームレットの特徴を感知し、これらの特徴を使用して、視覚組織34の関連領域の特徴を測定することができる。特に、像44が光点又は光斑(small spot of light)を含む場合、ビームレットにより画像化されたように、伝えられた斑の位置は、視覚組織の関連領域の局所勾配を直接示すことができる。
【0089】
目Eは通常、前方向ANT及び後方向POSを定義する。
図3に示すように、像源32は通常、視覚組織34を通って像を網膜R上に後方向に投射する。視覚組織34は再び、像44を網膜から波面センサ36に向けて前方に伝える。網膜R上に実際に形成された像44は、像源が最初に視覚組織34により伝えられる際に、目の光学系の任意の欠陥によりゆがめられる場合がある。任意選択的に、像源投射光学素子46は、像44の任意のゆがみを低下させるように構成又は適合されることができる。
【0090】
いくつかの実施形態において、視覚組織34の球面及び/又は円柱誤差を補正することにより、像源光学素子46は低次光学誤差を低下させることができる。可変形状鏡(後述)などの、適合性光学部品を使用することにより、視覚組織の高次光学誤差もまた、補正することができる。網膜R上の像44で点又は斑を画定するために選択される像源32を使用することで、波面センサ36により提供されるデータの分析を容易にすることができる。瞳の中央部分は、周辺部分よりも光学誤差を受けにくい可能性があるため、像44のゆがみは、瞳50より小さい視覚組織34の中央領域48を通って元の像を伝えることにより制限することができる。特定の像源の構造に関係なく、網膜R上に、十分に画定され、正確に形成された像44を有するのは一般的に有益であると思われる。
【0091】
一実施形態では、瞳カメラ51(
図3)の像により測定される、ハルトマンシャックのセンサ像の像斑分析から入手したx及びy波面傾斜、並びに、ハルトマンシャックレンズレットアレイの名目上の中心からのx及びy瞳孔中心オフセットを含有する、波面データは、コンピュータが読み取り可能媒体29、又は波面センサシステム30のメモリに、2つの別のアレイ内で保管することができる。このような情報は、波面又は波面の任意の所望する部分を再構築するのに十分であり得る。傾斜アレイを保管するためのデータスペースは大きくはない。例えば、8mmの直径を有する瞳の像を受け入れるには、20×20サイズ(すなわち400機素)のアレイで多くの場合十分である。理解されるように、他の実施形態において、波面データを1つのアレイ又は複数のアレイの、波面センサシステムのメモリに記憶することができる。
【0092】
本発明の方法は通常、像44の感知を参照して記載されているが、一連の波面センサデータの読取り値を参照してもよい。例えば、時系列による波面データの読取り値は、視覚組織の収差のより正確に全体的な判定を行うことを補助することができる。視覚組織は、経時的に形状が変化する可能性があるため、時間的に別々の複数の波面センサの測定により、屈折矯正処置の基礎である、光学特性の単一の瞬間撮影に依存することを避けることができる。構造、位置、及び/又は方向が異なる目を用いて、目の波面センサデータを取ることを含む、なお更なる代替策もまた利用可能である。例えば、患者は多くの場合、固視標に焦点を合わせることにより、波面測定システム30を用いた目の照準合わせの維持を補助する。その引用に記載されているとおりに固視標の位置を変化させることにより、目が様々な距離で視界を画像化することを受け入れ、又はこれに適合しながら、目の光学特性を判定することができる。
【0093】
目の光軸の位置は、瞳カメラ52からもたらされたデータを参考にすることにより検証することができる。例示的実施形態において、瞳カメラ52は、瞳50を画像化し、視覚組織に対する波面センサデータを登録するために、瞳の位置を測定する。
【0094】
波面測定システムの代替的実施形態を
図4に示す。
図4のシステムの主要構成要素は、
図3に示すものに類似している。更に、
図4は、可変形状鏡の形態の適合型光学素子53を含む。元の像は、網膜Rへの伝達中に可変形状鏡98から反射され、可変形状鏡はまた、網膜Rとイメージングセンサ40との間で、伝達される像を形成するために使用される光路に沿っている。可変形状鏡98は、プロセッサ22により制御可能に変形されて、網膜に形成される像、又は網膜に形成される像の後に形成される像のゆがみを制限することが可能であり、得られる波面データの正確さを高めることができる。
図4のシステムの構造及び使用は、米国特許第6,095,651号により詳細に記載されており、その開示全体が参照により本明細書に組み込まれている。
【0095】
目及びアブレーションを測定するための波面測定システムの一実施形態における構成要素としては、Abbott Medical Optics(California)から入手可能なWaveScan(登録商標)システムの構成要素を挙げることができる。他の波面収差計を本発明と共に用いることができると考えられることを理解されたい。関連して、本発明の実施形態は、COAS波面収差計、ClearWaveコンタクトレンズ収差計、CrystalWave IOL収差計、iDesign Systemなどを含む、WaveFront Sciences,Inc.により提供される様々な光学機器のいずれかの実装を包含する。
【0096】
ここで、
図5A及び
図5Bを参照すると、既知のレーザ式眼科手術システムによる治療は、予想されてきたように目の高次光学収差を低下又は排除する際に必ずしも効果的とは限らない。高次光学収差の測定可能な正確性により、最終的には、治療計画が導出され得る精度を判定することができる。幸運なことに、既知の波面収差システムは、非常に良好な正確性で人間の目を測定することができる。
図5Aは、一連の調査における、目の治療前測定値に関する異なる高次二乗平均平方根(RMS)の範囲に関する回数及び確率プロット(横軸に沿う)を示す。治療前測定値の平均範囲は、約93マイクロメートルであった。
図5Bの累積分布関数プロットにより表されているように、この比較的小さい測定誤差は、研究における数百の目を通してかなり一貫していた。したがって、測定精度だけによって、全体の治療の正確性が限定された場合、治療は、高次収差を低下又は排除する際に非常に効果的であるはずである。
【0097】
目の測定、計画した治療、目で実際に行われる治療、及び治癒後の影響(上皮の再成長、流体により誘発される膨潤又は水和効果など)の相互作用をより完全に分析するために、目に加えられた有効な治療全てを測定することが有益である。有効な治療は、以下のとおり定義することができる。
治療=Post Op−Pre Op
式中、治療とは、屈折性(高次収差を含む)の有効な治療又は変化を特徴付けるベクトルを意味し、「Post Op」とは、目の屈折治療後、及び目が安定した後の(典型的には波面測定を含む)高次ベクトル特徴付けを意味し、「Pre Op」とは、目の屈折治療前の(典型的には波面の測定を含む)高次ベクトル特徴付けを意味する。
【0098】
Post Opの収差がゼロであることが理想的であるため、理想的には、治療は、Pre Op測定に相関するべきではない。残念なことに、既知のレーザ眼科手術測定及び治療システムは、この理想的なアウトカムを均一にもたらしていない。
【0099】
ここで、
図6Aを参照すると、複数の以前に治療した目のそれぞれに関して、総測定治療前収差(横軸に沿う)に対する、治療後高次光学収差(縦軸に沿う)のプロットは、優位な相関関係を示す。総合的な収差は、標準的な低次屈折項により決定されるため、治療前の目の屈折又は低次収差項と、治療後の目の高次収差との間の有意な望ましくない連関が存在するように思われる。データ
図6Aは、上述したものなどの波面測定システムを使用して治療前に測定した目からのデータを示すことに注意されたい。次に、これらの目を屈折レーザ眼科手術システムを使用して治療し、その目に対して、(標準的な屈折誤差及び高次収差の両方を含む)測定収差に基づいて、それぞれの目に関して個別対応の屈折が導出された。目の治療後測定は、治療後相当の時間(例えば6ヶ月)実施したため、治癒は、ほぼ完了し、目の屈折性は、実質的に安定していた。
【0100】
ここで、
図6Bを参照すると、既存のレーザ眼科手術システムは、標準的な屈折誤差の矯正に極めて良好に機能している。目の収差の個別の成分を、下表で確認されるように、それらの標準的なゼルニケ係数を使用して参照することができる。有効な治療のデフォーカス項Z(2,0)を縦軸に沿ってプロットし、Pre Opに関する同じ係数を横軸に沿ってプロットした。およそ−1の傾きは、治療前の目のデフォーカス単位ごとに、有効な治療が、実質的に、同量の誤差を目から取り除いたことを示している。したがって、このデータにより、既存のレーザ式眼手術システム(関連する測定システムを含む)は、目の標準的な屈折誤差の矯正に良好に機能することができる。
【0102】
図7A及び
図7Bを参照すると、測定及び治療に対する目の全体的な反応は、個別の高次収差の分析時により複雑となり得る。例えば、
図7Aに示すように、Z(4,0)の項において測定したPost Op収差(縦軸にプロット)は、Z(2,0)において測定した治療前デフォーカス(横軸にプロット)に対して正の相関関係を有する。言い換えると、
図7Aのグラフにおける正の傾きは、Z(4,0)の高次球形アブレーション項が、矯正されているデフォーカス量に比例して誘発され得ることを示している。この個々の関係を任意選択的に使用して、将来の目に関する具体的な調節又はノモグラムを開発することができ、これにより、そのような誤差の誘発の回避を追求することができる。残念なことに、高次収差間のかかる相関の総数は十分に複雑であり、特定された相関ごとに、かかる個別のノモグラムを使用して治療を調節しようとすることは困難であり得、かつ、最終的には、理想的に有効とはなり得ない。例えば、
図7Bに示すように、Z(2,2)の高次収差項における有意な治療前誤差を、有意な治療Z(4,2)項と連関させることができる。これらの個別の相関関係が十分に存在する場合、特に、個別の連関の全てに関する知識が完璧ではない場合に、ノモグラム調節アプローチは、いくつかの誤差を解決しながら他の誤差を誘発することに終始し得る。
【0103】
ここで、
図8A及び
図8Bを参照すると、治療とpre−op波面測定との間の相関関係マトリクスのグラフ表示は、異なるゼルニケ全体ゼルニケ−ゼルニケ項間の多数の相関関係、及び相関関係の強さを示している。
図8A及び
図8Bに示すそれぞれの軸の数字は、Z(−2,2)(ゼルニケ番号3)に始まりZ(6,6)までの、特定のゼルニケ係数に対応する。計画した治療が、目標の収差を所望の量で変化させる(そして、他の誘導された収差をもたらさない、すなわち他の収差モードと連関がない)場合、3,3から28,28まで延在する対角線に沿う値は全て−1であり、対角線に沿う値以外の全ての値は0であると考えられる。
図8A及び
図8Cに示すように、既存の測定及び治療システムは、この理想化された結果をもたらさない。代わりに、有効な治療と、非対角線の治療前収差測定値との間のゼルニケ項の多くには有意な相関関係が存在する。
【0104】
手術前測定値と有効な治療係数との間の相関関係は、屈折項の数3〜5に関して、比較的高い。残念なことに、対角成分の多くは、理想的な値1とは有意に異なり、非対角成分の多くは、理想的な値0とは有意に異なる。相関関係の符号及び値の違いは異なる目と関連している場合があり、右目は、左目と明らかに異なる値を有することに注意されたい。例えば、ゼルニケ7及び8に関する水平収差項は異なっている。
【0105】
ここで、
図8Cを参照すると、選択された項は、比較的小さな角度で、又は更にはラジアル係数で強調されている。具体的には、相関関係の符号により示されるように、デフォーカスを特定する手術前測定(ゼルニケ番号4)は、治療における球面収差(ゼルニケ番号12)を誘発する。同様に、測定した手術前の乱視を矯正する際に、効果的な治療で二次乱視が誘発される。二次ラジアルオーダーにおいて、乱視項間でのいくつかの交差連関もまた明らかである(ゼルニケ番号3とゼルニケ番号5との間)。屈折項は一般に、目で測定した最も大きな治療前収差であるため、これらは連関マトリクスの最も重要な項の中に存在し得る。それにもかかわらず、ほとんどの又は更には他の全ての非対角成分は、ある程度(典型的にはさほど大きくない程度)、収差に寄与する(言い換えれば、治療後に少なくともいくつかの収差を誘発する)こととなる。相関関係マトリクスで特定される、より重要な連関のいくつかを
図9で図表を用いて示す。
【0106】
ここで、
図10を参照すると、改善した治療及び治療改善法310の概略は、特定の患者に対する治療前屈折測定312から開始する。屈折治療計画が作成され(314)、患者は、測定312で特定した屈折性不具合を矯正するように治療される(316)。治療後、治療した目の治療後屈折測定を行う(318)。
【0107】
治療後測定318は、少なくとも2つの異なる利点を有する。まず、患者の目に目的の屈折変化が行われたことが確認され、これによりその特定の患者に関する情報が与えられる。更に、治療後測定318は、将来、他の目を治療するために屈折治療計画314を作成するのに使用可能な、フィードバック情報をもたらす。本明細書に記載の方法の例示的実施形態では、以前の治療からのフィードバックは、有効な治療ベクトル関数を導出及び/又は更新する(320)ことにより影響を受ける。
【0108】
治療済みの患者についての治療後測定318の使用に関して、これらの測定は、再治療が適切か否かについての指標をもたらすことができる(322)。例えば、治療後測定が、予想される目の特徴付けと比べて閾値量を超えて異なっている場合、目の再治療(例えば、新しい反復LASIK治療など)を計画する(314)ことができ、次いで、実施する(316)ことができる。目標の屈折測定及び関連する変動閾値を、治療316の後に1つ以上の具体的な時間間隔に関して確立することができる。例えば、治療316の日における治療直後の屈折測定318は、許容される多様性の屈折特性及び範囲の、予想される1つの集合を有することができる一方、2週間又は6ヶ月の追跡治療後屈折測定318はそれぞれ、異なる値を有する場合がある。したがって、治療後測定318は、一連の測定を含むことができる。再治療の決定322もまた、治療316後の数日、数週間、数ヶ月、又は更には数年にわたり繰り返し行われてもよい。
【0109】
図8A〜
図9に表示された情報は、項のいくつかを定義し、より厳密に分析することにより、より詳細に理解することができる。手術により誘導された屈折矯正(SIRC)は、手術により誘導された測定された波面の実際の変化として定義することができる。それ故に、ベクトルSIRCは、以下のとおりに数学的に定義することができる。
【0111】
ここで、ベクトル成分は、記載した番号のゼルニケ係数を含むことができる。別のベクトルである目的の屈折矯正(IRC)は、治療の目標である屈折性の変化である。治療の目的のアウトカムが正視眼である場合、IRCは、以下のとおり、治療前収差測定Pre Opの負数に実際上等しいとして算出することができる。
【0113】
正視は必ずしも、多くの治療の目標ではないことに注意されたい。例えば、患者の片方の目にわずかな近視を残し(あるいは含め)ながら、他方の目は正視にして、老眼への移行に関して十分なモノビジョンをもたらすのが望ましい場合がある。あるいは、様々な多焦点性又は非球面老眼形状が、視力を調節する能力のいくつか又は全てを有するか、又は失うであろう患者の目においては望ましい場合がある。正視が目標でない場合、IRCベクトルを、測定治療前収差と、最終的に得られる所望の目の形状(目標)を特徴付けるベクトルに基づいて、以下のとおりに算出することができる。
【0115】
所望のアウトカムをもたらすために、身体的な視覚制限及び臨床耐性の中で、SIRCがIRCに近づくか、又は等しくなるのが有益である。
【0116】
ベクトルの定義を全体的な治療計画310に適用することで、治療前屈折測定312により通常、あらゆる治療を受ける前に特定の患者の目の高次収差を特徴付けるPre Opベクトルの定義がもたらされる。屈折治療の計画314は、IRC(目的の屈折矯正ベクトル)を定義し、正視が目標でない場合、IRCは、目標ベクトルを反映する。あるいは、正視が目標である場合、目標は、正視目標ベクトルとして定義することができる。
【0117】
治療316の後、治療後屈折治療318は、以前に治療したそれぞれの目に関して、目の高次収差を特徴付けるPost Opベクトルをもたらす。以前のそれぞれの治療に関して、手術により誘導された屈折矯正(SIRC)は、関連する目についての、Post OpベクトルとPre Opベクトルとの間の差として定義することができる。次に、SIRCベクトルの集合を使用して、有効な治療ベクトル関数320を導出することができる。有効な治療ベクトル関数320が以前に定義されている場合、新しい目の治療(並びに関連する治療前及び治療後測定)を使用して、有効な治療ベクトル関数を更新することができる。したがって、多数の目の以前の測定及び治療に基づいて、有効な治療ベクトル関数320は、新しい患者の屈折治療314の計画に関して、フィードバックループをもたらす。
【0118】
ここで、
図10Aを参照すると、簡略化したブロック図は、特定の患者に関する入力及び出力ベクトルを概略的に示し、上述したベクトル成分と関連するソフトウェアモジュールの説明もまた、概略的に提供している。目標モジュール332は、治療後の目の、目標ベクトル又は所望の高次特徴付けを定義する。目標モジュール332により、医師及び/又は患者は、様々な目標治療、又は一定範囲の目標治療から選択が可能となることに注意されたい。例えば、可能な限り最善の距離の視覚を求める、比較的若い患者は、両眼の正視を所望し得るが、老眼となるのに十分な年齢の患者は、読書などに関して所望の程度の近見視力を得るために、片方の目で所望程度の近視、又は非球面若しくは多焦点の屈折形状を選択する。Pre Op入力モジュール334は、目の高次屈折性を特徴付ける波面又は他の測定を受け入れる。したがって、Pre Op測定入力部334は、多くの場合、波面収差計、トポグラファー及び/又はその他に連結している。目的の屈折矯正IRCベクトルモジュール336は、目的の屈折矯正ベクトルを算出及び記憶することとなる。目標モジュール332及びPre Op測定モジュール334と同様に、IRCモジュール336は、典型的には、コンピュータシステム35のソフトウェア及び/又はハードウェアにより実行される(
図1を参照)。
【0119】
図10Aの簡略化した機能的ブロック
図330の続きであるが、治療計画モジュール338は、使用される屈折レーザ又は他の治療構造体に関する治療ベクトルに対応する一連の指令を誘導し、治療指令340が使用のために記憶されることとなる。治療指令は典型的には、ショットの場所及び数字を表に含むこととなり、表は多くの場合、熱損傷を最小限に抑え、処置速度を早めるように順序付けされる。(通常、
図1及び
図1Aのプロセッサ22に関して上述した構成要素の多くを含む)レーザ制御モジュール342を使用して、手術アブレーションが実施される。手術アブレーション自体は、治療後の治癒と共に、目の最終形状を変化させる。次に、治療後測定を治療前測定と共に使用して、手術により誘導された屈折矯正治療モジュール344における、全体的に有効な治療SIRCを定義することができる。
【0120】
治療プランナ338は多くの場合、目標のレーザフルエンス及びスポットサイズに対するアブレーション深さを定義する基本データを使用することとなる。この基本データは多くの場合、ブタ及び/又は死体の目で測定されており、このデータの使用は、食品医薬品局などの監督官庁により厳しく制御され得る。基本データは、in−vivoのヒトの目においてアブレーション速度に厳密に一致する必要はないことに注意されたい。例えば、基本データの測定中に、治癒は含まれ得ない。それにもかかわらず、基本データは、特に以前に認可された屈折レーザ治療システムに対する、LASIK及び他の屈折矯正処置に対する、規制認可のための重要な土台を形成することができる。本明細書に記載するフィードバック法及びシステムの改善を利用するために、基本データを変更する必要がないことは有利なことである。
【0121】
改善された機能的ブロック
図350及び関連する方法は、
図10Aに関して上述した構成要素の多くを含む。しかしながら、IRCベクトルを直接使用するのではなく、IRCを調節して、調節した矯正モジュール352に記憶するための、調節した目的の屈折矯正ベクトルAIRCを定義することができる。
【0122】
様々な個別の調節及び/又は全体的な調節をIRCに加えることができる。例えば、既存の屈折レーザ治療システムを使用する医師は、経験、実践などに基づいて、医師調節モジュール354に医師の調節を入力する経験を有する。同様に、多数のノモグラム調節は、特定の患者に対する定性的又は定量的因子に基づき治療を変えるための入力356である。これらの入力は、ある態様の治療に関する特定の患者の目に対する、臨床的アウトカムと所望の矯正との間のループを効果的に完結させるが、特に、あるモードの高次光学収差誤差の複数の変化の連関が、治療済みの目で潜在的に誘発される多数の高次光学収差と組み合わされる場合においては、必ずしも治療を包括的に変えるわけではない。角膜組織表面上でのレーザ入射の角度の増加時に、アブレーション深さの低下を補償するための、計画した治療の調節を含む、なお更なるIRCの調節もまた組み込むことができる。いわゆる共サイン(co-sign)矯正及び他の調節(色彩調節を含む)が、色彩及び共サイン矯正モジュール358に含まれることができる。加えて、調節は更に他の因子に基づいて可能となってよい。例えば、明らかな屈折又は低次収差の測定を、治療前K入力モジュール368に入力することができる。
【0123】
以前の治療からのフィードバックをよりしっかりと利用するために、
図10Cの機能的ブロック
図360は、理想的には断続的、規則的、又は連続的なプロセス改善によりアウトカムを改善する、より一般的な解決策を示す。方法の工程及び関連するモジュールの多くは、上述したものに類似する。しかし、IRCとAIRCとの関係は実質的により複雑であり得る。より具体的には、IRCとAIRCとの間の低次収差を単に調節するのではなく、
図10Cの方法は、実施される治療の高次収差に有意な変化をもたらすこととなる。治療の改善は、高次収差測定からのSIRCデータにより、以前の治療の結果を有効な治療ベクトル関数導出モジュール362にフィードバックし、有効な治療ベクトル関数又は調節関数
【0124】
【数14】
364を生成することにより実施することができる。医師は、
図10Bに関して上述したとおりに、個別ベースで治療を調節する能力を保持していることに注意されたい。概ね上述したように、有効な治療ベクトル関数
【0125】
【数15】
は、補助因子(例えば患者の年齢、性別、人種、測定及び/又は治療時の湿度、測定及び/又は治療時の医師が同一であること、測定及び/又は治療システムの型番又は同一性など)もまた利用することができる。補助因子モジュール366を使用して、有効な治療ベクトル関数364を実行しているプロセッサモジュールにこれらの補助因子を入力することができる。
【0126】
適切な有効な治療ベクトル関数モジュール362の判定は、任意選択的に、最適化として説明することができる。適切な関数の導出は、絶対的な最適化である必要はないが、結果として得られるベクトル関数は、調節されずにもたらされると考えられる場合よりも治療後及び治癒後に有意に良好な視覚をもたらすように、好ましくはIRCベクトルを変化させることとなることに注意されたい。
【0127】
多くの数学的アプローチをモジュール362により適用して、適切な調節ベクトル関数
【0128】
【数16】
及び関連する関数fを導出することができる。以下の例において、fを定義する影響マトリクスを導出するために、比較的簡単な線形代数学及び多変量回帰アプローチを適用する。より複雑な非線形アプローチもまた使用可能であることに注意されたい。
【0129】
上述のとおり、SIRC及びIRCは、手術により誘導され、目的の屈折矯正波面表面を表す値を有する成分を含有するベクトルとして表される。SIRCベクトルはまた、この例示的実施形態での治療前に、Pre Op波面測定表面を組み込んでいる。ベクトル成分としては、SIRC及びIRC波面収差を最もよく表すゼルニケ係数を含むことができる。SIRC及びIRCベクトルは更に、角膜曲率測定値を含むことができる。これらのベクトルの任意成分としては、SIRCに影響を及ぼすことが知られている、又はそのように思われている補助因子パラメータ、例えば、年齢、性別、湿度、角膜の含水量などを挙げることができる。これらのベクトルのそれぞれにおける成分の総数をNとして表すことができる。
【0130】
IRCが与えられた系により生成されたSIRCを予測することが概ね所望される。この目標に向けて、SIRC及びIRCベクトルは、影響マトリクスf、及び誤差ベクトルEにより、以下のように関係すると想定することができる。
【0132】
有利には、この数学モデルにより、例示的実施形態において、IRCの各成分が潜在的に、線形でSIRCの各成分に寄与することができる。
【0134】
上述のとおり、SIRC及びIRCの光学収差成分を臨床的に測定することにより、fの成分を特定又は適合することができる。SIRC及びIRCには、m個の対の測定値が存在することが想定され、それぞれが下付文字kで表され、グローバルメリット関数Ψを以下のとおりに定義することができる
【0136】
メリット関数Ψにおいて、それぞれの未知の成分fは、関連する記号f
ijを有する。fのそれぞれの未知の成分に関して、(mがn以上である場合)未知の成分ごとにm
2の式を生成することにより、Ψを最小化することができる。例えば、
【0138】
fの解は、以下の線形代数により得ることができる。M
2の式の得られた集まりを、以下のとおりにより簡潔なマトリクス形態で記載し、解くことができる。
【0139】
【数21】
式中、A及びBは成分を含むマトリクスであり、
【0141】
fに対する最良適合値を判定すると、そのマトリクスを使用して、以下のとおりにモデルの質を評価し、AIRCを生成することができる:
【0143】
上において、Eはfに対する誤差ベクトルを表す。基本的なモデル評価を追加の対形成した測定値に適用して、fの解を確認することができる。それぞれの追加の測定値に関してEを求め、システム全体の所望の身体的光学特性及び臨床耐性を比較することによりモデルの質を評価することができる。
【0144】
所望のSIRCをもたらすように、IRCを調節するために、
【0145】
【数24】
を使用してAIRCを生成することができる。したがって、治療プランナに入力する際に、AIRCは、システムに対する所望の治療を生成することとなる。
【0147】
本実施形態での調節は、IRCと補助因子との線形結合に基づいてAIRCを生成する。波面IRC成分の組み合わせは通常、潜在的にフラップの低空間周波数フィルタリング効果、生体力学及び治癒効果、組織移動ゾーンのオフセットなどを含む、多数の因子に物理的原因を有することができる交差連関である。補助因子は、治療プランナモジュール338(
図10Aを参照)に直接入らないが、依然としてアウトカムに影響を有し得る変数を表すことができる。例示的な補助因子は上述されている。調節は、非常に特異的である傾向を有し得る。例えば、調節は、個々の医師、又は部分母集団(例えば、強度近視)と関係し得る。
【0148】
ここで、
図11を参照すると、以前の目の治療の研究に基づくモデリングは、驚く程に有意な低下が、本明細書に記載する方法及びシステムによりもたらされ得ることを示している。大部分、ほとんど全て(95%超)及び/又は実質的に全て(90%超)の目が映し出されて、高次収差(HOA)の有意な低下を表している。
【0149】
図12は、本発明の実施形態に従った、患者の目の屈折治療を計画するための方法1200の態様を示す。ここで示されるように、方法1200は、複数の以前の目の治療1210に基づいて有効な治療ベクトル関数を判定することを含む。ここで示されるように、(複数の以前の目の治療1210の)関連する目の個別の以前の目の治療1212a、1212bに関して、例示的な方法はそれぞれ、工程1214a、1214bにより表されるように、治療前ベクトルを測定することと、関連する目の測定治療前光学特性1216a、1216bを特徴付けることと、を伴う。関連して、(複数の以前の目の治療1210の)関連する目の個別の以前の目の治療1212a、1212bに関して、例示的な方法はそれぞれ、工程1224a、1224bにより表されるように、治療後ベクトルを定義することと、関連する目の測定治療後光学特性1226a、1226bを特徴付けることと、を伴う。更に、複数の以前の目の治療1210に関して、本方法は、工程1230により表されるように、治療前ベクトルと治療後ベクトルとの間の相関関係を使用して有効な治療ベクトル関数を導出することを含む。方法1200は、工程1244により表されるように、患者の目1240の測定治療前光学特性1242に基づき入力ベクトルを定義することもまた含む。更に、方法1200は、工程1250により表されるように、有効な治療ベクトル関数を入力ベクトルに適用することにより患者の目の治療を導出することを含む。場合によっては、治療前ベクトル、治療後ベクトル、有効な治療ベクトル、及び/又は入力ベクトルは、屈折、患者及び/若しくは治療の設定を特徴付ける非屈折性補助因子、並びに/又は目の光学特性を特徴付けることができる。
【0150】
場合によっては、測定治療前光学特性(例えば1216a、1216b、及び/又は1242)としては、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、角膜曲率測定値などを挙げることができる。場合によっては、工程1250で導出されるような屈折治療は、エキシマレーザ治療、フェムト秒レーザ治療、眼内レンズ治療、コンタクトレンズ治療、又はメガネ治療のためのものであることができる。場合によっては、方法は、患者の目の治療を行うことを更に含む。
【0151】
場合によっては、以前の目の治療1212a、1212bは、それぞれ第1の患者及び第2の患者に対応することができる。場合によっては、以前の目の治療1212a、1212bはそれぞれ、右目(OD)及び左目(OS)に対応することができる。そのため、右目(又は右目の群)及び左目(又は左目の群)を別々に分析することができる。関連して、右目(又は右目の群)及び左目(又は左目の群)のデータを変換して、同時に分析することができる。場合によっては、以前の目の治療1212a、1212bは右目のみ、あるいは左目のみに対応することができる。したがって、有効な治療ベクトル関数は複数の治療(又はそれらからの情報)から導出することができる。場合によっては、複数の以前の目の治療におけるそれぞれの以前の目の治療は、個々の個体に対応する。場合によっては、複数の以前の目の治療におけるそれぞれの以前の目の治療は、以前に治療した右目に対応する。場合によっては、複数の以前の目の治療におけるそれぞれの以前の目の治療は、以前に治療した左目に対応する。関連して、患者の目1240を評価する際に、選択した目(例えばOD又はOS)は、有効な治療ベクトル関数が導出される分析した目(例えばOD又はOS)に対応することができる。同様に、導出された治療もまた、患者の適切な目(例えばOD又はOS)に対応することができる。
【0152】
図13は、入力ベクトルを定義する(1320)ためのプロセス1310、及び有効な治療ベクトル関数を導出する(1340)ためのプロセス1330の追加の態様を示す。ここで示されるように、入力ベクトルを定義するための手順は、工程1322により表されるように、屈折治療により誘導される患者の目の目標屈折を特定することと、工程1326により表されるように、測定した患者の目の治療前光学特性1324と目標との間の差を特徴付ける、目的の屈折矯正ベクトル(IRC)を判定することと、を含むことができる。更に、ここで示されるように、以前の治療から有効な治療ベクトル関数を導出するための手順1330は、工程1342により表されるように、関連する目(例えば、複数の関連する目)の目的の屈折矯正ベクトル(IRC)を判定することと、工程1346により表されるように、関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、を含むことができる。いくつかの実施形態によれば、それぞれのSIRCは、関連する目の測定治療前光学特性1344と治療後光学特性1345との間の差を特徴付けることができる。場合によっては、光学特性、SIRC、及び/又はIRCは、角膜曲率測定値、K値、光断層測定値、角膜トポグラフィ値、前眼房長又は深さ値、後方角膜曲率値、眼軸長値、水晶体厚さ値、曲率半径値、傾斜値などを含有することができる。
【0153】
図14は、本発明の実施形態に従った、患者の目の屈折治療を計画するための方法1400の態様を示す。ここで示されるように、方法1400は、以前に治療した目、又は複数の以前の目の治療1410から影響マトリクスを導出することを含む。関連する目のそれぞれの以前の目の治療1412a、1412bに関して、以下のとおりに、目的の屈折矯正ベクトル(IRC)及び手術により誘導された屈折矯正ベクトル(SIRC)を判定することが可能である。ここで示されるように、方法1400は、それぞれ、工程1418a、1418bにより表されるように、関連する目の測定治療前高次収差(又は光学特性)1414a、1414bと、関連する目の目標屈折1416a、1416bとの間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することを含む。更に、方法1400は、それぞれ、工程1440a、1440bにより表されるように、測定治療前収差(又は光学特性)1414a、1414bと、関連する目の測定治療後収差(又は光学特性)1420a、1420bとの間の差を特徴付ける、関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することを含む。方法は、工程1450により表されるように、IRCとSIRCとの間の相関関係を示すために影響マトリクスを導出することも含んでもよい。更に、方法は、工程1480により表されるように、患者の目の測定治療前高次収差(又は光学特性)1460と、患者の目の目標屈折1470(例えば、手術により誘導される目標の矯正又はアウトカム)との間の差を特徴付ける患者のIRCベクトルを定義することを含むことができる。場合によっては、目標屈折1470は正視眼目標に対応することができる。場合によっては、目標屈折は非正視眼目標に対応することができる。更に、工程1490により表されるように、方法は、影響マトリクスに基づいて患者のIRCベクトルを調節することを含むことができる。場合によっては、光学特性(例えば1414a、1414b、1420a、1420b、1460)としては、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び/又は角膜曲率測定値を挙げることができる。場合によっては、方法は、患者のIRCベクトルに基づいて、患者の目に治療を行うことを更に含むことができる。場合によっては、関連する目のそれぞれの以前の目の治療に関して、IRCを更に判定して、測定した治療前角膜トポグラフィと目標の角膜トポグラフィとの間の差を特徴付け、かつ測定した治療前低次収差と目標低次収差との間の差を特徴付けることができる。場合によっては、関連する目のそれぞれの以前の目の治療に関して、SIRCを更に判定して、測定した治療前低次収差と測定治療後収差との間の差を特徴付け、かつ測定した治療前角膜トポグラフィと測定した治療後角膜トポグラフィとの間の差を特徴付けることができる。場合によっては、患者のIRCベクトルを更に定義して、測定治療前低次収差と目標屈折との間の差を特徴付け、かつ目の測定治療前トポグラフィと目標トポグラフィとの間の差を特徴付けることができる。
【0154】
場合によっては、以前の目の治療1412a、1412bは、それぞれ第1の患者及び第2の患者に対応することができる。場合によっては、以前の目の治療1412a、1412bはそれぞれ、右目(OD)及び左目(OS)に対応することができる。そのため、右目(又は右目の群)及び左目(又は左目の群)を別々に分析することができる。関連して、右目(又は右目の群)及び左目(又は左目の群)のデータを変換して、同時に分析することができる。場合によっては、以前の目の治療1412a、1412bは右目のみ、あるいは左目のみに対応することができる。したがって、影響マトリクス(又はSIRC)は、複数の治療(又はそれらからの情報)から導出することができる。場合によっては、複数の以前の目の治療におけるそれぞれの以前の目の治療は、個々の個体に対応する。場合によっては、複数の以前の目の治療におけるそれぞれの以前の目の治療は、以前に治療した右目に対応する。場合によっては、複数の以前の目の治療におけるそれぞれの以前の目の治療は、以前に治療した左目に対応する。関連して、患者の目1460を評価する際に、選択した目(例えばOD又はOS)は、影響マトリクス(又はSIRC)が導出される分析した目(例えばOD又はOS)に対応することができる。同様に、調節した患者のIRCベクトルは、患者の適切な目(例えばOD又はOS)にも対応することができる。
【0155】
図15は、本発明の実施形態に従った、患者の目の屈折治療を計画又は誘導するためのシステム1500の態様を示す。ここで示されるように、システム1500は、患者の目の治療前光学特性を受信するための入力部1510、入力部に連結されたプロセッサ1520、及びプロセッサに連結した出力部1530を備える。場合によっては、有効な治療ベクトル関数を適用することにより、患者の目の光学特性に応じて、プロセッサ1520は、患者の目の治療を導出するように構成される。場合によっては、有効な治療ベクトル関数は、複数の以前の目の治療のそれぞれに関して、関連する目の治療前の光学特性を特徴付ける治療前ベクトルと、関連する目の治療後光学特性を特徴付ける治療後ベクトルとの間の相関関係から導出することができる。場合によっては、出力部1530は、治療を送信して、患者の目の屈折の改善を容易にするように構成することができる。
【0156】
いくつかの実施形態によれば、システム1500は、患者の目の目標屈折を受信するための入力部1540を備えることができる。いくつかの実施形態において、システム1500は、患者に治療を行うための、レーザ送達システムなどの装置1550を備えるか、又はこれと連結されることができる。ここで示されるように、システム1500は、収差計1560を備えることができ、又はこれと連結されることができる。場合によっては、収差計1560は、目の低次収差、及び目の高次収差を感知するように構成することができる。そのような低次収差及び高次収差は、プロセッサ1520に送信されるか、又はプロセッサ1520により受信されることができる。場合によっては、収差計1560は、目の角膜トポグラフィを感知するように構成されることができる。そのような角膜トポグラフィは、プロセッサ1520に送信されるか、又はプロセッサ1520により受信されることができる。システム1500は、光断層測定装置1570もまた備えることができ、又はこれと連結されることができる。場合によっては、光断層測定装置1570は、目の光学特性を検出するように構成されることができる。このような光学特性は、プロセッサ1520に送信されるか、又はプロセッサ1520により受信されることができる。システム1500は、角膜曲率測定装置1580もまた備えることができ、又はこれと連結されることができる。場合によっては、角膜曲率測定装置1580は、目の光学特性を検出するように構成されることができる。このような光学特性は、プロセッサ1520に送信されるか、又はプロセッサ1520により受信されることができる。
【0157】
典型的には、角膜曲率測定装置1580を使用して、角膜の曲率半径を測定又は評価することができる。角膜曲率測定装置1580は例えば、前方の角膜表面の曲率を測定する角膜計又は角膜曲率計であることができる。角膜曲率測定技術において、前方の角膜表面は鏡面反射体と考えることができる。輪を目の前に配置することが可能であり、角膜では反射して、虚像が輪の第1のプルキンエ像となるとなるように、その表面下部に輪の虚像を形成することができる。式R=2dy/h(式中、hは対象体である輪の半径であり、yは輪の像の半径であり、dは対象体と像との距離である)に従うと、この像のサイズは角膜の曲率半径(R)に関係することができる。角膜屈折指数を使用して、角膜半径を角膜力に変換することが可能である。このように、角膜曲率測定を使用して、角膜力及び前方の角膜表面測定を評価することができる。場合によっては、(例えば、角膜乱視が存在する場合に)輪は、主軸及び副軸を有する楕円形状である。2つの直行する縦線に沿って角膜曲率測定をして、最大及び最小角膜力を得、このような極値を角膜K’s又はK値として示すことができる。いくつかの態様では、K値を使用して、角膜の中央傾斜を定量化することができる。したがって、システムは任意に、角膜曲率測定デバイスにより入手した情報(例えば曲率値)、及び/又はトポグラフィデバイスにより入手した情報(例えば隆起値)を含むか、又は使用することができる。場合によっては、トポグラフィ情報を使用して、K値を判定するか、又は近似させることができる。
【0158】
図16は、本発明の実施形態に従った、患者の目の屈折治療に使用するためのシステム又は装置1600の態様を示す。ここで示されるように、システム1600は、収差測定及び角膜トポグラフィ測定を組み合わせている。システム1600は、波面センサ構成部品1610を備え、これは、ハルトマンシャック(HS WFS)型の収差計であることができる。場合によっては、波面センサ構成部品1610としては、高解像度の波面収差計、例えばCOAS−HD(商標)Model 2800が挙げられる。システム1600はまた、固視標1620も備え、これはマイクロディスプレイにより作成することができる。ここで示されるように、システム1600は、角膜トポグラフィ装置1630もまた備える。場合によっては、トポグラフィ装置1630を使用してK値を入手することができる。角膜トポグラフィ装置1630の動作には、円錐状の表面1632に適切に間隔が空いた光源のアレイ上で、第1プルキンエ反射の位置を測定することが伴う場合がある。光学配置は、長方形状で均一に間隔が空いた第1プルキンエ反射のグリッドを作成することができ、このグリッドは、例えば、平均角膜寸法の較正面を測定する際に、CCD検出器1634(例えばトポグラフィチャネル)により観察することができる。円錐状表面1632は、780nmのLEDを使用したランバート反射スクリーンにより後ろから照明を当てることができる。次に、この均一な光照射野を、適切な間隔が空き角度が付いた採光用開口を有する光学的に厚いスクリーンによりマスクしてもよい。これは、主に前方角膜の焦点平面に向けられる、前方を向いた狭い発光を伴う光源を生み出し、装置の光度効率を改善する。2方向(x及びy)への、斑の位置の変化を分析することにより、それぞれのサンプル点における角膜傾斜を測定することができる。斑の位置の移動により、同じ位置において垂直の表面に対する、光線角度の計算が可能となる。入射光線角は機器の形状からわかるため、角膜表面の傾斜が測定される。(フェルマーの原理に基づく)統合、及び反復的検索アルゴリズムにより、隆起データの再構築が可能となる。測定中の目と、システム内の第1の光学素子との距離を、曲率半径を判定するために測定することができる。この機器では、ヘルムホルツスポット(HHS)から算出する曲率半径が、目の位置とは無関係である(光は集光レンズを通って投射されるため)ことに注意することにより距離を測定することができる。角膜トポグラフィ(CT)円錐スポットに関して、パターンは曲率半径及び目の位置の両方に依存し得る。HHSパターンがCTパターンと一致する場所で、正しい距離を求めることができる。角膜傾斜の測定は、2方向であることができる。角膜トポグラフィ測定データを、収差測定に使用しているものと同じ軸(例えば、視野方向、すなわちLOS)にマッピングすることが可能であり、このマッピングプロセスの後に、結果を操作者に示すことができる。角膜でのサンプリングは、(例えば、8mmの角膜曲率半径に対して)215マイクロ平方メートルであることができ、サンプリングパターンは、中央の角膜領域よりわずかに密度が低い場合がある。収差及び角膜トポグラフィ測定は厳密に同時でない場合がある。場合によっては、これらの測定間の時間間隙は、10分の1秒である。各測定には複数の画像を含むことができ、例えば波面斑画像、角膜トポグラフィ斑画像、暗所虹彩(SI)、及び明所虹彩(PI)が含まれる。後の3つの画像(CT、SI、及びPI)を、同じカメラで異なる照明を用いて記録することができる。収差及びトポグラフィシステムの両方が、事前に記録した参照を使用して、光学系中に残っているあらゆる小さな誤差を差し引くことができる。理想の波面及び角膜表面基準を使用して、これらを光学的に記録することができる。機器のソフトウェアは、相互座標系に収差及びトポグラフィデータのまとまりをマッピングすることが可能であり、未加工の角膜隆起データをエクスポートすることにより、CTデータを、座標系がVK軸に沿って中心に配置されたフォーマットで維持することができる。
【0159】
シリンダ値が高い患者において、標準的な手術では、球面を改善することなくシリンダ値を改善することができる。関連して、標準的な手術では、患者の高次収差の量が増加する場合がある。しかしながら、特定の低次収差、高次収差、及び他の光学特性の間に様々な連関が存在することが判定されている。このような連関を、最終的な視覚的明瞭性、及び他の光学性能特定を改善するために使用することができる。例えば、連関は、円柱(手術前)と正味球面(手術後)との間に観察されている。したがって、場合によっては、球面及び円柱項の両方を分析に含むことができる。例えば、本明細書にて開示した多変量技術を使用して、この連関、及び高次項に関する連関を補正又は補償する治療ベクトル及び/又は影響マトリクスを生成することができる。場合によっては、これには、シリンダ値を調節して、球面に対して所望の効果をもたらすことにより、連関を補正又は補償する治療ベクトルが伴う場合がある。したがって、本発明の実施形態に従うと、影響マトリクス又は他の有効な治療ベクトル関数を使用して、円柱と球面との間の連関を特定及び/又は補償することが可能であり、それ故に、治療の全体的な正確さを増加させる解決策をもたらすことが可能である。別の例において、患者からの光学データが分析され、角膜曲率測定データ(例えば、治療前K値)もまた検討された場合、円柱(例えば、治療前)と球面(治療後)との相関が増加した。例えば、角膜曲率測定データを使用しない場合、円柱と球面との間には約19%の相関係数が観察され、角膜曲率測定データを使用した場合には、約59%の相関係数が観察された。多くの場合において、同じ治療機器を使用して治療を適用し、同じ測定機器を使用して手術前データ及び手術後データを入手した。本発明の実施形態に従うと、多数の光学特性、例えば低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、角膜曲率測定値、並びに関連する構成要素、例えば前方及び/又は後方眼房長さ又は深さ値、前方及び/又は後方角膜曲率値、眼軸長値、水晶体厚さ値、曲率半径値、傾斜値(例えば自然の水晶体)、水晶体の偏心値(例えば自然の水晶体)、誘発された乱視(又は切開方向などの、関連する角膜切り込みパラメータ)、瞳の心取り又は偏心値(例えば瞳の中心の位置)、眼の状態(例えば拡大)、照明の程度(例えば薄明又は明所)、医師特異的因子(例えば手術手技、以前の治療歴)、計画した治療データ(例えば計画した誘発乱視)、得られる治療データ(例えば治療後に観察されるアウトカム又は変化)、プルキンエ像、角膜フラップの寸法データ(例えばフラップの直径又は面積)、角膜水和データなどを考慮する際に、改善された相関関係を得ることができる。このような技術を、レーザ補助式in situ角膜曲率形成(LASIK)、光屈折式角膜切除(PPK)、レーザ補助式上皮下角膜切除(LASEK)、放射状角膜曲率測定、弧状角膜曲率測定、並びに他のレーザ屈折式及び/又は角膜手術のコンテクストに、並びに眼内レンズ治療、コンタクトレンズ、メガネなどに適用することができる。
【0160】
別の例において、あらゆる医師の調節がない状態で光学パラメータ測定値を測定機器から直接入手すると、類似の相関関係が観察された。場合によっては、円柱の各ジオプターに対して、対応する球面の1/8ジオプターが観察された。したがって、高いシリンダ値(例えば−3D、−4D)を有する患者において、約3/8D又は4/8Dの、球面における対応する差が観察された。
【0161】
場合によっては、K値と1つ以上の高次収差との間に強力な連関が観察された。したがって、例えば、球面収差に対して所望の結果をもたらすと考えられるK値の補正又は調節を判定することができる。このように、K値と収差の両方を考慮する際に、結果はより予測可能なものとなり得る。例えば、本明細書にて開示した多変量技術を使用して、この連関を補正又は補償する治療ベクトル及び/又は影響マトリクスを生成することができる。場合によっては、これには、球面収差に対して所望の効果をもたらすために、K値を調節することにより連関を補正又は補償する治療ベクトルを伴う場合がある。
【0162】
場合によっては、別の方法では、手術の結果として誘発され得る高次収差を低下させることが可能であり得る。例えば、特定の角膜切開又は弛緩切断が一定量のシリンダ値又は乱視を誘発し得る場合、手術を実施する前、又は手術の実施に加えて、そのような切開の形成を組み込む眼科治療を計画することが可能であり得る。このように、本明細書に記載する技術を使用して、手術の効果を前もって補償することが可能であり得る。
【0163】
レーザ式屈折矯正手術用の改善された治療計画のための上述した原理は、白内障手術にも適用して、レーザ式屈折矯正手術用の改善された治療計画をもたらすことができ、これはまた、白内障を診断及び/又は治療するためのデバイス、システム及び方法にも適用して、白内障手術用の眼内レンズが特定され、選択され、眼の中に配置される全体的な正確性を増加させることができる。
【0164】
これらのデバイス及び方法の様々な態様及び利点を示すための、白内障診断用の視力測定システム及び方法の例示的実施形態を以下で説明する。しかし、これらのデバイス及び方法に関係する原理は、様々な他のコンテクストに用いることが可能であり、それ故に、本明細書で開示及び特許請求される新規のデバイス及び方法は、後述の例示的実施形態に限定されるものとして解釈してはならないことと理解されなければならない。
【0165】
図17A〜
図17Cに示すように、多くの実施形態に従った視力測定システム1701は、角膜、水晶体嚢、水晶体及び網膜の測定を含む、ヒトの目の複数の測定を行うように動作可能である。メインユニット1702は、土台1703を含み、システム1701の多くの実施形態の、多くの主なサブシステムを含む。例えば、外から視認可能なサブシステムは、タッチスクリーンディスプレイコントロールパネル1707、患者インターフェースアセンブリ1704、及びジョイスティック1708を含む。
【0166】
患者インターフェースアセンブリ1704は有益に、測定値測定の間に、患者の頭部を安定して不動に、かつ好ましくは快適な位置に固定するように構成され、かつ測定システムを用いて患者の目の好適な照準合わせを維持する、1つ以上の構造物を含む。特に好ましい実施形態において、システム1701により実施される全ての測定及び撮像測定に関して、患者の目は実質的に、測定システムに対して同じ位置にとどまる。
【0167】
一実施形態では、患者インターフェースは、測定を通して、システム1701に対して好適に照準合わせされた、単一で均一の位置において、患者の頭部を保持するように構成された、顎支持体1706及び前頭台1704を含む。
図18Cに示すように、視力測定システム1701は、患者が患者用椅子1709に座ることができるように配置されるのが好ましい。患者用椅子1709は、3つの軸(x、y、及びz)で調節及び配置されるように構成することができ、これにより、患者の頭部は、患者インターフェース上での配置のための好適な高さ及び水平位置となることができる。
【0168】
多くの実施形態において、システム1701は、外部通信接続を含むことができる。例えば、システム1701は、システム1701をネットワークに接続するためのネットワーク接続(例えばRJ45ネットワーク接続)を含むことができる。ネットワーク接続を使用することで、測定レポートのネットワーク印刷、患者の測定レポートを確認するための遠隔アクセス、及びシステム分析を実施するための遠隔アクセスが可能になり得る。システム1701は、システム1702により実施される測定の映像を出力するために使用可能な、映像出力ポート(例えばHDMI)を備えることができる。例えば、医師又はユーザにより確認するために、出力映像を外部モニタに表示することができる。出力映像はまた、例えば、アーカイブ目的のために記録することもできる。システム1702は、患者の測定レポートを、例えば、レーザ式白内障手術の実施における測定での使用のために、レーザ式白内障手術デバイスに連結された、データストレージデバイス又はコンピュータ読み取り可能媒体、例えば、不揮発性のコンピュータ読み取り可能媒体にエクスポートすることを可能にする1つ以上のデータ出力ポート(例えばUSB)を含むことができる。次に、データストレージデバイス又はコンピュータ読み取り可能媒体に記憶された測定レポートには、任意の好適な目的、例えば、ネットワークベースの印刷にアクセスできないユーザの場合における外部コンピュータからの印刷などのために、又はレーザ式白内障手術を含む白内障手術中での使用のために、しばらく経ってからアクセスすることができる。
【0169】
図18は、本明細書に記載する1つ以上の実施形態に従った視力測定機器1801を含むシステムのブロック図である。視力測定機器1801は、光干渉測定器(OCT)サブシステム1810、波面収差計サブシステム1820、及び被験体の目の1つ以上の特徴を測定するための角膜トポグラファーサブシステム1830を含む。視力測定機器1801は、虹彩撮像サブシステム1840、固視標サブシステム1850、1つ以上のプロセッサ1861及びメモリ1862を含むコントローラ1860、ディスプレイ1870、及びオペレータインターフェース1880を更に含むことができる。視力測定機器1801は、視力測定機器1801による測定に関して、被験体が目を提示するための患者インターフェース1804を更に含む。
【0170】
光干渉断層撮影測定サブシステム1810は、3次元で目の構造の空間配置(例えば境界上の点の3次元座標、例えばX、Y、及びZ)を測定するために構成される。このような対象の構造物としては、例えば、角膜の前方表面、角膜の後方表面、水晶体嚢の前方部分、水晶体嚢の後方部分、水晶体の前方表面、水晶体の後方表面、虹彩、瞳、角膜縁、埋め込まれた眼内レンズ、及び/又は網膜を挙げることができる。対象の構造物、並びに/又は表面及び曲線などの、好適に一致する幾何学的モデリングの構造物の空間配置は、いくつかの実施形態では、後続のレーザ補助式手術処置をプログラム及び制御すること、又は眼内レンズ及び眼内でのその配置位置の明確化を含む多数の目的のために、コントローラ1860により生成及び/又は使用することができる。対象の構造物、及び/又は好適に一致する幾何学的モデリングの構造物の空間配置を使用して、様々なパラメータを測定することができる。
【0171】
非限定例として、システム1801は、約1060nmの波長を8mmの走査深さで用いる、波長掃引型OCT撮像システムを使用するように構成することができる。光干渉断層撮影測定を使用した、目の構造の空間配置は通常、患者が患者インターフェース1804にいる間に測定されなければならない。十分な眼科走査の深さを得るには、OCT走査の深さは8〜50mmであるのが好ましく、走査の深さは約24mmより大きい、又は更には30mmより大きいのが好ましい。波長掃引型波長は、840nm〜1310nmの波長に中心を置くことができる。
【0172】
光干渉断層撮影器サブシステム1810は、視力測定機器1801で使用可能な眼構造撮像サブシステムの、単なる一例である。別の実施形態において、異なる眼構造撮像サブシステム、例えばシャインプルーフ撮像器、蛍光撮像器、立体照明撮像器、波面断層測定器、超音波撮像器、及び集積撮像器を使用することができる。
【0173】
波面収差計サブシステム1820は、例えば、ハルトマンシャック波面センサにより、目から表れる波面を測定することにより、好ましくは低次収差及び高次収差を含む目の収差を測定するように構成される。
【0174】
角膜トポグラファーサブシステム1830は、目の角膜曲率測定値の読み取り、目の角膜トポグラフィ、目の光干渉断層撮影測定、目のプラチドディスクトポグラフィ、目の角膜トポグラフィからの複数の点の反射、目の角膜トポグラフィから反射するグリッド、目のハルトマンシャック測定、目のシャインプルーフ画像トポグラフィ、目の共焦点断層測定、ヘルムホルツ光源トポグラファー、又は目の低干渉反射光測定の1つ以上を含む任意数の方法を適用して、角膜の形状の測定することができる。角膜の形状は通常、患者が患者インターフェース1804にいる間に測定されなければならない。
【0175】
目1901(
図19Aを参照)が遠点にて焦点が合わせられる際に、屈折及び波面収差を測定することが多くの場合、所望されるため、固視標システム1850は、患者の遠近調節を制御するように構成される。
【0176】
角膜トポグラファーサブシステム1810、波面収差計1820、光干渉断層撮影測定器サブシステム1830、又はカメラ1840により撮影された画像を、それぞれ視力測定システム1801のオペレータインターフェース1880のディスプレイ、又は視力測定システムのディスプレイ1870により表示することができる。オペレータインターフェースを使用して、表示された画像のいずれかを修正、変形、又は変換させることもまた可能である。
【0177】
共有された光学素子1855は、患者インターフェース1804と、光干渉断層撮影測定器(OCT)サブシステム1810、波面収差計サブシステム1820、角膜トポグラファーサブシステム1830、並びにいくつかの実施形態ではカメラ1840、及び固視標1850のそれぞれとの間に配置された、共通の伝搬路を提供する。多くの実施形態において、共有された光学素子1855は、それぞれのサブシステムからの患者の目への発光を受信し、場合によっては、共通の伝達路に沿って、発光を患者の目から適切なディレクタに向け直す鏡、レンズ、及びビームコンバイナを含む多数の光学素子を含むことができる。
【0178】
コントローラ1860は、視力測定機器1801の方向を制御し、通信路1858を通って、光干渉断層撮影測定器(OCT)サブシステム1810、波面収差計サブシステム1820、被験体の目の1つ以上の特徴を測定するための角膜トポグラファーサブシステム1830、カメラ1840、固視標1850、ディスプレイ1870、及びオペレータインターフェース1880のいずれかからの入力を受信することができる。コントローラ1860は、任意の好適な構成要素、例えば1つ以上のプロセッサ、1つ以上のフィールド・プログラマブルゲートアレイ(FPGA)、及び1つ以上のメモリストレージデバイスを含むことができる。多くの実施形態において、コントローラ1860はディスプレイ1870を制御して、レーザ眼科手術処置でのユーザ制御、ユーザの具体的な治療パラメータに従った白内障前の処置計画を提供し、かつレーザ眼科手術処置でのユーザ制御を提供する。通信路1858は、コントローラ1860とそれぞれのシステム構成要素との間の、任意の好適な共有されるか、又は専用の通信路を含む任意の好適な構成で実装されることができる。
【0179】
オペレータインターフェース1880は、コントローラ1860にユーザ入力を提供するのに好適な、任意の好適なユーザ入力デバイスを含むことができる。例えば、ユーザインターフェースデバイス1880は、ジョイスティック1808、キーボード、又はタッチスクリーンディスプレイ1870などのデバイスを含むことができる。
【0180】
図19A及び
図19Bは、多くの実施形態に従ったアセンブリ1900を示す簡略化したブロック図であり、システム1801に含まれることができる。アセンブリ1900は、光干渉断層撮影測定器(OCT)サブシステム1890、波面収差計サブシステム1850、被験体の目の1つ以上の特徴を測定するための角膜トポグラファーサブシステム1810、カメラ1840、固視標サブシステム1950、及び共有された光学素子1855の好適な構成及び組み込みの非限定的な例である。
【0181】
共有された光学素子は一般に、構造体1910の開口部又はアパーチャ1914を貫通する中心軸1902に沿って配置される、第1の光学系1970の1つ以上の構成要素を含む。第1の光学系1970は、様々な光源からの光を、中心軸1902に沿って目に向け、様々な光源からの光が目1901に移動する、共有又は共通の光路を確立する。一実施形態では、光学系1970は、四分の一波長板1971、第1のビームスプリッタ1972、第2のビームスプリッタ1973、光学素子(例えばレンズ)1974、第2のレンズ1975、第3のビームスプリッタ1976、及びアパーチャ1978を含む構造体を含む。追加の光学系をアセンブリ1900で使用して、1つ以上の光源からの光線を第1の光学系1970に向けることができる。例えば、第2の光学系1960は、光を波面収差計サブシステム1950から第1の光学系1970に向け、鏡1953、ビームスプリッタ1962及びビームスプリッタ1983、並びにレンズ1985を含む。
【0182】
アセンブリ1900の他の構成が可能であってもよく、当業者に明らかであることができる。
【0183】
角膜トポグラファーサブシステム1940は、開口部又はアパーチャ1914を中に有する主面1912を有する構造体1910、構造体1910の主面1912に備えられた複数の第1の(又は周辺)光源1920、ヘルムホルツ光源1930、及び検出器、光検出器、又は検出器アレイ1941を含む。
【0184】
一実施形態では、構造体1910は、開口部又はアパーチャをいずれかの端に有する、細長い楕円、すなわち「ツェッペリン」の形状を有する。このような構造体の例は、Yobani Meji’a−Barbosa et al.,「Object surface for applying a modified Hartmann test to measure corneal topography」,APPLIED OPTICS,Vol.40,No.31(Nov.1,2001)(「Meji’a−Barbosa」)に開示されている。いくつかの実施形態において、
図19Aに示すように、目1901の角膜から見た際に、構造体1910の主面1912は凹状である。
【0185】
主面1912が凹状である一実施形態では、主面1912は円錐台の形状を有する。あるいは、主面1912は、中に開口部又はアパーチャを有する、半球形状又は球形のいくつかの他の部分の形状を有することができる。また代替的に、主面1912は、側面部分が取り除かれた、変形球形又は円錐台の形状を有することができる。有益には、このような配置は、被験体の鼻が邪魔になることなく、被験体の目1901により接近して構造体1910がより簡単に配置されることにより、アセンブリ1900のエルゴノミクスを改善することができる。もちろん、主面1912に対して様々な他の構成及び形状が可能である。
【0186】
図19Aの実施形態において、複数の第1の光源1920は、構造体1910の主面1912に提供され、目1901の角膜を照射する。一実施形態では、光源1922は、個々の光発生部品又はランプ、例えばファイバー束の、個々の光ファイバーの発光ダイオード(LED)及び/又はチップを含むことができる。あるいは、構造体1910の主面1912は、中に複数の穴部又はアパーチャ、及び1つ以上の背面光ランプを有することができ、これらは、リフレクタ及び/又はディフューザを含むことができ、穴部を通って光が通過し、目1901の角膜上に光を投射する複数の第1の光源1920を形成するために提供することができる。他の配置も可能である。
【0187】
別の実施形態では、構造体1910は、アセンブリ1900から省略され、第1の光源1920は独立して(例えば、個別の光ファイバーとして)掛けられて、中心軸の周りに配置された第1の光源1920の群を形成することができ、群は、軸から群の中でアパーチャ(通常、
図19Aに示す構造体1910内のアパーチャ1914に対応している)を画定するラジアル距離だけ分離している。
【0188】
動作中、第1の光源1920の1つからの光線(実線)は角膜で反射し、(アパーチャ1978を含む)光学系1970を通過して、検出器アレイ1941上に光点として現れる。この光線は、光学系1970を通過させて検出器アレイ1941に届かせる光線の小さな束を表すものであり、これら全てが実質的に、検出器アレイ1941上の同じ位置に焦点が合うことが理解されよう。その第1の光源1920からの他の光線は、アパーチャ1978によりブロックされるか、又は別の方法で散乱して光学系1970を通過しない。同様の方法において、他の第1の光源1920からの光が検出器アレイ1941上に画像化され、第1の光源1920のそれぞれの1つは、目1901の角膜上の特定の反射位置、及び/又は角膜の形状と相関し得る検出器アレイ1941上の位置に画像化又はマッピングされる。したがって、検出器アレイ1941は、上に投射された光点を検出し、コントローラ1860のプロセッサに、対応する出力信号を提供する(
図18)。プロセッサは、検出器アレイ1941上の光点の位置及び/又は形状を判定し、これらの位置及び/又は形状を、標準的な角膜又はモデル角膜で予想されるものと比較することにより、コントローラ1860のプロセッサが角膜トポグラフィを判定することを可能にする。あるいは、検出器アレイ1941上で点の画像を処理する他の方法を使用して、目1901の角膜トポグラフィ、又は目1901の特徴付けに関係する他の情報を判定することができる。
【0189】
検出器アレイ1941は、2次元アレイに配置された、複数の光検出部品を含む。一実施形態では、検出器アレイ1941は、このような電荷結合素子(CCD)、例えば、ビデオカメラで見出され得るものを含む。しかし、CMOSアレイ、又は別の電気感光性デバイスなどの他の装置を代わりに用いてもよい。有益には、検出器アレイ1941の映像出力信号は、以下にて更に詳細に記載するこれらの出力信号を処理するプロセッサ1861に提供される。
【0190】
アセンブリ1900は、ヘルムホルツの原理に従って構成したヘルムホルツ光源1930もまた含む。本明細書で使用する場合、用語「ヘルムホルツ源(Helmholtz source)」又は「ヘルムホルツ光源(Helmholtz light source)」とは、個別の光源のそれぞれからの光が、屈折力を有する光学素子を通過して参照又は試験対象体を反射し、光学素子を通過し、検出器により受信されるように配置され、ヘルムホルツ光源からの光を使用して、参照又は試験対象体の表面の少なくとも一部の幾何及び/又は光学情報を測定する、1つ又は複数の個別の光源を意味する。一般に、検出器の信号は、ヘルムホルツ光源に対する試験又は参照対象体の相対位置とは無関係であることが、ヘルムホルツ光源の特徴である。本明細書で使用する場合、用語「光学素子」とは、光を屈折、反射、及び/又は回折させ、正又は負の屈折力のいずれかを有する構成要素を意味する。
【0191】
このような実施形態では、ヘルムホルツ光源1930は、目1901に関して光学的無限遠に位置する。ヘルムホルツの原理には、表面を離れる、測定した主な光線が機器の光軸に平行となるようにすることに加えて、テレセントリック検出器システム、すなわち、測定時の表面に対して、光学的無限遠に検出器アレイを配置するシステムと組み合わせた、そのような無限遠光源の使用が含まれる。ヘルムホルツの角膜測定原理は、光学的無限遠におけるヘルムホルツ光源、及びテレセントリック観察システムを有するため、検出器アレイ1941はまた、角膜により形成される光源の像から、光学的には無限遠に位置する。このような測定システムは、機器に対する、角膜表面の軸の照準合わせのずれに対しては感受性がない。
【0192】
一実施形態では、ヘルムホルツ光源1930は、複数のランプ、例えば、LED又は光ファイバーチップを含むことができる第2の光源1932を含む。一実施形態では、第2の光源1932は、光学素子1931を備える1つ以上の背面光ランプにより照明を当てられる表面に、複数の穴部又はアパーチャを有するLED及びプレート1933を含み、ディフューザを含むことができる。
【0193】
一実施形態では、第2の光源1932はアセンブリ1900の中心光軸1902から外れて位置し、第2の光源1932からの光は、第3のビームスプリッタ1976により光学素子1971に向けられる。
【0194】
アセンブリ1900のトポグラファー部分の操作は、第1の光源1920及びヘルムホルツ光源1930を組み合わせて使用することにより実施することができる。操作中、検出器アレイ1941は、ヘルムホルツ光源1930(検出器アレイ1941の中心部分で検出される)及び第1の光源1920(検出器アレイ1941の周辺部分で検出される)の両方からアレイ1941に投射される光点を検出し、プロセッサに対応する出力信号を提供する。一般に、検出器アレイ1940上に現れる第1の光源1920の像は角膜表面の外側領域から延び、検出器アレイ1941上に現れるヘルムホルツ光源1930の像は、角膜の表面の中心領域又は沿軸領域から延びる。したがって、角膜表面の中心領域についての情報(例えば表面の曲率)は、検出器アレイ1941上の第1の光源1920の像からは測定することができないものの、そのような情報は、検出器アレイ1941上のヘルムホルツ光源1930の像から測定することができる。コントローラ1860のプロセッサは、検出器アレイ1941上で光点の位置及び/又は形状を測定し、これらの位置及び/又は形状を、標準的な角膜又はモデル角膜に基づいて予想されるものと比較することにより、プロセッサが目1901の角膜トポグラフィを測定することを可能にする。したがって、角膜表面全体のトポグラフィは、「穴部」なしで、又は中央角膜領域からのデータを失うことなく、アセンブリ1900により特徴付けることができる。
【0195】
中心軸1902から外れた第4の光源19201は、瞳再帰反射光照射器として構成される、光軸1902に垂直なアパーチャ1978上に、又は付近に配置された鏡1977、1979により光軸1902に沿って向けられることができる。瞳再帰反射光照射器は円盤状の光を患者の目に向けるように構成され、それにより、円盤状の光は目の中の反射面から反射されることが可能であり、反射光は光路1970により検出器1941に伝えられる。瞳再帰反射光照射器は、患者の瞳が拡大した際に、光源19201からの円盤状の光が、埋め込まれたIOLから反射して、任意の基準マークを含むIOLの像を結ぶように任意に構成することができ、IOLが不完全に配置されている場合、検出器1941を使用して、IOLの端が偏心していることを測定することができる。また、瞳再帰反射光照射器を使用した検出器1941からの像には、IOLが適切に折り畳まれていない場合、折り目、例えば、折り畳まれていない縁部が見える場合がある。
【0196】
アセンブリ1900の波面収差計サブシステム1950は、プローブビーム及び波面センサ1955を提供する第3の光源1952を含む。波面収差計サブシステム1950は、コリメーティングレンズ1954、偏光ビームスプリッタ1956、第1の光学素子と、レンズ1963と、第2の光学素子と、を含む調節可能な望遠鏡、レンズ1964、可動式ステージ又はプラットフォーム1966、及び、データの曖昧性を除外するために波面センサ1955に備えられた、光のダイナミックレンジを制限するためのダイナミックレンジ制限アパーチャ1965を更に含むのが好ましい。波面収差計サブシステムからの光は、構造体1910の開口部又はアパーチャ1914を通過して、中心軸1902に沿って配置される光学系1970の構成光学素子の1つに向けられる。レンズ1963、1964、又は本明細書で論じる他のレンズのいずれかを、別の種類の変換又は分岐光学素子、例えば、回折光学素子により置き換えるか、又は補助することができることが当業者には理解されよう。
【0197】
光源1952は、840nmのSLD(スーパールミネッセント半導体レーザ)であるのが好ましい。SLDは、光が非常に小さいエミッタ領域から発するという点でレーザに類似している。しかし、レーザとは違って、SLDのスペクトル幅は非常に大きく、約40nmである。これにより、スペクトル効果が低下し、波面測定に使用する画像が改善される傾向がある。
【0198】
波面センサ1955は、検出器アレイと、受信した光を検出器アレイ上で焦点を合わせるための複数のレンズレットと、を含むハルトマンシャック波面センサであることが好ましい。この場合、検出器アレイは、CCD、CMOSアレイ、又は別の電気感光性デバイスであることができる。しかし、他の波面センサを代わりに用いることもできる。本明細書で記載される1つ以上のシステムで使用可能な波面センサの実施形態は、2003年4月22日に発行された米国特許第6,550,917号(Neal et al.)、及び1998年7月7日に発行された同第5,777,719号(Williams et al.)に記載されており、これらの特許は共に、それらの全体が本明細書に参照により組み込まれている。
【0199】
第1の光源1920の群の中央にあるアパーチャ又は開口部(例えば、構造体1910の主面1912内のアパーチャ1914)により、アセンブリ1900はプローブビームを目1901の中に提供して、全体的な視覚収差を特徴付けることができる。したがって、第3の光源1952は、プローブビームを光源偏光ビームスプリッタ1956及び偏光ビームスプリッタ1962を通って、光学系1970の第1のビームスプリッタ1972に伝える。第1のビームスプリッタ1972は、プローブビームをアパーチャ1914を通って目1901に向ける。プローブビームからの光は、目1901の網膜から散乱し、散乱光の少なくとも一部が第1のアパーチャ1914を通って第1のビームスプリッタ1972まで戻るのが好ましい。第1のビームスプリッタ1972は、後方散乱光を、ビームスプリッタ1972を通って偏光ビームスプリッタ1962に、鏡1953を通って波面センサ1955に戻す。
【0200】
波面センサ1955は、信号をコントローラ1860のプロセッサ1861に出力し、プロセッサ1861は、信号を使用して目1901の視覚収差を測定する。プロセッサ1861は、角膜トポグラフィサブシステムにより測定した目1901の角膜トポグラフィを考慮することにより、目1901をよりよく特徴付けることが可能であるのが好ましく、目1901の角膜トポグラフィはまた、上で説明したように、検出器アレイ1941の出力に基づいてプロセッサ1861により測定することもできる。
【0201】
波面収差計サブシステム1950の動作において、光源1952からの光は、レンズ1954によりコリメートされる。光は、光源偏光ビームスプリッタ1956を通過する。光源偏光ビームスプリッタ1956に入る光は、部分的に偏光されている。光源偏光ビームスプリッタ1956は、第1の偏光(S)を有する光を反射し、第2の偏光(P)を有する光を伝えるため、存在する光は100%直線偏光している。この場合、S及びPは、光源偏光ビームスプリッタ1956内の斜辺に対する偏光の向きを意味する。
【0202】
光源偏光ビームスプリッタ1956からの光は、偏光ビームスプリッタ1962に入る。偏光ビームスプリッタ1962の斜辺は、光源偏光ビームスプリッタ1956の斜辺に対して90°回転しているため、ここで、光は、偏光ビームスプリッタ1962の斜辺に対してS偏光しており、それ故に、光は上に向かって反射する。偏光ビームスプリッタ1962からの光は、上に向かって移動し、S偏光を維持したままビームスプリッタ1972を通過した後、四分の一波長板1971を通って移動する。四分の一波長板1971は、光を円偏光に変換する。次に、光は、構造体1910の主面1912内のアパーチャ1914を通って目1901まで移動する。角膜上のビーム直径は、1〜2mmであるのが好ましい。次に、光は、角膜を通って移動し、目1901の網膜上に像を結ぶ。
【0203】
像を結んだ光点は、波面センサ1955により目1901を特徴付けるために使用する光源となる。目1901の網膜に当たるプローブビームからの光は、様々な方向に散乱する。一部の光は、半コリメートビームとして後ろに反射して、アセンブリ1900に向けて戻る。散乱の際、光の約90%は偏光を保持する。そのため、アセンブリに向けて戻る光は実質的に、依然として円偏光している。次いで、光は、構造体1910の主面1912内のアパーチャ1914を通って、四分の一波長板1971を通って移動し、変換されて直線偏光に戻る。四分の一波長板1971は、目の網膜からの光の偏光を変換させるため、第3の光源1950から受信されたS偏光のプローブビームとは対照的に、この光はP偏光である。このP偏光は、次に、反射して第1のビームスプリッタ1972から外れ、その後、偏光ビームスプリッタ1962に到達する。ここで、光は、偏光ビームスプリッタ1962の斜辺に対してP偏光しているため、ビームは伝達され、鏡1953まで続く。鏡1953で反射した後、光は、第1の光学素子1964と、第2の光学素子(例えばレンズ)1963と、可動式ステージ又はプラットフォーム1966と、を含む調節可能な望遠鏡に送られる。ビームはまた、波面センサ1955に向けられる光のダイナミックレンジを制限するためのダイナミックレンジ制限アパーチャ1965を通って導かれて、データの曖昧さを除外する。
【0204】
波面センサ1955がハルトマンシャックセンサである場合、光は、波面センサ1955内のレンズレットアレイにより集められ、光点の像は、波面センサ1955内の検出器アレイ上(例えば、CCD)に現れる。この像は次に、コントローラ1860のプロセスに提供及び分析されて、目1901の屈折及び収差が計算される。
【0205】
アセンブリ1900のOCTサブシステム1990は、OCTアセンブリ1991と、OCT光源のOCTビームを第1の光路1970に向ける第3の光路1992と、を含むのが好ましい。第3の光路1992は、OCT光源からのOCTビームを導くための光ファイバー線1996、コントローラ1860の制御下にて動作して、ビームの焦点をz方向(すなわち、OCTビームの伝達方向に沿って)変化させることができるz走査デバイス1993、並びに、それぞれコントローラ1860の制御下にて動作して、OCTビームをx及びy方向(すなわち、OCTビームの伝達方向に垂直に)変化させることができる、x走査デバイス1995、及びy走査デバイス1997を含むのが好ましい。OCT光源及び参照アームを、
図17Aに示す視力測定機器1701のメインユニット4に組み込むことができる。あるいは、OCTアセンブリ1991を第2のユニット19200に入れることができ、OCT光源からのOCTビームを、光路1992により、第2のハウジング19200からメインユニットに向けることができる。
【0206】
本発明のOCTシステム及び方法は、SD−OCT(スペクトルドメイン光干渉断層撮影測定)システム、又はより好ましくは、SS−OCT(波長掃引型光干渉断層撮影測定)システムのいずれか一方を含むFD−OCT(フーリエドメイン光干渉断層撮影測定)システムであるのが好ましい。従来のFD−OCTシステムにおいて、干渉信号は多数のスペクトル波長間隔にまたがり、分布及び統合され、逆フーリエ変換して、サンプルの深さ依存性反射力プロファイルを入手する。深さの関数としての散乱のプロファイルは、A走査(軸走査)と呼ばれる。ビームを横方向に走査して、共に組み合わせて、サンプルの断層撮影像(B走査)を形成可能な、A走査の組を生み出すことができる。
【0207】
SD−OCTシステムにおいて、参照アーム及びサンプルアームからの、組み合わせた戻り光の様々なスペクトル波長間隔を、例えばコリメーター、回折格子、及び直線検出器アレイを使用して空間的にコードする。波数の非線形空間的マッピングを補正するために、直線検出器アレイから入手するデータの再サンプリングを実施する。dcバックグラウンドの再サンプリング及び減算後、深さプロファイルの構造情報は、逆フーリエ変換演算を実施することにより入手される。波長掃引型OCTにおいては、広い帯域幅の光源を、高速走査レーザ源で置き換える。光源波長を広い波長帯にわたり高速掃引し、各波長及び各位置における散乱情報を全て集めることにより、集めた信号の組成は、スペクトルドメインOCT技術と等しくなる。次に、集めたスペクトルデータを逆フーリエ変換して、空間の深さ依存性情報を回復させる。
【0208】
FD−OCTは、固有のサンプル依存性の制限された深さ範囲、典型的には、1〜5mmに影響を受ける。FD−OCTは、空間インターフェログラムの逆フーリエ変換から深さ情報を抽出するという事実から、1つの制限が生じる。空間インターフェログラムは、本当の信号としてのみ記録ができるため、そのフーリエ変換には、ゼロ経路長差(ZPD)位置についてのエルミート対称性が必要である。結果的に、ZPDについての正及び負の変位を明瞭に解くことはできず、これにより鏡像のアーティファクトが生じ、使用可能な範囲が概ね半減する。これは、複素共役の曖昧性と呼ばれている。別の制限は、深さの増加に伴い感度の低下がもたらされる、感度の低下である。更に、OCTの信号は、後方散乱光子からのみ誘導されるため、吸収及び散乱からの光学的減衰は通常、約1〜4mmの使用可能なイメージング深度をもたらす。
【0209】
複素共役のアーティファクトを取り除いて、ZPD位置の周りの測定範囲を効果的に2倍する、いくつかの「完全範囲」OCT技術が開発されている。これらの完全範囲OCT技術は、最大約5mm、最大約8mmの使用可能なイメージング深度をもたらす。好適な完全範囲技術は、ディザリングの参照ラグを使用して、位相の曖昧さを断つ方法、位相ひずみを用いる方法、及び他の好適な方法である。
【0210】
図20に示すように、OCTサブシステム1990のOCTアセンブリ1991は、カプラー204により参照アーム206及びサンプルアーム210に分けられた、広帯域又は掃引光源202を含む。参照アーム106は、好適な分散及び経路長補償と共に参照反射を含むモジュール108を含む。OCTアセンブリ191のサンプルアーム110は、残りの視力測定機器の残りに対するインターフェースとして機能する出力コネクタ212を有する。参照及びサンプルアーム206、210の両方からの戻り信号は次に、カプラー204により検出デバイス220に向けられ、これには時間ドメイン、周波数、又は一点検出技術のいずれかを使用する。
図20において、8〜50nm深さの範囲にわたり掃引される、1060nmのレーザ波長と共に波長掃引型技術を使用する。
【0211】
図21は、ヒトの目2100の概略図である。多くの実施形態において、光源からの光線2101は、
図21の左から目に入り、屈折して角膜2110に入り、瞳を通って前眼房2104、虹彩2106を通過し、水晶体2102に到達する。水晶体に向けて屈折した後、光は、硝子体眼房2112を通過し、網膜2176にぶつかる。網膜2176は、光を検出し、視神経を通って脳に伝えられる電気信号に変換する(図示せず)。硝子体眼房2112は、水晶体2102と網膜2176との間に配置される透明液体である硝子体液を含有する。
図21に示すように、角膜2110は角膜厚さ(CT)を有し、ここでは、角膜の前方表面と後方表面との間の距離として考えられる。前眼房2104は、前眼房奥行き(ACD)を有し、これは、角膜の前方表面と水晶体の前方表面との間の距離である。水晶体2102は、水晶体の前方表面と後方表面との間の距離である水晶体厚さ(LT)を有する。目は、角膜の前方表面と網膜2176との間の距離である眼軸長(AXL)もまた有する。
図21はまた、多くの被験体において、水晶体嚢を含む水晶体を、目の光軸に対する角度γを含む、光軸に対して1つ以上の角度傾斜させることができることを図示している。
【0212】
光学系を、走査鏡の移動パターンが、網膜にわたって横方向の動きをもたらし、網膜の形状を判定することができるように配置することもまた可能である。中心窩と呼ばれる、網膜のくぼんだ領域の形状及び場所を測定するのが、特に興味深い。患者が機器を直接見ている際に、固視標に照準を合わせた視野方向により、中心窩は、OCT左右走査の中心にある。機器の操作者に、測定時に患者が目標を直接見ていたか否かを知らせるという点で、この情報は有益である。網膜走査は、病状の検出にもまた有用である。場合によっては、角膜異常の指標とも考えられる、中心窩の欠損が生じている場合もある。
【0213】
成人のヒトの目の平均眼軸長は、約24mmである。OCT測定の完全範囲イメージング深度はわずか約5mm〜8mmであるため、本発明のOCT走査は、目の異なる深さにてOCT走査を行うのが好ましく、これらを組み合わせて、一体化した目のOCT画像を形成することができる。本発明のOCT測定には、1)網膜の少なくとも一部、2)角膜(前方及び後方)、虹彩、並びに水晶体(前方及び後方)の少なくとも一部を含む、目の前方部分の少なくとも一部、並びに3)眼軸長測定の実施を画像化するために、患者の目の様々な深さにおけるOCTイメージングを含むのが好ましい。
【0214】
図22A〜
図22Cは、本発明の様々な態様に従った、OCTサブシステム1990の様々な態様を示す。
図22Aは、本発明の多くの実施形態に従ったOCTサブシステム用の好ましい走査領域を示す。走査領域は、目の前方部分において、起点2201から終点2202まで規定することができ、OCTビームの伝達方向と直交する方向に延び、かつまた、目の眼軸長を目の後方部分2204に向けて規定する軸に平行な方向にも延びる。左右走査領域は通常、角膜の中心部分、虹彩の少なくとも一部、水晶体の少なくとも一部、及び網膜の少なくとも一部の撮像を可能にするほどに横方向に十分に大きくなければならない。水晶体の後方部分と網膜表面との間の領域303は、部分2230が3D分析用の解剖構造体を含まないため、任意選択的に、OCTサブシステム1990により走査されなくてよいことに留意されたい。
【0215】
図22Bは、目の眼軸長を規定する軸に沿う深さの関数としての、多くの実施形態に従った、OCTサブシステム1990のOCT信号の強さの例示的グラフを示す。グラフは一般的に、複雑な構造:(1)ダブレットのような構造を有し、概ね角膜の位置に対応するピーク2210、(2)ダブレットのような構造を有し、概ね水晶体の前方表面の位置に対応するピーク2220、(3)複雑な構造を有し、概ね水晶体の後方表面の位置に対応するピーク2230、及び(4)概ね網膜の位置に対応するピーク2240を有するピークをおおよそ表す。ピーク310とピーク2240との間の距離を使用して、目の眼軸長(AL)を算出することができる。A走査とB走査の両方を含む、OCTサブシステム1990によるOCT走査を、目の前方部分の少なくとも1つの位置(例えば角膜の位置、水晶体の前方表面の位置、及び/又は水晶体の後方表面の位置)にて、並びに目の後方部分の少なくとも1つの位置(例えば網膜の位置)にて実施するのが好ましい。いくつかの実施形態において、A走査とB走査の両方を含む、OCTサブシステム1990によるOCT走査を、角膜の位置、水晶体の前方表面の位置、水晶体の後方表面の位置のそれぞれに対応する位置、及び網膜に対応する位置で実施する。
【0216】
OCTサブシステム1990は、角膜の位置を含む、目の様々な構造の検出をもたらすため、OCTサブシステム1990を、本発明の視力測定システム1に関して患者を正確に照準合わせするための測定システムとして使用することができることに留意されたい。測定システムとしてOCTを使用することにより、角膜構造の照準合わせ不良に感度が高い、角膜曲率測定を含む角膜トポグラフィ測定の正確性を有意に改善することができる。
【0217】
図22Cは、本発明に従ったOCTサブシステムを使用して、本発明の視力測定システムにより入手される目の断面図を示す。
【0218】
図23は、本発明に従ったOCTサブシステムを使用して、本発明の視力測定システムにより入手される目の3次元図を示す。
図23は、本発明のOCTサブシステムが、中心の角膜厚さ(CCT)、前眼房奥行き(ACD)、前方角膜の曲率半径(ROCAC)、後方角膜の曲率半径(ROCPC)、及び眼軸長の曲率半径(ROCAL)を含む、本発明に従った整体測定値を得るように動作可能であることを証明する。
【0219】
OCTサブシステム1990は、ユーザに、レーザ式白内障処置に関する特定の患者の適合性を示し得る構造的評価をもたらす、十分に解明された構造情報を提供するのが好ましい。一実施形態では、網膜にて、又は網膜付近にて、OCTサブシステム1990により実施されるOCT走査(すなわち網膜走査)は、中心窩の位置及び深さを特定するのに十分に解明されており、くぼみがないことは、不健全な網膜を示す。
【0220】
別の実施形態では、本発明の視力測定機器1801は、患者の涙液膜の評価を行うのに十分な1つ以上の測定をもたらす。一実施形態では、涙液膜評価は、例えば、波面収差マップから角膜トポグラフィマップを差し引くことにより差の分布図を得ることによる、患者の目の波面収差マップと、角膜トポグラフィマップ又はOCTマップとの比較を含む。涙液膜が(滑らかでない場合に)破壊されているか否かの測定、涙液膜の評価(涙液膜破壊を含む)は、トポグラファー上で斑の形状を確認することにより得ることができる。例えば、涙液膜が引き裂かれるか、又は破壊されたことの所見又は指標は、斑が円形でなく、例えば、楕円形又は破壊された形状を有する場合、涙液膜が破壊されていることを示すという点で、斑の形状に基づくことができる。そのような破壊された涙液膜が存在することは、K値、及び他の視覚測定値が非信頼性であり得ることを示し得る。
【0221】
動作中、
図20に示すように、コネクタ2012を出た後に、OCTビーム2014は、好ましくは視準光ファイバー1996を使用してコリメートされる。視準ファイバー1996の後、OCTビーム2014は、OCTビームの焦点をz方向に変化させるように動作可能なz走査デバイス1993、並びに、OCTビームを、z方向に垂直なx及びy方向に走査するように動作可能なx及びy走査デバイス1995及び1997に向けられる。
【0222】
視準光ファイバー1996の後、OCTビーム2014は続いて、X走査デバイス1993、1994を通過する。z走査デバイスは、患者の目1901の中にOCTビーム2014の焦点位置をz軸に沿って走査するように動作可能なZ望遠鏡1993であるのが好ましい。例えば、Z望遠鏡1993としては、2個のレンズグループ(それぞれのレンズが1個以上のレンズを含む)を備えるガリレオ式望遠鏡を挙げることができる。レンズグループの一方は、Z望遠鏡1993のコリメーション位置を中心にして、Z軸に沿って移動する。このように、患者の目1901の中の焦点位置は、Z軸に沿って移動する。一般に、レンズグループの動きと焦点の動きとの間には関係がある。レンズの動きと、目の座標系のz軸における焦点の動きとの間の厳密な関係は、一定の線形関係である必要はない。動きは、非線形であることが可能であり、モデル、若しくは測定からの較正又はこれらの組み合わせにより検出することができる。あるいは、他方のレンズグループがZ軸に沿って移動し、Z軸に沿って焦点の位置を調節することができる。Z望遠鏡1993は、患者の目1901の中のOCTビーム2014の焦点を変化指せるためのz走査デバイスとして機能することができる。Z走査デバイスは、コントローラ1860により自動的に、そして動的に制御することが可能であり、次に述べるX及びY走査とは独立して、又はこれらと相互作用するように選択することができる。
【0223】
z走査デバイスを通過した後、OCTビーム2014は、OCTビーム2014をX方向に走査するように動作可能であるx走査デバイス1995に入射し、ビーム2014は、Z軸に対して主に横向きであり、OCTビーム2014の伝達方向に対しても横向きである。X走査デバイス1995は、コントローラ60により制御され、好適な構成要素、例えば、MEMSデバイスに連結したレンズ、モーター、ガルバノメーター、又は任意の他の周知の光学移動デバイスを含むことができる。Xアクチュエータの動きの関数としてのビームの動きの関係は、固定されているか、又は線形である必要はない。関係のモデリング若しくは関係の測定値の較正又はこれらの組み合わせを判定及び使用して、ビームの位置を導くことができる。
【0224】
X走査デバイス1995により示された後、OCTビーム2014は、OCTビーム2014をY方向に走査するように動作可能なY走査デバイス1997に入射し、ビーム2014は、主にX及びZ軸に対して横方向である。Y走査デバイス1997はああ、コントローラ1860により制御され、好適な構成要素、例えば、MEMSデバイスに連結したレンズ、モーター、ガルバノメーター、又は任意の他の周知の光学移動デバイスを含むことができる。Yアクチュエータの動きの関数としてのビームの動きの関係は、固定されているか、又は線形である必要はない。関係のモデリング若しくは関係の測定値の較正又はこれらの組み合わせを判定及び使用して、ビームの位置を導くことができる。あるいは、X走査デバイス1995とY走査デバイス1997との機能性は、Z軸、及びOCTビーム2014の伝達方向に対して横方向の2つの方向にOCTビーム2014を走査するように構成されたXY走査デバイスにより提供されることができる。X走査及びY走査デバイス1995、1997は、得られたOCTビーム2014の向きを変化させ、患者の目1901の中に位置するOCTビーム2014の左右変位を引き起こす。
【0225】
次に、OCTサンプルビーム2014は、ビームスプリッタ1973に向けられ、レンズ1975を通り、四分の一波長板1971及びアパーチャ1914を通り、患者の目1901に向けられる。目の中の構造体からの反射及び散乱により、患者インターフェース四分の一波長板1971、レンズ175、ビームスプリッタ1973、y走査デバイス1997、x走査デバイス1995、z走査デバイス1993、光ファイバー1996、及びビームコンバイナ2004(
図20)を通って戻る戻りビームがもたらされ、OCT検出デバイス2020に戻る。サンプルアーム201の戻り後方反射を、戻り参照部分2006と組み合わせ、OCT検出デバイス2020の検出器部分に向ける。検出器部分は、組み合わされた戻りビームに応じてOCT信号を生み出す。生成されたOCT信号は最終的に、コントローラ1860により解読され、患者の目1901の中の、対象の構造物の空間配置を決定する。生成されたOCT信号はまた、コントローラにより解読され、患者の目1901の中の、対象の構造物の空間配置を測定して決定する。生成されたOCT信号はまた、制御電子装置により解釈され、患者インターフェースの中で、患者の目の位置及び向きの照準を合わせることができる。
【0226】
本発明に従った視力測定システムは、虹彩撮像サブシステム40を含むのが好ましい。撮像サブシステム1840は一般に、赤外光源、好ましくは赤外光源1952、及び検出器1941を含む。動作中、光源1952からの光は、上述のとおり、第2の光路1960に沿って第1の光路1970に向けられ、続いて目1901に向けられる。目1901の虹彩から反射した光は、第1の光路1970に沿って検出器1941まで反射して戻る。通常の使用において、操作者は、画像検出器アレイ1941に従ってアセンブリ1900の位置又は照準合わせをX、Y、及びZ方向に調節し、患者の照準を合わせる。虹彩撮像サブシステムの一実施形態において、目1901は、光源1952からの赤外光で照射される。このように、波面センサ1955により入手した波面が、検出器アレイ1941からの画像に登録される。
【0227】
操作者が見る画像は、目1901の虹彩である。角膜は、通常拡大し、虹彩の物理的位置から画像をわずかに変位させる。そのため、行われた照準合わせは実際、目の入射瞳に対するものである。これは一般に、波面感知及び虹彩登録に望ましい状態である。
【0228】
虹彩撮像サブシステムにより入手した虹彩の画像を、本発明の様々なサブシステムにより、例えば、参照により本明細書に組み込まれている「Method for registering multiple data sets」と題する米国特許出願第12/418,841号に記載されている方法により入手した、複数のデータのまとまりを登録及び/又は融合するために使用することができる。特許出願第12/418,841号にて説明されているように、波面収差を、角膜トポグラフィ、光干渉断層撮影測定及び波面、光干渉断層撮影測定及びトポグラフィ、パキメトリー及び波面などと融合することができる。例えば、画像認識技術を用いて、画像内の様々な形質の位置及び大きさを発見することができる。虹彩登録画像に関して、利用可能な形質としては、瞳の位置、サイズ及び形状、虹彩の外側の境界(OIB)の位置、サイズ及び形状、突起状の虹彩の形質(目印)、並びに必要と測定される他の形質が挙げられる。これらの技術を使用して、測定間(及び/又は1回の一連の測定)での患者の移動、並びに目自体の変化(例えば瞳のサイズの変化、瞳の位置の変化などの、測定により誘発されるものを含む)の両方を特定することができる。
【0229】
多くの実施形態において、本発明に従った視力測定システムは、目標固定サブシステム1850(
図18)を含み、
図19A及び
図19Bに示すアセンブリ1900は、患者が確認するための固視標1982を含む固視標サブシステム1980を含む。目1901の焦点が遠点に合わせられる場合に、屈折及び波面収差を測定することが多くの場合、所望されるため(例えば、LASIK治療は主にこれに基づくため)、固視標サブシステム1980を使用して、患者の遠近調節を制御する。目標固定サブシステムにおいて、目標の投射、例えば、十字線パターンが患者の目に投射され、十字線パターンはバックライトのLED及びフィルムにより形成される。
【0230】
動作中、光は光源1952から、あるいは映像目標バックライト1982及びレンズ1986から発せられる。レンズ1985は、光を集め、空中像T2を形成する。この空中像は、患者が見ているものである。患者の焦点は測定中、空中像1982に維持して、目を固定した焦点位置で維持する。
【0231】
動作の順序、本発明の視力測定システム及び方法は、特に限定されない。患者の目の走査には、波面収差サブシステムを利用する、患者の目の波面収差測定、患者の目の角膜トポグラフィ測定、及びOCTサブシステムを使用する患者の目のOCT走査の1つ以上を含むことができ、OCT走査は、患者の目の中のそれぞれの位置、又は1つ以上の位置での走査を含む。OCT走査のこれらの位置は、角膜の位置、水晶体の前方部分の位置、水晶体の後方部分の位置、及び網膜の位置に対応することができる。好ましい実施形態では、動作の順序には、波面収差測定、角膜トポグラフィ測定、及びOCT走査のそれぞれが含まれ、OCT走査は少なくとも網膜、角膜、及び患者の水晶体の前方部分のうちの1つにて行われる。虹彩画像は、波面収差サブシステム、角膜トポグラフィサブシステム、及びOCTサブシステムにより行われる測定のそれぞれと同時に、又は連続的に撮影されるのが好ましく、各OCT走査の位置と同時に、又は連続的に撮影される虹彩画像を含む。これは、様々なデータのまとまりを3次元モデルに融合及びマージすることにより、患者の目の3次元モデリングにおける改善された正確性がもたらされる。
【0232】
図24は、波面収差測定、角膜トポグラフィ測定、及びOCT測定が全て行われる動作の順序及び方法の一実施形態を示す。
図24の方法を含む視力測定装置は、手術前、手術中、及び/又は手術後に使用することができる。
図24の方法において、工程2401は、視力測定システムを患者の目に照準合わせすることを含む。工程2405は、目標に患者を固定するための目標固定サブシステムを起動することを含む。工程2410は、波面収差計サブシステムを起動することを含み、これにより波面収差計光源2410が起動し、目の屈折を波面センサにより測定する。工程2415は、目標固定システムを起動して、目標を最適位置に移動させ、波面収差計サブシステムを起動して、波面収差計光源1952が起動し、目の屈折を波面センサ1955により測定することを含む。工程2420は、赤外光源1952が作動している間に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2425は、z走査デバイスを動作させて、OCT走査の位置を角膜に又は角膜付近に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2430は、z走査デバイスを動作させて、OCTの位置を水晶体前方に、又は水晶体前方付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2435は、z走査デバイスを動作させて、OCTの位置を水晶体後方に、又は水晶体後方付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2440は、X走査デバイス及びY走査デバイスを動作させて、OCTからの光が検出器1941に到達しないようにすることを含む。工程2445は、赤外光源1952が点滅している間に虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2450は、光源1920及びヘルムホルツ光源が点滅している間に虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2450は、角膜トポグラフィサブシステムを使用して、角膜トポグラフィを測定することを含む。工程2455は、z走査デバイスを動作させて、OCTの位置を網膜に、又は網膜付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2460は、X走査デバイス及びY走査デバイスを動作させて、OCTからの光が検出器1941に到達しないようにすることを含む。任意の工程2465は、角膜トポグラフィサブシステムを用いて、角膜トポグラフィを測定することを含み、これにより患者の目の改善された3Dモデルをもたらすことができる。任意の工程2470は、(3Dモデル用)虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。
【0233】
図25は、波面収差測定が行われない、動作の順序及び方法の一実施形態を示す。
図24の方法を含む視力測定装置を手術前、手術中、及び/又は手術後に使用することができる。
図25の実施形態において、工程2501は、視力測定システムを患者の目に照準合わせすることを含む。工程2505は、目標に患者を固定するための目標固定サブシステムを起動することを含む。工程2510は、赤外光源1952が作動している間に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2515は、z走査デバイスを動作させて、OCT走査の位置を角膜に、又は角膜付近に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2520は、Z走査デバイスを動作させて、OCTの位置を水晶体前方に、又は水晶体前方付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2525は、z走査デバイスを動作させて、OCTの位置を水晶体後方に、又は水晶体後方付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2530は、X走査デバイス及びY走査デバイスを動作させて、OCTからの光が検出器1941に到達しないようにすることを含む。工程2535は、赤外光源1952が点滅する間に虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2540は、角膜トポグラフィサブシステムを使用して角膜トポグラフィを測定することを含む。工程2545は、z走査デバイスを動作させて、OCTの位置を網膜に、又は網膜付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2550は、X走査デバイス及びY走査デバイスを動作させて、OCTからの光が検出器141に到達しないようにすることを含む。任意選択的な工程2555は、角膜トポグラフィサブシステムを用いて角膜トポグラフィを測定することを含み、これにより患者の目の改善された3Dモデルをもたらすことができる。任意の工程2560は、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。
【0234】
図26は、OCTサブシステムを利用するOCT測定、及び虹彩撮像サブシステムを使用する虹彩撮像を、患者の目の3次元モデリング、及び測定データのまとまりの改善された虹彩登録を改善するために、同時に行うことができる動作の順序及び方法の実施形態を示す。当業者により速やかに理解されるように、
図26の動作の順序を、
図24又は
図25の動作の順序及び方法のいずれかに適用、又は組み込むことができる。
図26の動作の順序及び方法を実現するために、レンズをビームスプリッタ1973と検出器1941との間の光路170に挿入する。挿入したレンズは、虹彩撮像に使用する赤外光を優先的に通過し、到達検出器1941からのOCT光源からのOCTビームをブロックするように選択される。この構成において、OCT測定及び虹彩撮像を同時に行ってよい。更に、
図26の実施形態において、一定速度のグローバルシャッター絞りカメラを、12フレーム/秒で動作しながら使用する。
図10の動作の順序及び方法を手術前、手術中、及び/又は手術後に使用することができる。
【0235】
図26の実施形態において、工程2601は、視力測定システムを患者の目に照準合わせすることを含む。工程2605は、目標に患者を固定するための目標固定サブシステムを起動することを含む。工程2610は、赤外光源1952が作動している間に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2615は、角膜トポグラフィ光源1920及びヘルムホルツ光源1932が動作している間に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2620は、z走査デバイスを動作させて、OCT走査の位置を角膜に、又は角膜付近に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2625は、z走査デバイスを動作させて、OCTの位置を水晶体前方に、又は水晶体前方付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2630は、z走査デバイスを動作させて、OCTの位置を水晶体後方に、又は水晶体後方付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2635は、赤外光源1952が作動している間に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2640は、角膜トポグラフィ光源1920及びヘルムホルツ光源1932が動作している間に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2645は、z走査デバイスを動作させて、OCTの位置を網膜に、又は網膜付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2650は、角膜トポグラフィ光源120及びヘルムホルツ光源1932が動作している間に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。工程2655は、赤外光源1952が作動している間に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。
【0236】
図27は、OCTサブシステムを利用するOCT測定、及び虹彩撮像サブシステムを使用する虹彩撮像を、患者の目の3次元モデリング、及び測定データのまとまりの改善された虹彩登録を改善するために、同時に行うことができる動作の順序及び方法の別の実施形態を示す。当業者により速やかに理解されるように、本実施形態の動作の順序を、
図24又は
図25の動作の順序及び方法のいずれかに適用、又は組み込むことができる。
図26の方法と同様に、
図27の動作の順序及び方法を実現するために、レンズをビームスプリッタ1973と検出器1941との間の光路1970に挿入する。挿入したレンズは、虹彩撮像に使用する赤外光を優先的に通過し、到達検出器1941からのOCT光源からのOCTビームをブロックするように選択される。この構成において、OCT測定及び虹彩撮像を同時に行ってよい。更に、
図26の実施形態において、高速グローバルシャッター絞りカメラ、又は高速フレーム速度を、60フレーム/秒で動作しながら使用する。本実施形態の高速フレーム速度条件下において、赤外線照明光源、例えば波面収差光源を、角膜トポグラフィ光源1920及びヘルムホルツ光源の組み合わせなどの、1つ以上の第2の光源と共に使用し、患者の目を短い間隔で繰り返しを代替的に照射(すなわち、代替的な短い点滅)することができる。これらの条件下にて、両方の照明条件下にて虹彩画像を補足するように、虹彩撮像サブシステムを各光源からの点滅に同期させることができる。
図27の動作の順序及び方法を手術前、手術中、及び/又は手術後に使用することができる。
【0237】
図27の実施形態において、工程2701は、視力測定システムを患者の目に照準合わせすることを含む。工程2705は、目標に患者を固定するための目標固定サブシステムを起動することを含む。工程2710は、赤外光源152が作動している間に、虹彩撮像サブシステムを使用して虹彩画像を入手すること、並びに、角膜トポグラフィ光源120及びヘルムホルツ光源132が作動中に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。これは、代わりに赤外光源、及び角膜トポグラフィ/ヘルムホルツ光源の組み合わせを作動させて、好ましくは患者の目が「明滅」を解像することができない速度で、患者の目を赤外光源、及び組み合わせた光源で代わりに照射することにより行われる。この工程において、虹彩撮像サブシステムは、対応する照明光と同期する。工程2715は、z走査デバイスを動作させて、OCT走査の位置を角膜に、又は角膜付近に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2720は、Z走査デバイスを動作させて、OCTの位置を水晶体前方に、又は水晶体前方付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2725は、z走査デバイスを動作させて、OCTの位置を水晶体後方に、又は水晶体後方付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2730は、z走査デバイスを動作させて、OCTの位置を網膜に、又は網膜付近の位置に設定することと、OCTサブシステムを用いてOCT走査を実施することと、を含む。工程2735は、工程2710に関して上述したように、赤外光源1952が作動している間に、虹彩撮像サブシステムを使用して虹彩画像を入手すること、並びに、角膜トポグラフィ光源120及びヘルムホルツ光源132が作動中に、虹彩撮像サブシステムを使用して虹彩画像を入手することを含む。
【0238】
視力測定機器1801、及びこれを用いて入手した視力測定値を、例えば目の生体測定及び他の測定、診断、並びに手術計画のために、手術前、すなわち白内障手術、又は他の手術手順の前に使用することができる。手術計画には、1つ以上の予想モデルを含むことができる。1つ以上の予想モデルにおいて、患者の目又は視覚の手術後状態の1つ以上の特徴は、視力測定機器1801から得られる手術前測定、想到される手術的介入、並びに、視力測定システム1のメモリに記憶される、及びプロセッサにより実行される、1つ以上のアルゴリズム又はモデルからなる群から選択される1つ以上に基づいてモデリングされる。想到される手術的介入としては、配置するためのIOLの選択、IOLの特性の選択、手術中に使用される切開の性質若しくは種類(例えば、減張切開)、又は患者により要求される手術後の1つ以上の視覚特性を挙げることができる。
【0239】
視力測定機器1801、及びこれを用いて入手した視力測定値を、例えば、手術中の目の診断、IOLの配置及び位置の測定、手術計画、及び/又はレーザ式手術システムの制御のために、手術中、すなわち、白内障手術又は他の手術処置中に使用することができる。例えば、レーザ式白内障手術処置の場合、視力測定機器により手術前に得られる任意の測定データを、白内障手術中の水晶体嚢切開、切断、又は患者のレンズ若しくはIOL配置のいずれかの前、間、又は後での使用のためにレーザ式白内障手術システムと接続しているメモリに転送することができる。いくつかの実施形態において、視力測定機器1801を使用する測定を手術処置中に行って、IOLが適切に患者の目に配置されているか否かを判定することができる。これに関し、手術処置中に測定した状態を、手術前の測定に基づいた患者の目の予想状態と比較することができ、予想した状態と実際に測定した状態との間の差を使用して、白内障手術又は他の手術処置中に、追加施術又は修正施術を行うことができる。
【0240】
視力測定機器1801、及びこれを用いて入手した視力測定値を、例えば、手術後測定、手術後の目の診断、手術後のIOL配置及び位置測定、並びに必要であれば、矯正治療の計画のために、手術後に、すなわち、白内障手術又は他の手術処置後に使用することができる。患者の目が治癒するのに十分な時間を有し、患者の視力が安定した手術後状態を達成した手術後に、術後性検査が生じ得る。手術後状態を、手術前に実施した1つ以上の予想状態と比較することができ、手術前に予想した状態と、手術後に測定した状態との間の差を使用して、白内障手術又は他の手術処置の間に、追加施術又は修正施術を計画することができる。
【0241】
本明細書にて開示する好適な動作の順序を利用する、角膜トポグラフィサブシステム、OCTサブシステム、及び波面収差サブシステムを含む視力測定機器1801は、以下の1つ、2つ以上又は全てを測定するように動作可能である。目の生体測定情報、前方の角膜表面情報、後方の角膜表面情報、前方の水晶体表面情報、後方の水晶体表面情報、水晶体の傾斜情報、水晶体の位置情報、並びに、眼内レンズが以前に埋め込まれていた場合の眼内レンズ表面及び厚さ情報。いくつかの実施形態において、目の生体測定情報としては、複数の中心角膜厚さ(CCT)、前眼房奥行き(ACT)、瞳の直径(PD)、水平角膜距離(WTW)、水晶体厚さ(LT)、眼軸長(AL)、及び網膜の層厚さを挙げることができる。この測定データを、コントローラ1860と接続したメモリ1862に記憶することができる。複数の特徴を手術前に、そして適切な場合、手術中、及び手術後に測定することができる。
【0242】
多くの実施形態において、コントローラ1860と接続したメモリ1862は、複数のIOLモデルに関する眼内レンズ(IOL)モデルデータを保管することが可能であり、IOLモデルのそれぞれは、屈折度数、屈折指数、非球面性、トリシティ、鞏膜角度、及び水晶体フィルタからなる群から選択される複数の所定のパラメータと関連している。白内障診断、又は、被験体の目に関して特定のIOLを特定する、及び/又は選択することを含み得る白内障治療計画のために、視力測定機器1801により入手した被験体の目の測定データと共に、視力測定機器1801の1つ以上のプロセッサにより、IOLデータを使用することができる。例えば、視力測定機器1801の1つ以上のプロセッサは、記憶された複数のIOLモデルにアクセスし、IOLモデルのそれぞれに関して、(1)IOLモデル、及び被験体の目の測定した特徴に対応する、眼内レンズを含む被験体の目をモデリングすること、(2)複数のIOLの所定パラメータ及び予想されるIOLの位置に基づいて被験体の目をシミュレーションすること、(3)被験体の目の前記モデルに基づいて光線の追跡及び力の算出のうちの一方を実施すること、並びに(4)所定の基準に基づいて、最適化したIOLに対応する複数のIOLモデルから、被験体の目用のIOLを選択すること、を含むアルゴリズムを実行することができる。
【0243】
多くの実施形態において、視力測定機器1801の1つ以上のプロセッサは、被験体の目の所望の手術後状態を判定することと、少なくとも部分的に、測定した目の特徴に基づいて、目の手術後状態を経験的に算出することと、前記経験的な算出及び目の特徴の出力に従い、被験体の目に埋め込むための眼内レンズの、少なくとも1つのパラメータを予想して推定し、所望の手術後状態を入手することと、を含むアルゴリズムを実施することができる。
【0244】
多くの実施形態において、目の撮像及び測定システムは、眼内レンズ(「IOL」)データを記憶するように動作可能なメモリを更に含み、IOLデータとしては、複数の屈折度数、前方及び後方半径、IOLの厚さ、屈折指数、非球面性、トリシティ、エシェレット形質、鞏膜角度、及び水晶体フィルタが挙げられる。
【0245】
多くの実施形態において、目の撮像及び測定システムは、複数のIOLモデルに関する眼内レンズ(「IOL」)モデルデータを記憶するように動作可能なメモリを更に含み、IOLモデルは、屈折度数、前方及び後方半径、IOLの厚さ、屈折指数、非球面性、トリシティ、エシェレット形質、鞏膜角度、及び水晶体フィルタからなる群から選択される、複数の所定のパラメータと関連している。
【0246】
多くの実施形態において、
図10、及び
図12〜
図15に関して上述したものなどの方法を、白内障手術、特に、被験体の目に埋め込むための眼内レンズ(IOL)を選択及び配置して、所望の手術後状態を得ることに関して、(例えば、アセンブリ1900を含む)視力測定機器1801により実施することができる。この場合、いくつかの実施形態では、治療前ベクトルを術前ベクトルで置き換えることができ、治療後ベクトルを術後ベクトルで置き換えることができ、有効な治療ベクトル関数を有効な手術ベクトル関数で置き換えることができる。いくつかの実施形態において、このような方法を、以前に、例えば、レーザ手術により、1つ以上の屈折治療を受けた患者の目に適用することができる。
【0247】
例えば、いくつかの実施形態では、上述のとおり目的の屈折矯正ベクトル(IRC)の観点から定義することができる、所望のアウトカムをよりよく達成するために、患者の目の様々なパラメータに関する1つ以上の手術前の値の測定を、以前の白内障手術の手術前の目のデータ(例えば高次収差を含む)、及び(例えば、視力測定機器1801により)手術後に測定した目のデータと組み合わせて、患者の目に対する以降の白内障手術の間に、患者の目に埋め込まれるIOLの1つ以上のパラメータを導出することができる。特に、いくつかの実施形態では、視力測定機器1801を使用して、患者の目の白内障手術を計画するための方法を実施することが可能であり、この方法は、関連する目の以前の矯正手術のそれぞれに関して、測定した関連する目の術前高次収差を特徴付ける術前ベクトルを定義することにより、複数の以前の矯正手術に基づいて有効な治療ベクトル関数を測定することと、関連する目の測定術後高次収差を特徴付ける術後ベクトルを定義することと、術前ベクトルと術後ベクトルとの間の相関関係を使用して、有効な手術ベクトル関数を導出することと、患者の目の測定術前高次収差に基づいて入力ベクトルを定義することと、有効な手術ベクトル関数を入力ベクトルに適用することにより、患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータを導出することと、を含むことができる。いくつかの実施形態において、IOLのパラメータとしては、IOLの度数及びIOLが位置することとなる患者の目の中の場所を挙げることができる。いくつかの実施形態において、IOLが埋め込まれる目の測定した特徴のみに基づいて選択されると考えられるIOLの1つ以上のパラメータは、以前の白内障手術が行われた目の測定した手術前及び手術後の特徴を考慮することにより、以前の白内障手術の結果に基づいて修正される。例えば、多数の白内障手術が以前に、白内障手術が行われる目と同じか、又はほぼ同じ、測定した特徴を有する目で行われた場合、埋め込むIOL及びIOLが位置付けられる目の中の場所を選択する際に、白内障手術のアウトカムを改善して、所望のアウトカム(例えば目の目標屈折)をより厳密に達成するために、本明細書で記載されるシステム及び方法により、これらの以前の白内障手術の結果を考慮することができる。いくつかの実施形態において、以前の白内障手術の結果を、関連する目の目的の屈折矯正ベクトル(IRC)と、関連する目の手術により誘導された屈折矯正ベクトル(SIRC)との間の差の観点から定義することができる。
【0248】
いくつかの実施形態において、
図10、及び
図12〜
図15で上述したものなどの方法を、IOLが以前に埋め込まれており、現在、例えばレーザ手術により、目の屈折治療の計画及び実施が望まれる患者の目に関して、(例えば、アセンブリ1900を含む)視力測定機器1801により実施することができる。いくつかの実施形態において、視力測定機器1801は、測定機器1801により測定される、埋め込まれたIOLを含む患者の目の手術前の特徴に基づく入力ベクトルを定義することができ、複数の以前の目の治療のそれぞれに関する、治療前ベクトルと治療後ベクトルとの間の相関関係を使用して、有効な治療ベクトル関数を導出することができる。いくつかの実施形態において、以前の目の治療の組を、IOLが以前に埋め込まれた目の治療に限定することができる。
【0249】
本発明の実施形態は、手術前及び手術後パラメータに関連する情報を収集、記憶、分析、送信するためのシステム及び方法を更に包含する。例えば、医師又は操作者が、医院又は病院で患者の手術前及び/又は手術後測定を実施する場合、そのような情報をコンピュータシステムに送信することができる。コンピュータシステムのプロセッサは、その情報を分析し、医師からのノモグラムを構築するように構成することができる。同様に、複数の医師からの情報、又は複数の患者からの情報を提供して、コンピュータのプロセッサにより分析することができる。コンピュータのプロセッサはまた、本明細書の他の場所に記載する技術を使用して、影響マトリクス、有効な治療ベクトル関数、及び/又は患者特異的な治療パラメータを測定するように構成することができる。場合によっては、影響マトリクス、有効な治療ベクトル関数、及び/又は患者特異的な治療パラメータを判定する際に、どのパラメータを使用するかを選択的に選択することが可能であり得る。例えば、特定の医師は、特定のパラメータに関連するデータを使用することなく、患者の治療パラメータを判定することを望む場合がある。同様に、医師は、特定のパラメータに関する特定の範囲の値に関連するデータのみ(例えば、乾燥した気候で治療される目に関するデータのみを選択すること)を使用することを望む場合がある。場合によっては、医師は、コンピュータシステムから治療出力データを入手し、治療を患者に施す前に、その治療出力データを調節することができる。任意選択的に、更なる分析のためにそのような調節をコンピュータシステムに送信することができる。更に任意選択的に、コンピュータにより提供される治療情報は、そのような調節に基づくか、又はそのような調節における因子であることができる。場合によっては、技術には、提案された治療に基づいて予想されるアウトカムを医師に提供することを含むことができ、医師は、その予想されるアウトカムを実際に入手するアウトカムと比較することができる。したがって、技術は、データベース、例えば、医院、病院、又は(任意選択的に、複数の医院及び/若しくは病院のデータベース若しくはコンピュータシステムとネットワーク化した)いくつかの他の中央制御の立地に位置するデータベースから任意選択的に入手した、関連する目の測定治療前及び/若しくは治療後光学特性、又は本明細書の他の場所で論じるような他の関連するパラメータを入手することを伴うことができる。いくつかの例において、実施形態は、推奨される処置、及び推奨される処置に基づいて実際に行われる処置を追跡するための技術、そのような推奨及び実施される処置を比較又は分析するための技術、そのような推奨及び実施される処置(及びこれらの比較)をアーカイブするための技術、並びに比較に基づいて推奨を調節するための技術を包含する。
【0250】
弧状角膜手術に関して、切開を使用して、角膜の乱視を緩和させることができ、関連する技術をIOL手術で使用することができる。例えば、外科医は、角膜の傾斜軸に角膜切開を配置して、角膜乱視を緩和させ、1ジオプター未満の乱視を有する患者におけるトーリックIOLの必要性を低下させることができる。場合によっては、手術前の乱視度合い及び軸、視覚領域に対する切開の数、弧の角度、及びラジアル位置、並びに年齢を、この種類の手術のためのパラメータとして考慮することができる。角膜弧状手術(arcuate surgery)でフェムト秒(FS)レーザを使用することにより、切開が生成され得る正確性を増加させることができ、患者のより良好なアウトカムをもたらすことができる。更に、FSレーザを適用して、角膜移植後の角膜乱視を矯正することができる。他の屈折手術の場合の様に、本明細書に記載する技術を適用して、これまでのアウトカムデータを使用することにより患者のアウトカムを改善することができる。角膜弧状手術の場合、術前ベクトルにおいて、上述したパラメータ(例えば、手術前の乱視度合い及び軸、視覚領域に対する切開の数、弧の角度、及びラジアル位置、並びに年齢)を使用することが可能である。より進歩した予想モデリングとしては、モデルの正確性を改善するために利用可能である場合、角膜トポグラフィに基づく角膜曲率測定値、パキメトリー及び角膜水和を挙げることができる。FS弧状レーザ手術の場合、同様に他の選択肢を切開特徴に加えることができる。これらには、角膜の表面に穿孔又は破壊しない部分切開、角膜への、純粋に通常なものではないプロファイリングされた切開、並びに直線及び円弧以外の切開(例えば、波形のような線又はねじれた線)を含むことができる。場合によっては、技術としては、完全な基質内切開又は破壊を挙げることができる。場合によっては、技術としては、角膜表面に達する切開又は破壊を挙げることができる。場合によっては、切開及び手術前パラメータの詳細を記載するパラメータを、術前ベクトルに含めることができる。
【0251】
本明細書で言及されている全ての特許、特許出願、ジャーナル記事、技術参考文献などはあらゆる目的のため、参照により本明細書に組み込まれている。
【0252】
図示又は上述の構成要素、及び図示又は記載していない構成要素及び工程の異なる配置が可能である。同様に、いくつかの形質及び副組み合わせが有用であり、他の形質及び副組み合わせに言及することなく用いることが可能である。本発明の実施形態は目的を制限するためではなく、例示のために記載されており、代替実施形態が本特許の読者には明らかとなろう。したがって、本発明は上述又は図に示した実施形態に限定されるものではなく、以下の特許請求の範囲を逸脱することなく、様々な実施形態及び変更を行うことが可能である。
【0253】
例示的実施形態が、理解を明確にするためにある程度詳細に、そして例として説明されているが、当業者には多数の適応、変化、及び修正が明らかとなろう。したがって、本発明の範囲は本発明に関連する特許請求の範囲によってのみ限定される。
【0254】
〔実施の態様〕
(1) 患者の目の白内障手術を計画するための方法であって、前記方法は、
関連する目のそれぞれの以前の矯正手術に関して、
前記関連する目の測定術前高次収差を特徴付ける術前ベクトルを定義することと、
前記関連する目の測定術後高次収差を特徴付ける術後ベクトルを定義することと、
前記術前ベクトルと前記術後ベクトルとの間の相関関係を使用して、有効な手術ベクトル関数を導出することと、により、複数の以前の矯正手術に基づいて、有効な治療ベクトル関数を判定することと、
前記患者の目の測定術前高次収差に基づいて、入力ベクトルを定義することと、
前記有効な手術ベクトル関数を前記入力ベクトルに適用することにより、前記患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータを導出することと、を含む、方法。
(2) 前記入力ベクトルを定義することは、
前記白内障手術により生成される、前記患者の目の目標屈折を特定することと、
前記患者の目の前記測定術前収差と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、を含み、
以前の矯正手術から前記有効な手術ベクトル関数を導出することは、
前記関連する目の目的の屈折矯正ベクトル(IRC)を判定することと、
前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することであって、それぞれのSIRCは、関連する目の前記測定術前収差と前記術後収差との間の差を特徴付ける、ことと、を含む、実施態様1に記載の方法。
(3) 前記有効な手術ベクトル関数を導出することは、前記SIRCを前記IRCに関連付ける影響マトリクス
【数26】
を判定することを含む、実施態様2に記載の方法。
(4)
【数27】
は、前記関連する目に関して、
【数28】
となるように、前記SIRCを前記IRCに関連付け、
式中、Eは誤差ベクトルであり、
前記有効な手術ベクトル関数を前記入力ベクトルに適用することは、調節した目的の屈折矯正ベクトル(AIRC)を算出することを含み、
【数29】
であり、
式中、
【数30】
の逆数であり、
【数31】
は前記患者の目の前記IRCに基づく、実施態様3に記載の方法。
(5) 前記患者の目の前記IRCに、
前記IRCに対する医師の調節、及び
前記IRCに対するノモグラム調節からなる群から選択される少なくとも1つの調節を適用することにより、前記患者の目に対するIRC’を定義することを更に含み、
前記入力ベクトルは、前記IRC’に基づいている、実施態様2に記載の方法。
【0255】
(6) 前記有効な手術ベクトル関数は、影響マトリクスを使用して導出される、実施態様1に記載の方法。
(7) 前記患者の目の前記計画した手術は、計画した手術ベクトルによって特徴付けられ、前記影響マトリクスは、前記入力ベクトルの複数の成分がそれぞれ前記計画した手術ベクトルの複数の成分を変化させるように導出される、実施態様6に記載の方法。
(8) 前記患者の目の前記計画した手術は、計画した手術ベクトルによって特徴付けられ、前記影響マトリクスは、複数の前記計画した手術ベクトル成分が、前記入力ベクトルの複数の成分によりそれぞれ変化するように導出される、実施態様6に記載の方法。
(9) 前記術前ベクトル及び前記入力ベクトルは、屈折、前記患者及び/又は手術の設定を特徴付ける非屈折性補助因子、並びに前記目の前記高次収差を特徴付ける、実施態様1に記載の方法。
(10) 前記眼内レンズの前記1つ以上のパラメータは、前記有効な手術ベクトル関数の前記影響マトリクスに前記入力ベクトルを乗じて、条件付き入力ベクトルを定義することにより導出され、前記条件付き入力ベクトルのマトリクス成分により前記白内障手術を計画することにより導出される、実施態様6に記載の方法。
【0256】
(11) 前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータは、前記IOLの度数と、前記IOLが配置される前記患者の目の中の位置と、を含む、実施態様1に記載の方法。
(12) 患者の目の白内障手術を計画するための方法であって、前記方法は、
関連する目のそれぞれの以前の矯正手術に関して、
前記関連する目の測定術前高次収差と前記関連する目の目標屈折との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、
前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することであって、影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出される、ことと、により複数の以前の矯正手術から前記影響マトリクスを導出することと、
前記患者の目の測定術前高次収差と前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを定義することと、
前記影響マトリクスに基づいて前記患者のIRCベクトルを調節することと、を含む、方法。
(13) 患者の目の白内障手術を計画するための方法であって、影響マトリクスは、関連する目のそれぞれの以前の矯正手術に関して、前記関連する目の目標屈折を判定することと、前記関連する目の測定術前高次収差と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により複数の以前の矯正手術から導出されており、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出され、前記方法は、
前記患者の目の測定術前高次収差と前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信することと、
前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節することと、を含む、方法。
(14) 患者の目の白内障手術を計画するためのシステムであって、前記システムは、
前記患者の目の術前高次収差を受信するための入力部と、
前記入力部に連結されたプロセッサであって、前記プロセッサは、有効な手術ベクトル関数を適用することにより、前記患者の目の前記高次収差に応じて、前記患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータを導出し、前記有効な手術ベクトル関数は、複数の以前の矯正手術のそれぞれに関して、手術前の前記関連する目の高次収差を特徴付ける術前ベクトルと、前記関連する目の術後高次収差を特徴付ける術後ベクトルとの間の相関関係から導出される、プロセッサと、
前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータを送信するように前記プロセッサに連結された出力部と、を備える、システム。
(15) 前記プロセッサは、前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータの前記導出を実施するための機械可読命令を具現化する有形媒体を含む、実施態様14に記載のシステム。
【0257】
(16) 前記プロセッサは、前記白内障手術により誘導される前記患者の目の目標屈折に応じて、前記患者の目についての入力ベクトルを、前記患者の目の測定術前収差と前記目標との間の差を特徴付ける目的の屈折矯正(IRC)を判定することにより、生成するように構成されている、実施態様14に記載のシステム。
(17) 前記入力部に連結された収差計を更に備え、前記収差計は、目の高次収差を感知し、前記高次収差を前記プロセッサに送信する、実施態様16に記載のシステム。
(18) 前記プロセッサは、前記関連する目の目的の屈折矯正ベクトル(IRC)に応じて、以前の矯正手術から前記有効な手術ベクトル関数を導出し、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定するように構成され、それぞれのSIRCは、関連する目の前記測定術前収差と前記術後収差との間の差を特徴付ける、実施態様17に記載のシステム。
(19) 前記有効な手術ベクトル関数は、前記SIRCを前記IRCに関連付ける影響マトリクスfに基づいている、実施態様14に記載のシステム。
(20) fは、前記関連する目に関して、
【数32】
となるように、前記SIRCを前記IRCに関連付け、
式中、
【数33】
は誤差ベクトルであり、
前記有効な手術ベクトル関数を前記入力ベクトルに適用することは、調節した目的の屈折矯正ベクトル(AIRC)を算出することを含み、
【数34】
であり、
式中、
【数35】
はfの逆数であり、IRC’は前記患者の目の前記IRCに基づく、実施態様19に記載のシステム。
【0258】
(21) 前記IRCに対する医師の調節、及び
前記IRCに対するノモグラム調節からなる群から選択される少なくとも1つの調節を受信するための、前記プロセッサに連結された追加の入力部を更に備え、
前記プロセッサは、前記患者の目の前記IRCに前記少なくとも1つの調節を適用することにより、前記患者の目についてのIRC’を定義するように構成され、前記入力ベクトルは、前記IRC’に基づいている、実施態様16に記載のシステム。
(22) 前記有効な手術ベクトル関数は、影響マトリクスに基づいている、実施態様14に記載のシステム。
(23) 前記患者の目の前記計画した白内障手術は、計画した手術ベクトルを含み、前記入力ベクトルの複数の成分はそれぞれ、前記計画した手術ベクトルの複数の成分を変化させ、かつ/又は複数の前記計画した手術ベクトル成分は、前記入力ベクトルの複数の成分によりそれぞれ変化する、実施態様22に記載のシステム。
(24) 前記入力ベクトルは、前記患者の目の屈折を特徴付ける屈折成分、前記患者及び/又は治療の設定を特徴付ける非屈折性補助因子、並びに前記目の前記高次収差を特徴付ける高次成分を含む、実施態様22に記載のシステム。
(25) 前記プロセッサは、前記有効な手術ベクトル関数の前記影響マトリクスに前記入力ベクトルを乗じることにより、前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータを導出するように構成されている、実施態様22に記載のシステム。
【0259】
(26) 患者の目の白内障手術を計画するためのシステムであって、前記システムは、
プロセッサであって、
複数の以前の矯正手術に関するデータを受信するための、及び、関連する目のそれぞれの以前の矯正手術に関して、
前記関連する目の測定術前高次収差と前記関連する目の目標屈折との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、
前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により、前記データから影響マトリクスを導出するための入力部であって、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を含む、入力部と、
前記患者の目の測定術前高次収差と前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信するための別の入力部と、を有する、プロセッサと、
前記患者の目の前記白内障手術において、前記患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータを送信するために、前記プロセッサに連結された出力部であって、前記プロセッサは、前記影響マトリクスに基づいて前記患者のIRCベクトルを調節することにより、前記患者の目の中に埋め込まれる前記IOLの1つ以上のパラメータを導出するように構成されている、出力部と、を備える、システム。
(27) 前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータは、前記IOLの度数と、前記IOLが配置される前記患者の目の中の位置と、を含む、実施態様26に記載のシステム。
(28) 患者の目の白内障手術を計画するためのシステムであって、影響マトリクスは、関連する目のそれぞれの以前の矯正手術に関して、前記関連する目の目標屈折を判定することと、前記関連する目の測定術前高次収差と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により、複数の以前の矯正手術から導出されており、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出され、前記システムは、
前記患者の目の測定術前高次収差と前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信するための入力部と、
前記入力部に連結されたプロセッサであって、前記プロセッサは、前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節するように構成されている、プロセッサと、を備える、システム。
(29) 患者の目の白内障手術を計画するための方法であって、前記方法は、
関連する目のそれぞれの以前の目の治療に関して、
前記関連する目の測定術前光学特性を特徴付ける術前ベクトルを定義することと、
前記関連する目の測定術後光学特性を特徴付ける術後ベクトルを定義することと、
前記術前ベクトルと前記術後ベクトルとの間の相関関係を使用して、有効な手術ベクトル関数を導出することと、により、複数の以前の目の治療に基づいて、前記有効な手術ベクトル関数を判定することと、
前記患者の目の測定術前光学特性に基づいて、入力ベクトルを定義することと、
前記有効な手術ベクトル関数を前記入力ベクトルに適用することにより、前記患者の目の治療を導出することと、を含む、方法。
(30) 前記測定術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される要素を含む、実施態様29に記載の方法。
【0260】
(31) 前記入力ベクトルを定義することは、
前記白内障手術により誘導される、前記患者の目の目標屈折を特定することと、
前記患者の目の前記測定術前収差と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、を含み、
前記有効な手術ベクトル関数を以前の治療から導出することは、
前記関連する目の目的の屈折矯正ベクトル(IRC)を判定することと、
前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することであって、それぞれのSIRCは、関連する目の前記測定術前収差と前記術後収差との間の差を特徴付ける、ことと、を含む、実施態様29に記載の方法。
(32) 前記有効な手術ベクトル関数を導出することは、前記SIRCを前記IRCに関連づける影響マトリクス
【数36】
を判定することを含む、実施態様31に記載の方法。
(33)
【数37】
は、前記関連する目に関して、
【数38】
となるように、前記SIRCを前記IRCに関連付け、
式中、Eは誤差ベクトルであり、
前記有効な手術ベクトル関数を前記入力ベクトルに適用することは、調節した目的の屈折矯正ベクトル(AIRC)を算出することを含み、
【数39】
であり、
式中、
【数40】
の逆数であり、
【数41】
は前記患者の目の前記IRCに基づく、実施態様32に記載の方法。
(34) 前記患者の目の前記IRCに、
前記IRCに対する医師の調節、及び
前記IRCに対するノモグラム調節からなる群から選択される少なくとも1つの調節を適用することにより、前記患者の目に対するIRC’を定義することを更に含み、
前記入力ベクトルは、前記IRC’に基づいている、実施態様31に記載の方法。
(35) 前記有効な手術ベクトル関数は、影響マトリクスを使用して導出される、実施態様29に記載の方法。
【0261】
(36) 前記患者の目の前記計画した白内障手術は、計画した手術ベクトルにより特徴付けられ、前記影響マトリクスは、前記入力ベクトルの複数の成分がそれぞれ、前記計画した手術ベクトルの複数の成分を変化させるように導出される、実施態様35に記載の方法。
(37) 前記患者の目の前記計画した白内障手術は、計画した手術ベクトルにより特徴付けられ、前記影響マトリクスは、複数の前記計画した手術ベクトル成分が、前記入力ベクトルの複数の成分によりそれぞれ変化するように導出される、実施態様36に記載の方法。
(38) 前記患者の目の前記計画した白内障手術は、計画した手術ベクトルにより特徴付けられ、前記影響マトリクスは、前記患者の目の屈折形状を特徴付ける前記入力ベクトルの全成分が、前記患者の目の前記屈折形状の変化を特徴付ける前記計画した手術ベクトルの全成分を変化させることができるように導出される、実施態様36に記載の方法。
(39) 前記術前ベクトル及び前記入力ベクトルは、屈折、前記患者及び/又は白内障手術の設定を特徴付ける非屈折性補助因子、並びに前記目の前記光学特性を特徴付ける、実施態様29に記載の方法。
(40) 前記患者の目の前記白内障手術において、前記患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータは、前記有効な手術ベクトル関数の前記影響マトリクスに前記入力ベクトルを乗じて、条件付き入力ベクトルを定義することにより導出され、前記条件付き入力ベクトルのマトリクス成分により前記白内障手術を計画することにより導出される、実施態様36に記載の方法。
【0262】
(41) 患者の目の白内障手術を計画するための方法であって、前記方法は、
関連する目のそれぞれの以前の矯正手術に関して、
前記関連する目の測定術前高次収差と前記関連する目の目標屈折との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、
前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することであって、影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出される、ことと、により複数の以前の矯正手術から前記影響マトリクスを導出することと、
前記患者の目の測定術前高次収差と前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを定義することと、
前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節することと、を含む、方法。
(42) 前記関連する目のそれぞれの以前の矯正手術に関して、前記IRCは、測定術前低次収差と目標低次収差との間の差を特徴付けるように更に判定され、前記患者のIRCベクトルは、測定術前低次収差と前記目標屈折との間の差を特徴付けるように更に定義される、実施態様41に記載の方法。
(43) 前記調節されたIRCに基づいて、前記患者の目の前記白内障手術において前記患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータを選択することを更に含む、実施態様42に記載の方法。
(44) 患者の目の白内障手術を計画するための方法であって、影響マトリクスは、関連する目のそれぞれの以前の矯正手術に関して、前記関連する目の目標屈折を判定することと、前記関連する目の測定術前光学特性と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、前記関連する目の前記測定術前光学特性と測定術後光学特性との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により、複数の以前の矯正手術から導出されており、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出され、前記方法は、
前記患者の目の測定術前光学特性と前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信することと、
前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節することと、を含む、方法。
(45) 患者の目の白内障手術を計画するためのシステムであって、前記システムは、
前記患者の目の術前光学特性を受信するための入力部と、
前記入力部に連結されたプロセッサであって、前記プロセッサは、有効な手術ベクトル関数を適用することにより、前記患者の目の前記光学特性に応じて、前記患者の目の前記白内障手術において前記患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータを導出し、前記有効な手術ベクトル関数は、複数の以前の矯正手術のそれぞれに関して、手術前の前記関連する目の光学特性を特徴付ける術前ベクトルと前記関連する目の術後光学特性を特徴付ける術後ベクトルとの間の相関関係から導出される、プロセッサと、
前記白内障手術において前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータを送信するように、前記プロセッサに連結された出力部と、を備える、システム。
【0263】
(46) 前記患者の目の前記術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される少なくとも1つの要素を含み、
前記複数の以前の矯正手術のそれぞれに関して、前記術前ベクトルは、手術前の前記関連する目の光学特性を特徴付け、前記光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される1つ以上の要素を含み、前記術後ベクトルは、手術前の前記関連する目の光学特性を特徴付け、前記光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される1つ以上の要素を含む、実施態様45に記載のシステム。
(47) 前記白内障手術において前記患者の目に埋め込まれる前記IOLの前記1つ以上のパラメータは、前記IOLの度数と、前記IOLが埋め込まれる前記患者の目の中の位置と、を含む、実施態様46に記載のシステム。
(48) 前記プロセッサは、前記白内障手術により誘導される前記患者の目の目標屈折に応じて、前記患者の目についての入力ベクトルを、前記患者の目の測定術前収差と前記目標との間の差を特徴付ける、目的の屈折矯正(IRC)を判定することにより、生成するように構成されている、実施態様45に記載のシステム。
(49) 前記入力部に連結された収差計を更に備え、前記収差計は、前記目の前記低次収差及び目の前記高次収差を感知し、前記低次収差及び前記高次収差を前記プロセッサに送信する、実施態様45に記載のシステム。
(50) 前記収差計は、角膜トポグラフィを感知し、前記角膜トポグラフィを前記プロセッサに送信するように構成されている、実施態様49に記載のシステム。
【0264】
(51) 前記入力部に連結された光干渉断層撮影測定装置を更に備え、前記光干渉断層撮影測定装置は目の前記光学特性を感知し、前記光学特性を前記プロセッサに送信する、実施態様45に記載のシステム。
(52) 前記入力部に連結された角膜曲率測定装置を更に備え、前記角膜曲率測定装置は、目の前記光学特性を感知し、前記光学特性を前記プロセッサに送信する、実施態様45に記載のシステム。
(53) 前記プロセッサは、前記関連する目の目的の屈折矯正ベクトル(IRC)に応じて、以前の矯正手術から前記有効な手術ベクトル関数を導出し、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定するように構成され、それぞれのSIRCは、関連する目の前記測定術前収差と前記術後収差との間の差を特徴付ける、実施態様48に記載のシステム。
(54) 前記有効な手術ベクトル関数は、前記SIRCを前記IRCに関連付ける影響マトリクスfに基づいている、実施態様53に記載のシステム。
(55) fは、前記関連する目に関して、
【数42】
となるように、前記SIRCを前記IRCに関連付け、
式中、
【数43】
は誤差ベクトルであり、
前記有効な手術ベクトル関数を前記入力ベクトルに適用することは、調節した目的の屈折矯正ベクトル(AIRC)を算出することを含み、
【数44】
であり、
式中、
【数45】
はfの逆数であり、IRC’は前記患者の目の前記IRCに基づく、実施態様54に記載のシステム。
【0265】
(56) 前記IRCに対する医師の調節、及び
前記IRCに対するノモグラム調節からなる群から選択される少なくとも1つの調節を受信するための、前記プロセッサに連結された追加の入力部を更に備え、前記プロセッサは、前記患者の目の前記IRCに前記少なくとも1つの調節を適用することにより、前記患者の目についてのIRC’を定義するように構成され、前記入力ベクトルは、前記IRC’に基づいている、実施態様55に記載のシステム。
(57) 前記有効な手術ベクトル関数は、影響マトリクスに基づいている、実施態様45に記載のシステム。
(58) 前記患者の目の前記計画した白内障手術は、計画した手術ベクトルを含み、前記入力ベクトルの複数の成分はそれぞれ、前記計画した手術ベクトルの複数の成分を変化させ、かつ/又は複数の前記計画した手術ベクトル成分は、前記入力ベクトルの複数の成分によりそれぞれ変化する、実施態様48に記載のシステム。
(59) 前記入力ベクトルは、前記患者の目の屈折を特徴付ける屈折成分、前記患者及び/又は手術の設定を特徴付ける非屈折性補助因子、並びに前記目の前記光学特性を特徴付ける成分を含む、実施態様48に記載のシステム。
(60) 前記目の前記光学特性を特徴付ける前記成分は、前記目の高次収差を特徴付ける高次成分、前記目の低次収差を特徴付ける低次成分、前記目の角膜トポグラフィ測定値を特徴付ける角膜トポグラフィ測定成分、前記目の光干渉トポグラフィ測定値を特徴付ける光干渉断層撮影測定成分、及び前記目の角膜曲率測定値を特徴付ける角膜曲率測定値成分からなる群から選択される要素を含む、実施態様59に記載のシステム。
【0266】
(61) 前記プロセッサは、前記有効な手術ベクトル関数の前記影響マトリクスに前記入力ベクトルを乗じることにより、前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータを導出するように構成されている、実施態様58に記載のシステム。
(62) 患者の目の白内障手術を計画するためのシステムであって、前記システムは、
プロセッサであって、
複数の以前の矯正手術に関するデータを受信するための、及び、関連する目のそれぞれの以前の矯正手術に関して、
前記関連する目の測定術前高次収差と、前記関連する目の目標屈折との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、
前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により前記データから影響マトリクスを導出するための入力部であって、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を含む、入力部と、
前記患者の目の測定術前高次収差と、前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信するための別の入力部と、を有する、プロセッサと、
前記白内障手術において前記患者の目の中に埋め込まれる眼内レンズ(IOL)の1つ以上のパラメータを送信するための、前記プロセッサに連結された出力部であって、前記プロセッサは、前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節することにより、前記IOLの前記1つ以上のパラメータを導出するように構成されている、出力部と、を備える、システム。
(63) 前記患者の目の前記術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される少なくとも1つの要素を含み、
前記複数の以前の矯正手術のそれぞれに関して、前記術前ベクトルは、手術前の前記関連する目の光学特性を特徴付け、前記光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される1つ以上の要素を含み、前記術後ベクトルは、手術後の前記関連する目の光学特性を特徴付け、前記光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される1つ以上の要素を含む、実施態様62に記載のシステム。
(64) 前記患者の目の前記測定術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される要素を含む、実施態様62に記載のシステム。
(65) 前記白内障手術において前記患者の目の中に埋め込まれる前記IOLの前記1つ以上のパラメータは、前記IOLの度数と、前記IOLが埋め込まれる前記患者の目の中の位置と、を含む、実施態様62に記載のシステム。
【0267】
(66) 患者の目の白内障手術を計画するためのシステムであって、影響マトリクスは、関連する目のそれぞれの以前の矯正手術に関して、前記関連する目の目標屈折を判定することと、前記関連する目の測定術前光学特性と前記目標との間の差を特徴付ける目的の屈折矯正ベクトル(IRC)を判定することと、前記関連する目の前記測定術前収差と測定術後収差との間の差を特徴付ける、前記関連する目の手術により誘導された屈折矯正ベクトル(SIRC)を判定することと、により、複数の以前の矯正手術から導出されており、前記影響マトリクスは、前記IRCと前記SIRCとの間の相関関係を提供するように導出され、前記システムは、
前記患者の目の測定術前光学特性と、前記患者の目の目標屈折との間の差を特徴付ける患者のIRCベクトルを受信するための入力部と、
前記入力部に連結されたプロセッサであって、前記プロセッサは、前記影響マトリクスに基づいて、前記患者のIRCベクトルを調節するように構成されている、プロセッサと、を備える、システム。
(67) 前記関連する目の前記測定術前光学特性は、低次収差、高次収差、角膜トポグラフィ測定値、光干渉断層撮影測定値、及び角膜曲率測定値からなる群から選択される要素を含む、実施態様66に記載のシステム。
(68) 前記影響マトリクスは、前記関連する目の、術前円柱値と、術後球面値と、術前角膜曲率測定値との間の相関関係に基づいている、実施態様66に記載のシステム。
(69) 前記影響マトリクスは、前記関連する目の、高次収差と術前角膜曲率測定値との間の相関関係に基づいている、実施態様66に記載のシステム。