特表2019-521551(P2019-521551A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイディーエーシー ホールディングス インコーポレイテッドの特許一覧

特表2019-521551無線システムにおける統合されたチャネル符号化および変調
<>
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000016
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000017
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000018
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000019
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000020
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000021
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000022
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000023
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000024
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000025
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000026
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000027
  • 特表2019521551-無線システムにおける統合されたチャネル符号化および変調 図000028
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2019-521551(P2019-521551A)
(43)【公表日】2019年7月25日
(54)【発明の名称】無線システムにおける統合されたチャネル符号化および変調
(51)【国際特許分類】
   H04L 1/06 20060101AFI20190704BHJP
   H03M 13/25 20060101ALI20190704BHJP
   H04L 1/00 20060101ALI20190704BHJP
   H04L 27/18 20060101ALI20190704BHJP
   H04B 7/0413 20170101ALI20190704BHJP
   H04B 7/06 20060101ALI20190704BHJP
【FI】
   H04L1/06
   H03M13/25
   H04L1/00 E
   H04L27/18 B
   H04B7/0413 200
   H04B7/06 986
【審査請求】未請求
【予備審査請求】未請求
【全頁数】37
(21)【出願番号】特願2018-558271(P2018-558271)
(86)(22)【出願日】2017年5月9日
(85)【翻訳文提出日】2019年1月7日
(86)【国際出願番号】US2017031655
(87)【国際公開番号】WO2017196780
(87)【国際公開日】20171116
(31)【優先権主張番号】62/334,737
(32)【優先日】2016年5月11日
(33)【優先権主張国】US
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.WCDMA
(71)【出願人】
【識別番号】316012245
【氏名又は名称】アイディーエーシー ホールディングス インコーポレイテッド
(74)【代理人】
【識別番号】110001243
【氏名又は名称】特許業務法人 谷・阿部特許事務所
(72)【発明者】
【氏名】スティーヴン・フェッランテ
(72)【発明者】
【氏名】ロバート・エル・オルセン
(72)【発明者】
【氏名】カイル・ジュン−リン・パン
(72)【発明者】
【氏名】フェンジュン・シー
(72)【発明者】
【氏名】ハンチン・ロウ
【テーマコード(参考)】
5J065
5K014
【Fターム(参考)】
5J065AD06
5J065AD07
5J065AD10
5J065AF02
5J065AG05
5J065AG06
5J065AH01
5K014AA01
5K014BA10
5K014FA11
(57)【要約】
ジョイント符号化空間的および/またはアンテナベースの変調を行うための方法が述べられる。第1のデバイスは第2のデバイスから、1つまたは複数の送信アンテナ、アンテナパターン、および/またはアンテナ偏波に関連付けられた、1つまたは複数のパイロット信号を受信することができる。第1のデバイスはパイロット信号に基づいて、アンテナペアに関連付けられたチャネル関連情報を決定することができる。チャネル関連情報は、1つまたは複数のチャネル相互相関係数を含むことができる。第1のデバイスは、例えばチャネル関連情報に基づいてセットパーティションを決定することができる。第1のデバイスは、決定されたセットパーティションに基づいて、動的に構成可能なトレリス符号化変調(TCM)デコーダを構成することができる。
【特許請求の範囲】
【請求項1】
第1のデバイスであって、
第2のデバイスから第1のパイロット信号を受信し、前記第1のパイロット信号は前記第2のデバイスの第1の送信アンテナに関連付けられており、
前記第2のデバイスから第2のパイロット信号を受信し、前記第2のパイロット信号は前記第2のデバイスの第2の送信アンテナに関連付けられており、
前記第1のパイロット信号および前記第2のパイロット信号に基づいて、アンテナペアに関連付けられたチャネル関連情報を決定し、
前記チャネル関連情報に基づいてセットパーティションを決定し、
前記決定されたセットパーティションに基づいて、動的に構成可能なトレリス符号化変調(TCM)デコーダを構成して、前記第2のデバイスから受信されたデータを復号し、
前記決定されたセットパーティションを示すフィードバックを前記第2のデバイスに送る
ように構成されたプロセッサを備えたことを特徴とする第1のデバイス。
【請求項2】
前記セットパーティションを決定するように構成されることは、
高次信号空間コンスタレーションをコンスタレーションサブセットの第1のグループにパーティショニングし、前記高次信号空間コンスタレーションは複数のコンスタレーション点を含み、および前記複数のコンスタレーション点は前記第1のグループにおけるそれぞれのコンスタレーションサブセットに割り当てられ、
コンスタレーションサブセットの前記第1のグループをコンスタレーションサブセットの第2のグループにパーティショニングし、前記複数のコンスタレーション点は前記第2のグループにおけるそれぞれのコンスタレーションサブセットに割り当てられ、
コンスタレーションサブセットの前記第2のグループに割り当てられた前記複数のコンスタレーション点にビットをマッピングする
ように構成されたことを含むことを特徴とする請求項1に記載の第1のデバイス。
【請求項3】
前記複数のコンスタレーション点の間の最小距離は各パーティショニングと共に増加され、ならびにコンスタレーションサブセットの前記第1のグループ、およびコンスタレーションサブセットの前記第2のグループは、前記高次信号空間コンスタレーションと同一の、コンスタレーション点のそれぞれの数を有することを特徴とする請求項2に記載の第1のデバイス。
【請求項4】
前記セットパーティションを決定するように構成されることは、
前記第1の送信アンテナおよび前記第2の送信アンテナを含む複数の送信アンテナに対して空間的相関係数を決定し、
アンテナ間の最小距離がそれぞれのパーティションごとに最大化されるように、前記空間的相関係数に基づいて前記複数の送信アンテナに対して第1のパーティションおよび第2のパーティションを決定する
ように構成されることを含むことを特徴とする請求項1に記載の第1のデバイス。
【請求項5】
前記チャネル関連情報はチャネル相互相関係数であることを特徴とする請求項1に記載の第1のデバイス。
【請求項6】
前記フィードバックは、前記動的に構成可能なTCMデコーダに対応する動的に構成可能なTCMエンコーダを前記第2のデバイスが構成できるようにすることを特徴とする請求項1に記載の第1のデバイス。
【請求項7】
前記フィードバックは前記チャネル関連情報、または前記決定されたセットパーティションに関連付けられたアンテナインデックスの1つまたは複数を含み、および前記フィードバックは制御チャネルまたはPHYヘッダの1つまたは複数を介して送られることを特徴とする請求項1に記載の第1のデバイス。
【請求項8】
前記アンテナペアは送受信アンテナペアであり、および前記第1のパイロット信号は第1の送信アンテナパターンに関連付けられており、および前記第2のパイロット信号は第2の送信アンテナパターンに関連付けられていることを特徴とする請求項1に記載の第1のデバイス。
【請求項9】
前記第1のデバイスは無線送受信ユニット(WTRU)であり、および前記第2のデバイスはeノードBであることを特徴とする請求項1に記載の第1のデバイス。
【請求項10】
前記第1のパイロット信号は第1のアンテナパターンまたは第1のアンテナ偏波の1つまたは複数に関連付けられており、および前記第2のパイロット信号は第2のアンテナパターンまたは第2のアンテナ偏波の1つまたは複数に関連付けられていることを特徴とする請求項1に記載の第1のデバイス。
【請求項11】
前記プロセッサは、
前記第2のデバイスから前記データを受信し、
推定されたアンテナインデックスを決定し、
前記推定されたアンテナインデックスを前記データのビットシーケンスにマッピングし、
前記動的に構成可能なTCMデコーダを用いて、前記マッピングされたビットシーケンスを復号する
ようにさらに構成されたことを特徴とする請求項1に記載の第1のデバイス。
【請求項12】
ジョイント符号化変調の方法であって、
デバイスから第1のパイロット信号を受信するステップであって、前記第1のパイロット信号は前記デバイスの第1の送信アンテナに関連付けられている、ステップと、
前記デバイスから第2のパイロット信号を受信するステップであって、前記第2のパイロット信号は前記デバイスの第2の送信アンテナに関連付けられている、ステップと、
前記第1のパイロット信号および前記第2のパイロット信号に基づいて、アンテナペアに関連付けられたチャネル関連情報を決定するステップと、
前記チャネル関連情報に基づいてセットパーティションを決定するステップと、
前記決定されたセットパーティションに基づいて、動的に構成可能なトレリス符号化変調(TCM)デコーダを構成して、前記デバイスから受信されたデータを復号するステップと、
前記決定されたセットパーティションを示すフィードバックを前記デバイスに送るステップと
を備えたことを特徴とする方法。
【請求項13】
前記セットパーティションを決定するステップは、
高次信号空間コンスタレーションをコンスタレーションサブセットの第1のグループにパーティショニングするステップであって、前記高次信号空間コンスタレーションは複数のコンスタレーション点を含み、および前記複数のコンスタレーション点は前記第1のグループにおけるそれぞれのコンスタレーションサブセットに割り当てられる、ステップと、
コンスタレーションサブセットの前記第1のグループをコンスタレーションサブセットの第2のグループにパーティショニングするステップであって、前記複数のコンスタレーション点は前記第2のグループにおけるそれぞれのコンスタレーションサブセットに割り当てられる、ステップと、
コンスタレーションサブセットの前記第2のグループに割り当てられた前記複数のコンスタレーション点にビットをマッピングするステップと
を含むことを特徴とする請求項12に記載の方法。
【請求項14】
前記複数のコンスタレーション点の間の最小距離は各パーティショニングと共に増加され、ならびにコンスタレーションサブセットの前記第1のグループ、およびコンスタレーションサブセットの前記第2のグループは、前記高次信号空間コンスタレーションと同一の、コンスタレーション点のそれぞれの数を有することを特徴とする請求項13に記載の方法。
【請求項15】
前記セットパーティションを決定するステップは、
前記第1の送信アンテナおよび前記第2の送信アンテナを含む複数の送信アンテナに対して空間的相関係数を決定するステップと、
アンテナ間の最小距離がそれぞれのパーティションごとに最大化されるように、前記空間的相関係数に基づいて前記複数の送信アンテナに対して第1のパーティションおよび第2のパーティションを決定するステップと
を含むことを特徴とする請求項12に記載の方法。
【請求項16】
前記チャネル関連情報はチャネル相互相関係数であることを特徴とする請求項12に記載の方法。
【請求項17】
前記フィードバックは、前記動的に構成可能なTCMデコーダに対応する動的に構成可能なTCMエンコーダを前記デバイスが構成できるようにすることを特徴とする請求項12に記載の方法。
【請求項18】
前記フィードバックは前記チャネル関連情報、または前記決定されたセットパーティションに関連付けられたアンテナインデックスの1つまたは複数を含み、および前記フィードバックは制御チャネルまたはPHYヘッダの1つまたは複数を介して送られることを特徴とする請求項12に記載の方法。
【請求項19】
前記アンテナペアは送受信アンテナペアであり、および前記第1のパイロット信号は第1の送信アンテナパターンに関連付けられており、および前記第2のパイロット信号は第2の送信アンテナパターンに関連付けられていることを特徴とする請求項12に記載の方法。
【請求項20】
前記デバイスはeノードBであることを特徴とする請求項12に記載の方法。
【請求項21】
前記第1のパイロット信号は第1のアンテナパターンまたは第1のアンテナ偏波の1つまたは複数に関連付けられており、および前記第2のパイロット信号は第2のアンテナパターンまたは第2のアンテナ偏波の1つまたは複数に関連付けられていることを特徴とする請求項12に記載の方法。
【請求項22】
前記デバイスから前記データを受信するステップと、
推定されたアンテナインデックスを決定するステップと、
前記推定されたアンテナインデックスを前記データのビットシーケンスにマッピングするステップと、
前記動的に構成可能なTCMデコーダを用いて、前記マッピングされたビットシーケンスを復号するステップと
をさらに備えたことを特徴とする請求項12に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無線システムにおける統合されたチャネル符号化および変調に関する。
【0002】
関連出願の相互参照
本出願は、参照によりその全体が本明細書に組み込まれている2016年5月11日に出願した米国特許仮出願第62/334,737号の優先権を主張するものである。
【背景技術】
【0003】
モバイル通信は絶え間なく発展しており、すでにその第5の実現、5Gがすぐ近くとなっている。5Gネットワークは、新しい特徴および厳しい性能要件をサポートすることができる。5Gに関連する新しい技術が出現し続けるのに伴い、エンハンストモバイルブロードバンド(eMBB)、大規模マシンタイプ通信(mMTC)、および超高信頼低遅延通信(URLLC)などの分野で多種多様な5G使用ケースをどのようにサポートするかの決定において課題が生じている。
【発明の概要】
【0004】
ジョイント符号化(joint coded)空間的および/またはアンテナベースの変調を行うためのシステム、方法、および手段が開示される。第1のデバイスは、第2のデバイスから第1のパイロット信号を受信することができる。第1のデバイスは無線送受信ユニット(WTRU)とすることができる。第2のデバイスはeノードBとすることができる。第1のパイロット信号は、第2のデバイスの第1の送信アンテナ(例えば第1の送信アンテナパターンおよび/または偏波(polarization))に関連付けられ得る。第1のデバイスは、第2のデバイスから第2のパイロット信号を受信することができる。第2のパイロット信号は、第2のデバイスの第2の送信アンテナ(例えば第2の送信アンテナパターンおよび/または偏波)に関連付けられ得る。第1のデバイスは、アンテナペア、例えば送受信アンテナペアに関連付けられた、チャネル関連情報を決定することができる。チャネル関連情報は、第1および/または第2のパイロット信号に基づいて決定され得る。チャネル関連情報は、1つまたは複数のチャネル相互相関係数を含むことができる。
【0005】
第1のデバイスは、例えばチャネル関連情報に基づいてセットパーティションを決定することができる。第1のデバイスは、高次信号空間コンスタレーション(higher order signal space constellation)をコンスタレーションサブセットの第1のグループにパーティショニングすることができる。高次信号空間コンスタレーションは複数のコンスタレーション点を含むことができる。複数のコンスタレーション点は第1のグループ内のサブセットに割り当てられ得る。第1のデバイスは、コンスタレーションサブセットの第1のグループを、コンスタレーションサブセットの第2のグループにパーティショニングすることができる。複数のコンスタレーション点は第2のグループ内のコンスタレーションサブセットに割り当てられ得る。複数のコンスタレーション点の間の最小距離は各パーティショニングと共に増加される(例えば最大化される)ことができる。コンスタレーションサブセットの第1のグループ、およびコンスタレーションサブセットの第2のグループは、高次信号空間コンスタレーションと同じそれぞれのコンスタレーション点の数を有することができる。第1のデバイスは、コンスタレーションサブセットの第2のグループに割り当てられた複数のコンスタレーション点に、ビット(例えば情報ビット)をマッピングすることができる。
【0006】
第1のデバイスは、複数の送信アンテナ(例えば送信アンテナパターンおよび/または偏波)に対して1つまたは複数の空間的相関係数(partition correlation coefficient)を決定することができる。複数の送信アンテナは、第1の送信アンテナおよび第2の送信アンテナを備えることができる。第1のデバイスは、複数の送信アンテナ(例えばアンテナパターンおよび/または偏波)に対する第1のパーティションおよび第2のパーティションを決定することができる。第1のパーティションおよび第2のパーティションは、アンテナ間の最小距離が各それぞれのパーティションに対して最大化されるように決定され得る。第1のデバイスは、動的に構成可能なトレリス符号化変調(TCM)デコーダを構成することができる。動的に構成可能なTCMデコーダは、決定されたセットパーティションに基づいて構成され得る。動的に構成可能なTCMデコーダは、第2のデバイスから受信されたデータを復号するように構成され得る。第1のデバイスは、第2のデバイスにフィードバックを送ることができる。フィードバックは、決定されたセットパーティションを示すことができる。フィードバックは、チャネル関連情報、または決定されたセットパーティションに関連付けられたアンテナインデックスのうちの1つまたは複数を含むことができる。フィードバックは、制御チャネルまたはPHYヘッダのうちの1つまたは複数を通じて送られ得る。フィードバックは第2のデバイスが、動的に構成可能なTCMエンコーダを構成することを可能にすることができる。動的に構成可能なTCMエンコーダは、動的に構成可能なTCMデコーダに対応することができる。第1のデバイスは、第2のデバイスからデータを受信することができる。第1のデバイスは、推定されたアンテナインデックスを決定することができる。第1のデバイスは、推定されたアンテナインデックスを、データのビットシーケンスにマッピングすることができる。第1のデバイスは、動的に構成可能なTCMデコーダを用いて、マッピングされたビットシーケンスを復号することができる。
【図面の簡単な説明】
【0007】
図1A】1つまたは複数の開示される実施形態が実施され得る、例示の通信システムのシステム図である。
図1B図1Aに示される通信システム内で用いられ得る、例示の無線送受信ユニット(WTRU)のシステム図である。
図1C図1Aに示される通信システム内で用いられ得る、例示の無線アクセスネットワークおよび例示のコアネットワークのシステム図である。
図1D図1Aに示される通信システム内で用いられ得る、他の例示の無線アクセスネットワークおよび例示のコアネットワークのシステム図である。
図1E図1Aに示される通信システム内で用いられ得る、他の例示の無線アクセスネットワークおよび例示のコアネットワークのシステム図である。
図2】例示の再構成可能なアンテナを示す図である。
図3】8−PSKコンスタレーションに対する例示のセットパーティショニング設計を示す図である。
図4】SSKアンテナ分離をベースとするセットパーティショニングのための例示の設計を示す図である。
図5A】例示のアンテナ構造を示す図である。
図5B図5Aに示されるアンテナ構造によって作成される例示のアンテナパターンを示す図である。
図6】チャネル関連情報を利用するジョイント符号化SSKをベースとする送信器−受信器のための例示のアーキテクチャを示す図である。
図7】例示のSM−MIMO−LDPC送信器を示す図である。
図8】例示のSM−MIMO−LDPC受信器を示す図である。
【発明を実施するための形態】
【0008】
次に例示的実施形態の詳細な説明が、様々な図を参照して述べられる。この説明は可能な実装形態の詳細な例をもたらすが、詳細は例示的なものであり、本出願の範囲を限定するものでは全くないことが留意されるべきである。
【0009】
図1Aは、1つまたは複数の開示される実施形態が実施され得る、例示の通信システム100の図である。通信システム100は、複数の無線ユーザに音声、データ、ビデオ、メッセージング、ブロードキャストなどのコンテンツをもたらす多元接続方式とすることができる。通信システム100は、複数の無線ユーザが、無線帯域幅を含む、システムリソースの共有を通してこのようなコンテンツにアクセスすることを可能にすることができる。例えば通信システム100は、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交FDMA(OFDMA)、シングルキャリアFDMA(SC−FDMA)、オフセット直交振幅変調(OFDM−OQAM)を用いた直交周波数分割多重、汎用フィルタ化直交周波数分割多重(UF−OFDM)などの1つまたは複数のチャネルアクセス方法を使用することができる。
【0010】
図1Aに示されるように通信システム100は、無線送受信ユニット(WTRU)102a、102b、102c、および/または102d(これらは全体としてまたはまとめてWTRU102と呼ばれ得る)、無線アクセスネットワーク(RAN)103/104/105、コアネットワーク106/107/109、公衆交換電話ネットワーク(PSTN)108、インターネット110、および他のネットワーク112を含むことができるが、開示される実施形態は任意の数のWTRU、ネットワーク、および/またはネットワーク要素を企図することが理解されるであろう。
【0011】
通信システム100はまた、いくつかの基地局、例えば基地局114aおよび基地局114bを含むことができる。基地局114a、114bのそれぞれは、コアネットワーク106/107/109、インターネット110、および/またはネットワーク112などの1つまたは複数の通信ネットワークへのアクセスを容易にするように、WTRU102a、102b、102c、102dの少なくとも1つと無線でインターフェイス接続するように構成された任意のタイプのデバイスとすることができる。例として基地局114a、114bは、基地トランシーバ局(BTS)、ノードB、eノードB、ホームノードB、ホームeノードB、サイトコントローラ、アクセスポイント(AP)、無線ルータなどとすることができる。基地局114a、114bはそれぞれ単一の要素として示されるが、基地局114a、114bは、任意の数の相互接続された基地局および/またはネットワーク要素を含み得ることが理解されるであろう。
【0012】
基地局114aは、基地局コントローラ(BSC)、無線ネットワークコントローラ(RNC)、中継ノードなどの、他の基地局および/またはネットワーク要素(図示せず)も含むことができる、RAN103/104/105の一部とすることができる。基地局114aおよび/または基地局114bは、セル(図示せず)と呼ばれ得る特定の地理的領域内で無線信号を送信および/または受信するように構成され得る。セルは、セルセクタにさらに分割され得る。例えば基地局114aに関連付けられたセルは、3つのセクタに分割され得る。従って一実施形態において基地局114aは、3つのトランシーバ、すなわちセルの各セクタに対して1つずつを含むことができる。他の実施形態において基地局114aは、多入力多出力(MIMO)技術を使用することができ、従ってセルの各セクタに対して複数のトランシーバを利用することができる。
【0013】
基地局114a、114bは、任意の適切な無線通信リンク(例えば無線周波数(RF)、マイクロ波、赤外線(IR)、紫外線(UV)、可視光など)とすることができるエアインターフェイス115/116/117を通して、WTRU102a、102b、102c、102dの1つまたは複数と通信することができる。エアインターフェイス115/116/117は、任意の適切な無線アクセス技術(RAT)を用いて確立され得る。
【0014】
より具体的には上記のように通信システム100は、多元接続方式とすることができ、CDMA、TDMA、FDMA、OFDMA、SC−FDMA、OFDM−OQAM、UF−OFDMなどの1つまたは複数のチャネルアクセス方式を使用することができる。例えばRAN103/104/105内の基地局114a、およびWTRU102a、102b、102cは、ユニバーサル移動体電話通信システム(UMTS)地上無線アクセス(UTRA)などの無線技術を実装することができ、これは広帯域CDMA(WCDMA)を用いてエアインターフェイス115/116/117を確立することができる。WCDMAは、高速パケットアクセス(HSPA)および/またはEvolved HSPA(HSPA+)などの通信プロトコルを含むことができる。HSPAは、高速ダウンリンクパケットアクセス(HSDPA)および/または高速アップリンクパケットアクセス(HSUPA)を含むことができる。
【0015】
他の実施形態において基地局114aおよびWTRU102a、102b、102cは、Evolved UMTS地上無線アクセス(E−UTRA)などの無線技術を実装することができ、これはロングタームエボリューション(LTE)、LTE−Advanced(LTE−A)、および/または5gFLEXを用いてエアインターフェイス115/116/117を確立することができる。
【0016】
他の実施形態において基地局114aおよびWTRU102a、102b、102cは、IEEE 802.16(すなわちマイクロ波アクセス用世界規模相互運用性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV−DO、暫定標準2000(IS−2000)、暫定標準95(IS−95)、暫定標準856(IS−856)、移動体通信用グローバルシステム(GSM)、GSM進化型高速データレート(EDGE)、GSM EDGE(GERAN)などの無線技術を実装することができる。
【0017】
図1Aの基地局114bは、例えば無線ルータ、ホームノードB、ホームeノードB、またはアクセスポイントとすることができ、事業所、自宅、乗り物、キャンパスなどの局在したエリア内の無線接続性を容易にするための任意の適切なRATを利用することができる。一実施形態において基地局114bおよびWTRU102c、102dは、IEEE 802.11などの無線技術を実装して、無線ローカルエリアネットワーク(WLAN)を確立することができる。他の実施形態において基地局114bおよびWTRU102c、102dは、IEEE 802.15などの無線技術を実装して、無線パーソナルエリアネットワーク(WPAN)を確立することができる。他の実施形態において基地局114bおよびWTRU102c、102dは、セルラベースのRAT(例えばWCDMA、CDMA2000、GSM、LTE、LTE−A、5gFLEXなど)を利用して、ピコセルまたはフェムトセルを確立することができる。図1Aに示されるように基地局114bは、インターネット110への直接接続を有することができる。従って基地局114bは、コアネットワーク106/107/109を通じてインターネット110にアクセスすることを不要とすることができる。
【0018】
RAN103/104/105はコアネットワーク106/107/109と通信することができ、これは音声、データ、アプリケーション、および/またはボイスオーバインターネットプロトコル(VoIP)サービスをWTRU102a、102b、102c、102dの1つまたは複数にもたらすように構成された、任意のタイプのネットワークとすることができる。例えばコアネットワーク106/107/109は、呼制御、料金請求サービス、移動体位置ベースのサービス、プリペイドコール、インターネット接続性、ビデオ配信などをもたらすことができ、および/またはユーザ認証などの高レベルセキュリティ機能を行うことができる。図1Aに示されないが、RAN103/104/105および/またはコアネットワーク106/107/109は、RAN103/104/105と同じRATまたは異なるRATを使用する他のRANと、直接または間接に通信できることが理解されるであろう。例えば、E−UTRA無線技術を利用し得るRAN103/104/105に接続されることに加えて、コアネットワーク106/107/109は、GSM無線技術を使用する他のRAN(図示せず)と通信することもできる。
【0019】
コアネットワーク106/107/109はまた、WTRU102a、102b、102c、102dがPSTN108、インターネット110、および/または他のネットワーク112にアクセスするためのゲートウェイとして働くことができる。PSTN108は、従来型電話サービス(plain old telephone service、POTS)をもたらす回線交換電話ネットワークを含むことができる。インターネット110は、TCP/IPインターネットプロトコル群における伝送制御プロトコル(TCP)、ユーザデータグラムプロトコル(UDP)、およびインターネットプロトコル(IP)などの共通通信プロトコルを用いる、相互接続されたコンピュータネットワークおよびデバイスの地球規模のシステムを含むことができる。ネットワーク112は、他のサービスプロバイダによって所有および/または運用される有線もしくは無線通信ネットワークを含むことができる。例えばネットワーク112は、RAN103/104/105と同じRATまたは異なるRATを使用することができる1つまたは複数のRANに接続された、他のコアネットワークを含むことができる。
【0020】
通信システム100内のWTRU102a、102b、102c、102dのいくつかまたはすべては、マルチモード能力を含むことができ、すなわちWTRU102a、102b、102c、102dは、異なる無線リンクを通して異なる無線ネットワークと通信するための、複数のトランシーバを含むことができる。例えば図1Aに示されるWTRU102cは、セルラベースの無線技術を使用することができる基地局114aと、およびIEEE 802無線技術を使用することができる基地局114bと通信するように構成され得る。
【0021】
図1Bは、例示のWTRU102のシステム図である。図1Bに示されるようにWTRU102a、102b、102c、102dは、プロセッサ118、トランシーバ120、送受信要素122、スピーカ/マイクロフォン124、キーパッド126、ディスプレイ/タッチパッド128、非リムーバブルメモリ130、リムーバブルメモリ132、電源134、全地球測位システム(GPS)チップセット136、および他の周辺装置138を含むことができる。WTRU102は、実施形態と一貫性を保ちながら、前述の要素の任意のサブコンビネーションを含み得ることが理解されるであろう。
【0022】
WTRU102のプロセッサ118は、汎用プロセッサ、専用プロセッサ、従来型プロセッサ、デジタル信号プロセッサ(DSP)、複数のマイクロプロセッサ、DSPコアに関連した1つまたは複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)回路、任意の他のタイプの集積回路(IC)、状態機械などとすることができる。プロセッサ118は、信号符号化、データ処理、電力制御、入力/出力処理、および/またはWTRU102が無線環境において動作することを可能にする任意の他の機能を行うことができる。プロセッサ118はトランシーバ120に結合されることができ、これは送受信要素122に結合され得る。図1Bはプロセッサ118およびトランシーバ120を個別の構成要素として示すが、プロセッサ118およびトランシーバ120は、電子パッケージまたはチップ内に一緒に一体化され得ることが理解されるであろう。
【0023】
WTRU102の送受信要素122は、エアインターフェイス115/116/117を通して基地局(例えば基地局114a)に信号を送信し、またはそれから信号を受信するように構成され得る。例えば一実施形態において送受信要素122は、RF信号を送信および/または受信するように構成されたアンテナとすることができる。他の実施形態において送受信要素122は、例えばIR、UV、または可視光信号を送信および/または受信するように構成された放射器/検出器とすることができる。さらに他の実施形態において送受信要素122は、RFおよび光信号の両方を送信および受信するように構成され得る。送受信要素122は、無線信号の任意の組み合わせを送信および/または受信するように構成され得ることが理解されるであろう。
【0024】
加えて図1Bでは送受信要素122は単一の要素として示されるが、WTRU102は任意の数の送受信要素122を含むことができる。より具体的にはWTRU102は、MIMO技術を使用することができる。従って一実施形態においてWTRU102は、エアインターフェイス115/116/117を通して無線信号を送信および受信するための、2つ以上の送受信要素122(例えば複数のアンテナ)を含むことができる。
【0025】
WTRU102のトランシーバ120は、送受信要素122によって送信されることになる信号を変調するように、および送受信要素122によって受信される信号を復調するように構成され得る。上記のようにWTRU102はマルチモード能力を有することができる。従ってトランシーバ120は、WTRU102が例えばUTRAおよびIEEE 802.11などの複数のRATを通じて通信することを可能にするための複数のトランシーバを含むことができる。
【0026】
WTRU102のプロセッサ118は、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド(例えば液晶表示(LCD)ディスプレイユニット、または有機発光ダイオード(OLED)ディスプレイユニット)に結合されることができ、それらからユーザ入力データを受信することができる。プロセッサ118はまたユーザデータを、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128に出力することができる。加えてプロセッサ118は、非リムーバブルメモリ130および/またはリムーバブルメモリ132などの任意のタイプの適切なメモリからの情報にアクセスし、それにデータを記憶することができる。非リムーバブルメモリ130は、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、ハードディスク、または任意の他のタイプのメモリ記憶デバイスを含むことができる。リムーバブルメモリ132は、加入者識別モジュール(SIM)カード、メモリスティック、セキュアデジタル(SD)メモリカードなどを含むことができる。他の実施形態においてプロセッサ118は、サーバまたはホームコンピュータ上など、WTRU102上に物理的に位置しないメモリからの情報にアクセスし、それにデータを記憶することができる。
【0027】
プロセッサ118は、電源134から電力を受け取ることができ、WTRU102内の他の構成要素に対する電力を分配および/または制御するように構成され得る。電源134は、WTRU102に電力供給するための任意の適切なデバイスとすることができる。例えば電源134は、1つまたは複数の乾電池(例えばニッケルカドミウム(NiCd)、ニッケル亜鉛(NiZn)、ニッケル水素(NiMH)、リチウムイオン(Liイオン)など)、太陽電池、燃料電池などを含むことができる。
【0028】
プロセッサ118はまたGPSチップセット136に結合されることができ、これはWTRU102の現在位置に関する位置情報(例えば経度および緯度)をもたらすように構成され得る。GPSチップセット136からの情報に加えてまたはその代わりに、WTRU102はエアインターフェイス115/116/117を通して、基地局(例えば基地局114a、114b)から位置情報を受信することができ、および/または2つ以上の近くの基地局から受信される信号のタイミングに基づいてその位置を決定することができる。WTRU102は、実施形態と一貫性を保ちながら、任意の適切な位置決定方法によって位置情報を取得できることが理解されるであろう。
【0029】
プロセッサ118は、さらなる特徴、機能、および/または有線もしくは無線接続性をもたらす、1つまたは複数のソフトウェアおよび/またはハードウェアモジュールを含み得る他の周辺装置138にさらに結合され得る。例えば周辺装置138は加速度計、電子コンパス、衛星トランシーバ、デジタルカメラ(写真またはビデオ用)、ユニバーサルシリアルバス(USB)ポート、振動デバイス、テレビ送受信機、ハンズフリーヘッドセット、ブルートゥース(登録商標)モジュール、周波数変調(FM)ラジオユニット、デジタル音楽プレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、インターネットブラウザなどを含むことができる。
【0030】
図1Cは、実施形態によるRAN103およびコアネットワーク106のシステム図である。上記のようにRAN103は、UTRA無線技術を使用して、エアインターフェイス115を通してWTRU102a、102b、102cと通信することができる。RAN103はまた、コアネットワーク106と通信することができる。図1Cに示されるようにRAN103は、ノードB140a、140b、140cを含むことができ、これらはそれぞれ、エアインターフェイス115を通してWTRU102a、102b、102cと通信するための1つまたは複数のトランシーバを含むことができる。ノードB140a、140b、140cは、それぞれRAN103内の特定のセル(図示せず)に関連付けられ得る。RAN103はまた、RNC142a、142bを含むことができる。RAN103は、実施形態と一貫性を保ちながら、任意の数のノードBおよびRNCを含み得ることが理解されるであろう。
【0031】
図1Cに示されるようにノードB140a、140bは、RNC142aと通信することができる。さらにノードB140cは、RNC142bと通信することができる。ノードB140a、140b、140cは、Iubインターフェイスを通じて、それぞれのRNC142a、142bと通信することができる。RNC142a、142bは、Iurインターフェイスを通じて互いに通信することができる。RNC142a、142bのそれぞれは、それが接続されるそれぞれのノードB140a、140b、140cを制御するように構成され得る。さらにRNC142a、142bのそれぞれは、外側ループ電力制御、負荷制御、アドミッション制御、パケットスケジューリング、ハンドオーバ制御、マクロダイバーシティ、セキュリティ機能、データ暗号化などの他の機能を実行またはサポートするように構成され得る。
【0032】
図1Cに示されるコアネットワーク106は、メディアゲートウェイ(MGW)144、モバイル交換局(MSC)146、サービングGPRSサポートノード(SGSN)148、および/またはゲートウェイGPRSサポートノード(GGSN)150を含むことができる。前述の要素のそれぞれはコアネットワーク106の一部として示されるが、これらの要素のいずれの1つも、コアネットワークオペレータ以外のエンティティによって所有および/または運用され得ることが理解されるであろう。
【0033】
RAN103内のRNC142aは、IuCSインターフェイスを通じてコアネットワーク106内のMSC146に接続され得る。MSC146はMGW144に接続され得る。MSC146およびMGW144は、WTRU102a、102b、102cと従来型の陸線通信デバイスとの間の通信を容易にするために、PSTN108などの回線交換ネットワークへのアクセスをWTRU102a、102b、102cにもたらすことができる。
【0034】
RAN103内のRNC142aはまた、IuPSインターフェイスを通じてコアネットワーク106内のSGSN148に接続され得る。SGSN148はGGSN150に接続され得る。SGSN148およびGGSN150は、WTRU102a、102b、102cとIP対応デバイスとの間の通信を容易にするために、インターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cにもたらすことができる。
【0035】
上記のようにコアネットワーク106はまたネットワーク112に接続されることができ、これは他のサービスプロバイダによって所有および/または運用される他の有線もしくは無線ネットワークを含むことができる。
【0036】
図1Dは、実施形態によるRAN104およびコアネットワーク107のシステム図である。上記のようにRAN104は、E−UTRA無線技術を使用して、エアインターフェイス116を通してWTRU102a、102b、102cと通信することができる。RAN104はまた、コアネットワーク107と通信することができる。
【0037】
RAN104はeノードB160a、160b、160cを含むことができるが、RAN104は、実施形態と一貫性を保ちながら、任意の数のeノードBを含み得ることが理解されるであろう。eノードB160a、160b、160cはそれぞれ、エアインターフェイス116を通してWTRU102a、102b、102cと通信するための1つまたは複数のトランシーバを含むことができる。一実施形態ではeノードB160a、160b、160cは、MIMO技術を実装することができる。従ってeノードB160aは、例えば複数のアンテナを用いてWTRU102aに無線信号を送信し、それから無線信号を受信することができる。
【0038】
eノードB160a、160b、160cのそれぞれは、特定のセル(図示せず)に関連付けられ得、無線リソース管理決定、ハンドオーバ決定、アップリンクおよび/またはダウンリンクにおけるユーザのスケジューリングなどに対処するように構成され得る。図1Dに示されるようにeノードB160a、160b、160cは、X2インターフェイスを通して互いに通信することができる。
【0039】
図1Dに示されるコアネットワーク107は、モビリティ管理ゲートウェイ(MME)162、サービングゲートウェイ164、およびパケットデータネットワーク(PDN)ゲートウェイ166を含むことができる。前述の要素のそれぞれはコアネットワーク107の一部として示されるが、これらの要素のいずれの1つも、コアネットワークオペレータ以外のエンティティによって所有および/または運用され得ることが理解されるであろう。
【0040】
MME162は、S1インターフェイスを通じてRAN104内のeノードB160a、160b、160cのそれぞれに接続されることができ、制御ノードとして働くことができる。例えばMME162は、WTRU102a、102b、102cのユーザを認証すること、ベアラ活動化/非活動化、WTRU102a、102b、102cの初期アタッチ時に特定のサービングゲートウェイを選択することなどに対して責任をもつことができる。MME162はまた、RAN104と、GSMまたはWCDMAなどの他の無線技術を使用する他のRAN(図示せず)との間で切り換えるための、制御プレーン機能をもたらすことができる。
【0041】
サービングゲートウェイ164は、S1インターフェイスを通じてRAN104内のeノードB160a、160b、160cのそれぞれに接続され得る。サービングゲートウェイ164は一般に、WTRU102a、102b、102cへのまたはそれらからのユーザデータパケットを、経路指定および転送することができる。サービングゲートウェイ164はまた、eノードB間ハンドオーバ時にユーザプレーンをアンカリングすること、WTRU102a、102b、102cのためのダウンリンクデータが使用可能であるときにページングをトリガすること、WTRU102a、102b、102cのコンテキストを管理および記憶することなどの他の機能を行うことができる。
【0042】
サービングゲートウェイ164はまたPDNゲートウェイ166に接続されることができ、これはWTRU102a、102b、102cとIP対応デバイスとの間の通信を容易にするために、インターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cにもたらすことができる。
【0043】
コアネットワーク107は、他のネットワークとの通信を容易にすることができる。例えばコアネットワーク107は、WTRU102a、102b、102cと従来型の陸線通信デバイスとの間の通信を容易にするために、PSTN108などの回線交換ネットワークへのアクセスをWTRU102a、102b、102cにもたらすことができる。例えばコアネットワーク107は、コアネットワーク107とPSTN108との間のインターフェイスとして働くIPゲートウェイ(例えばIPマルチメディアサブシステム(IMS)サーバ)を含むことができ、またはそれと通信することができる。さらにコアネットワーク107は、WTRU102a、102b、102cにネットワーク112へのアクセスをもたらすことができ、これは他のサービスプロバイダによって所有および/または運用される他の有線もしくは無線ネットワークを含むことができる。
【0044】
図1Eは、実施形態によるRAN105およびコアネットワーク109のシステム図である。RAN105は、IEEE 802.16無線技術を使用して、エアインターフェイス117を通してWTRU102a、102b、102cと通信する、アクセスサービスネットワーク(ASN)とすることができる。以下でさらに論じられるようにWTRU102a、102b、102c、RAN105、およびコアネットワーク109の異なる機能エンティティの間の通信リンクは、基準点として定義され得る。
【0045】
図1Eに示されるようにRAN105は、基地局180a、180b、180c、およびASNゲートウェイ182を含むことができるが、RAN105は実施形態と一貫性を保ちながら、任意の数の基地局およびASNゲートウェイを含み得ることが理解されるであろう。基地局180a、180b、180cはそれぞれRAN105内の特定のセル(図示せず)に関連付けられ得、それぞれエアインターフェイス117を通してWTRU102a、102b、102cと通信するための1つまたは複数のトランシーバを含むことができる。一実施形態では基地局180a、180b、180cは、MIMO技術を実装することができる。従って基地局180aは、例えば複数のアンテナを用いてWTRU102aに無線信号を送信し、それから無線信号を受信することができる。基地局180a、180b、180cはまた、ハンドオフトリガリング、トンネル確立、無線リソース管理、トラフィック分類、サービス品質(QoS)ポリシー実行などの、モビリティ管理機能をもたらすことができる。ASNゲートウェイ182は、トラフィック集約ポイントとして働くことができ、ページング、加入者プロファイルのキャッシング、コアネットワーク109への経路指定などに対して責任をもつことができる。
【0046】
WTRU102a、102b、102cとRAN105との間のエアインターフェイス117は、IEEE 802.16仕様を実装するR1基準点として定義され得る。さらにWTRU102a、102b、102cのそれぞれは、コアネットワーク109との論理インターフェイス(図示せず)を確立することができる。WTRU102a、102b、102cとコアネットワーク109との間の論理インターフェイスは、R2基準点として定義されることができ、これは認証、認可、IPホスト構成管理、および/またはモビリティ管理のために用いられ得る。
【0047】
基地局180a、180b、180cのそれぞれの間の通信リンクは、基地局間のWTRUハンドオーバおよびデータの転送を容易にするためのプロトコルを含むR8基準点として定義され得る。基地局180a、180b、180cとASNゲートウェイ182との間の通信リンクは、R6基準点として定義され得る。R6基準点は、WTRU102a、102b、102cのそれぞれに関連付けられたモビリティイベントに基づくモビリティ管理を容易にするためのプロトコルを含むことができる。
【0048】
図1Eに示されるようにRAN105は、コアネットワーク109に接続され得る。RAN105とコアネットワーク109との間の通信リンクは、例えばデータ転送およびモビリティ管理能力を容易にするためのプロトコルを含むR3基準点として定義され得る。コアネットワーク109は、モバイルIPホームエージェント(MIP−HA)184、認証、認可、アカウンティング(AAA)サーバ186、およびゲートウェイ188を含むことができる。前述の要素のそれぞれはコアネットワーク109の一部として示されるが、これらの要素のいずれの1つも、コアネットワークオペレータ以外のエンティティによって所有および/または運用され得ることが理解されるであろう。
【0049】
MIP−HAは、IPアドレス管理に対して責任をもつことができ、WTRU102a、102b、102cが、異なるASNおよび/または異なるコアネットワークの間でローミングすることを可能にすることができる。MIP−HA184は、WTRU102a、102b、102cとIP対応デバイスとの間の通信を容易にするために、インターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cにもたらすことができる。AAAサーバ186は、ユーザ認証に対して、およびユーザサービスをサポートすることに対して責任をもつことができる。ゲートウェイ188は、他のネットワークとの相互動作を容易にすることができる。例えばゲートウェイ188は、WTRU102a、102b、102cと従来型の陸線通信デバイスとの間の通信を容易にするために、PSTN108などの回線交換ネットワークへのアクセスをWTRU102a、102b、102cにもたらすことができる。さらにゲートウェイ188はWTRU102a、102b、102cにネットワーク112へのアクセスをもたらすことができ、これは他のサービスプロバイダによって所有および/または運用される他の有線もしくは無線ネットワークを含むことができる。
【0050】
図1Eに示されないが、RAN105は他のASNに接続されることができ、コアネットワーク109は他のコアネットワークに接続され得ることが理解されるであろう。RAN105と他のASNとの間の通信リンクは、R4基準点として定義されることができ、これはRAN105と他のASNとの間のWTRU102a、102b、102cのモビリティを協調させるためのプロトコルを含むことができる。コアネットワーク109と他のコアネットワークとの間の通信リンクは、R5基準として定義されることができ、これはホームコアネットワークと訪問先のコアネットワークとの間の相互動作を容易にするためのプロトコルを含むことができる。
【0051】
本明細書で述べられる通信システムは、異なるユースケースに対して実施され得る。これらのユースケースは、例えば高データレート、高スペクトル効率、低電力および高エネルギー効率、低遅延、および高信頼性などを含む異なる動作要件を有し得る。例としてmMTCユースケースは、多数の低コストデバイスに対する接続性をもたらすための要望によって特徴付けられ得る。目標の用途はスマートメータリング、家庭電化製品、リモートセンサ、および/または同種のものを含むことができる。これらの用途の1つまたは複数において(例えばこれらの用途のすべてにおいて)、データ送信は少なくおよび/またはまれとなり得る。大規模配備を達成するために、長い電池寿命を有する低コストデバイスが用いられ得る。
【0052】
本明細書で述べられる通信システムは、空間的変調多入力多出力(SM−MIMO)技法を使用することができ、それを通して情報(例えば従来の信号空間上に変調され得る)は、送信器におけるアンテナインデックス上に変調され得る。SM−MIMOを用いことで無線周波数(RF)チェーンの数は、送信アンテナの数より少なくすることができ、従って全体のコストおよび/または電力消費を低減する(例えば空間的変調を用いないいくつかのMIMO技法と比べて、および/またはアンテナごとにRFチェーンを必要とするMIMO技法と比べて)。SM−MIMOはエネルギー効率(EE)を目標とすることができる(例えばスペクトル効率(SE)を通して)。
【0053】
本明細書で述べられる通信システムは、リンク適応技法を使用することができ、それを用いていくつかの送信パラメータは動的に構成され得る(例えばチャネル条件などのチャネル関連情報に基づいて)。例示のリンク適応は、適応変調および符号化(AMC)とすることができる。AMCを用いて変調および符号化は、例えば現在のチャネル条件および/または所望のエラー確率に基づいて調整されることができ、その結果例えばスペクトル効率が向上され得る。
【0054】
本明細書で述べられる通信システムは、例えばスペクトル効率を向上させるためにMIMO技術を使用することができる。例えば空間的多重化(SMX)と呼ばれるMIMO技法は、複数の同時データストリームが同じ無線チャネルを通して送信および/または受信されることを可能にし得る。SMXは特定のチャネル条件のもとで行われ得る。本明細書で述べられるリンク適応技法は、例えばチャネル条件などのチャネル関連情報に基づいて、SMXモードを動的に調整することによって適用され得る。
【0055】
図2は、例示の再構成可能なアンテナを示す。本明細書で述べられる通信システムは、再構成可能なアンテナ(例えば電気的に再構成可能なアンテナ)を利用することができる。これらの再構成可能なアンテナは、動的にそれら自体を再形成するおよび/またはそれらの放射特性を変化させることができ得る。動的再形成は例えば、PIN/バラクタダイオードおよび/または微小電気機械システム(MEMS)デバイスをアンテナの構造内に一体化することによって実現され得る。アンテナの構成要素の1つまたは複数を通して、電気的制御が実行され得る。図2に示される例示の再構成可能なアンテナは、再構成可能なダイポールアンテナ202、パターンおよび偏波再構成可能円形パッチアンテナ204、および再構成可能なアルフォードループアンテナ206を含むことができる。
【0056】
再構成可能なアンテナは異なるカテゴリに分類され得る。第1の例示のカテゴリは、例えば異なる周波数帯域の間をホッピングすることによって、それらの動作またはノッチ周波数を変化させることができる放射構造を備え得る。これらの放射構造は周波数再構成可能アンテナと呼ばれることができ、これのためのチューニングまたはノッチは、それぞれのアンテナ反射係数において作り出され得る。第2の例示のカテゴリは、それらの放射パターンを調整することができる放射構造を備え得る。それらの放射パターンを調整することができる放射構造は、放射パターン再構成可能アンテナと呼ばれ得る。放射パターン再構成可能アンテナの放射パターンは、形状、方向、利得などに関して変化することができる。第3の例示のカテゴリは、それらの偏波特性を変化させることができる放射構造を備え得る。偏波特性は、水平/垂直、傾斜、左旋もしくは右旋円偏波の1つまたは複数を含むことができる。これらの放射構造は、偏波再構成可能アンテナと呼ばれ得る。偏波再構成可能アンテナは、それらのそれぞれの偏波を例えば垂直偏波から左旋円偏波に変化させることができ得る。第4の例示のカテゴリは、最初の3つのカテゴリに関連して述べられた特性の組み合わせを有する放射構造を備え得る。例えば第4の例示のカテゴリにおけるアンテナは、同時の再構成可能な周波数および偏波ダイバーシティによって特徴付けられ得る。
【0057】
本明細書で述べられる通信システムは、いくつかのチャネル符号化技法を使用することができる。チャネル符号化は、例えば送信に冗長性を導入することによって、通信システムの性能を向上させることができる。特定の用途に対して、特定のチャネル符号化技法が選択され得る。利用され得るチャネル符号は、ブロック符号(例えば冗長性はデータのブロックに追加される)、および/または畳み込み符号(例えば冗長性は連続的な形で追加される)に分類され得る。
【0058】
本明細書で述べられる通信システムは、いくつかの変調技法を使用することができる。データビットは、データビットに含まれた情報の、アナログチャネルを通した送信を可能にするために異なる領域にマッピングされ得る。例えばデータビットは、信号領域にマッピングされることができ、これは結果としてBPSK、QPSK、およびQAMなどの共通変調フォーマットを生じ得る。信号領域変調は、信号空間コンスタレーション図によって表され得る(例えばコンスタレーション内の1つまたは複数の点は、それぞれの信号マッピングを指す)。個々の信号を表すために用いられるビットの数は、利用されるコンスタレーション点の数が増加するのに従って増加し得る。このシナリオにおいて送信電力が不変のままである場合、コンスタレーション点は互いにより近くなり、これはビットエラーレート(BER)性能に影響を及ぼし得る(例えば直接に影響を及ぼし得る)。
【0059】
チャネル符号化および変調は、個別のエンティティとして設計され得る。例えば特定の情報ビットレートおよび所望の目標BERが対象とされ得る。目標BERに到達するためにチャネル符号化が用いられる場合、情報ビットストリームに冗長性が追加されるので、情報ビットレートは低減され得る(例えば固定の帯域幅を仮定して)。この情報レートの低減は、例えば高次変調フォーマットを用いることによって対処され得る。しかし高次変調フォーマットは、コンスタレーション点の間の距離を減少させる場合があり、これはひいてはBER性能に悪影響を与え得る。例えば非符号化BPSK送信、または1/3レート符号化8−PSK送信は、チャネル使用当たり1ビット(bpcu)のスペクトル効率をもたらすことができる。しかし同じ送信電力を用いて、符号化8−PSKに対するコンスタレーション点の間の距離は、非符号化BPSKに対するコンスタレーション点の間の距離よりおおよそ2.6倍小さくなり得る。従って非符号化システムと比べた全体的な利得は、高次変調の不利益を克服した後に(例えばその後にのみ)、チャネル符号化を通じて達成され得る。
【0060】
チャネル符号化および変調は、統合して設計され得る(例えば符号化変調システムに対して)。符号化および変調を統合して設計することによって、システムの全体の性能は向上され得る(例えば同じスペクトル効率に対して、より小さな信号対雑音比(SNR)が必要とされるという観点から)。ジョイント符号化変調技法として、トレリス符号化変調(TCM)が用いられ得る。ジョイント符号化変調は、信号空間の次元を増加することによって冗長性を追加し得る(例えば、同時にいくつかのシンボルシーケンスを無効にしながら)。
【0061】
技術開発は、スペクトル効率を増加するための試みによって促進され得る。例えばいくつかのMIMO技術はスペクトル効率における増加をもたらすことができるが、そうするためには送信器における増加した回路電力消費、および/または受信器における増加した信号処理の複雑さが犠牲になり得る。SM−MIMOは、スペクトル効率およびエネルギー効率を向上させる、および/またはスペクトル効率とエネルギー効率との間のバランスを達成する可能性を有し得る。
【0062】
本明細書で述べられるようにmMTC配備は、長い電池寿命を有する低コストデバイスの使用によって特徴付けられ得る(例えば多数のデバイスが配備されるので)。データレートはいくつかのmMTCアプリケーションにおいて低くなり得るが、より高いデータレートに対する需要の可能性があり得る。EEとSEとの間のバランスを達成することができる低コストでエネルギー効率の良いデバイスを用いて、mMTCシステムを設計することが望ましくなり得る。
【0063】
SM−MIMO技法は、例えばそれらの低コストデバイスアーキテクチャおよび/またはエネルギー効率の良い動作により、mMTCユースケースにおいて用いられ得る。他のアンテナベースの変調、チャネル符号化、およびリンク適応技法が、チャネルからスペクトル効率を引き出すために利用され得る。mMTCシステムの設計は、例えば本明細書で述べられる技法の1つまたは複数に焦点を当てることによって、スペクトルおよびエネルギー効率のバランスを達成することを目指すことができる(例えば高周波および広帯域幅動作のために)。
【0064】
ジョイント符号化空間的および/またはアンテナベースの変調が用いられ得る。本明細書で述べられるように、増加されたスペクトル効率および/またはエネルギー効率が設計目標となり得る(例えば5Gおよび/またはmMTCユースケースに対して)。空間的多重化などのMIMO技法は、スペクトル効率を増加し得るが、エネルギー効率に影響を及ぼし得る。空間シフトキーイング(SSK)および放射パターン/偏波変調(RPM)などの、空間的および/またはアンテナベースの変調技法が、エネルギー効率を維持しながらスペクトル効率を向上させる(例えば適度のレートにおいて)ために用いられ得る(例えば代替として用いられ得る)。統合されたチャネル符号化および変調は、空間的および/またはアンテナベースの変調と組み合わされ得る。組み合わせは、スペクトル効率を維持しおよび符号化方式を比較的に簡単に保ちながら、性能を向上させることができる。TCMは、信号空間変調と共に用いられ得る例示のジョイント符号化および変調技法である。技法は、他の変調タイプに対して適し得る(例えば本明細書で述べられるようなSSKおよびRPMなど)。
【0065】
TCMと共に用いられるいくつかのセットパーティショニング技法は、信号空間変調に適し得るが、本明細書で述べられる空間的および/またはアンテナベースの変調タイプに直接マッピングすることができない。セットパーティショニングは、空間的および/またはアンテナベースの変調タイプのために用いられ得る。例示のセットパーティショニングは、以下のように示され得る。所望の情報シンボルレートに関連付けられたものより高次のコンスタレーションが選択され得る。コンスタレーションは複数のコンスタレーション点を有し得る。コンスタレーション(例えば高次のコンスタレーション)は、サブセットにパーティショニングされ得る(例えば連続してパーティショニングされ得る)。コンスタレーションは、コンスタレーション点の間の距離(例えば最小距離)がパーティションによって増加されるように、パーティショニングされ得る。例えばパーティショニングは、図3に示されるように継続することができる(例えば8−PSKに対する例として示される)。データビットは、パーティショニングされたコンスタレーション点にマッピングされ得る。例えばデータビットは、すべてのシンボルシーケンスが結果となり得ないように、パーティショニングされたコンスタレーション点にマッピングされることができ、これはひいては符号化保護をもたらし得る。
【0066】
コンスタレーションは、2回以上パーティショニングされ得る。各パーティショニングは、コンスタレーション点を2つ以上のコンスタレーションサブセットに割り当てることを含むことができる。コンスタレーション点は、コンスタレーション点の間の距離を最大化するように、コンスタレーションサブセットに割り当てられ得る。コンスタレーションサブセットのそれぞれは、等しい数のコンスタレーション点に割り当てられ得る。各それぞれのパーティショニングにおけるコンスタレーション点は、コンスタレーション内のコンスタレーション点の総数に等しくなり得る。
【0067】
図3は例示のセットパーティショニングを示す。コンスタレーション300は、複数のコンスタレーション点301、302、303、304、305、306、307、308を含むことができる。コンスタレーション300は、8−PSK送信に関連付けられ得る。コンスタレーション300は、コンスタレーションサブセットの第1のグループ311、312にパーティショニングされ得る。例えばコンスタレーション300は、第1のパーティション310にパーティショニングされ得る。第1のパーティション310は、第1のコンスタレーションサブセット311および第2のコンスタレーションサブセット312を含むことができる。第1のコンスタレーションサブセット311および第2のコンスタレーションサブセット312は、コンスタレーションサブセットの第1のグループの一部となり得る。コンスタレーション点301、302、303、304、305、306、307、308は、第1のコンスタレーションサブセット311と第2のコンスタレーションサブセット312との間で分割され得る(例えば割り当てられ得る)。例えばコンスタレーション点301、303、305、307は、第1のコンスタレーションサブセット311に割り当てられ得る。コンスタレーション点302、304、306、308は、第2のコンスタレーションサブセット312に割り当てられ得る。
【0068】
第1のコンスタレーションサブセット311および第2のコンスタレーションサブセット312は、第2のパーティション320にパーティショニングされ得る。例えばコンスタレーションサブセットの第1のグループ311、312は、コンスタレーションサブセットの第2のグループにパーティショニングされ得る。コンスタレーションサブセットの第2のグループは、コンスタレーションサブセット321、322、323、324を含むことができる。第1のコンスタレーションサブセット311は、2つ以上のコンスタレーションサブセット321、323にパーティショニングされ得る。第1のコンスタレーションサブセット311に割り当てられたコンスタレーション点301、303、305、307は、コンスタレーションサブセット321、323の間で分割され得る(例えば割り当てられ得る)。例えばコンスタレーション点301、305はコンスタレーションサブセット321に割り当てられることができ、コンスタレーション点303、307はコンスタレーションサブセット323に割り当てられることができる。第2のコンスタレーションサブセット312は、2つ以上のコンスタレーションサブセット322、324にパーティショニングされ得る。コンスタレーション点302、304、306、308は、コンスタレーションサブセット322、324に割り当てられ得る。例えばコンスタレーション点302、306はコンスタレーションサブセット322に割り当てられることができ、コンスタレーション点304、308はコンスタレーションサブセット324に割り当てられることができる。
【0069】
コンスタレーションサブセット321、322、323、324は、第3のパーティション330にパーティショニングされ得る。例えばコンスタレーションサブセットの第2のグループは、コンスタレーションサブセットの第3のグループにパーティショニングされ得る。コンスタレーションサブセットの第3のグループは、コンスタレーションサブセット331、332、333、334、335、336、337、338を含むことができる。コンスタレーションサブセット321は、コンスタレーションサブセット331、333にパーティショニングされ得る。コンスタレーションサブセット321に割り当てられたコンスタレーション点301、305は、コンスタレーションサブセット331、333の間で分割され得る(例えば割り当てられ得る)。例えばコンスタレーション点305はコンスタレーションサブセット331に割り当てられることができ、コンスタレーション点301はコンスタレーションサブセット333に割り当てられることができる。コンスタレーションサブセット323に割り当てられたコンスタレーション点303、307は、コンスタレーションサブセット335、337に割り当てられ得る。例えばコンスタレーション点307はコンスタレーションサブセット335に割り当てられることができ、コンスタレーション点303はコンスタレーションサブセット337に割り当てられることができる。コンスタレーションサブセット322に割り当てられたコンスタレーション点302、306は、コンスタレーションサブセット332、334に割り当てられ得る。例えばコンスタレーション点302はコンスタレーションサブセット332に割り当てられることができ、コンスタレーション点306はコンスタレーションサブセット334に割り当てられることができる。コンスタレーションサブセット324に割り当てられたコンスタレーション点304、308は、コンスタレーションサブセット336、338に割り当てられ得る。例えばコンスタレーション点308はコンスタレーションサブセット336に割り当てられることができ、コンスタレーション点304はコンスタレーションサブセット338に割り当てられることができる。
【0070】
セットパーティショニングは、デバイス(例えば送信器および/または受信器)によって行われ得る。セットパーティショニングが受信器によって行われるとき、受信器は決定されたセットパーティションを示すフィードバックを送信器に送ることができる。
【0071】
いくつかの信号空間変調技法に対してTCMシステムは、例えば1つまたは複数のコンスタレーション点は固定である(例えばすべての時点に対して)という事実に基づいて、先験的に設計され得る。SSKおよびRPMに対する空間的コンスタレーションは、固定または先験的に知られたものとなり得ない(例えば従来のシステムにおいて)。SSKおよび/またはRPMに対する空間的コンスタレーションは、アンテナ間隔、放射パターン、および/または現在の伝搬チャネルなどの特性に応じたものとなり得る。SSKおよび/またはRPMに対する空間的コンスタレーションの対応するセットパーティショニングは、これらの特性に応じたメトリック(例えば空間的および/またはアンテナベースの特性)を必要とし得る。例えばセットパーティショニングは、チャネル関連情報に基づいて決定され得る。セットパーティショニングは、例えば物理的アンテナ間隔および/またはアンテナパターン相関特性に基づいて先験的に設計され得る。セットパーティショニングは、例えば受信器からの様々なチャネル関連情報(例えばチャネル状態情報(CSI))に基づいて、半静的になるように設計され得る。チャネル関連情報はアンテナペアに関連付けられ得る。アンテナペアは、送受信アンテナペアとすることができる。
【0072】
セットパーティショニングは、非チャネル関連情報(例えば非CSIをベースとする)に基づくことができる。信号空間変調のためのコンスタレーション点は、例えば変調フォーマット(例えば図3に示されるような8−PSK)に基づいて固定され得る。受信器においてこれらの固定のコンスタレーション点を区別できることは、情報の受信に成功することを可能にし得る。例において、コンスタレーション点の間の距離が大きくなるのに従って、性能は改善し得る。
【0073】
信号空間変調に対するセットパーティショニングは、基準(例えば主要な判断基準)として、コンスタレーション点の間のユークリッド距離を用いることができる。例えばパーティショニング(例えば図3に示されるような)は、連続するパーティションに対して(例えば各連続したパーティションに対して)、ユークリッド距離(例えば最小ユークリッド距離)を増加させる(例えば最大化する)ように行われ得る。空間的および/またはアンテナベースの変調は、例えば信頼性のある受信を達成するために、コンスタレーション点における差を利用することができる。コンスタレーション点の先験的知識をもたないことは、コンスタレーション点の間の距離が、セットパーティショニングにおいて直接用いられることを妨げ得る(例えばそれらが信号空間変調のために用いられ得るので)。本明細書で述べられる空間的および/またはアンテナベースの変調のために、セットパーティショニングメトリック(例えば非チャネル情報をベースとするメトリック)が望ましくなり得る。非チャネル関連情報に基づくことができる例示のセットパーティショニングメトリックは、本明細書において列挙される。第1の例示のセットパーティショニングメトリックは、SSKをベースとする送信のための物理的アンテナ素子の間の距離を含むことができる。第2の例示のセットパーティショニングメトリックは、RPMをベースとする送信のためのアンテナパターン空間的相関係数を含むことができる。第3の例示のセットパーティショニングメトリックは、組み合わされたSSK−RPMをベースとする送信のための前述の情報の組み合わせを含むことができる。
【0074】
図4は、8個の均一に間隔が空けられたアンテナ素子を用いた、SSKをベースとするシステムのための例示のセットパーティショニング設計を示す。図3に示される例示のセットパーティショニング(パーティショニングのために、信号空間コンスタレーション点の間の距離が用いられ得る)と比べて、図4ではパーティショニングのために、物理的アンテナ分離距離が用いられ得る。例えばアンテナ分離距離は、各それぞれのパーティショニングごとに増加され得る(例えば最大化され得る)。セットパーティショニングは、アンテナ素子および/またはコンスタレーション点を、各それぞれのパーティション内のサブセットに分割する一連のパーティションを含むことができる。それぞれのパーティション内のサブセットのそれぞれは、等しい数のアンテナ素子および/またはコンスタレーション点を有することができる。サブセットの数は、各それぞれのパーティションごとに2倍になり得る。例えば第1のパーティションは2つのサブセットを含むことができ、第2のパーティションは4つのサブセットを含み得るなどとなる。アンテナ素子および/またはコンスタレーション点の総数は、各それぞれのパーティションに対して一定のままとなり得る。
【0075】
送信器は複数のアンテナ素子、例えば図4の例では8個のアンテナ素子A1、A2、A3、A4、A5、A6、A7、A8を有することができる。アンテナ素子A1、A2、A3、A4、A5、A6、A7、A8は、均一に間隔が空けられる。アンテナ素子A1、A2、A3、A4、A5、A6、A7、A8は、第1のパーティション400にパーティショニングされ得る。アンテナ素子A1、A2、A3、A4、A5、A6、A7、A8は、アンテナ素子の2つ以上のサブセット401、402にパーティショニングされ得る(例えば割り当てられ得る)。アンテナ素子A1、A2、A3、A4、A5、A6、A7、A8はアンテナ素子サブセット401、402に、それぞれのアンテナ素子サブセット401、402内のそれぞれのアンテナ素子の間の距離が最大化されるように、割り当てられ得る。第1のパーティション400は、第1のアンテナ素子サブセット401、および第2のアンテナ素子サブセット402を含むことができる。第1のアンテナ素子サブセット401は、アンテナ素子A1、A3、A5、A7を含むことができる。第2のアンテナ素子サブセット402は、アンテナ素子A2、A4、A6、A8を含むことができる。
【0076】
第1のアンテナ素子サブセット401、および第2のアンテナ素子サブセット402は、第2のパーティション410にパーティショニングされ得る。第2のパーティション410は、複数のアンテナ素子サブセット411、412、413、414を含むことができる。アンテナ素子A1、A2、A3、A4、A5、A6、A7、A8はアンテナ素子サブセット411、412、413、414に、それぞれのアンテナ素子サブセット411、412、413、414内のそれぞれのアンテナ素子の間の距離が最大化されるように、割り当てられ得る。例えば第1のアンテナ素子サブセット401からのアンテナ素子A1、A3、A5、A7は、アンテナ素子サブセット411、413に割り当てられ得る。第2のアンテナ素子サブセット402からのアンテナ素子A2、A4、A6、A8は、アンテナ素子サブセット412、414に割り当てられ得る。第2のパーティション410において、アンテナ素子A1、A5はアンテナ素子サブセット411に割り当てられることができ、アンテナ素子A3、A7はアンテナ素子サブセット413に割り当てられることができ、アンテナ素子A2、A6はアンテナ素子サブセット412に割り当てられることができ、アンテナ素子A4、A8はアンテナ素子サブセット414に割り当てられることができる。
【0077】
第2のパーティション410のアンテナ素子サブセット411、412、413、414は、第3のパーティション420にパーティショニングされ得る。第3のパーティション420は、複数のアンテナ素子サブセット421、422、423、424、425、426、427、428を含むことができる。第2のパーティション410のアンテナ素子サブセット411、412、413、414からのアンテナ素子は、第3のパーティション420のアンテナ素子サブセット421、422、423、424、425、426、427、428の間で分割され得る。アンテナ素子サブセット411からのアンテナ素子A1、A5は、第3のパーティション420のアンテナ素子サブセット421、423に割り当てられ得る。アンテナ素子サブセット413からのアンテナ素子A3、A7は、第3のパーティション420のアンテナ素子サブセット425、427に割り当てられ得る。アンテナ素子サブセット412からのアンテナ素子A2、A6は、アンテナ素子サブセット422、424に割り当てられ得る。アンテナ素子サブセット414からのアンテナ素子A4、A8は、第3のパーティション420のアンテナ素子サブセット426、428に割り当てられ得る。例えば第3のパーティション420において、アンテナ素子A1はアンテナ素子サブセット421に割り当てられることができ、アンテナ素子A5はアンテナ素子サブセット423に割り当てられることができ、アンテナ素子A3はアンテナ素子サブセット425に割り当てられることができ、アンテナ素子A7はアンテナ素子サブセット427に割り当てられることができ、アンテナ素子A2はアンテナ素子サブセット422に割り当てられることができ、アンテナ素子A6はアンテナ素子サブセット424に割り当てられることができ、アンテナ素子A4はアンテナ素子サブセット426に割り当てられることができ、アンテナ素子A8はアンテナ素子サブセット428に割り当てられることができる。
【0078】
RPMをベースとする送信は、本明細書でメトリックとして述べられるアンテナパターン空間的相関係数を用いることができる。メトリックは式1によって表されることができ、ただしiおよびjはi番目およびj番目のアンテナパターンを指し、Ω=(φ,θ)は立体角、およびEi(Ω)はi番目のアンテナパターンの遠距離場放射パターンである。
【0079】
【数1】
【0080】
図5Aは、例示のアンテナ構造560を示す。図5Bは、図5Aに示されるアンテナ構造560によって作成される例示のアンテナパターンを示す。例示のアンテナ構造560は、電子的に構成可能な円形パッチアンテナとすることができる。例えばアンテナ構造560は、一定の半径ρ3の固体円形パッチ562を含むことができる。固体円形パッチ562は、1つまたは複数のポート(例えば示されるようにポート1およびポート2)を含むことができる。アンテナ構造560は、例えば固体円形パッチ562を取り囲むドーナッツ形の導体564を含むことができる。ドーナッツ形の導体564は、外径ρ4を定義する。固体円形パッチ562とドーナッツ形の導体564との間に、2つの導体を電気的に接続/切断するために1つまたは複数のPINダイオードスイッチ566が配置されることができ、その結果として異なる放射パターンを作成する(例えば図5Bに示されるような)。例えばアンテナ構造560は、固体円形パッチ562とドーナッツ形の導体564との間に、ギャップ568を画定することができる。PINダイオードスイッチ566は、ギャップ568内に配置され得る。例えば異なる偏波を作成するように、1つまたは複数の追加のスイッチが配置され得る(例えば戦略的に配置され得る)。電子的に再構成可能なアンテナは、様々な方法において構築され得る。
【0081】
図5Bに示されるように例示のアンテナ構造560は、様々な(例えば1つまたは複数の)アンテナパターンを生成することができる。アンテナ構造560は、PINダイオードスイッチ566の数および/または位置に基づいて様々なパターンを生成することができる。アンテナ構造560は、ポートの数および/または位置に基づいて様々なパターンを生成することができる。例えばアンテナ構造560は、第1のポート(例えば図5Aに示されるポート1)を通じて第1のアンテナパターン570Aを、および第2のポート(例えば図5Aに示されるポート2)を通じて第2のアンテナパターン572Aを生成することができる。アンテナ構造560は、第1のポートを通じて第3のアンテナパターン570Bを、および第2のポートを通じて第4のアンテナパターン572Bを生成することができる。アンテナ構造560は、第1のポートを通じて第5のアンテナパターン570Cを、および第2のポートを通じて第6のアンテナパターン572Cを生成することができる。
【0082】
p個のアンテナパターンに対して、
【0083】
【数2】
【0084】
個の空間的相関値(例えば
【0085】
【数3】
【0086】
または「n個からk個を選ぶ(n choose k)」)は、等しく間隔が空けられてもよく、そうでなくてもよい(例えばアンテナ分離距離に対してそうであるように)。値が等しく間隔が空けられないとき、セットパーティショニングは複雑になり得る。図4に示されるような例示の手法が用いられることができ、本明細書で述べられる(例示の8個のアンテナパターンを用いて)。
【0087】
【数4】
【0088】
個の空間的相関値が計算され得る。第1のパーティションに対して場合により用いられ得る
【0089】
【数5】
【0090】
個の選択肢が列挙され得る。第2のパーティションに対して、2つのパーティション分枝のそれぞれに対する対応する
【0091】
【数6】
【0092】
個の可能な選択肢が列挙され得る。各連続したパーティションに対して最小距離が最大化されるという規則を満たす、パーティション(例えば最良のパーティション)が選択され得る。図3および4に示される例示のセットパーティショニングにおいて、もとの8個のパターンまたは素子をパーティションするための
【0093】
【数7】
【0094】
個の可能な方法があり得る。候補のパーティショニング選択肢の数は式2として表されることができ、ただしPは必要なパーティションの数から1を減じたものを表す。図3および4に示されるように少なくともいくつかの場合において、最後のパーティションを作成するために1つの方法(例えば単一の方法)があり得る。例えば最後のパーティションはサブセットのグループを含むことができ、サブセットのそれぞれは単一のパターンまたは素子を有する。従ってこのような最後のパーティションの作成は、本明細書で述べられる手法では必要ない場合がある。
【0095】
【数8】
【0096】
セットパーティショニングは、チャネル関連情報に基づく(例えばCSIに基づく)ことができる。チャネル関連情報は、アンテナペアに関連付けられ得る。例えばチャネル関連情報は、送受信アンテナペアに関連付けられ得る。本明細書で論じられるように空間的および/またはアンテナベースの変調のためのセットパーティショニングは、1つまたは複数の所定のメトリックに基づいて行われ得る(例えばいくつかのTCM技法において用いられる信号空間機構と同様な方法により)。SSKおよびRPMに対する実際の空間的コンスタレーションはチャネル依存とすることができ、固定またはそうでない場合がある。チャネル関連情報(例えばCSI)に基づくセットパーティショニングは、性能を向上させるために用いられ得る。例えば非チャネル関連メトリックとして用いられ得る物理的アンテナ距離(例えば図4に示されるような)は、チャネル関連情報を用いるセットパーティショニングのために適し得る(例えば受信信号相関特性に応じた)。チャネル情報をベースとする(例えばCSIをベースとする)セットパーティショニングに対して、トレーニングシーケンスが用いられ得る。例えば受信器は、例えばトレーニング期間の間に受信された、1つまたは複数のパイロット信号に基づいてチャネル関連情報を決定することができる。送信器によって送られるトレーニングシーケンスは、受信器において先験的に知られ得る。受信器がトレーニングシーケンスを知っている(例えば先験的に)とき受信器は、信号がそれを通って伝搬されるチャネルを推定することができる。チャネルは、送信および受信アンテナパターンの両方を含むことができる。例えば送信アンテナおよび/またはアンテナパターンのそれぞれから、チャネルの個別の推定を得るように、各アンテナおよび/またはアンテナパターンに対して、直交するシーケンスが送信され得る。直交性は時間領域において、例えば時間において順次にトレーニングシーケンスを、異なるアンテナおよび/またはアンテナパターンから送信することによって得られ得る。受信器は例えば、その受信アンテナのそれぞれからトレーニングシーケンスを受信および処理(例えば個別に)することができ、その結果各送受信アンテナペアに対して個別のチャネル推定が決定され得る。チャネル推定は、セットパーティショニングアルゴリズムにおいて用いられ得る各送受信アンテナペアの間の様々なチャネル関連情報を決定するために用いられることができる。
【0097】
受信器は、SSKのために物理的アンテナの間の適切な距離メトリック、RPMのためにアンテナパターン、または前述の組み合わせ(例えば受信チャネル相互相関)を決定することができる。例えばセットパーティショニングのために、1つまたは複数のチャネル相互相関係数が用いられ得る。パーティショニング(例えばセットパーティショニング)は、受信器および/または送信器において行われ得る。パーティショニングが受信器において行われるとき、受信器はそのデコーダを構成する(例えばパーティショニングに続いて)ことができ、およびフィードバック(例えば適用可能な情報)を送信器に送ることができる。フィードバックは、送信器が対応するエンコーダを構成することを可能にし得る。例えば送信器は、受信器から受信されたフィードバックに基づいて、対応するエンコーダを構成することができる。パーティショニングが送信器において行われるとき、受信器は実際のメトリック(例えばチャネル関連情報)を含むフィードバックを送信器に送ることができる。送信器はフィードバックに基づいてパーティショニングを行い、そのエンコーダを構成し、およびデータ送信の前に対応するデコーダを構成するための制御情報を送信することができる。他の例として送信器および受信器において同じセットパーティショニングアルゴリズムが用いられる場合、受信器はそれのセットパーティショニングアルゴリズムを実行することができ、そのデコーダを1つまたは複数のチャネルメトリックに基づいて構成することができる。受信器は、そのデコーダを構成するために用いられるチャネルメトリックを送信器にフィードバックすることができる。送信器は例えば、送信器が同じセットパーティショニングアルゴリズムを用いることが想定され得るので、そのアルゴリズムを実行する(例えば独立して実行する)ことができ、デコーダを構成することができる。
【0098】
送信器−受信器アーキテクチャは、ジョイント符号化空間的および/またはアンテナベースの変調のために設計され得る(例えばセットパーティショニングがCSIなどのチャネル関連情報に基づくとき)。例示するために本明細書では、ジョイント符号化SSKをベースとするシステム(例えばチャネル情報をベースとするセットパーティショニングを用いた)の例が示される。本明細書で述べられる概念および着想は、例えばRPM、または組み合わされたSSKおよびRPMを含む他のタイプのシステムに適用され得る。
【0099】
図6はジョイント符号化SSKをベースとするシステム(例えばチャネル情報をベースとするセットパーティショニングを用いた)のための例示のベースバンド送信器および受信器アーキテクチャのブロック図を示す。システムは送信器510および受信器530を含むことができる。送信器510はWTRUなどのユーザデバイス、eノードBなどのネットワークデバイス、その他とすることができる。受信器530は、WTRUなどのユーザデバイス、eノードBなどのネットワークデバイス、その他とすることができる。送信器510は、以下の特徴の1つまたは複数を含むことができる。情報ビット512は、構成可能なTCMエンコーダ514に入力され得る。TCMエンコーダ514は、受信器530からのフィードバック制御情報に基づいて構成され得る。構成可能なTCMエンコーダ514は動的に構成可能とすることができる。例えば構成可能なTCMエンコーダ514の構成は、チャネル条件が変化するのに従って更新され得る。コントローラ518は、受信器530からの制御入力516を受信することができる。制御入力516はフィードバック制御情報を含むことができる。コントローラ518は、制御入力516に基づいてエンコーダ構成520を決定することができる。符号化されたビット522はSSK変調器に出力され得る。ビット522は、ビットからアンテナインデックスへのマッピング524のために用いられ得る。アンテナインデックス選択526は、例えばビットからアンテナインデックスへのマッピング524を用いて行われ得る。ビット522は、例えば送信アンテナ529の総数に従ってグループ化され得る。ビット522は、アンテナ選択を制御する信号にマッピングされ得る(例えばSSKマッパー528)。送信器510はビット522を、1つまたは複数の送信アンテナ529を通じて受信器530に送ることができる。送信アンテナ529の各送信アンテナは、1つまたは複数の個々のアンテナ素子を含むことができる。特定のアンテナインデックスが励振されるとき、特定のアンテナインデックスに関連付けられた様々なアンテナ素子の1つまたは複数(例えばすべて)が励振され得る。例えば、特定のアンテナインデックスによって参照される各アンテナ素子は、例えば結果としての放射パターンを一定の方向に向けるように、フェーズドアレイの観念において重み付けされ得る。
【0100】
受信器530は、以下の特徴の1つまたは複数を含むことができる。受信器530は1つまたは複数の受信アンテナ531を有することができる。受信アンテナ(例えば受信アンテナ531など)は、1つまたは複数のアンテナ素子を含むことができる。受信器530は、受信アンテナ531を通じて1つまたは複数の信号を受信することができる。受信器530は、主要データ処理パスを含むことができる。主要データ処理パスは、SSK ML検出532、アンテナインデックス推定534、アンテナインデックスからビットへのマッピング536、符号化されたビット推定538、または構成可能なTCMデコーダ540を用いた復号の1つまたは複数を含むことができる。受信された信号は、SSKをベースとする検出器532に入力され得る。アンテナインデックス534が推定され得る。例示された例においてSSKをベースとする検出器532は、最尤検出器(MLD)として示され、これは式3によって表され得る。式において
【0101】
【数9】
【0102】
は推定された送信アンテナインデックス、
【0103】
【数10】
【0104】
は受信された信号ベクトル、
【0105】
【数11】
【0106】
は各受信アンテナでの平均SNR、
【0107】
【数12】
【0108】
は推定されたチャネル行列からのj番目の列ベクトルである。受信器530は、アンテナインデックスからビットへのマッピング536を行うことができる。例えば推定されたアンテナインデックス534は、ビットシーケンスにマッピングされ得る。マッピングされ符号化されたビット538は、構成可能なTCMデコーダ540による復号のために用いられ得る。
【0109】
【数13】
【0110】
受信器530は、制御処理パスを含むことができる。制御処理パスは、1つまたは複数のパイロット信号542、パイロット処理544、セットパーティショニングメトリック546を決定すること、セットパーティショニングアルゴリズム548を決定すること、フィードバック信号550を生成すること、フィードバック制御処理552、およびフィードバック制御データ554を含むことができる。1つまたは複数のパイロット信号542は、送信器510から受信され得る。受信器530は、受信アンテナ531を通じてパイロット信号542を受信することができる。例えば主要データ情報が送られる前に、ある期間のパイロット信号542が、Nt個の送信アンテナの1つまたは複数から(例えばNt個の送信アンテナのそれぞれから)受信され得る。パイロット信号542のそれぞれは、それぞれの送信アンテナに対応することができる。送信アンテナのそれぞれが電子的に再構成可能である場合、個別のパイロット信号が、各物理的アンテナ構造からの各それぞれのアンテナパターンに関連付けられ得る。例えば第1のパイロット信号は、送信器510からの第1の送信アンテナの第1の送信アンテナパターンに関連付けられ得る。第2のパイロット信号は、送信器510からの第1の送信アンテナの第2の送信アンテナパターンに関連付けられ得る。
【0111】
パイロット信号542は、例えばチャネル推定のために用いられ得る。受信器530は、パイロット信号542に基づいてチャネル関連情報を決定することができる。パイロット処理は、1つまたは複数のパイロット信号542に対して行われ得る。パイロット信号542から、1つまたは複数のセットパーティショニングメトリック546が決定され得る。セットパーティショニングメトリック546は、1つまたは複数の送信アンテナペアに対する(例えば送信アンテナペアのそれぞれに対する)、適切な距離メトリック(例えば1つまたは複数のチャネル相互相関係数)を含むことができる。セットパーティショニングメトリック546(例えば距離メトリックに関連付けられた情報)が、セットパーティショニングアルゴリズム548を決定するために用いられ得る(例えば本明細書で述べられるようなブルートフォース手法を用いる決定がなされ得る)。セットパーティショニングアルゴリズム548に基づいて、TCMデコーダ540(例えば構成可能なTCMエンコーダ)がその後のデータ受信のために構成され得る。構成可能なTCMデコーダ540は、セットパーティショニングアルゴリズム548を用いて決定されたデコーダ構成556を用いて構成され得る。TCMデコーダ540は、動的に構成可能なTCMデコーダとすることができる。例えばTCMデコーダ540は、チャネル条件が変化するのに従って動的に構成され得る。1つまたは複数のフィードバック信号550は、パイロット信号542に基づいて決定され得る。フィードバック信号550は、フィードバック制御データ554を決定するように552で処理され得る。フィードバック制御データ554、セットパーティショニングメトリック546、および/またはフィードバック信号550は、送信器510に送られ得る。フィードバック制御データ554および/またはフィードバック信号550は、それに従って対応するTCMエンコーダ514が構成される(例えば設定される)ことを可能にするように構成され得る。情報ビット558は、構成可能なTCMデコーダ540によって推定され得る。図6に示される例には示されないが、送信器510はセットパーティショニングを決定することができる。送信器510は、決定されたセットパーティショニングに基づいて、動的に構成可能なTCMエンコーダ514を構成することができる。
【0112】
チャネル情報をベースとする(例えばCSIをベースとする)セットパーティショニングに対して、シグナリングサポートがもたらされ得る。本明細書で述べられるように、フィードバック情報(例えば受信器から送信器に送られるフィードバック)は、チャネル情報をベースとする符号化変調のために利用され得る。このような目的のために、様々な形の受信器フィードバックが設計され得る。例えば直接エンコーダ構成フィードバックが使用され得る。このような手法のもとでは、適切なセットパーティショニングが受信器において決定され得る。エンコーダ構成は、受信器において決定され得る。エンコーダ構成は、送信器に送られ得る(例えばフィードバックとして)。エンコーダは、セットパーティショニング構成のセット(例えばその有限集合)をサポートするように設計され得る。エンコーダを構成するために、インデックス(例えば簡単なインデックス)が用いられ得る。
【0113】
チャネル情報をベースとする(例えばCSIをベースとする)セットパーティショニングをサポートするために、メトリックフィードバックが使用され得る。1つまたは複数の適切なメトリック(例えばチャネル相互相関)が受信器において決定され、送信器に送られ得る(例えばフィードバックとして)。送信器は、チャネル相互相関および/または他の適切なメトリックに基づいて、セットパーティショニングを行うことができる。送信器は、チャネル相互相関および/または他の適切なメトリックに基づいてエンコーダを構成することができる。
【0114】
本明細書で述べられる例においてフィードバック制御情報は、他のフィードバック情報と共に適切な制御チャネル上に送られ得る。メトリックフィードバックが用いられるとき、セットパーティショニング選択は送信器において決定され得る。セットパーティショニング選択が送信器において決定されるとき、デコーダは復号が行われる前に構成され得る。制御情報は個別の制御チャネル上に送られる、または明示的にまたは暗黙的にPHYヘッダ内に埋め込まれることができる。
【0115】
空間的および/またはアンテナベースの変調(例えばSSK)は、信号空間変調などの他のタイプの変調と組み合わされ得る。ジョイント符号化変調(例えばTCM)は、単一の変調領域/次元(例えば信号または空間)より多くにおいて行われ得る。より一般に送信器および/または受信器は、情報ベアリングのために複数の領域/次元(例えば信号、空間、アンテナ、周波数、時間など)を利用する(例えば同時に利用する)ように構成され得る。結果としてスペクトル効率が増加され得る。本明細書では、空間的および/またはアンテナベースの変調を、信号空間変調と組み合わせることに焦点を当てた例が述べられる。しかし述べられる概念は、他の変調領域および/または次元に拡張され得ることが理解されるであろう。
【0116】
論じられるようにTCMは、信号空間において1次元変調フォーマットとして適用され得る。TCMは、多次元信号セットに拡張され得る。多次元信号セットは、依然として信号空間内に存在することができる(例えば2×8−PSKは、信号空間における2つの8−PSK信号セットの組み合わせを表すことができる)。多次元TCMを用いて、セットパーティショニングは、個々の信号空間コンスタレーションのL重直積に基づいて行われることができ、Lは用いられる信号空間セットの数を表すことができる(例えば2×8−PSKの例ではL=2)。示される例において2つの8−PSK信号セットに対する直積は、結果として4D信号空間を生じることができ、最後の信号セットにおいて2lL個の信号点を含むことができる(例えばlは、8−PSKに対して3に等しくなり得る)。
【0117】
セットパーティショニング技法は、固定および先験的に知られた信号空間コンスタレーション点の組み合わせに基づくことができる。本明細書で論じられるようにSSKおよびRPMコンスタレーション点は、固定または先験的に知られるものではない場合がある。SSKおよび/またはRPMがいくつかの信号空間変調方法と組み合わされたとき、多次元信号セットの一部は、固定および/または先験的に知られたものとなり得る。SSKおよびRPMを用いたセットパーティショニングのために用いられるメトリックは、非チャネル関連情報に基づく(例えば非CSIをベースとする)ことができる。SSKおよびRPMを用いたセットパーティショニングのために用いられるメトリックは、チャネル関連情報に基づく(例えばCSIをベースとする)ことができる。非チャネル関連情報に基づくメトリックは、物理的アンテナ分離、アンテナパターン相関などの1つまたは複数の特性を基礎とすることができる。チャネル関連情報に基づくメトリックは、チャネル相互相関などの1つまたは複数の特性を基礎とすることができる。例えばチャネル関連情報は、1つまたは複数のチャネル相互相関係数を含むことができる。
【0118】
空間的および/またはアンテナベースのメトリック(例えば非チャネル関連情報に基づくもの)が信号空間メトリックと組み合わされるとき、対応するセットパーティショニングアルゴリズムは、単次元信号空間パーティショニングと、空間的および/またはアンテナパーティショニングとの組み合わせに基づいて設計され得る(例えば本明細書で述べられるブルートフォース手法など)。パーティショニングがチャネル関連情報に基づく場合、固定信号空間パーティショニングは、半静的パーティショニング(例えば本明細書で述べられるような)と組み合わされ得る。その場合、信号空間パーティションが半静的におよび/または、空間的および/またはアンテナベースのパーティションと統合して決定される場合に、改善が可能となり得る。全体のパーティショニングの複雑さは、信号空間パーティションが半静的におよび/または、空間的および/またはアンテナベースのパーティションと統合して決定される場合、増加し得る。
【0119】
空間的変調(SM)、MIMO、および/または低密度パリティチェック(LDPC)を利用するシステム(例えばSM−MIMO−LDPCシステム)は、反復復号を用いて実施され得る。このようなシステムは連結型符号を用いることができる。連結型符号は、いくつかの用途において向上された性能をもたらすことができる。連結型符号の1つのクラスは、並列連結型ギャラガー符号(PCGC)とすることができる。連結型符号(例えばPCGC)は、例えば信号空間変調と共に用いられ得る。本明細書で述べられるようにSM−MIMOは、情報を担うために空間的領域および信号領域を用いることができる。空間的および信号領域を用いる結果として、エネルギー効率が向上され得る。SM−MIMO−LDPCシステムは、SM−MIMOのエネルギー効率の側面と、PCGCの向上されたチャネル符号化性能とを一緒にすることができ得る。SM−MIMO−LDPCシステムは、例えばSM−MIMOの空間的領域の側面を利用することによって、信号空間をベースとするPCGC実装形態の能力を拡大することができる。
【0120】
本明細書で述べられるように、スペクトル効率および/またはエネルギー効率は、統合された変調および空間的エンコーディング技法を用いて達成され得る。統合された変調および空間的エンコーディングは、MIMOトランシーバの性能を向上させることができる。チャネルエンコーダおよび/またはデコーダに対して使用可能な情報が、利用され得る。情報は例えばLDPC符号を含むことができる。LDPC符号は、良好な誤り訂正符号となり得る(例えばターボ符号と同様な)。LDPC符号はMIMOシステムに適用され得る。MIMOシステムに適用されるLDPC符号は、MIMO−LDPC符号またはLDPCシステムと呼ばれ得る。
【0121】
SM−MIMO−LDPCシステムは、空間的変調(例えば反復復号を用いた)を利用することができる。LDPC設計は、1つのエンコーダおよび1つのデコーダを含むことができる。LDPC設計は、並列の2つのLDPCエンコーダと、直列の2つの対応するデコーダとを有する、並列連結型ギャラガー符号を含むことができる。後者のLDPC設計は例えば、異なるSNR動作点に適するように、エンコーダおよび/またはデコーダの1つまたは複数(例えばエンコーダおよびデコーダのそれぞれ)の平均列重みを調整することによって、システム性能を向上させることができる。空間的変調は、並列LDPCエンコーダと直列に用いられ得る。
【0122】
図7は、例示のSM−MIMO−LDPC送信器の図を示す。送信器は、情報ビット602(例えばデータビット)を受信することができる。送信器は、情報ビット602をインターリーブすることができるインターリーバ603を含むことができる。データビット602は、第1のLDPCエンコーダ604によってエンコードされ得る。インターリーブされたデータビットは、第2のLDPCエンコーダ606によってエンコードされ得る。第1のLDPCエンコーダ604からの出力情報S1およびパリティP1ビットは、608で多重化され、610でSSK変調のためにマッピングされ得る。第2のLDPCエンコーダ606からのパリティビットP2は、例えば信号空間技法を用いて612で変調され得る。データストリームは、空間的に変調されたスイッチ614(例えば空間的に変調されたシステムと同様な)を通して、アンテナに供給され得る。空間的に変調されたスイッチ614は、コントローラ616から情報を受信する。
【0123】
図8は、例示のSM−MIMO−LDPC受信器を示す。受信アンテナにおいて受信された信号は、シリアルデータストリームに変換され得る。受信された信号は、702でシリアル化され、および/または704で逆多重化され得る。復調されたデータビットはys、および1つまたは複数のエンコーダ(例えば図7に示される第1のLDPCエンコーダ604および第2のLDPCエンコーダ606)からのパリティビットによって表され得る。1つまたは複数のエンコーダからのパリティビットは、それぞれyp1およびyp2によって表され得る。第1のLDPCデコーダ706は、ysおよびyp1を用いて確率伝搬(BP)アルゴリズムを実行することができる。第1のLDPCデコーダ706が、受信されたベクトルに対する確からしい解(例えば最も確からしい解)を復号できる場合、第1のLDPCデコーダ706はd1に硬判定を出力することができ、復号動作は停止され得る。そうでない場合は第1のLDPCデコーダ706の出力は、受信されたビットが情報ビットに対応し得ることがどれだけ確からしいかを示すことができる。尤度はインターリーブされることができ、インターリーブされた尤度は第2のLDPCデコーダ708に入力され得る。
【0124】
第2のLDPCデコーダ708は、インターリーブされた尤度および/またはエンコーダ(例えば図7に示されるような第2のLDPCエンコーダ606)からのパリティビットを用いて、確率伝搬アルゴリズムを実行することができる。解が見出された場合、ハードビットがd2に出力され得る。そうでない場合、第2の復号されたビットの尤度は、例えば逆インターリーブ動作の後に、第1のLDPCデコーダ706に入力され得る。動作は最大反復カウントに到達するまで、および/または受信されたビットに対する解が第2のLDPCデコーダ708によって見出されるまで続行し得る。復号されたハードビットは、次いでd2において使用可能となり得る。
【0125】
送信器において空間的変調は、フィードバックコントローラによって制御され得る。フィードバックコントローラは、チャネル状態、SINR、対数尤度、および/または他のパラメータを用いて、特定の時点での送信のためにどのアンテナが用いられることになるかをスケジュールすることができる。本明細書で述べられる反復復号を用いることにより、d1および/またはd2決定の確率を用いて、特定のアンテナを使用する確率を制御することが可能となり得る。
【0126】
本明細書で示される説明はアンテナの1つのグループに焦点を当てたが、概念はアンテナのグループに適用可能となり得る。例えば図6および7に示される各アンテナは、統合して空間的に多重化されたおよび/またはプリコーディングされた、アンテナのグループに置き換えられ得る。
【0127】
特徴および要素は、上記では特定の組み合わせにおいて述べられたが、当業者は各特徴または要素は単独で、または他の特徴および要素との任意の組み合わせにおいて用いられることができることを理解するであろう。本明細書で述べられたソリューションは5G特有のプロトコルを考察したが、ソリューションはそれらのプロトコルに限定されず、他の無線システムにも応用可能であることが理解される。加えて本明細書で述べられた方法は、コンピュータまたはプロセッサによる実行のためにコンピュータ可読媒体に組み込まれたコンピュータプログラム、ソフトウェア、またはファームウェアにおいて実施され得る。コンピュータ可読媒体の例は、電子信号(有線または無線接続を通して送信される)、およびコンピュータ可読記憶媒体を含む。コンピュータ可読記憶媒体の例は、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、レジスタ、キャッシュメモリ、半導体メモリデバイス、内蔵ハードディスクおよびリムーバブルディスクなどの磁気媒体、光磁気媒体、ならびにCD−ROMディスクおよびデジタル多用途ディスク(DVD)などの光媒体を含むが、それらに限定されない。WTRU、UE、端末装置、基地局、RNC、または任意のホストコンピュータにおける使用のために、無線周波数トランシーバを実行するように、ソフトウェアと関連してプロセッサが用いられ得る。
図1A
図1B
図1C
図1D
図1E
図2
図3
図4
図5A
図5B
図6
図7
図8
【国際調査報告】