(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
多価抗体構築物、前記構築物を含む医薬組成物、およびその使用方法が提示される。本発明者らは、様々な新規多価抗体構築物を設計した。これらの多価結合分子の構成は、単一特異性、二重特異性、三重特異性、および四重特異性構築物の抗原結合部位を一緒に形成するコグネートポリペプチド鎖のハイフィデリティ対形成を駆動する。結合分子は、in vitro無細胞翻訳系および哺乳類一過性トランスフェクション系を含む従来の抗体発現系を使用して容易に発現され、CH1親和性樹脂を用いて単一ステップで精製することができる。ハイフィデリティアセンブリ、高レベルのin vitro発現、および単一ステップで可能な発現産物精製により、これらの構築物は、可変領域のライブラリのハイスループットスクリーニングに良く適している。
前記Bドメインと前記Gドメインのアミノ酸配列が異なり、それぞれ別個に直交型改変を内在性CH3配列に含み、ここで前記Bドメインは前記Gドメインと相互作用し、前記Bドメインと前記Gドメインのどちらも、前記直交型改変を欠くCH3ドメインと顕著に相互作用しない、請求項1または2のいずれか一項に記載の結合分子。
操作されたジスルフィド架橋を生成する前記変異が、前記BドメインとGドメインの一方におけるS354C変異、ならびに他方のドメインにおける349Cである、請求項5に記載の結合分子。
前記ノブ・イン・ホール変異が、前記BドメインとGドメインの一方におけるT366W変異、ならびに他方のドメインにおけるT366S、L368AおよびY407V変異である、請求項7に記載の結合分子。
前記異なる配列が、それぞれ別個に直交型改変を内在性CH3配列に含み、ここで前記Eドメインは前記Kドメインと相互作用し、前記Eドメインと前記Kドメインのどちらも、前記直交型改変を欠くCH3ドメインと顕著に相互作用しない、請求項13に記載の結合分子。
操作されたジスルフィド架橋を生成する前記変異が、前記EドメインとKドメインの一方におけるS354C変異、ならびに他方のドメインにおける349Cである、請求項15に記載の結合分子。
前記ノブ・イン・ホール変異が、前記EドメインまたはKドメインの一方におけるT366W変異、ならびに他方のドメインにおけるT366S、L368AおよびY407V変異である、請求項17に記載の結合分子。
前記電荷対変異が、前記EドメインまたはKドメインの一方におけるT366K変異、ならびに他方のドメインにおける対応するL351D変異である、請求項19に記載の結合分子。
前記Eドメインおよび前記Kドメインのアミノ酸配列が、前記第1のポリペプチドと前記第3のポリペプチドとの間の特異的会合を促進する特異的相互作用を有するように選択された2つの異なる抗体ドメインの内在性配列である、請求項13に記載の結合分子。
前記Aドメインと前記Fドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、前記Hドメインと前記Lドメインとの間の相互作用が、第2の抗原に特異的な第2の抗原結合部位を形成する、請求項2から25のいずれか一項に記載の結合分子。
前記Aドメインと前記Bドメインとの間のジャンクションを形成する配列が、IKRTPREPまたはIKRTVREPである、上記請求項のいずれかに記載の結合分子。
少なくとも1つのCH3アミノ酸配列が、前記CH3アミノ酸配列とヒンジアミノ酸配列とを連結するC末端トリペプチド挿入物を有し、ここで前記トリペプチド挿入物は、PGK、KSCおよびGECからなる群から選択される、上記請求項のいずれかに記載の結合分子。
【発明を実施するための形態】
【0081】
図面は、例示の目的のためのみに、本発明の様々な実施形態を示している。当業者は、本明細書に例示された構造および方法の代替的実施形態が、本明細書に記載の本発明の原理から逸脱することなく利用しうることを以下の説明から容易に認識する。
6.詳細な説明
6.1.定義
【0082】
別途定義されない限り、本明細書で使用される全ての技術用語および科学用語は、本発明が属する当業者に一般に理解されている意味を有する。本明細書で使用される場合、以下の用語は、下記で与えられる意味を有する。
【0083】
「抗原結合部位」は、所与の抗原またはエピトープを特異的に認識するまたはそれに特異的に結合する結合分子の領域を意味する。
【0084】
「B−Body」は、本明細書に記載される結合分子構築物のいずれかを意味する。
【0085】
本明細書で使用される場合、「処置する」または「処置」という用語は、治療的処置および予防的または防止的手段の両方を指し、ここで目的は、多発性硬化症、関節炎またはがんの進行などの望ましくない生理学的変化または障害を予防または減速(軽減)することである。有益または望ましい臨床結果としては、検出可能であろうとまたは検出不能であろうと、症状の緩和、疾患の範囲の縮減、疾患の安定した(つまり、悪化していない)状態、疾患の進行の遅延または減速、疾患の状態の回復または緩和、および寛解(部分的寛解または完全寛解)が挙げられるが、これらに限定されない。「処置」は、処置を受けない場合の予測生存期間と比較した生存期間の延長も意味しうる。処置を必要とする対象には、すでに状態もしくは障害に罹患している対象、ならびに状態もしくは障害を有する傾向にある対象、または状態もしくは障害を予防すべき状態にある対象が含まれる。
【0086】
「対象」、「個体」、「動物」、「患者」または「哺乳動物」は、診断、予防または治療が望まれる任意の対象、特に哺乳動物対象を意味する。哺乳動物対象には、ヒト、家庭用動物、農業用動物、ならびに動物園、スポーツまたはペット動物、例えば、イヌ、ネコ、モルモット、ウサギ、ラット、マウス、ウマ、畜牛、乳牛などが含まれる。
【0087】
「十分な量」という用語は、所望の効果を生じさせるために十分な量、例えば、細胞内のタンパク質凝集を調節するために十分な量を意味する。
【0088】
「治療有効量」は、疾患の症状を改善するために有効な量である。予防が治療と考えることができるように、治療有効量は「予防有効量」であることができる。
6.2.その他の解釈上の規則
【0089】
別途指定しない限り、本明細書における配列に対する全ての参照は、アミノ酸配列に対するものである。
【0090】
別途指定しない限り、抗体定常領域残基ナンバリングは、参照によりそれらの全体が本明細書に組み込まれるwww.imgt.org/IMGTScientificChart/Numbering/Hu_IGHGnber.html#refs(2017年8月22日にアクセス)およびEdelmanら、Proc. Natl. Acad. USA、63巻:78〜85頁(1969年)に記載のEuインデックスに従い、本明細書に記載される結合分子の鎖内の残基の物理的な位置にかかわらず、内在性定常領域配列におけるその位置にしたがって残基を識別する。「内在性配列」または「天然配列」は、生物、組織、または細胞に由来し、人工的に改変または変異されていない、核酸およびアミノ酸配列の両方を含む任意の配列を意味する。
【0091】
この開示において、「含む(comprises)」、「含むこと(comprising)」、「含有すること(containing)」、「有すること(having)」、「含む(includes)」、「含むこと(including)」およびその言語的変化形は、米国特許法でそれらが帰する意味を有し、明示的に列挙されている成分以外のさらなる成分の存在を許容する。
【0092】
本明細書で提供される範囲は、列挙される端点を含む範囲内の全ての値についての省略表現と理解される。例えば、1〜50の範囲は、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49および50からなる群からの任意の数、数の組合せ、または部分範囲を含むと理解される。
【0093】
特に明記されていない限りまたは文脈から明らかでない限り、本明細書で使用される「または」という用語は、包括的であると理解される。特に明記されていない限りまたは文脈から明らかでない限り、「a」、「an」および「the」という用語は、単数または複数であると理解される。
【0094】
特に明記されていない限りまたは文脈から明らかでない限り、本明細書で使用される「約」という用語は、当技術分野で通常許容される範囲内、例えば、平均の2標準偏差以内と理解される。約は、示された値の10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%または0.01%以内と理解することができる。文脈から明らかでない限り、本明細書で提供される全ての数値は、約という用語によって修飾されている。
6.3.結合分子
【0095】
第1の態様では、結合分子が提供される。
【0096】
図3を参照して、第1の一連の実施形態では、結合分子は、第1および第2のポリペプチド鎖を含み、(a)第1のポリペプチド鎖はドメインA、ドメインB、ドメインD、およびドメインEを含み、ここでドメインは、N末端からC末端へ、A−B−D−Eの配向で配置され、ドメインAはVLアミノ酸配列を有し、ドメインBはCH3アミノ酸配列を有し、ドメインDはCH2アミノ酸配列を有し、およびドメインEは定常領域ドメインアミノ酸配列を有し;(b)第2のポリペプチド鎖はドメインFおよびドメインGを含み、ここでドメインは、N末端からC末端へ、F−Gの配向で配置され、ドメインFはVHアミノ酸配列を有し、ドメインGはCH3アミノ酸配列を有し;(c)第1および第2のポリペプチドは、AドメインとFドメインとの間の相互作用およびBドメインとGドメインとの間の相互作用を介して会合して、結合分子を形成する。
【0097】
また
図3を参照して、第2の一連の実施形態では、結合分子はさらに、第3および第4のポリペプチド鎖を含み、(a)第3のポリペプチド鎖はドメインH、ドメインI、ドメインJおよびドメインKを含み、ここでドメインは、N末端からC末端へ、H−I−J−Kの配向で配置され、ドメインHは可変領域ドメインアミノ酸配列を有し、ドメインIは定常領域ドメインアミノ酸配列を有し、ドメインJはCH2アミノ酸配列を有し、およびKは定常領域ドメインアミノ酸配列を有し;(b)第4のポリペプチド鎖はドメインLおよびドメインMを含み、ここでドメインは、N末端からC末端へ、L−Mの配向で配置され、ドメインLは可変領域ドメインアミノ酸配列を有し、ドメインMは定常領域ドメインアミノ酸配列を有し;(c)第3および第4のポリペプチドは、HドメインとLドメインとの間の相互作用およびIドメインとMドメインとの間の相互作用を介して会合し;(d)第1および第3のポリペプチドは、DドメインとJドメインとの間の相互作用およびEドメインとKドメインとの間の相互作用を介して会合して、結合分子を形成する。
【0098】
様々な実施形態において、第1と第3のポリペプチド鎖は、配列が互いに同一であり、第2と第4のポリペプチドは、配列が互いに同一である。これらの実施形態では、ドメインEとドメインKとの間の相互作用を介した第1と第3のポリペプチド鎖の会合(下記セクション6.3.15を参照)が、下記実施例1に例示される構築物などの二価の単一特異性抗体構築物を形成する。
【0099】
他の実施形態では、第1と第3のポリペプチド鎖は配列が互いに同一でなく、第2と第4のポリペプチドは配列が互いに同一でない。これらの実施形態では、ドメインEとドメインKとの間の相互作用を介した第1と第3のポリペプチド鎖の会合(下記セクション6.3.15を参照)が、二価の二重特異性抗体構築物を形成することができる。
6.3.1.ドメインA(VL)
【0100】
本明細書に記載される結合分子において、ドメインAは、VLアミノ酸配列を有する。本明細書に記載の結合分子において有用なVLアミノ酸配列は、抗体軽鎖可変ドメイン配列である。本明細書に記載の天然抗体および抗体構築物の両方における典型的な配列では、特異的VLアミノ酸配列が、特異的VHアミノ酸配列と会合して、抗原結合部位を形成する。様々な実施形態では、VLアミノ酸配列は、下記セクション6.3.1.1および6.3.1.2においてさらに詳細に記載されているように、ヒト配列、合成配列、または、ヒト配列、非ヒト哺乳動物配列、哺乳動物配列および/もしくは合成配列の組合せを含む、哺乳動物配列である。
【0101】
様々な実施形態では、VLアミノ酸配列は、天然に存在する配列の変異配列である。ある特定の実施形態では、VLアミノ酸配列は、ラムダ(λ)軽鎖可変ドメイン配列である。ある特定の実施形態では、VLアミノ酸配列は、カッパ(κ)軽鎖可変ドメイン配列である。好ましい実施形態では、VLアミノ酸配列は、カッパ(κ)軽鎖可変ドメイン配列である。
【0102】
本明細書に記載の結合分子では、ドメインAのC末端は、ドメインBのN末端に連結されている。ある特定の実施形態では、ドメインAは、下記セクション6.3.19.1および実施例6においてさらに詳細に記載されているように、ドメインAとドメインBとの間のジャンクションにおいてそのC末端で変異しているVLアミノ酸配列を有する。
6.3.1.1.相補性決定領域
【0103】
VLアミノ酸配列は、「相補性決定領域」(CDR)と称される高度に可変性の配列、典型的に3つのCDR(CDR1、CD2、およびCDR3)を含む。様々な実施形態では、CDRは、マウス、ラット、ハムスター、ウサギ、ラクダ、ロバ、ヤギおよびヒト配列を含むがこれらに限定されない哺乳動物配列である。好ましい実施形態では、CDRは、ヒト配列である。様々な実施形態では、CDRは、天然に存在する配列である。様々な実施形態では、CDRは、特定の抗原またはエピトープに対して抗原結合部位の結合親和性を変化させるように変異された天然に存在する配列である。ある特定の実施形態では、天然に存在するCDRは、親和性成熟および体細胞超変異を介してin vivo宿主で変異されている。ある特定の実施形態では、CDRは、PCR突然変異誘発および化学的突然変異誘発を含むがこれらに限定されない方法を介してin vitroで変異されている。様々な実施形態では、CDRは、ランダム配列CDRライブラリおよび合理的に設計されたCDRライブラリから得られたCDRを含むがこれらに限定されない、合成配列である。
6.3.1.2.フレームワーク領域およびCDRグラフト化
【0104】
VLアミノ酸配列は、「フレームワーク領域」(FR)配列を含む。FRは、一般的に、散在されたCDRの足場として作用する保存配列領域(セクション6.3.1.1.参照)であり、典型的には、FR1−CDR1−FR2−CDR2−FR3−CDR3−FR4配置(N末端からC末端へ)である。様々な実施形態では、FRは、マウス、ラット、ハムスター、ウサギ、ラクダ、ロバ、ヤギおよびヒト配列を含むがこれらに限定されない哺乳動物配列である。好ましい実施形態では、FRは、ヒト配列である。様々な実施形態では、FRは、天然に存在する配列である。様々な実施形態では、FRは、合理的に設計された配列を含むがそれに限定されない、合成配列である。
【0105】
様々な実施形態では、FRおよびCDRは両方が、同じ天然に存在する可変ドメイン配列に由来する。様々な実施形態では、FRおよびCDRは、異なる可変ドメイン配列に由来し、ここでCDRはFR足場にグラフト化され、CDRが特定の抗原に対する特異性を提供している。ある特定の実施形態では、グラフト化されたCDRは全て、同じ天然に存在する可変ドメイン配列に由来する。ある特定の実施形態では、グラフト化されたCDRは、異なる可変ドメイン配列に由来する。ある特定の実施形態では、グラフト化されたCDRは、ランダム配列CDRライブラリおよび合理的に設計されたCDRライブラリから得られたCDRを含むがこれらに限定されない、合成配列である。ある特定の実施形態では、グラフト化されたCDRおよびFRは、同じ種に由来する。ある特定の実施形態では、グラフト化されたCDRおよびFRは、異なる種に由来する。好ましいグラフト化されたCDR実施形態では、抗体は「ヒト化」されており、ここで、グラフト化されたCDRは、マウス、ラット、ハムスター、ウサギ、ラクダ、ロバおよびヤギ配列を含むがこれらに限定されない非ヒト哺乳動物配列であり、FRはヒト配列である。ヒト化抗体は、教示する全てについてその全体が参照により本明細書に組み込まれる米国特許第6,407,213号においてより詳細に議論されている。様々な実施形態では、ある種に由来するFRの部分または特定の配列は、別の種のFRの部分または特定の配列を置き換えるために使用される。
6.3.2.ドメインB(CH3)
【0106】
結合分子では、ドメインBは、CH3アミノ酸配列である。CH3アミノ酸配列は、本明細書に記載されるように、抗体重鎖のC末端ドメインの配列である。
【0107】
様々な実施形態では、CH3配列は、マウス、ラット、ハムスター、ウサギ、ラクダ、ロバ、ヤギおよびヒト配列を含むがこれらに限定されない哺乳動物配列である。好ましい実施形態では、CH3配列は、ヒト配列である。ある特定の実施形態では、CH3配列は、IgA1、IgA2、IgD、IgE、IgM、IgG1、IgG2、IgG3、IgG4アイソタイプに由来し、またはIgEもしくはIgMアイソタイプ由来のCH4配列である。好ましい実施形態では、CH3配列は、IgG1アイソタイプに由来する。
【0108】
ある特定の実施形態では、CH3配列は、内在性配列である。特定の実施形態では、CH3配列は、UniProt受託番号P01857アミノ酸224−330である。様々な実施形態では、CH3配列は、内在性CH3配列のセグメントである。特定の実施形態では、CH3配列は、N末端アミノ酸G224およびQ225を欠く内在性CH3配列を有する。特定の実施形態では、CH3配列は、C末端アミノ酸P328、G329およびK330を欠く内在性CH3配列を有する。特定の実施形態では、CH3配列は、N末端アミノ酸G224およびQ225ならびにC末端アミノ酸P328、G329およびK330を欠く内在性CH3配列を有する。好ましい実施形態では、結合分子は、CH3配列を有する複数のドメインを有し、ここで、CH3配列は、全長内在性CH3配列、ならびにN末端アミノ酸、C末端アミノ酸、またはその両方を欠くCH3配列の両方を指すことができる。
【0109】
ある特定の実施形態では、CH3配列は、1つまたは複数の変異を有する内在性配列である。特定の実施形態では、変異は、下記セクション6.3.14.1−6.3.14.3においてさらに詳細に記載されているように、内在性CH3配列に導入されて特定のCH3配列の特定の対形成をガイドする、1つまたは複数の直交型変異である。
【0110】
ある特定の実施形態では、教示する全てについて参照により本明細書に組み込まれるSticklerら(Genes Immun.、2011年4月;12巻(3号):213〜221頁)においてより詳細に記載されているように、CH3配列は、本明細書でイソアロタイプ変異と称される、あるアロタイプの特定のアミノ酸を別のアロタイプのアミノ酸に置き換えることによって、抗体の免疫原性を低減するように操作されている。特定の実施形態では、G1m1アロタイプの特定のアミノ酸が置き換えられている。好ましい実施形態では、CH3配列において、イソアロタイプ変異D356EおよびL358Mがなされている。
【0111】
好ましい実施形態では、ドメインBは、以下の変異変化P343V;Y349C;およびトリペプチド挿入物445P、446G、447Kを有するヒトIgG1 CH3アミノ酸配列を有する。他の好ましい実施形態では、ドメインBは、以下の変異変化:T366K;およびトリペプチド挿入物445K、446S、447Cを有するヒトIgG1 CH3配列を有する。さらなる他の好ましい実施形態では、ドメインBは、以下の変異変化:Y349Cおよびトリペプチド挿入物445P、446G、447Kを有するヒトIgG1 CH3配列を有する。
【0112】
ある特定の実施形態では、ドメインBは、それらと異なって、内在性CH3配列に組み込まれた447C変異を有するヒトIgG1 CH3配列を有する。
【0113】
本明細書に記載される結合分子では、ドメインBのN末端が、ドメインAのC末端に連結されている。ある特定の実施形態では、ドメインBは、下記セクション6.3.19.1および実施例6においてさらに詳細に記載されているように、ドメインAとドメインBとの間のジャンクションにおいてそのN末端で変異しているCH3アミノ酸配列を有する。
【0114】
結合分子では、ドメインBのC末端は、ドメインDのN末端に連結されている。ある特定の実施形態では、ドメインBは、下記セクション6.3.19.3においてさらに詳細に記載されているように、ドメインBとドメインDとの間のジャンクションにC末端で伸長されているCH3アミノ酸配列を有する。
6.3.3.ドメインD(CH2)
【0115】
本明細書に記載される結合分子では、ドメインDは、CH2アミノ酸配列を有する。CH2アミノ酸配列は、本明細書に記載されるように、N末端からC末端へ参照して天然抗体重鎖の第3のドメインのCH2アミノ酸配列である。様々な実施形態では、CH2配列は、マウス、ラット、ハムスター、ウサギ、ラクダ、ロバ、ヤギおよびヒト配列を含むがこれらに限定されない哺乳動物配列である。好ましい実施形態では、CH2配列は、ヒト配列である。ある特定の実施形態では、CH2配列は、IgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4またはIgMアイソタイプに由来する。好ましい実施形態では、CH2配列は、IgG1アイソタイプに由来する。
【0116】
ある特定の実施形態では、CH2配列は、内在性配列である。特定の実施形態では、配列は、UniProt受託番号P01857アミノ酸111−223である。好ましい実施形態では、CH2配列は、下記セクション6.3.19.3においてより詳細が議論されているように、N末端可変ドメイン−定常ドメインセグメントを、CH2ドメインへ連結するN末端ヒンジ領域ペプチドを有する。
【0117】
結合分子では、ドメインDのN末端が、ドメインBのC末端に連結されている。ある特定の実施形態では、ドメインBは、下記セクション6.3.19.3においてさらに詳細に記載されているように、ドメインDとドメインBとの間のジャンクションにおいてC末端で伸長されているCH3アミノ酸配列を有する。
【0118】
結合分子では、ドメインDのC末端が、ドメインEのN末端に連結されている。特定の実施形態では、ドメインDは、下記セクション6.3.19.5においてさらに詳細に記載されているように、CH1アミノ酸配列またはCLアミノ酸配列を有するドメインEのN末端に連結されている。
6.3.4.ドメインE(定常領域)
【0119】
結合分子では、ドメインEは、定常領域ドメインアミノ酸配列を有する。本明細書に記載される場合、定常領域ドメインアミノ酸配列は、抗体の定常領域ドメインの配列である。
【0120】
様々な実施形態では、定常領域配列は、マウス、ラット、ハムスター、ウサギ、ラクダ、ロバ、ヤギおよびヒト配列を含むがこれらに限定されない哺乳動物配列である。好ましい実施形態では、定常領域配列は、ヒト配列である。ある特定の実施形態では、定常領域配列は、抗体軽鎖由来である。特定の実施形態では、定常領域配列は、ラムダまたはカッパ軽鎖由来である。ある特定の実施形態では、定常領域配列は、抗体重鎖由来である。特定の実施形態では、定常領域配列は、IgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4またはIgMアイソタイプである抗体重鎖配列である。好ましい実施形態では、定常領域配列は、IgG1アイソタイプに由来する。ある特定の実施形態では、定常領域配列は、CH3配列である。CH3配列は、上記セクション6.3.2においてさらに詳細に記載されている。
【0121】
特定の実施形態では、定常領域配列は、1つまたは複数の直交型変異を含むように変異されている。好ましい実施形態では、ドメインEは、下記セクション6.3.14.2においてより詳細に記載されているように、ノブ−ホール(同義的に「ノブ・イン・ホール」、「KIH」)直交型変異、ならびに下記セクション6.3.14.1においてより詳細に記載されているように、直交型変異を含有するCH3ドメインと操作されたジスルフィド架橋を形成するS354CまたはY349C変異のいずれかを含むCH3配列である定常領域配列を有する。一部の好ましい実施形態では、ノブ−ホール直交型変異は、T366W変異である。
【0122】
ある特定の実施形態では、定常領域ドメイン配列は、CH1配列である。CH1配列は、下記セクション6.3.4.1においてさらに詳細に記載されている。ある特定の実施形態では、CH1ドメインのN末端は、下記で6.3.19.5においてさらに詳細に記載されているように、CH2ドメインのC末端に連結されている。
【0123】
ある特定の実施形態では、定常領域配列は、CL配列である。CL配列は、下記セクション6.3.4.2においてさらに詳細に記載されている。ある特定の実施形態では、下記で6.3.19.5においてさらに詳細に記載されているように、CLドメインのN末端は、CH2ドメインのC末端に連結されている。
6.3.4.1.CH1ドメイン
【0124】
CH1アミノ酸配列は、本明細書に記載される場合、N末端からC末端へ参照して抗体重鎖の第2のドメインの配列である。ある特定の実施形態では、CH1配列は、内在性配列である。様々な実施形態では、CH1配列は、マウス、ラット、ハムスター、ウサギ、ラクダ、ロバ、ヤギおよびヒト配列を含むがこれらに限定されない哺乳動物配列である。好ましい実施形態では、CH1配列は、ヒト配列である。ある特定の実施形態では、CH1配列は、IgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4またはIgMアイソタイプに由来する。好ましい実施形態では、CH1配列は、IgG1アイソタイプに由来する。好ましい実施形態では、CH1配列は、UniProt受託番号P01857アミノ酸1−98である。
6.3.4.2.CLドメイン
【0125】
本明細書に記載される結合分子において有用なCLアミノ酸配列は、抗体軽鎖定常ドメイン配列である。ある特定の実施形態では、CL配列は、内在性配列である。様々な実施形態では、CL配列は、マウス、ラット、ハムスター、ウサギ、ラクダ、ロバ、ヤギおよびヒト配列を含むがこれらに限定されない哺乳動物配列である。好ましい実施形態では、CL配列は、ヒト配列である。
【0126】
ある特定の実施形態では、CLアミノ酸配列は、ラムダ(λ)軽鎖定常ドメイン配列である。特定の実施形態では、CLアミノ酸配列は、ヒトラムダ軽鎖定常ドメイン配列である。好ましい実施形態では、ラムダ(λ)軽鎖配列は、UniProt受託番号P0CG04である。
【0127】
ある特定の実施形態では、CLアミノ酸配列は、カッパ(κ)軽鎖定常ドメイン配列である。好ましい実施形態では、CLアミノ酸配列は、ヒトカッパ(κ)軽鎖定常ドメイン配列である。好ましい実施形態では、カッパ軽鎖配列は、UniProt受託番号P01834である。
6.3.5.ドメインF(VH)
【0128】
結合分子では、ドメインFは、VHアミノ酸配列を有する。本明細書に記載の結合分子におけるVHアミノ酸配列は、抗体重鎖可変ドメイン配列である。本明細書に記載の天然および結合分子の両方における典型的な抗体配置では、特定のVHアミノ酸配列が、特定のVLアミノ酸配列と会合して、抗原結合部位を形成する。様々な実施形態では、VHアミノ酸配列は、上記セクション6.3.1.1および6.3.1.2においてさらに詳細に記載されているように、ヒト配列、合成配列、または、非ヒト哺乳動物配列、哺乳動物配列および/もしくは合成配列の組合せを含む、哺乳動物配列である。様々な実施形態では、VHアミノ酸配列は、天然に存在する配列の変異配列である。
6.3.6.ドメインG(CH3)
【0129】
結合分子では、ドメインGは、CH3アミノ酸配列を有する。CH3配列は、上記セクション6.3.2においてさらに詳細に記載されている。
【0130】
ある特定の好ましい実施形態では、ドメインGは、以下の変異変化:S354C;およびトリペプチド挿入物445P、446G、447Kを有するヒトIgG1 CH3配列を有する。一部の好ましい実施形態では、ドメインGは、以下の変異変化:S354C;および445P、446G、447Kトリペプチド挿入物を有するヒトIgG1 CH3配列を有する。一部の好ましい実施形態では、ドメインGは、以下の変化:L351D;および445G、446E、447Cトリペプチド挿入物を有するヒトIgG1 CH3配列を有する。
6.3.7.ドメインH(可変領域)
【0131】
結合分子では、ドメインHは、可変領域ドメインアミノ酸配列を有する。可変領域ドメインアミノ酸配列は、本明細書に記載される場合、VLおよびVH抗体ドメイン配列を含む抗体の可変領域ドメインアミノ酸配列である。VLおよびVH配列は、それぞれ上記セクション6.3.1および6.3.5においてさらに詳細に記載されている。好ましい実施形態では、ドメインHは、VL抗体ドメイン配列を有する。
6.3.8.ドメインI(定常領域)
【0132】
本明細書に記載される結合分子では、ドメインIは、定常領域ドメインアミノ酸配列を有する。定常領域ドメインアミノ酸配列は、上記セクション6.3.4においてさらに詳細に記載されている。好ましい実施形態では、ドメインIは、セクション6.3.4.2においてより詳細に議論されているように、カッパ軽鎖由来のCLである定常領域配列を有する。
6.3.9.ドメインJ(CH2)
【0133】
結合分子では、ドメインJは、CH2アミノ酸配列を有する。CH2アミノ酸配列は、上記セクション6.3.3でさらに詳細に記載されている。好ましい実施形態では、CH2アミノ酸配列は、下記セクション6.3.19.4においてより詳細に記載されているように、ドメインJをドメインIへ連結するN末端ヒンジ領域を有する。
【0134】
結合分子では、ドメインJのC末端は、ドメインKのN末端に連結されている。特定の実施形態では、ドメインJは、下記セクション6.3.19.5においてさらに詳細に記載されているように、CH1アミノ酸配列またはCLアミノ酸配列を有するドメインKのN末端に連結されている。
6.3.10.ドメインK(定常領域)
【0135】
結合分子では、ドメインKは、定常領域ドメインアミノ酸配列を有する。定常領域ドメインアミノ酸配列は、上記セクション6.3.4においてさらに詳細に記載されている。好ましい実施形態では、ドメインKは、下記セクション6.3.14.2でさらに詳細に記載されているノブ−ホール直交型変異;上記6.3.2においてより詳細に記載されているイソアロタイプ変異;ならびに下記セクション6.3.14.1においてより詳細に記載されている直交型変異を含有するCH3ドメインと操作されたジスルフィド架橋を形成するS354CまたはY349C変異のいずれかを含むCH3配列である定常領域配列を有する。一部の好ましい実施形態では、イソアロタイプ変異と組み合わされたノブ−ホール直交型変異は、以下の変異変化:D356E、L358M、T366S、L368AおよびY407Vである。
6.3.11.ドメインL(可変領域)
【0136】
結合分子では、ドメインLは、可変領域ドメインアミノ酸配列を有する。可変領域ドメインアミノ酸配列は、本明細書に記載される場合、VLおよびVH抗体ドメイン配列を含む抗体の可変領域ドメインアミノ酸配列である。VLおよびVH配列は、それぞれ上記セクション6.3.1および6.3.5においてさらに詳細に記載されている。好ましい実施形態では、ドメインLは、VH抗体ドメイン配列を有する。
6.3.12.ドメインM(定常領域)
【0137】
結合分子では、ドメインMは、定常領域ドメインアミノ酸配列を有する。定常領域ドメインアミノ酸配列は、上記セクション6.3.4においてさらに詳細に記載されている。好ましい実施形態では、ドメインMは、セクション6.3.4.1においてより詳細に議論されているように、IgG1アイソタイプ由来のCH1である定常領域配列を有する。
6.3.13.ドメインAおよびFの対形成
【0138】
結合分子では、ドメインA VLアミノ酸配列およびドメインF VHアミノ酸配列は会合して、抗原結合部位(ABS)を形成する。A:F抗原結合部位(ABS)は、抗原のエピトープに特異的に結合することができる。ABSによる抗原結合は、下記セクション6.3.13.1においてさらに詳細に記載されている。
【0139】
様々な多価の実施形態では、ドメインAおよびF(A:F)によって形成されるABSは、結合分子内の1つまたは複数の他のABSと配列が同一であり、したがって、結合分子内の1つまたは複数の他の配列同一ABSと同じ認識特異性を有する。
【0140】
様々な多価の実施形態では、A:F ABSは、結合分子内の1つまたは複数の他のABSと配列が非同一である。ある特定の実施形態では、A:F ABSは、結合分子における1つまたは複数の他の配列非同一ABSと異なる認識特異性を有する。特定の実施形態では、A:F ABSは、結合分子における少なくとも1つの他の配列非同一ABSによって認識される抗原と異なる抗原を認識する。特定の実施形態では、A:F ABSは、結合分子における少なくとも1つの他の配列非同一ABSによっても認識される抗原の、異なるエピトープを認識する。この実施形態では、ドメインAおよびFによって形成されるABSは、抗原のエピトープを認識し、ここで、結合分子内の1つまたは複数の他のABSは、同じ抗原を認識するが、同じエピトープは認識しない。
6.3.13.1.ABSによる抗原の結合
【0141】
ABSおよびそのようなABSを含む結合分子は、ABSが特異的に結合するエピトープ(またはより全体的には抗原)を「認識する」と言われ、エピトープ(またはより全体的には抗原)は、ABSの「認識特異性」または「結合特異性」と言われる。
【0142】
ABSは、特定の親和性で、その特定の抗原またはエピトープに結合すると言われる。
【0143】
本明細書で記載される場合、「親和性」は、1個の分子と別の分子との間の非共有結合性分子間力相互作用の強度を指す。親和性、つまり相互作用の強度は、解離平衡定数(K
D)として表すことができ、ここでK
D値は低いほど、分子間の相互作用が強力であることを示す。抗体構築物のK
D値は、当技術分野で周知の方法によって測定することができ、例えば、バイオレイヤー干渉法(例えば、Octet/FORTEBIO(登録商標))、表面プラズモン共鳴(SPR)技術(例えば、Biacore(登録商標))、および細胞結合アッセイが挙げられるが、これらに限定されない。本明細書の目的のために、親和性は、Octet/FORTEBIO(登録商標)を使用してバイオレイヤー干渉法によって測定された解離平衡定数である。
【0144】
「特異的結合」は、本明細書で使用される場合、ABSとそのコグネート抗原またはエピトープとの間の親和性を指し、ここでK
D値は、10
−6M、10
−7M、10
−8M、10
−9Mまたは10
−10M未満である。
【0145】
本明細書に記載される結合分子におけるABSの数は、結合分子の「価」を定義する。
図2に概略化されるように、単一のABSを有する結合分子は「一価」である。複数のABSを有する結合分子は、「多価」であると言われる。2つのABSを有する多価結合分子は「二価」である。3つのABSを有する多価結合分子は「三価」である。4つのABSを有する多価結合分子は「四価」である。
【0146】
様々な多価の実施形態では、複数のABSは全て同じ認識特異性を有する。
図2に概略化されているように、そのような結合分子は、「単一特異性」「多価」結合構築物である。他の多価の実施形態では、複数のABSの少なくとも2つが、異なる認識特異性を有する。そのような結合分子は、多価および「多重特異性」である。ABSが集約的に2つの認識特異性を有する多価の実施形態では、結合分子は二重特異性である。ABSが集約的に3つの認識特異性を有する多価の実施形態では、結合分子は三重特異性である。
【0147】
ABSが、集約的に、同じ抗原に存在する異なるエピトープに対して複数の認識特異性を有する多価の実施形態では、結合分子は、「多重パラトピック(multiparatopic)」である。ABSが、集約的に、同じ抗原の2つのエピトープを認識する多価の実施形態では、結合分子は、「二重パラトピック(biparatopic)」である。
【0148】
様々な多価の実施形態では、結合分子の多価性は、特定の標的に対する結合分子のアビディティを向上させる。本明細書で記載される場合、「アビディティ」は、2つまたはそれより多くの分子、例えば特定の標的に対する多価結合分子間の全体的な相互作用の強度を指し、ここで、アビディティは、複数のABSの親和性によって与えられる相互作用の累積強度である。アビディティは、上記で説明されているような、親和性を決定するために使用される方法と同じ方法によって測定することができる。ある特定の実施形態では、特定の標的に対する結合分子のアビディティは、相互作用が特異的結合相互作用であり、ここで2つの分子間のアビディティは、10
−6M、10
−7M、10
−8M、10
−9Mまたは10
−10M未満のK
D値を有する。ある特定の実施形態では、特定の標的に対する結合分子のアビディティが、相互作用が特異的結合相互作用であるK
D値であり、ここで個々のABSの1つまたは複数の親和性は、それらの各抗原またはエピトープ自体への特異的結合として十分なK
D値を有していない。ある特定の実施形態では、アビディティは、共通の特定の標的または複合体の別個の抗原、例えば個々の細胞で見出される別個の抗原に対する複数のABSの親和性によって与えられる相互作用の累積強度である。ある特定の実施形態では、アビディティは、共通の個々の抗原の別個のエピトープに対する複数のABSの親和性によって与えられる相互作用の累積強度である。
6.3.14.ドメインBおよびGの対形成
【0149】
本明細書に記載の結合分子では、ドメインBのCH3アミノ酸配列とドメインGのCH3アミノ酸配列とが会合している。CH3配列は、上記セクション6.3.2においてさらに詳細に記載されている。
【0150】
様々な実施形態では、BおよびGドメインのアミノ酸配列は、同一である。これらの実施形態のいくつかでは、配列は、内在性CH3配列である。
【0151】
様々な実施形態では、BおよびGドメインのアミノ酸配列は異なっており、それぞれ別個に直交型改変を内在性CH3配列に含み、ここでBドメインはGドメインと相互作用し、BドメインとGドメインのどちらも、直交型改変を欠くCH3ドメインと顕著に相互作用しない。
【0152】
本明細書に記載される「直交型改変」または同義的に「直交型変異」は、直交型改変を有する第1のドメインの、相補的な直交型改変を有する第2のドメインに対する結合の親和性を増加させる抗体ドメインのアミノ酸配列における1つまたは複数の操作された変異である。ある特定の実施形態では、直交型改変は、直交型改変を有するドメインの、相補的な直交型改変を欠くドメインに対する親和性を減少させる。ある特定の実施形態では、直交型改変は、内在性抗体ドメイン配列における変異である。様々な実施形態では、直交型改変は、アミノ酸の付加または欠失を含むがこれらに限定されない、内在性抗体ドメイン配列のN末端またはC末端の改変である。特定の実施形態では、直交型改変には、下記セクション6.3.14.1−6.3.14.3においてさらに詳細に記載されている操作されたジスルフィド架橋、ノブ・イン・ホール変異および電荷対変異が含まれるが、これらに限定されない。特定の実施形態では、直交型改変には、限定されないが、操作されたジスルフィド架橋、ノブ・イン・ホール変異および電荷対変異から選択される直交型改変の組合せが含まれる。特定の実施形態では、直交型改変は、上記セクション6.3.2においてさらに詳細に記載されているイソアロタイプ変異などの免疫原性を減少させるアミノ酸置換と組み合わせることができる。
6.3.14.1.直交型操作されたジスルフィド架橋
【0153】
様々な実施形態では、直交型改変は、第1のドメインと第2のドメインとの間の操作されたジスルフィド架橋を生成する変異を含む。本明細書に記載される場合、「操作されたジスルフィド架橋」は、2つまたはそれより多いドメインが会合するとき非天然ジスルフィド結合を形成するように、2つまたはそれより多いドメインに非内在性システインアミノ酸を提供する変異である。操作されたジスルフィド架橋は、教示する全てについて参照によりその全体が本明細書に組み込まれるMerchantら(Nature Biotech(1998年)16巻:677〜681頁)においてより詳細に記載されている。ある特定の実施形態では、操作されたジスルフィド架橋は、特定のドメイン間の直交型会合を改善させる。特定の実施形態では、操作されたジスルフィド架橋を生成する変異は、第1または第2のCH3ドメインの一方におけるK392C変異、ならびに他方のCH3ドメインにおけるD399Cである。好ましい実施形態では、操作されたジスルフィド架橋を生成する変異は、第1または第2のCH3ドメインの一方におけるS354C変異、ならびに他方のCH3ドメインにおけるY349Cである。別の好ましい実施形態では、操作されたジスルフィド架橋を生成する変異は、KSCトリペプチド配列を組み込んだCH3ドメインのC末端の伸長によって提供される第1および第2のCH3ドメインの両方における447C変異である。
6.3.14.2.直交型ノブ−ホール変異
【0154】
様々な実施形態では、直交型改変は、ノブ−ホール(同義的にノブ・イン・ホール)変異を含む。本明細書で記載される場合、ノブ−ホール変異は、第1のドメインが、相補的立体変異のないドメインとの会合と比較して、相補的立体変異を有する第2のドメインと優先的に会合するように、第1のドメインの表面の立体的特徴を変化させる変異である。ノブ−ホール変異は、それぞれその全体が本明細書に組み込まれる米国特許第5,821,333号および米国特許第8,216,805号において、より詳細に記載されている。様々な実施形態では、ノブ−ホール変異は、参照によりその全体が本明細書に組み込まれるMerchantら(Nature Biotech(1998年)16巻:677〜681頁))においてさらに詳細に記載されているように、操作されたジスルフィド架橋と組み合わされる。様々な実施形態では、ノブ−ホール変異、イソアロタイプ変異、および操作されたジスルフィド変異が組み合わされる。
【0155】
ある特定の実施形態では、ノブ・イン・ホール変異は、第1のドメインにおけるT366Y変異、ならびに第2のドメインにおけるY407T変異である。ある特定の実施形態では、ノブ・イン・ホール変異は、第1のドメインにおけるF405A、ならびに第2のドメインにおけるT394Wである。ある特定の実施形態では、ノブ・イン・ホール変異は、第1のドメインにおけるT366Y変異およびF405Aであり、第2のドメインにおけるT394WおよびY407Tである。ある特定の実施形態では、ノブ・イン・ホール変異は、第1のドメインにおけるT366W変異、ならびに第2のドメインにおけるY407Aである。ある特定の実施形態では、組み合わされたノブ・イン・ホール変異および操作されたジスルフィド変異は、第1のドメインにおけるS354CおよびT366W変異、ならびに第2のドメインにおけるY349C、T366S、L368AおよびY407V変異である。好ましい実施形態では、組み合わされたノブ・イン・ホール変異、イソアロタイプ変異、および操作されたジスルフィド変異は、第1のドメインにおけるS354CおよびT366W変異、ならびに第2のドメインにおけるY349C、D356E、L358M、T366S、L368AおよびY407V変異である。
6.3.14.3.直交型電荷対変異
【0156】
様々な実施形態では、直交型改変は、電荷対変異である。本明細書で使用される場合、電荷対変異は、ドメインが、相補的電荷対変異の無いドメインとの会合と比較して、相補的電荷対変異を有する第2のドメインと優先的に会合するように、ドメインの表面のアミノ酸の電荷に影響を与える変異である。ある特定の実施形態では、電荷対変異は、特定のドメイン間の直交型会合を改善させる。電荷対変異は、それぞれ教示する全てについて参照により本明細書に組み込まれる米国特許第8,592,562号、米国特許第9,248,182号、および米国特許第9,358,286号においてより詳細に記載されている。ある特定の実施形態では、電荷対変異は、特定のドメイン間の安定性を改善させる。好ましい実施形態では、電荷対変異は、第1のドメインにおけるT366K変異、および他のドメインにおけるL351D変異である。
6.3.15.ドメインEおよびKの対形成
【0157】
様々な実施形態では、Eドメインは、CH3アミノ酸配列を有する。
【0158】
様々な実施形態では、Kドメインは、CH3アミノ酸配列を有する。
【0159】
様々な実施形態では、EおよびKドメインのアミノ酸配列は同一であり、配列は、内在性CH3配列である。
【0160】
様々な実施形態では、EドメインとKドメインの配列は異なる。様々な実施形態では、異なる配列が、それぞれ別個に直交型改変を内在性CH3配列に含み、ここでEドメインはKドメインと相互作用し、EドメインとKドメインのどちらも、直交型改変を欠くCH3ドメインと顕著に相互作用しない。ある特定の実施形態では、直交型改変には、上記セクション6.3.14.1−6.3.14.3においてさらに詳細に記載されているように、操作されたジスルフィド架橋、ノブ・イン・ホール変異および電荷対変異が含まれるが、これらに限定されない。特定の実施形態では、直交型改変には、限定されないが、操作されたジスルフィド架橋、ノブ・イン・ホール変異、および電荷対変異から選択される直交型改変の組合せが含まれる。特定の実施形態では、直交型改変は、イソアロタイプ変異などの免疫原性を減少させるアミノ酸置換と組み合わせることができる。
【0161】
様々な実施形態では、EドメインおよびKドメインのアミノ酸配列は、第1のポリペプチドと第3のポリペプチドとの間の特異的会合を促進する特異的相互作用を有するように選択された2つの異なる抗体ドメインの内在性配列である。様々な実施形態では、2つの異なるアミノ酸配列は、CH1配列およびCL配列である。CH1配列およびCL配列は、それぞれ上記セクション6.3.4.1および6.3.4.2においてさらに詳細に記載されている。特定の重鎖の会合を促進するために重鎖のC末端にCH1およびCL配列を使用することが、教示する全てについて参照によりその全体が本明細書に組み込まれる米国特許第8,242,247号に記載されている。ある特定の実施形態では、CH1配列およびCL配列は両方とも内在性配列である。ある特定の実施形態では、CH1配列およびCL配列は、それぞれ別個に直交型改変を内在性CH1配列およびCL配列に含む。特定の実施形態では、それぞれ参照によりその全体が本明細書に組み込まれる米国特許第8,053,562号および米国特許第9,527,927号においてナンバリングされ、より詳細が議論されているように、内在性CH1およびCL配列における直交型改変は、CH1配列における138位およびCL配列における116位、CH1配列における128位およびCL配列における119位、またはCH1配列における129位およびCL配列における210位の操作されたシステインから選択される、操作されたジスルフィド架橋である。好ましい実施形態では、操作されたシステインは、EuインデックスによってナンバリングされるCH1配列における128位およびCLカッパ配列における118位である。
6.3.16.ドメインIおよびMの対形成およびドメインHおよびLの対形成
【0162】
様々な実施形態では、ドメインIは、CL配列を有し、ドメインMは、CH1配列を有する。様々な実施形態では、ドメインHは、VL配列を有し、ドメインLは、VH配列を有する。好ましい実施形態では、ドメインHは、VLアミノ酸配列を有し、ドメインIは、CLアミノ酸配列を有し、ドメインLは、VHアミノ酸配列を有し、およびドメインMは、CH1アミノ酸配列を有する。別の好ましい実施形態では、ドメインHは、VLアミノ酸配列を有し、ドメインIは、CLアミノ酸配列を有し、ドメインLは、VHアミノ酸配列を有し、ドメインMは、CH1アミノ酸配列を有し、ドメインKは、CH3アミノ酸配列を有する。
【0163】
様々な実施形態では、IドメインおよびMドメインのアミノ酸配列は、それぞれ別個に直交型改変を内在性配列に含み、ここでIドメインはMドメインと相互作用し、IドメインとMドメインのどちらも、直交型改変を欠くドメインと顕著に相互作用しない。一連の実施形態では、Iドメインにおける直交型変異はCL配列にあり、Mドメインにおける直交型変異はCH1配列にある。直交型変異は、上記セクション6.3.14.1−6.3.14.3においてより詳細に記載されている。様々な実施形態では、CL配列およびCH1配列における直交型変異は、電荷対変異である。特定の実施形態では、電荷対変異は、教示する全てについて参照により本明細書に組み込まれるBonischら(Protein Engineering、Design & Selection、2017年、1〜12頁)においてさらに詳細に記載されているように、EuインデックスによってナンバリングされるCL配列におけるF118S、F118AまたはF118V変異と対応するCH1配列におけるA141L、またはCL配列におけるT129R変異と対応するCH1配列におけるK147Dである。一連の好ましい実施形態では、電荷対変異は、EuインデックスによってナンバリングされるCL配列におけるN138K変異と対応するCH1配列におけるG166D、またはCL配列におけるN138D変異と対応するCH1配列におけるG166Kである。
【0164】
様々な実施形態では、CL配列およびCH1配列における直交型変異は、操作されたジスルフィド架橋を生成する。一連の好ましい実施形態では、非内在性システインアミノ酸を提供する変異は、EuインデックスによってナンバリングされるCL配列におけるF118C変異と対応するCH1配列におけるA141C、またはCL配列におけるF118C変異と対応するCH1配列におけるL128C、またはCL配列におけるS162C変異と対応するCH1配列におけるP171C変異である。
【0165】
様々な実施形態では、HドメインおよびLドメインのアミノ酸配列は、それぞれ別個に直交型改変を内在性配列に含み、ここでHドメインはLドメインと相互作用し、HドメインとLドメインのどちらも、直交型改変を欠くドメインと顕著に相互作用しない。一連の実施形態では、Hドメインにおける直交型変異はVL配列にあり、Lドメインにおける直交型変異はVH配列にある。特定の実施形態では、直交型変異は、VH/VL境界での電荷対変異である。好ましい実施形態では、VH/VL境界での電荷対変異は、教示する全てについて参照により本明細書に組み込まれるIgawaら(Protein Eng. Des. Sel.、2010年、23巻、667〜677頁)においてより詳細に記載されているように、VHにおけるQ39Eと対応するVLにおけるQ38K、またはVHにおけるQ39Kと対応するVLにおけるQ38Eである。
【0166】
ある特定の実施形態では、AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第2の抗原に特異的な第2の抗原結合部位を形成する。ある特定の実施形態では、AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第1の抗原に特異的な第2の抗原結合部位を形成する。
6.3.17.三価結合分子
【0167】
別の一連の実施形態において、結合分子は、3つの抗原結合部位を有し、したがって「三価」と称される。
【0168】
図21を参照して、様々な三価の実施形態では、結合分子は、第5のポリペプチド鎖をさらに含み、(a)第1のポリペプチド鎖はドメインNおよびドメインOをさらに含み、ここでドメインは、N末端からC末端へ、N−O−A−B−D−Eの配向で配置され、ドメインNはVLアミノ酸配列を有し、ドメインOはCH3アミノ酸配列を有し;(b)結合分子は、第5のポリペプチド鎖をさらに含み、第5のポリペプチド鎖が、ドメインPおよびドメインQを含み、ここでドメインは、N末端からC末端へ、P−Qの配向で配置され、ドメインPはVHアミノ酸配列を有し、ドメインQはCH3アミノ酸配列を有し;(c)第1および第5のポリペプチドは、NドメインとPドメインとの間の相互作用およびOドメインとQドメインとの間の相互作用を介して会合して、結合分子を形成する。
図2に概略化されているように、これらの三価の実施形態は、「2×1」三価構築物と称される。
【0169】
図26を参照して、さらなる一連の三価の実施形態では、結合分子は、第6のポリペプチド鎖をさらに含み、(a)第3のポリペプチド鎖はドメインRおよびドメインSをさらに含み、ここでドメインは、N末端からC末端へ、R−S−H−I−J−Kの配向で配置され、ドメインRはVLアミノ酸配列を有し、ドメインSは定常ドメインアミノ酸配列を有し;(b)結合分子は、第6のポリペプチド鎖をさらに含み、第6のポリペプチド鎖が、ドメインTおよびドメインUを含み、ここでドメインは、N末端からC末端へ、T−Uの配向で配置され、ドメインTはVHアミノ酸配列を有し、ドメインUは定常ドメインアミノ酸配列を有し;(c)第3および第6のポリペプチドは、RドメインとTドメインとの間の相互作用およびSドメインとUドメインとの間の相互作用を介して会合して、結合分子を形成する。
図2に概略化されているように、これらの三価の実施形態は、「1×2」三価構築物と称される。
【0170】
様々な実施形態では、ドメインOは、ペプチドリンカーを介してドメインAに連結される。様々な実施形態では、ドメインSは、ペプチドリンカーを介してドメインHに連結される。好ましい実施形態では、ドメインOをドメインAに連結するかまたはドメインSをドメインHに連結するペプチドリンカーは、セクション6.3.19.6においてより詳細に記載されている6アミノ酸GSGSGSペプチド配列である。
6.3.17.1.三価2×1二重特異性構築物[2(A−A)×1(B)]
【0171】
図21を参照して、様々な実施形態では、ドメインNおよびドメインAのアミノ酸配列は同一であり、ドメインHのアミノ酸配列はドメインNおよびAのアミノ酸配列と異なり、ドメインOおよびドメインBのアミノ酸配列は同一であり、ドメインIのアミノ酸配列はドメインOおよびBのアミノ酸配列と異なり、ドメインPおよびドメインFのアミノ酸配列は同一であり、ドメインLのアミノ酸配列はドメインPおよびFのアミノ酸配列と異なり、ドメインQおよびドメインGのアミノ酸配列は同一であり、ドメインMのアミノ酸配列はドメインQおよびGのアミノ酸配列と異なり;AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第2の抗原に特異的な第2の抗原結合部位を形成し、ドメインNおよびドメインPが、第1の抗原に特異的な第3の抗原結合部位を形成する。
6.3.17.2.三価2×1二重特異性構築物[2(A−B)×1(A)]
【0172】
図21を参照して、様々な実施形態では、ドメインNおよびドメインHのアミノ酸配列は同一であり、ドメインAのアミノ酸配列はドメインNおよびHのアミノ酸配列と異なり、ドメインOおよびドメインIのアミノ酸配列は同一であり、ドメインBのアミノ酸配列はドメインOおよびIのアミノ酸配列と異なり、ドメインPおよびドメインLのアミノ酸配列は同一であり、ドメインFのアミノ酸配列はドメインPおよびLのアミノ酸配列と異なり、ドメインQおよびドメインMのアミノ酸配列は同一であり、ドメインGのアミノ酸配列はドメインQおよびMのアミノ酸配列と異なり;AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第2の抗原に特異的な第2の抗原結合部位を形成し、ドメインNおよびドメインPが、第2の抗原に特異的な第3の抗原結合部位を形成する。
6.3.17.3.三価2×1三重特異性構築物[2(A−B)×1(C)]
【0173】
図21を参照して、様々な実施形態では、ドメインN、ドメインA、およびドメインHのアミノ酸配列は異なり、ドメインO、ドメインB、およびドメインIのアミノ酸配列は異なり、ドメインP、ドメインF、およびドメインLのアミノ酸配列は異なり、ドメインQ、ドメインG、およびドメインMのアミノ酸配列は異なり;AドメインとFドメインとの間の相互作用が第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が第2の抗原に特異的な第2の抗原結合部位を形成し、ドメインNおよびドメインPが、第3の抗原に特異的な第3の抗原結合部位を形成する。
【0174】
ある特定の実施形態では、セクション6.3.4.1および6.3.4.2においてより詳細に記載されているように、ドメインOは、カッパ軽鎖由来のCLである定常領域配列を有し、ドメインQは、IgG1アイソタイプ由来のCH1である定常領域配列を有する。好ましい実施形態では、上記セクション6.3.14においてより詳細が議論されているように、ドメインOおよびドメインQは、互いに特異的に会合するようにCH3配列を有する。
6.3.17.4.三価2×1単一特異性構築物
【0175】
図21を参照して、様々な実施形態では、ドメインN、ドメインA、およびドメインHのアミノ酸配列は同一であり、ドメインOおよびドメインBのアミノ酸配列は同一であり、ドメインP、ドメインF、およびドメインLのアミノ酸配列は同一であり、ドメインQおよびドメインGのアミノ酸配列は同一であり;AドメインとFドメインとの間の相互作用が第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が第1の抗原に特異的な第2の抗原結合部位を形成し、ドメインNおよびドメインPが、第1の抗原に特異的な第3の抗原結合部位を形成する。
【0176】
図21を参照して、別の一連の実施形態において、ドメインN、ドメインA、およびドメインHのアミノ酸配列は同一であり、ドメインO、ドメインB、およびドメインIのアミノ酸配列は同一であり、ドメインP、ドメインF、およびドメインLのアミノ酸配列は同一であり、ドメインQ、ドメインG、およびドメインMのアミノ酸配列は同一であり;AドメインとFドメインとの間の相互作用が第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が第1の抗原に特異的な第2の抗原結合部位を形成し、ドメインNおよびドメインPが、第1の抗原に特異的な第3の抗原結合部位を形成する。
6.3.17.5.三価1×2二重特異性構築物[1(A)×2(B−A)]
【0177】
図26を参照して、様々な実施形態では、ドメインRおよびドメインAのアミノ酸配列は同一であり、ドメインHのアミノ酸配列はドメインRおよびAのアミノ酸配列と異なり、ドメインSおよびドメインBのアミノ酸配列は同一であり、ドメインIのアミノ酸配列はドメインSおよびBのアミノ酸配列と異なり、ドメインTおよびドメインFのアミノ酸配列は同一であり、ドメインLのアミノ酸配列はドメインTおよびFのアミノ酸配列と異なり、ドメインUおよびドメインGのアミノ酸配列は同一であり、ドメインMのアミノ酸配列はドメインUおよびGのアミノ酸配列と異なり;AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第2の抗原に特異的な第2の抗原結合部位を形成し、ドメインRおよびドメインTが、第1の抗原に特異的な第3の抗原結合部位を形成する。
6.3.17.6.三価1×2二重特異性構築物[1(A)×2(B−B)]
【0178】
図26を参照して、様々な実施形態では、ドメインRおよびドメインHのアミノ酸配列は同一であり、ドメインAのアミノ酸配列はドメインRおよびHのアミノ酸配列と異なり、ドメインSおよびドメインIのアミノ酸配列は同一であり、ドメインBのアミノ酸配列はドメインSおよびIのアミノ酸配列と異なり、ドメインTおよびドメインLのアミノ酸配列は同一であり、ドメインFのアミノ酸配列はドメインTおよびLのアミノ酸配列と異なり、ドメインUおよびドメインMのアミノ酸配列は同一であり、ドメインGのアミノ酸配列はドメインUおよびMのアミノ酸配列と異なり;AドメインとFドメインとの間の相互作用が第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第2の抗原に特異的な第2の抗原結合部位を形成し、ドメインRおよびドメインTが、第2の抗原に特異的な第3の抗原結合部位を形成する。
6.3.17.7.三価1×2三重特異性構築物[1(A)×2(B−C)]
【0179】
図26を参照して、様々な実施形態では、ドメインR、ドメインA、およびドメインHのアミノ酸配列は異なり、ドメインS、ドメインB、およびドメインIのアミノ酸配列は異なり、ドメインT、ドメインF、およびドメインLのアミノ酸配列は異なり、ドメインU、ドメインG、およびドメインMのアミノ酸配列は異なり;AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第2の抗原に特異的な第2の抗原結合部位を形成し、ドメインRおよびドメインTが、第3の抗原に特異的な第3の抗原結合部位を形成する。
【0180】
ある特定の実施形態では、セクション6.3.4.1および6.3.4.2においてより詳細が議論されているように、ドメインSは、カッパ軽鎖由来のCLである定常領域配列を有し、ドメインUは、IgG1アイソタイプ由来のCH1である定常領域配列を有する。好ましい実施形態では、上記セクション6.3.14においてより詳細が議論されているように、ドメインSおよびドメインUは、互いに特異的に会合するようにCH3配列を有する。
6.3.17.8.三価1×2単一特異性構築物
【0181】
図26を参照して、様々な実施形態では、ドメインR、ドメインA、およびドメインHのアミノ酸配列は同一であり、ドメインSおよびドメインBのアミノ酸配列は同一であり、ドメインT、ドメインF、およびドメインLのアミノ酸配列は同一であり、ドメインUおよびドメインGのアミノ酸配列は同一であり;AドメインとFドメインとの間の相互作用が第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が第1の抗原に特異的な第2の抗原結合部位を形成し、ドメインRおよびドメインTが、第1の抗原に特異的な第3の抗原結合部位を形成する。
6.3.18.四価2×2結合分子
【0182】
様々な実施形態では、結合分子は、4つの抗原結合部位を有し、したがって「四価」と称される。
【0183】
図34を参照して、さらなる一連の実施形態では、結合分子は、さらに第5および第6のポリペプチド鎖を含み、(a)第1のポリペプチド鎖はさらにドメインNおよびドメインOを含み、ここでドメインは、N末端からC末端へ、N−O−A−B−D−Eの配向で配置され;(b)第3のポリペプチド鎖はドメインRおよびドメインSをさらに含み、ここでドメインは、N末端からC末端へ、R−S−H−I−J−Kの配向で配置され;(c)結合分子はさらに第5および第6ポリペプチド鎖を含み、第5ポリペプチド鎖はドメインPおよびドメインQを含み、ここでドメインは、N末端からC末端へ、P−Qの配向で配置され、第6ポリペプチド鎖はドメインTおよびドメインUを含み、ここでドメインは、N末端からC末端へ、T−Uの配向で配置され;(d)第1および第5のポリペプチドは、NドメインとPドメインとの間の相互作用およびOドメインとQドメインとの間の相互作用を介して会合し、第3および第6のポリペプチドは、RドメインとTドメインとの間の相互作用およびSドメインとUドメインとの間の相互作用を介して会合して、結合分子を形成する。
【0184】
様々な実施形態では、ドメインOは、ペプチドリンカーを介してドメインAに連結され、ドメインSは、ペプチドリンカーを介してドメインHに連結される。好ましい実施形態では、ドメインOをドメインAに連結し、ドメインSをドメインHに連結するペプチドリンカーは、セクション6.3.19.6においてより詳細に記載されているように、6アミノ酸GSGSGSペプチド配列である。
6.3.18.1.四価2×2二重特異性構築物
【0185】
図34を参照して、一連の四価2×2二重特異性結合分子では、ドメインNおよびドメインAのアミノ酸配列は同一であり、ドメインHおよびドメインRのアミノ酸配列は同一であり、ドメインOおよびドメインBのアミノ酸配列は同一であり、ドメインIおよびドメインSのアミノ酸配列は同一であり、ドメインPおよびドメインFのアミノ酸配列は同一であり、ドメインLおよびドメインTのアミノ酸配列は同一であり、ドメインQおよびドメインGのアミノ酸配列は同一であり、ドメインMおよびドメインUのアミノ酸配列は同一であり;AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、ドメインNおよびドメインPが、第1の抗原に特異的な第2の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第2の抗原に特異的な第3の抗原結合部位を形成し、RドメインとTドメインとの間の相互作用が、第2の抗原に特異的な第4の抗原結合部位を形成する。
【0186】
図34を参照して、別の一連の四価2×2二重特異性結合分子では、ドメインHおよびドメインAのアミノ酸配列は同一であり、ドメインNおよびドメインRのアミノ酸配列は同一であり、ドメインIおよびドメインBのアミノ酸配列は同一であり、ドメインOおよびドメインSのアミノ酸配列は同一であり、ドメインLおよびドメインFのアミノ酸配列は同一であり、ドメインPおよびドメインTのアミノ酸配列は同一であり、ドメインMおよびドメインGのアミノ酸配列は同一であり、ドメインQおよびドメインUのアミノ酸配列は同一であり;AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、ドメインNおよびドメインPが、第2の抗原に特異的な第2の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第1の抗原に特異的な第3の抗原結合部位を形成し、RドメインとTドメインとの間の相互作用が、第2の抗原に特異的な第4の抗原結合部位を形成する。
6.3.18.2.四価2×2単一特異性構築物
【0187】
図34を参照して、様々な実施形態では、ドメインN、ドメインA、ドメインH、およびドメインRのアミノ酸配列は同一であり、ドメインOおよびドメインBのアミノ酸配列は同一であり、ドメインIおよびドメインSのアミノ酸配列は同一であり、ドメインP、ドメインF、ドメインL、およびドメインTのアミノ酸配列は同一であり、ドメインQおよびドメインGのアミノ酸配列は同一であり、ドメインMおよびドメインUのアミノ酸配列は同一であり;AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、ドメインNおよびドメインPが、第1の抗原に特異的な第2の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第1の抗原に特異的な第3の抗原結合部位を形成し、およびRドメインとTドメインとの間の相互作用が、第1の抗原に特異的な第4の抗原結合部位を形成する。
【0188】
図34を参照して、別の一連の四価2×2単一特異性実施形態では、ドメインN、ドメインA、ドメインH、およびドメインRのアミノ酸配列は同一であり、ドメインIおよびドメインBのアミノ酸配列は同一であり、ドメインOおよびドメインSのアミノ酸配列は同一であり、ドメインP、ドメインF、ドメインL、およびドメインTのアミノ酸配列は同一であり、ドメインMおよびドメインGのアミノ酸配列は同一であり、ドメインQおよびドメインUのアミノ酸配列は同一であり;AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、ドメインNおよびドメインPが、第1の抗原に特異的な第2の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第1の抗原に特異的な第3の抗原結合部位を形成し、およびRドメインとTドメインとの間の相互作用が、第1の抗原に特異的な第4の抗原結合部位を形成する。
6.3.19.ドメインジャンクション
6.3.19.1.VLとCH3ドメインとを連結するジャンクション
【0189】
様々な実施形態では、VLドメインのC末端とCH3ドメインのN末端との間のジャンクションを形成するアミノ酸配列は、操作された配列である。ある特定の実施形態では、1つまたは複数のアミノ酸は、VLドメインのC末端で欠失または付加されている。ある特定の実施形態では、VLドメインのC末端とCH3ドメインのN末端とを連結しているジャンクションは、下記のセクション6.12.6の表2に記載されている配列の1つである。特定の実施形態では、A111が、VLドメインのC末端で欠失されている。ある特定の実施形態では、1つまたは複数のアミノ酸が、CH3ドメインのN末端で、欠失または付加されている。特定の実施形態では、P343は、CH3ドメインのN末端で欠失されている。特定の実施形態では、P343およびR344は、CH3ドメインのN末端で欠失されている。ある特定の実施形態では、1つまたは複数のアミノ酸が、VLドメインのC末端およびCH3ドメインのN末端の両方で欠失または付加されている。特定の実施形態では、A111が、VLドメインのC末端で欠失されており、P343が、CH3ドメインのN末端で欠失されている。好ましい実施形態では、A111およびV110が、VLドメインのC末端で欠失されている。別の好ましい実施形態では、A111およびV110が、VLドメインのC末端で欠失され、CH3ドメインのN末端が、P343V変異を有する。
6.3.19.2.VHとCH3ドメインとを連結するジャンクション
【0190】
様々な実施形態では、VHドメインのC末端とCH3ドメインのN末端との間のジャンクションを形成するアミノ酸配列は、操作された配列である。ある特定の実施形態では、1つまたは複数のアミノ酸が、VHドメインのC末端で欠失または付加されている。ある特定の実施形態では、VHドメインのC末端とCH3ドメインのN末端を連結するジャンクションは、下記のセクション6.12.6の表3に記載されている配列の1つである。特定の実施形態では、K177およびG118が、VHドメインのC末端で欠失されている。ある特定の実施形態では、1つまたは複数のアミノ酸が、CH3ドメインのN末端で欠失または付加されている。ある特定の実施形態では、P343は、CH3ドメインのN末端で欠失されている。ある特定の実施形態では、P343およびR344は、CH3ドメインのN末端で欠失されている。ある特定の実施形態では、P343、R344およびE345が、CH3ドメインのN末端で欠失されている。ある特定の実施形態では、1つまたは複数のアミノ酸が、VHドメインのC末端およびCH3ドメインのN末端の両方で欠失または付加されている。好ましい実施形態では、T166、K177およびG118が、VHドメインのC末端で欠失されている。
6.3.19.3.CH3のC末端をCH2のN末端に連結しているジャンクション(ヒンジ)
【0191】
本明細書に記載の結合分子では、CH2ドメインのN末端は、「ヒンジ」領域アミノ酸配列を有する。本明細書で使用される場合、ヒンジ領域は、抗体のN末端可変ドメイン−定常ドメインセグメントと抗体のCH2ドメインとを連結している抗体重鎖の配列である。加えて、ヒンジ領域は、典型的に、N末端可変ドメイン−定常ドメインセグメントとCH2ドメインとの間のフレキシビリティ、ならびに重鎖間のジスルフィド架橋を形成するアミノ酸配列モチーフ(例えば、第1および第3のポリペプチド鎖)の両方を提供する。本明細書で使用される場合、ヒンジ領域アミノ酸配列は、配列番号56である。
【0192】
様々な実施形態では、CH3アミノ酸配列は、CH3ドメインのC末端とCH2ドメインのN末端との間のジャンクションにおいてC末端で伸長されている。ある特定の実施形態では、CH3アミノ酸配列は、CH3ドメインのC末端とヒンジ領域との間のジャンクションにおいてC末端で伸長され、次いでCH2ドメインのN末端に連結されている。好ましい実施形態では、CH3アミノ酸配列は、PGKトリペプチド配列の挿入、続いてIgG1ヒンジ領域のDKTHTモチーフの挿入によって伸長されている。
【0193】
特定の実施形態では、CH3ドメインのC末端における伸長は、別のCH3ドメインの直交型C末端伸長とジスルフィド結合を形成することができるアミノ酸配列を組み込んでいる。好ましい実施形態では、CH3ドメインのC末端における伸長は、KSCトリペプチド配列とそれに続くIgG1ヒンジ領域のDKTHTモチーフを組み込んでおり、IgG1ヒンジ領域のDKTHTモチーフは、カッパ軽鎖のGECモチーフを組み込んでいる別のCH3ドメインの直交型C末端伸長とジスルフィド結合を形成する。
6.3.19.4.CLのC末端とCH2のN末端とを連結するジャンクション(ヒンジ)
【0194】
様々な実施形態では、CLアミノ酸配列は、そのC末端を介してヒンジ領域に連結され、次いで、CH2ドメインのN末端に連結される。ヒンジ領域配列は、上記セクション6.3.19.3においてより詳細に記載されている。好ましい実施形態では、ヒンジ領域アミノ酸配列は、配列番号56である。
6.3.19.5.CH2のC末端を定常領域ドメインに連結するジャンクション
【0195】
様々な実施形態では、CH2アミノ酸配列は、そのC末端を介して、定常領域ドメインのN末端に連結されている。定常領域は、上記セクション6.3.4においてより詳細に記載されている。好ましい実施形態では、CH2配列は、その内在性配列を介してCH3配列に連結されている。他の実施形態では、CH2配列は、CH1またはCL配列に連結されている。CH2配列のCH1またはCL配列への連結を議論する例が、その全体が本明細書に組み込まれる米国特許第8,242,247号においてより詳細に記載されている。
6.3.19.6.三価および四価分子においてドメインOをドメインAにまたはドメインSをドメインHに連結するジャンクション
【0196】
様々な実施形態では、抗体の重鎖(例えば、第1および第3のポリペプチド鎖)が、追加のABSを提供する追加のドメインを含むようにそのN末端で伸長される。
図21、
図26および
図34を参照して、ある特定の実施形態では、ドメインOおよび/またはドメインSの定常領域ドメインアミノ酸配列のC末端は、それぞれ、ドメインAおよび/またはドメインHの可変領域ドメインアミノ酸配列のN末端に連結されている。一部の好ましい実施形態では、定常領域ドメインは、CH3アミノ酸配列であり、可変領域ドメインは、VLアミノ酸配列である。一部の好ましい実施形態では、定常領域ドメインは、CLアミノ酸配列であり、可変領域ドメインは、VLアミノ酸配列である。ある特定の実施形態では、定常領域ドメインは、ペプチドリンカーを介して可変領域ドメインに連結されている。好ましい実施形態では、ペプチドリンカーは、6アミノ酸GSGSGSペプチド配列である。
【0197】
様々な実施形態では、抗体の軽鎖(例えば、第2および第4のポリペプチド鎖)が、抗体の追加の可変ドメイン−定常ドメインセグメントを含むようにそのN末端で伸長される。ある特定の実施形態では、定常領域ドメインは、CH1アミノ酸配列であり、可変領域ドメインは、VHアミノ酸配列である。
6.4.特定の二価結合分子
【0198】
さらなる態様では、二価結合分子が提供される。
【0199】
図3を参照して、第1の一連の実施形態では、結合分子は、第1、第2、第3、および第4のポリペプチド鎖を含み、ここで(a)第1のポリペプチド鎖はドメインA、ドメインB、ドメインD、およびドメインEを含み、ここでドメインは、N末端からC末端へ、A−B−D−Eの配向で配置され、ドメインAはVLアミノ酸配列を有し、ドメインBはCH3アミノ酸配列を有し、ドメインDはCH2アミノ酸配列を有し、ドメインEは定常領域ドメインアミノ酸配列を有し;(b)第2のポリペプチド鎖はドメインFおよびドメインGを含み、ここでドメインは、N末端からC末端へ、F−Gの配向で配置され、ドメインFはVHアミノ酸配列を有し、ドメインGはCH3アミノ酸配列を有し;(c)第3のポリペプチド鎖はドメインH、ドメインI、ドメインJ、およびドメインKを含み、ここでドメインは、N末端からC末端へ、H−I−J−Kの配向で配置され、ドメインHは可変領域ドメインアミノ酸配列を有し、ドメインIは定常領域ドメインアミノ酸配列を有し、ドメインJはCH2アミノ酸配列を有し、およびKは定常領域ドメインアミノ酸配列を有し;(d)第4のポリペプチド鎖はドメインLおよびドメインMを含み、ここでドメインは、N末端からC末端へ、L−Mの配向で配置され、ドメインLは可変領域ドメインアミノ酸配列を有し、ドメインMは定常領域ドメインアミノ酸配列を有し;(e)第1および第2のポリペプチドは、AドメインとFドメインとの間の相互作用およびBドメインとGドメインとの間の相互作用を介して会合し;(f)第3および第4のポリペプチドは、HドメインとLドメインとの間の相互作用およびIドメインとMドメインとの間の相互作用を介して会合し;(g)第1および第3のポリペプチドは、DドメインとJドメインとの間の相互作用およびEドメインとKドメインとの間の相互作用を介して会合して、結合分子を形成する。
【0200】
好ましい実施形態では、ドメインEは、CH3アミノ酸配列を有し;ドメインHは、VLアミノ酸配列を有し;ドメインIは、CLアミノ酸配列を有し、ドメインKは、CH3アミノ酸配列を有し;ドメインLは、VHアミノ酸配列を有し;ドメインMは、CH1アミノ酸配列を有する。
【0201】
ある特定の実施形態では、AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第2の抗原に特異的な第2の抗原結合部位を形成し、結合分子は、二重特異性二価結合分子である。ある特定の実施形態では、AドメインとFドメインとの間の相互作用が、第1の抗原に特異的な第1の抗原結合部位を形成し、HドメインとLドメインとの間の相互作用が、第1の抗原に特異的な第2の抗原結合部位を形成し、結合分子は、単一特異性二価結合分子である。
6.4.1.二価の二重特異性B−Body「BC1」
【0202】
図3および
図6を参照して、一連の実施形態では、結合分子は、第1、第2、第3、および第4のポリペプチド鎖を有し、ここで(a)第1のポリペプチド鎖はドメインA、ドメインB、ドメインD、およびドメインEを含み、ここでドメインは、N末端からC末端へ、A−B−D−Eの配向で配置され、ドメインAは第1のVLアミノ酸配列を有し、ドメインBは、T366K変異およびKSCトリペプチド配列とそれに続くIgG1ヒンジ領域のDKTHTモチーフを組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し、ドメインDはヒトIgG1 CH2アミノ酸配列を有し、ドメインEはS354CおよびT366W変異を有するヒトIgG1 CH3アミノ酸を有し;(b)第2のポリペプチド鎖はドメインFおよびドメインGを有し、ここでドメインは、N末端からC末端へ、F−Gの配向で配置され、ドメインFは第1のVHアミノ酸配列を有し、ドメインGはL351D変異およびGECアミノ酸ジスルフィドモチーフを組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し;(c)第3のポリペプチド鎖はドメインH、ドメインI、ドメインJ、およびドメインKを有し、ここでドメインは、N末端からC末端へ、H−I−J−Kの配向で配置され、ドメインHは第2のVLアミノ酸配列を有し、ドメインIはヒトCLカッパアミノ酸配列を有し、ドメインJはヒトIgG1 CH2アミノ酸配列を有し、およびKはY349C、D356E、L358M、T366S、L368AおよびY407V変異を有するヒトIgG1 CH3アミノ酸配列を有し;(d)第4のポリペプチド鎖はドメインLおよびドメインMを有し、ここでドメインは、N末端からC末端へ、L−Mの配向で配置され、ドメインLは第2のVHアミノ酸配列を有し、ドメインMはヒトIgG1 CH1アミノ酸配列を有し;(e)第1および第2のポリペプチドは、AドメインとFドメインとの間の相互作用およびBドメインとGドメインとの間の相互作用を介して会合し;(f)第3および第4のポリペプチドは、HドメインとLドメインとの間の相互作用およびIドメインとMドメインとの間の相互作用を介して会合し;(g)第1および第3のポリペプチドは、DドメインとJドメインとの間の相互作用およびEドメインとKドメインとの間の相互作用を介して会合して、結合分子を形成し;(h)ドメインAおよびドメインFは、第1の抗原に特異的な第1の抗原結合部位を形成し;(i)ドメインHおよびドメインLは、第2の抗原に特異的な第2の抗原結合部位を形成する。
【0203】
好ましい実施形態では、第1のポリペプチド鎖は、配列番号8の配列を有し、第2のポリペプチド鎖は、配列番号9の配列を有し、第3のポリペプチド鎖は、配列番号10の配列を有し、および第4のポリペプチド鎖は、配列番号11の配列を有する。
6.4.2.二価の二重特異性B−Body「BC6」
【0204】
図3および
図14を参照して、一連の実施形態では、結合分子は、第1、第2、第3、および第4のポリペプチド鎖を有し、ここで(a)第1のポリペプチド鎖はドメインA、ドメインB、ドメインD、およびドメインEを含み、ここでドメインは、N末端からC末端へ、A−B−D−Eの配向で配置され、ドメインAは第1のVLアミノ酸配列を有し、ドメインBは、KSCトリペプチド配列とそれに続くIgG1ヒンジ領域のDKTHTモチーフを組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し、ドメインDはヒトIgG1 CH2アミノ酸配列を有し、ドメインEはS354CおよびT366W変異を有するヒトIgG1 CH3アミノ酸を有し;(b)第2のポリペプチド鎖はドメインFおよびドメインGを有し、ここでドメインは、N末端からC末端へ、F−Gの配向で配置され、ドメインFは第1のVHアミノ酸配列を有し、ドメインGはGECアミノ酸ジスルフィドモチーフを組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し;(c)第3のポリペプチド鎖はドメインH、ドメインI、ドメインJ、およびドメインKを有し、ここでドメインは、N末端からC末端へ、H−I−J−Kの配向で配置され、ドメインHは第2のVLアミノ酸配列を有し、ドメインIはヒトCLカッパアミノ酸配列を有し、ドメインJはヒトIgG1 CH2アミノ酸配列を有し、およびKはY349C、D356E、L358M、T366S、L368AおよびY407V変異を有するヒトIgG1 CH3アミノ酸配列を有し;(d)第4のポリペプチド鎖はドメインLおよびドメインMを有し、ここでドメインは、N末端からC末端へ、L−Mの配向で配置され、ドメインLは第2のVHアミノ酸配列を有し、ドメインMはヒトIgG1 CH1アミノ酸配列を有し;(e)第1および第2のポリペプチドは、AドメインとFドメインとの間の相互作用およびBドメインとGドメインとの間の相互作用を介して会合し;(f)第3および第4のポリペプチドは、HドメインとLドメインとの間の相互作用およびIドメインとMドメインとの間の相互作用を介して会合し;(g)第1および第3のポリペプチドは、DドメインとJドメインとの間の相互作用およびEドメインとKドメインとの間の相互作用を介して会合して、結合分子を形成し;(h)ドメインAおよびドメインFは、第1の抗原に特異的な第1の抗原結合部位を形成し;(i)ドメインHおよびドメインLは、第2の抗原に特異的な第2の抗原結合部位を形成する。
6.4.3.二価の二重特異性B−Body「BC28」
【0205】
図3および
図16を参照して、一連の実施形態では、結合分子は、第1、第2、第3、および第4のポリペプチド鎖を有し、ここで(a)第1のポリペプチド鎖はドメインA、ドメインB、ドメインD、およびドメインEを含み、ここでドメインは、N末端からC末端へ、A−B−D−Eの配向で配置され、ドメインAは第1のVLアミノ酸配列を有し、ドメインBは、Y349C変異およびPGKトリペプチド配列とそれに続くIgG1ヒンジ領域のDKTHTモチーフを組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し、ドメインDはヒトIgG1 CH2アミノ酸配列を有し、ドメインEはS354CおよびT366W変異を有するヒトIgG1 CH3アミノ酸を有し;(b)第2のポリペプチド鎖はドメインFおよびドメインGを有し、ここでドメインは、N末端からC末端へ、F−Gの配向で配置され、ドメインFは第1のVHアミノ酸配列を有し、ドメインGはS354C変異およびPGKトリペプチド配列を組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し;(c)第3のポリペプチド鎖はドメインH、ドメインI、ドメインJ、およびドメインKを有し、ここでドメインは、N末端からC末端へ、H−I−J−Kの配向で配置され、ドメインHは第2のVLアミノ酸配列を有し、ドメインIはヒトCLカッパアミノ酸配列を有し、ドメインJはヒトIgG1 CH2アミノ酸配列を有し、およびKはY349C、D356E、L358M、T366S、L368AおよびY407Vを有するヒトIgG1 CH3アミノ酸配列を有し;(d)第4のポリペプチド鎖はドメインLおよびドメインMを有し、ここでドメインは、N末端からC末端へ、L−Mの配向で配置され、ドメインLは第2のVHアミノ酸配列を有し、ドメインMはヒトIgG1 CH1アミノ酸配列を有し;(e)第1および第2のポリペプチドは、AドメインとFドメインとの間の相互作用およびBドメインとGドメインとの間の相互作用を介して会合し;(f)第3および第4のポリペプチドは、HドメインとLドメインとの間の相互作用およびIドメインとMドメインとの間の相互作用を介して会合し;(g)第1および第3のポリペプチドは、DドメインとJドメインとの間の相互作用およびEドメインとKドメインとの間の相互作用を介して会合して、結合分子を形成し;(h)ドメインAおよびドメインFは、第1の抗原に特異的な第1の抗原結合部位を形成し;(i)ドメインHおよびドメインLは、第2の抗原に特異的な第2の抗原結合部位を形成する。
【0206】
好ましい実施形態では、第1のポリペプチド鎖は、配列番号24の配列を有し、第2のポリペプチド鎖は、配列番号25の配列を有し、第3のポリペプチド鎖は、配列番号10の配列を有し、および第4のポリペプチド鎖は、配列番号11の配列を有する。
6.4.4.二価の二重特異性B−Body「BC44」
【0207】
図3および
図19を参照して、一連の実施形態では、結合分子は、第1、第2、第3、および第4のポリペプチド鎖を有し、ここで(a)第1のポリペプチド鎖はドメインA、ドメインB、ドメインD、およびドメインEを含み、ここでドメインは、N末端からC末端へ、A−B−D−Eの配向で配置され、ドメインAは第1のVLアミノ酸配列を有し、ドメインBは、Y349C変異、P343V変異、およびPGKトリペプチド配列とそれに続くIgG1ヒンジ領域のDKTHTモチーフを組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し、ドメインDはヒトIgG1 CH2アミノ酸配列を有し、ドメインEはS354C変異およびT366W変異を有するヒトIgG1 CH3アミノ酸を有し;(b)第2のポリペプチド鎖はドメインFおよびドメインGを有し、ここでドメインは、N末端からC末端へ、F−Gの配向で配置され、ドメインFは第1のVHアミノ酸配列を有し、ドメインGはS354C変異およびPGKトリペプチド配列を組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し;(c)第3のポリペプチド鎖はドメインH、ドメインI、ドメインJ、およびドメインKを有し、ここでドメインは、N末端からC末端へ、H−I−J−Kの配向で配置され、ドメインHは第2のVLアミノ酸配列を有し、ドメインIはヒトCLカッパアミノ酸配列を有し、ドメインJはヒトIgG1 CH2アミノ酸配列を有し、およびKはY349C、T366S、L368AおよびY407Vを有するヒトIgG1 CH3アミノ酸配列を有し;(d)第4のポリペプチド鎖はドメインLおよびドメインMを有し、ここでドメインは、N末端からC末端へ、L−Mの配向で配置され、ドメインLは第2のVHアミノ酸配列を有し、ドメインMはヒトIgG1アミノ酸配列を有し;(e)第1および第2のポリペプチドは、AドメインとFドメインとの間の相互作用およびBドメインとGドメインとの間の相互作用を介して会合し;(f)第3および第4のポリペプチドは、HドメインとLドメインとの間の相互作用およびIドメインとMドメインとの間の相互作用を介して会合し;(g)第1および第3のポリペプチドは、DドメインとJドメインとの間の相互作用およびEドメインとKドメインとの間の相互作用を介して会合して、結合分子を形成し;(h)ドメインAおよびドメインFは、第1の抗原に特異的な第1の抗原結合部位を形成し;(i)ドメインHおよびドメインLは、第2の抗原に特異的な第2の抗原結合部位を形成する。
【0208】
好ましい実施形態では、第1のポリペプチド鎖は、配列番号32の配列を有し、第2のポリペプチド鎖は、配列番号25の配列を有し、第3のポリペプチド鎖は、配列番号10の配列を有し、および第4のポリペプチド鎖は、配列番号11の配列を有する。
6.5.特定の三価結合分子
6.5.1.三価1×2二重特異性B−Body「BC28−1×2」
【0209】
セクション6.4.3および
図26を参照して、一連の実施形態では、結合分子は、第6のポリペプチド鎖をさらに含み、ここで(a)第3のポリペプチド鎖はドメインRおよびドメインSをさらに含み、ここでドメインは、N末端からC末端へ、R−S−H−I−J−Kの配向で配置され、ドメインRは第1のVLアミノ酸配列を有し、ドメインSは、Y349C変異、およびPGKトリペプチド配列とそれに続くドメインSをドメインHに連結するGSGSGSリンカーペプチドを組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し;(b)結合分子が、第6のポリペプチド鎖をさらに含み、第6のポリペプチド鎖が、ドメインTおよびドメインUを含み、ここでドメインは、N末端からC末端へ、T−Uの配向で配置され、ドメインTは第1のVHアミノ酸配列を有し、ドメインUはS354C変異およびPGKトリペプチド配列を組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し;(c)第3および第6のポリペプチドは、RドメインとTドメインとの間の相互作用およびSドメインとUドメインとの間の相互作用を介して会合して、結合分子を形成し;(d)ドメインRおよびドメインTが第1の抗原に特異的な第3の抗原結合部位を形成する。
【0210】
好ましい実施形態では、第1のポリペプチド鎖は、配列番号24の配列を有し、第2のポリペプチド鎖は、配列番号25の配列を有し、第3のポリペプチド鎖は、配列番号37の配列を有し、第4のポリペプチド鎖は、配列番号11の配列を有し、および第6のポリペプチド鎖は、配列番号25の配列を有する。
6.5.2.三価1×2三重特異性B−Body「BC28−1×1×1a」
【0211】
セクション6.4.3ならびに
図26および
図30を参照して、一連の実施形態では、結合分子は、第6のポリペプチド鎖をさらに含み、ここで(a)第3のポリペプチド鎖はドメインRおよびドメインSをさらに含み、ここでドメインは、N末端からC末端へ、R−S−H−I−J−Kの配向で配置され、ドメインRは第3のVLアミノ酸配列を有し、ドメインSは、T366K変異およびKSCトリペプチド配列とそれに続くドメインSをドメインHに連結するGSGSGSリンカーペプチドを組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し;(b)結合分子が、第6のポリペプチド鎖をさらに含み、第6のポリペプチド鎖が、ドメインTおよびドメインUを含み、ここでドメインは、N末端からC末端へ、T−Uの配向で配置され、ドメインTは第3のVHアミノ酸配列を有し、ドメインUはL351D変異およびGECアミノ酸ジスルフィドモチーフを組み込んだC末端伸長を有するヒトIgG1 CH3アミノ酸配列を有し;(c)第3および第6のポリペプチドは、RドメインとTドメインとの間の相互作用およびSドメインとUドメインとの間の相互作用を介して会合して、結合分子を形成し;(d)ドメインRおよびドメインTが第3の抗原に特異的な第3の抗原結合部位を形成する。
【0212】
好ましい実施形態では、第1のポリペプチド鎖は、配列番号24の配列を有し、第2のポリペプチド鎖は、配列番号25の配列を有し、第3のポリペプチド鎖は、配列番号45の配列を有し、第4のポリペプチド鎖は、配列番号11の配列を有し、および第6のポリペプチド鎖は、配列番号53の配列を有する。
6.6.抗原特異性
【0213】
本明細書に記載の結合分子の抗原結合部位は、多種多様な分子標的に特異的に結合するように選択しうる。例えば、抗原結合部位(単数または複数)は、E−Cad、CLDN7、FGFR2b、N−Cad、Cad−11、FGFR2c、ERBB2、ERBB3、FGFR1、FOLR1、IGF−Ira、GLP1R、PDGFRa、PDGFRb、EPHB6、ABCG2、CXCR4、CXCR7、インテグリン−avb3、SPARC、VCAM、ICAM、アネキシン、ROR1、ROR2、TNFα、CD137、アンジオポエチン2、アンジオポエチン3、BAFF、ベータアミロイド、C5、CA−125、CD147、CD125、CD147、CD152、CD19、CD20、CD22、CD23、CD24、CD25、CD274、CD28、CD3、CD30、CD33、CD37、CD4、CD40、CD44、CD44v4、CD44v6、CD44v7、CD50、CD51、CD52、CEA、CSF1R、CTLA−2、DLL4、EGFR、EPCAM、HER3、GD2ガングリオシド、GDF−8、Her2/neu、CD2221、IL−17A、IL−12、IL−23、IL−13、IL−6、IL−23、インテグリン、CD11a、MUC1、Notch、TAG−72、TGFβ、TRAIL−R2、VEGF−A、VEGFR−1、VEGFR2、VEGFc、ヘマトポエチン(4ヘリックスバンドル)(EPO(エリスロポエチン)、IL−2(T細胞増殖因子)、IL−3(マルチコロニーCSF)、IL−4(BCGF−1、BSF−1)、IL−5(BCGF−2)、IL−6 IL−4(IFN−β2、BSF−2、BCDF)、IL−7、IL−8、IL−9、IL−11、IL−13(P600)、G−CSF、IL−15(T細胞増殖因子)、GM−CSF(顆粒球マクロファージコロニー刺激因子)、OSM(OM、オンコスタチンM)、およびLIF(白血病阻止因子)など);インターフェロン(IFN−γ、IFN−αおよびIFN−βなど);免疫グロブリンスーパーファミリー(B7.1(CD80)およびB7.2(B70、CD86)など);TNFファミリー(TNF−α(カケクチン)、TNF−β(リンホトキシン、LT、LT−α)、LT−β、Fas、CD27、CD30、および4−1BBLなど);ならびに特定のファミリーに分類されないもの(TGF−β、IL 1α、IL−1β、IL−1 RA、IL−10(サイトカイン合成阻害因子F)、IL−12(NK細胞刺激因子)、MIF、IL−16、IL−17(mCTLA−8)、および/またはIL−18(IGIF、インターフェロン−γ誘導因子)など)に特異的に結合しうる;二重特異性抗体に関する実施形態では、抗体は、例えば、これらの標的のうちの2つに結合しうる。さらに、標的マスト細胞および好塩基球を標的とするためのIgE抗体のFc部分の使用など、Fc受容体発現細胞を標的とするために、抗体の重鎖のFc部分を使用してもよい。
【0214】
TNF受容体ファミリー、例えば、TNFR1(CD120aおよびTNFRSF1Aとしても公知)、TNFR2(CD120bおよびTNFRSF1Bとしても公知)、TNFRSF3(LTβRとしても公知)、TNFRSF4(OX40およびCD134としても公知)、TNFRSF5(CD40としても公知)、TNFRSF6(FASおよびCD95としても公知)、TNFRSF6B(DCR3としても公知)、TNFRSF7(CD27としても公知)、TNFRSF8(CD30としても公知)、TNFRSF9(4−1BBとしても公知)、TNFRSF10A(TRAILR1、DR4、およびCD26としても公知)、TNFRSF10B(TRAILR2、DR5、およびCD262としても公知)、TNFRSF10C(TRAILR3、DCR1、CD263としても公知)、TNFRSF10D(TRAILR4、DCR2、およびCD264としても公知)、TNFRSF11A(RANKおよびCD265としても公知)、TNFRSF11B(OPGとしても公知)、TNFRSF12A(FN14、TWEAKR、およびCD266としても公知)、TNFRSF13B(TACIおよびCD267としても公知)、TNFRSF13C(BAFFR、BR3、およびCD268としても公知)、TNFRSF14(HVEMおよびCD270としても公知)、TNFRSF16(NGFR、p75NTR、およびCD271としても公知)、またはTNFRSF17(BCMAおよびCD269としても公知)、TNFRSF18(GITRおよびCD357としても公知)、TNFRSF19(TROY、TAJ、およびTRADEとしても公知)、TNFRSF21(CD358としても公知)、TNFRSF25(Apo−3、TRAMP、LARD、またはWS−1としても公知)、EDA2R(XEDARとしても公知)を含むがこれらに限定されないTNF受容体ファミリーに特異的に結合する抗原結合部位(単数または複数)を選択してもよい。
【0215】
がん免疫療法(immune-oncology)標的、例えば、PD1、PDL1、CTLA−4、PDL2、B7−H3、B7−H4、BTLA、TIM3、GAL9、LAG3、VISTA、KIR、2B4、BY55およびCGEN−15049などのチェックポイント阻害剤標的を含むがこれらに限定されない標的に特異的に結合する抗原結合部位(単数または複数)を選択してもよい。
【0216】
一連の実施形態では、腫瘍−会合細胞を特異的に標的とする抗原結合部位(単数または複数)が選択されうる。様々な実施形態では、抗原結合部位(単数または複数)は、腫瘍会合免疫細胞を特異的に標的とする。ある特定の実施形態では、抗原結合部位(単数または複数)は、腫瘍会合制御性T細胞(Treg)を特異的に標的とする。特定の実施形態では、結合分子は、結合分子が腫瘍会合制御性T細胞を特異的に標的とするように、CD25、OX40、CTLA−4およびNRP1の1つまたは複数から選択される抗原に特異的な抗原結合部位を有する。特定の実施形態では、結合分子は、結合分子が腫瘍会合制御性T細胞を特異的に標的とするように、CD25およびOX40、CD25およびCTLA−4、CD25およびNRP1、OX40およびCTLA−4、OX40およびNRP1、またはCTLA−4およびNRP1に特異的に結合する抗原結合部位を有する。好ましい実施形態では、二重特異性二価結合分子は、結合分子が腫瘍会合制御性T細胞を特異的に標的とするように、CD25およびOX40、CD25およびCTLA−4、CD25およびNRP1、OX40およびCTLA−4、OX40およびNRP1、またはCTLA−4およびNRP1に特異的に結合する抗原結合部位を有する。特定の実施形態では、腫瘍会合制御性T細胞の特異的標的化は、制御性T細胞の枯渇(例えば、殺傷)に至る。好ましい実施形態では、制御性T細胞の枯渇は、下記セクション6.7.1においてより詳細に検討されているように、毒素へコンジュゲートされた抗体などの、抗体−薬物コンジュゲート(ADC)改変によって媒介される。
【0217】
一連の実施形態では、結合分子は、CD3、ROR1およびROR2の1つまたは複数から選択される抗原結合部位を有する。特定の実施形態では、二重特異性二価は、CD3およびROR1に特異的に結合する抗原結合部位を有する。特定の実施形態では、二重特異性二価は、CD3およびROR2に特異的に結合する抗原結合部位を有する。特定の実施形態では、三重特異性三価は、CD3、ROR1およびROR2に特異的に結合する抗原結合部位を有する。
6.7.さらなる改変
【0218】
さらなる一連の実施形態では、結合分子は追加的改変を有する。
6.7.1.結合分子−薬物コンジュゲート
【0219】
様々な実施形態では、結合分子は、治療剤(つまり、薬物)にコンジュゲートされて、結合分子−薬物コンジュゲートを形成する。治療剤には、化学治療剤、画像化剤(例えば、放射性同位体)、免疫調節剤(例えば、サイトカイン、ケモカイン、またはチェックポイント阻害剤)、および毒素(例えば、細胞毒性剤)が挙げられるが、これらに限定されない。ある特定の実施形態では、治療剤は、下記セクション6.7.3においてより詳細に議論されているように、リンカーペプチドを介して結合分子に連結されている。薬物を本明細書に開示される結合分子にコンジュゲートするために適合しうる抗体−薬物コンジュゲート(ADC)の調製方法は、例えば、それぞれ教示する全てについて参照によりその全体が本明細書に組み込まれる米国特許第8,624,003号(ポット法)、米国特許第8,163,888号(ワンステップ法)、米国特許第5,208,020号(ツーステップ法)、米国特許第8,337,856号、米国特許第5,773,001号、米国特許第7,829,531号、米国特許第5,208,020号、米国特許第7,745,394号、WO2017/136623、WO2017/015502、WO2017/015496、WO2017/015495、WO2004/010957、WO2005/077090、WO2005/082023、WO2006/065533、WO2007/030642、WO2007/103288、WO2013/173337、WO2015/057699、WO2015/095755、WO2015/123679、WO2015/157286、WO2017/165851、WO2009/073445、WO2010/068759、WO2010/138719、WO2012/171020、WO2014/008375、WO2014/093394、WO2014/093640、WO2014/160360、WO2015/054659、WO2015/195925、WO2017/160754、Storz(MAbs.、2015年11−12月;7巻(6号):989〜1009頁)、Lambertら(Adv Ther、2017年34巻:1015頁)、Diamantisら(British Journal of Cancer、2016年、114巻、362〜367頁)、Carricoら(Nat Chem Biol、2007年、3巻:321〜2頁)、Weら(Proc Natl Acad Sci USA、2009年、106巻:3000〜5頁)、Rabukaら(Curr Opin Chem Biol.、2011年、14巻:790〜6頁)、Hudakら(Angew Chem Int Ed Engl.、2012年:4161〜5頁)、Rabukaら(Nat Protoc.、2012年、7巻:1052〜67頁)、Agarwalら(Proc Natl Acad Sci USA.、2013年、110巻:46〜51頁)、Agarwalら(Bioconjugate Chem.、2013年、24巻:846〜851頁)、Barfieldら(Drug Dev. and D.、2014年、14巻:34〜41頁)、Drakeら(Bioconjugate Chem.、2014年、25巻:1331〜41頁)、Liangら(J Am Chem Soc.、2014年、136巻:10850〜3頁)、Drakeら(Curr Opin Chem Biol.、2015年、28巻:174〜80頁)およびYorkら(BMC Biotechnology、2016年、16巻(1号):23頁)に記載されている。
6.7.2.さらなる結合部分構造
【0220】
様々な実施形態では、結合分子は、1つまたは複数の追加の結合部分構造を含む改変を有する。ある特定の実施形態では、結合部分構造は、例えば、全長抗体、Fab断片、Fv、scFv、タンデムscFv、ダイアボディ、scダイアボディ、DART、tandAb、ミニボディ、カメリドVHH、および当業者に公知の他の抗体断片もしくはフォーマットを含むがこれらに限定されない抗体断片または抗体フォーマットである。例示的な抗体および抗体断片フォーマットは、教示する全てについて参照により本明細書に組み込まれるBrinkmannら(MABS、2017年、9巻、2号、182〜212頁)において詳細に記載されている。
【0221】
特定の実施形態では、1つまたは複数の追加の結合部分構造は、第1または第3のポリペプチド鎖のC末端に連結されている。特定の実施形態では、1つまたは複数の追加の結合部分構造は、第1および第3のポリペプチド鎖の両方のC末端に連結されている。特定の実施形態では、1つまたは複数の追加の結合部分構造は、第1および第3のポリペプチド鎖の両方のC末端に連結されている。ある特定の実施形態では、1つまたは複数の追加の結合部分構造の個々の部分が、官能性結合部分構造を形成するように、第1および第3のポリペプチド鎖のC末端に別個に連結されている。
【0222】
特定の実施形態では、1つまたは複数の追加の結合部分構造は、ポリペプチド鎖のいずれか(例えば、第1、第2、第3、第4、第5、または第6のポリペプチド鎖)のN末端に連結されている。ある特定の実施形態では、追加の結合部分構造の個々の部分が、官能性結合部分構造を形成するように、異なるポリペプチド鎖のN末端に別個に連結されている。
【0223】
ある特定の実施形態では、1つまたは複数の追加の結合部分構造は、結合分子内のABSの異なる抗原またはエピトープに特異的である。ある特定の実施形態では、1つまたは複数の追加の結合部分構造は、結合分子内のABSの同じ抗原またはエピトープに特異的である。改変が2つまたはそれより多い追加の結合部分構造である特定の実施形態では、追加の結合部分構造は、同じ抗原またはエピトープに特異的である。改変が2つまたはそれより多い追加の結合部分構造である特定の実施形態では、追加の結合部分構造は、異なる抗原またはエピトープに特異的である。
【0224】
ある特定の実施形態では、1つまたは複数の追加の結合部分構造は、下記セクション6.7.3においてより詳細が議論されているように、例えば、反応性化学および親和性タグシステムを含むがこれらに限定されないin vitro方法を使用して結合分子に連結される。ある特定の実施形態では、1つまたは複数の追加の結合部分構造は、Fc媒介結合(例えば、プロテインA/G)を介して結合分子に連結される。ある特定の実施形態では、1つまたは複数の追加の結合部分構造は、例えば、結合分子と追加の結合部分構造との融合産物のヌクレオチド配列を同じ発現ベクター(例えば、プラスミド)にコード化するなどの組換えDNA技術を使用して、結合分子に連結される。
6.7.3.官能基/反応基
【0225】
様々な実施形態では、結合分子は、例えば追加の部分構造(例えば、上記セクション6.7.1および6.7.2においてより詳細が議論されている薬物コンジュゲートおよび追加の結合部分構造)の連結などの下流プロセスおよび下流精製プロセスにおいて使用することができる、官能基または化学的反応性基を含む改変を有する。
【0226】
ある特定の実施形態では、改変は、例えば、反応性チオール(例えば、マレイミド系反応性基)、反応性アミン(例えば、N−ヒドロキシスクシンイミド系反応性基)、「クリック化学」基(例えば、反応性アルキン基)、およびホルミルグリシン(FGly)を保持するアルデヒド類を含むがこれらに限定されない化学的反応性基である。ある特定の実施形態では、改変は、親和性ペプチド配列(例えば、HA、HIS、FLAG、GST、MBPおよびStrepシステムなど)を含むがこれらに限定されない官能基である。ある特定の実施形態では、官能基または化学的反応性基は、開裂可能なペプチド配列を有する。特定の実施形態では、開裂可能なペプチドは、光開裂、化学開裂、プロテアーゼ開裂、還元条件、およびpH条件を含むがこれらに限定されない手段によって開裂される。特定の実施形態では、プロテアーゼ開裂は、細胞内プロテアーゼによって実施される。特定の実施形態では、プロテアーゼ開裂は、細胞外または膜会合プロテアーゼによって実施される。プロテアーゼ開裂を採用するADC治療は、教示する全てについて参照によりその全体が本明細書に組み込まれるChoiら(Theranostics、2012年;2巻(2号):156〜178頁)においてより詳細に記載されている。
6.8.医薬組成物
【0227】
別の態様では、本明細書に記載される結合分子と、薬学的に許容される担体または希釈剤を含む医薬組成物が提供される。典型的な実施形態では、医薬組成物は滅菌される。
【0228】
様々な実施形態では、医薬組成物は、結合分子を0.1mg/ml〜100mg/mlの濃度で含む。特定の実施形態では、医薬組成物は、結合分子を、0.5mg/ml、1mg/ml、1.5mg/ml、2mg/ml、2.5mg/ml、5mg/ml、7.5mg/mlまたは10mg/mlの濃度で含む。一部の実施形態では、医薬組成物は、結合分子を、10mg/mlを超える濃度で含む。ある特定の実施形態では、結合分子は、20mg/ml、25mg/ml、30mg/ml、35mg/ml、40mg/ml、45mg/ml、またはさらには50mg/mlもしくはそれより高い濃度で存在する。特定の実施形態では、結合分子は、50mg/mlを超える濃度で存在する。
【0229】
様々な実施形態では、医薬組成物は、それぞれその全体が本明細書に組み込まれる米国特許第8,961,964号、米国特許第8,945,865号、米国特許第8,420,081号、米国特許第6,685,940号、米国特許第6,171,586号、米国特許第8,821,865号、米国特許第9,216,219号、米国特許出願第10/813,483号、WO2014/066468、WO2011/104381およびWO2016/180941においてより詳細に記載されている。
6.9.製造法
【0230】
本明細書に記載の結合分子は、抗体製造のために現在使用されている標準的な無細胞翻訳、一過性トランスフェクションおよび安定なトランスフェクションアプローチを使用して、発現によって容易に製造することができる。特定の実施形態では、結合分子の製造のために、Expi293細胞(ThermoFisher)を、ThermoFisherからのプロトコールおよび試薬、例えばExpiFectamine、または教示する全てについて参照により本明細書に組み込まれるFangら(Biological Procedures Online、2017年、19巻:11頁)に詳細に記載されているようにポリエチレンイミンなどの当業者に公知の他の試薬を用いて、使用することができる。
【0231】
下記の実施例でさらに説明されているように、発現タンパク質は、CaptureSelect CH1樹脂などのCH1親和性樹脂、およびThermoFisherから提供されているプロトコールを使用して、容易に精製することができる。さらなる精製は、当技術分野で常套的に使用されているイオン交換クロマトグラフィを使用して行ってもよい。
6.10.処置方法
【0232】
別の態様では、患者に、本明細書に記載される結合分子を、患者を処置するために有効な量で投与することを含む、処置方法が提供される。
【0233】
一部の実施形態では、本開示の抗体は、がんを処置するために使用されうる。がんは、膀胱、血液、骨、骨髄、脳、乳房、結腸、食道、胃腸、歯茎、頭部、腎臓、肝臓、肺、鼻咽頭、首、卵巣、前立腺、皮膚、胃、精巣、舌、または子宮のがんでありうる。一部の実施形態では、がんは、新生物、悪性疾患;癌腫;未分化癌腫;巨細胞紡錘形細胞癌;小細胞癌;乳頭癌;扁平上皮癌;リンパ腫;基底細胞癌;毛母癌;移行上皮癌;乳頭状移行上皮癌;腺癌;悪性ガストリノーマ;胆管癌;肝細胞癌;混合型肝細胞癌・胆管細胞癌;小柱腺癌;腺様嚢胞癌;腺腫性ポリープの腺癌;腺腫性家族性大腸ポリポーシス;固形癌;カルチノイド悪性腫瘍;細気管支肺胞腺癌(branchiolo-alveolar adenocarcinoma);乳頭状腺癌;嫌色素性癌;好酸性癌(acidophil carcinoma);好酸性腺癌;好塩基球腫;明細胞腺癌;顆粒細胞癌;濾胞腺癌;乳頭状・濾胞腺癌;非被包性硬化性癌(nonencapsulating sclerosing carcinoma);副腎皮質癌;子宮内膜癌;皮膚付属器癌;アポクリン腺癌;皮脂腺癌;耳垢腺癌;粘表皮癌;嚢胞腺癌;乳頭状嚢胞腺癌;乳頭状漿液性嚢胞腺癌;粘液性嚢胞腺癌;粘液腺癌;印環細胞癌;ダクト癌浸潤;髄様癌;小葉癌;炎症性腫;乳腺パジェット病;腺房細胞癌;腺扁平上皮癌;扁平上皮化生随伴腺癌;悪性胸腺腫;悪性卵巣間質腫瘍;悪性莢膜細胞腫;悪性顆粒細胞腫瘍;悪性男性細胞腫;セルトリ細胞癌;悪性ライディッヒ細胞腫瘍;悪性脂質細胞腫瘍;悪性傍神経節腫;悪性エキストラ乳腺傍神経節腫;褐色細胞腫;糸球体肉腫;悪性黒色腫;メラニン欠乏メラノーマ;表在拡大型黒色腫;巨大色素性母斑の悪性黒色腫(malig melanoma);類上皮細胞メラノーマ;悪性青色母斑;肉腫;線維肉腫;悪性線維性組織球腫;粘液肉腫;脂肪肉腫;平滑筋肉腫;横紋筋肉腫;胎児性横紋筋肉腫;肺胞横紋筋肉腫;間質肉腫;悪性混合腫瘍;ミュラー管混合腫瘍;腎芽;肝芽腫;癌肉腫;悪性間葉腫;悪性ブレンナー腫瘍;悪性葉状腫瘍;滑膜肉腫;悪性中皮腫;未分化胚細胞腫;胎児性癌;悪性奇形腫;悪性卵巣甲状腺腫;絨毛癌;悪性中腎腫;血管肉腫;悪性血管内皮腫;カポジ肉腫;悪性血管周囲細胞腫;リンパ管肉腫;骨肉腫;傍骨性骨肉腫;軟骨肉腫;悪性軟骨芽細胞腫;間葉系軟骨肉腫;骨の巨細胞腫;ユーイング肉腫;悪性歯原性腫瘍;エナメル上皮歯牙肉腫;悪性エナメル上皮腫;エナメル上皮線維肉腫;悪性松果体腫;脊索腫;悪性神経膠腫;上衣腫;星細胞腫;原形質性星細胞腫;線維性星細胞腫;星芽腫;神経膠芽腫;乏突起;乏突起膠芽腫;原始神経外胚葉;小脳肉腫;神経節;神経芽細胞腫;網膜芽細胞腫;嗅覚神経原性腫瘍;悪性髄膜腫;神経線維肉腫;悪性神経鞘腫;悪性顆粒細胞腫瘍;悪性リンパ腫;ホジキン病;ホジキン;側肉芽腫;悪性小リンパ球性リンパ腫;悪性びまん性大細胞型リンパ腫;悪性濾胞性リンパ腫;菌状息肉症;他の特定の非ホジキンリンパ腫;悪性組織球症;多発性骨髄腫;マスト細胞肉腫;免疫増殖性小腸疾患;白血病;リンパ性白血病;形質細胞白血病;赤白血病;リンパ肉腫細胞白血病;骨髄性白血病;好塩基球性白血病;好酸球性白血病;単球性白血病;マスト細胞白血病;巨核芽球性白血病;顆粒球肉腫;および有毛細胞白血病でありうる。
【0234】
本開示の抗体は、例えば、がん、自己免疫、移植拒絶反応、外傷後の免疫応答、移植片対宿主病、虚血、脳卒中、および感染症の処置のために、例えば、HIVのgp120などのウイルス抗原を標的とすることにより、それ自体または医薬組成物の形態で、対象に投与することができる。
6.11.さらなる態様および実施形態
【0235】
他の態様および実施形態を、番号を付した以下の項目で示す。
1.VH−CH3で構成される重鎖(HC)およびVL−CH3−CH2−CH3を含む軽鎖(LC)を含むドメイン交換抗体であって、HCのVH−CH3は、LCのVL−CH3と二量体化して、CH3LC/CH3HCドメイン対を含む第1のドメイン交換LC/HC二量体を形成する、ドメイン交換抗体。
2.軽鎖はVL−CH3(ノブ)−CH2−CH3としてさらに定義され、重鎖はVH−CH3(ホール)としてさらに定義される、項目1に記載の抗体。
3.軽鎖はVL−CH3(ホール)−CH2−CH3としてさらに定義され、重鎖はVH−CH3(ノブ)としてさらに定義される、項目1に記載の抗体。
4.軽鎖が、第2のLC/HC二量体をさらに含み、ここで軽鎖はVL−CH3−CH2−CH3−VX1−CHXとしてさらに定義され、軽鎖はVX2−CHX2とさらに二量体化している、項目1〜3のいずれかに記載の抗体。
5.VX1が第2のVH領域であり、VX2が第2のVL領域である、項目4に記載の抗体。
6.VX1が第2のVL領域であり、VX2が第2のVH領域である、項目4に記載の抗体。
7.CHXおよびCHX2が、CH3/CH3二量体を形成する、項目4〜6のいずれかに記載の抗体。
8.CHXおよびCHX2が、CH1/CL二量体を形成する、項目4〜6のいずれかに記載の抗体。
9.軽鎖が、VL−CH3−CH2−CH3−VH1−CH1としてさらに定義され、VX2−CHX2がVL1−CLである、項目4に記載の抗体。
10.抗体が、2つの軽鎖を含み、第1の軽鎖がVL−CH3−CH2−CH3−VH1−CH1としてさらに定義され、第2の軽鎖がVL−CH3−CH2−CH3−VL1−CLとしてさらに定義され、VH1−CH1がVL1−CLと二量体化している、項目1〜3のいずれかに記載の抗体。
11.抗体が、2つの軽鎖を含み、第1の軽鎖がVL−CH3−CH2−CH3−VH1−CH3としてさらに定義され、第2の軽鎖がVL−CH3−CH2−CH3−VL1−CH3としてさらに定義され、VH1−CH3がVL1−CH3と二量体化している、項目1〜3のいずれかに記載の抗体。
12.VL1−CH3が、VL1−CH3(ノブ)としてさらに定義され、VH1−CH3が、VH1−CH3(ホール)としてさらに定義される、項目11に記載の抗体。
13.重鎖が、第2のLC/HC二量体をさらに含み、重鎖がVX1−CHX−VH−CH3としてさらに定義され、重鎖がVX2−CHX2とさらに二量体化している、項目1〜3のいずれかに記載の抗体。
14.VX1が第2のVH領域であり、VX2が第2のVL領域である、項目13に記載の抗体。
15.VX1が第2のVL領域であり、VX2が第2のVH領域である、項目13に記載の抗体。
16.CHXおよびCHX2が、CH3/CH3二量体を形成する、項目13〜15のいずれかに記載の抗体。
17.CHXおよびCHX2が、CH1/CL二量体を形成する、項目13〜15のいずれかに記載の抗体。
18.重鎖が、VH1−CH1−VH−CH3としてさらに定義され、VX2−CHX2がVL1−CLである、項目4に記載の抗体。
19.第1のLC/HC二量体が、第1のエピトープを認識する第1の結合部位を含み、第2のLC/HC二量体が、第1のエピトープと異なるかまたは異なる抗原に由来する第2のエピトープを認識する第2の結合部位を含み、ここで第1のLC/HC二量体または第2のLC/HC二量体のいずれかはドメイン交換されている、項目4〜18のいずれかに記載の抗体。
20.2つの第1のLC/HC二量体と単一の第2のLC/HC二量体とを含む二重特異性抗体である、項目19に記載の抗体。
21.2つの第1のLC/HC二量体と2つの第2のLC/HC二量体とを含む二重特異性抗体である、項目19に記載の抗体。
22.HCまたはLCが、下記の表Aに示す変異を含む、項目1〜21のいずれかに記載の抗体。
【表A】
23.IgG抗体である、項目1〜22のいずれかに記載の抗体。
24.LCが、VL−CH3−CH2−CH3からなり、任意選択で1つまたは複数のリンカー/ジャンクションまたはヒンジ領域をさらに含む、項目1〜23のいずれかに記載の抗体。
25.第1のLC/HC二量体が、CH3(ノブ)/CH3(ホール)二量体、CH3Hc/CH3Hc二量体によって特徴付けられるか、またはCH3LC/CH3HCドメインのコグネート対を生ずることができる操作されたCH3ドメインを含んでおり;軽鎖が、CH2−CH3を含むFc鎖とさらに二量体化され、それによってFc領域を形成する、項目1〜24のいずれかに記載の抗体。
26.軽鎖が、CH2−CH3を含むFc鎖とさらに二量体化され、それによってFc領域を形成し;Fc領域が、CH3(ノブ)/CH3(ホール)二量体、CH3Hc/CH3Hc二量体によって特徴付けられるか、またはCH3LC/CH3HCドメインのコグネート対を生ずることができる操作されたCH3ドメインを含んでいる、項目1〜25のいずれかに記載の抗体。
27.操作されたCH3ドメインが、ヒトIgG1のCH3のアミノ酸配列またはヒトIgG1のCH3に対して少なくとも80%の配列同一性を有するその機能的バリアントを含み、操作されたCH3ドメインは、以下:
a)1つもしくは複数のノブもしくはホール変異、好ましくはT366Y/Y407T、F405A/T394’W、T366Y:F405A/T394’W:Y407T、T366W/Y407’AおよびS354C:T366W/Y349’C:T366’S:L368’A:Y407Vのいずれかのノブもしくはホール変異;
b)他のコグネートCH3ドメインのシステイン残基と共有結合的に連結し、それによりドメイン間ジスルフィド架橋を導入し、好ましくは両方のCH3ドメインのC末端を連結する、システイン残基;
c)ヒトIgAおよびIgG CH3配列の交互のセグメントで構成されるSEED CH3ヘテロ二量体;および/または
d)反発する電荷がヘテロ二量体形成を抑制する1つもしくは複数の変異、好ましくは、K409D/D399、K409D/D399’R、K409E/D399、K409E/D399’R、K409D:K392D/D399’K:E356’KもしくはK409D:K392D:K370D/D399’K:E356’K:E357’Kのいずれかである1つもしくは複数の変異;および/または
e)ヘテロ二量体形成および/もしくは熱安定性のために選択された1つもしくは複数の変異、好ましくは、T350V:L351Y:F405A:Y407V/T350V:T366L:K392L:T394W、T350V:L351Y:F405A:Y407V/T350V:T366L:K392M:T394W、L351Y:F405A:Y407V/T366L:K392M:T394W、F405A:Y407V/T366L:K392M:T394W、もしくはF405A:Y407V/T366L:T394Wのいずれかである1つもしくは複数の変異
の1つまたは複数を含み、ここでナンバリングはEuインデックスに従う、項目25〜26のいずれかに記載の抗体。
28.VHまたはVLドメインのいずれかとCH3ドメインとの間のジャンクションがアミノ酸配列を含み、ここでアミノ酸配列は、
a)ヒトIgG抗体のCH2ドメインとCH3ドメインとの間のジャンクションの少なくとも一部であるか、および/または
b)ヒトIgG抗体のVLドメインとCLドメインとの間のジャンクションの少なくとも一部であるか;および/または
c)ヒトIgG抗体のVHドメインとCH1ドメインとの間のジャンクションの少なくとも一部であるか;および/または
d)5〜20アミノ酸長、好ましくは8〜15アミノ酸長を有する人工連結配列である、項目1〜25のいずれかに記載の抗体。
29. a)CH2および/もしくはCH3ドメインのいずれかに位置するFcガンマ受容体結合部位および/もしくはC1q結合部位を含むエフェクター機能競合抗体;
b)Fcガンマ受容体および/もしくはC1qへの結合が欠損しているFc領域を含むエフェクター陰性抗体
であるか、または
c)CH2および/もしくはCH3ドメインのいずれかに位置するpH依存性FcRn結合部位を含む、項目1〜28のいずれか一項に記載の抗体。
30.抗体が、標的を認識する結合部位を組み込んだ一対の重鎖および軽鎖を含む一価の結合部位によって第1の標的を特異的に認識し、ここで軽鎖は、定常領域で構成される別の軽鎖に結合され、それによってFc領域を形成する、項目1〜29のいずれかに記載の抗体。
31.抗体が、第2の標的を特異的に認識する二重特異性抗体であり、ここで第1の標的はTNF−α、CD3、CD16、CD47またはPD−1であり、第2の標的はEGFR、ROR1またはHER2、HER3、Lag−3である、項目30に記載の抗体。
32.抗体の定常ドメインが、ヒト起源であるか、ヒト化されたものであるか、または各ヒトIgG1抗体ドメインに対して少なくとも80%の配列同一性を有するその機能的に活性なバリアントである、項目1〜31のいずれかに記載の抗体。
33.項目1〜32のいずれかに記載の抗体をコードする、単離された核酸。
【実施例】
【0236】
6.12.実施例
以下の実施例は、例示として提供されるものであり、限定するものではない。
6.12.1.
(実施例1)
二価単一特異性構築物および二価の二重特異性構築物
【0237】
TNFaを認識する二価単一特異性B−Bodyを、標準的な分子生物学的手法を使用して、以下の構成(VL(セルトリズマブ)−CH3(ノブ)−CH2−CH3/VH(セルトリズマブ)−CH3(ホール))で構築した。この構築物において、
第1のポリペプチド鎖(配列番号1)
ドメインA=VL(セルトリズマブ)
ドメインB=CH3(IgG1)(ノブ:S354C+T366W)
ドメインD=CH2(IgG1)
ドメインE=CH3(IgG1)
第2のポリペプチド鎖(配列番号2)
ドメインF=VH(セルトリズマブ)
ドメインG=CH3(IgG1)(ホール:Y349C、T366S、L368A、Y407V)
第3のポリペプチド鎖:
第1のポリペプチド鎖と同一
第4のポリペプチド鎖:
第2のポリペプチド鎖と同一。
【0238】
ドメインおよびポリペプチド鎖の参照は、
図3に従う。構築物の全体の構成を
図4に示す。「(VL)」と略記して特定されているドメインAを有する第1のポリペプチド鎖の配列は、配列番号1で提供される。「(VH)」と略記して特定されているドメインFを有する第2のポリペプチド鎖の配列は、配列番号2で提供される。
【0239】
全長構築物を、E.coli無細胞タンパク質合成発現系で、約18時間、26℃で穏やかに撹拌しながら発現させた。発現後、無細胞抽出物を遠心分離して、不溶性物質をペレット化し、上清を、10×カイネティックバッファー(Forte Bio)で2倍希釈して、バイオレイヤー干渉のための検体として使用した。
【0240】
ビオチン化TNFαを、ストレプトアビジンセンサーに固定化し、約1.5nmのウェーブシフト応答に付した。10×カイネティックバッファーでベースラインを確立した後、センサーを、抗体構築物検体溶液中に浸漬した。構築物は、セルトリズマブの従来のIgGフォーマットに匹敵する約3nmの応答を与え、機能性の全長抗体へと組み立てられる二価単一特異性構築物の能力を実証した。結果を
図5に示す。
【0241】
本発明者らはまた、以下のドメイン構成を有する二価の二重特異性抗体を構築した:
第1のポリペプチド鎖:VL−CH3−CH2−CH3(ノブ)
第2のポリペプチド鎖:VH−CH3
第3のポリペプチド鎖:VL−CL−CH2−CH3(ホール)
第4のポリペプチド鎖 VH−CH1。
【0242】
配列(可変領域配列を除く)を、配列番号3(第1のポリペプチド鎖)、配列番号4(第2のポリペプチド鎖)、配列番号5(第3のポリペプチド鎖)、配列番号6(第4のポリペプチド鎖)でそれぞれ示す。
6.12.2.
(実施例2)
二価の二重特異性B−Body「BC1」
【0243】
本発明者らは、PD1および第2の抗原「抗原A」に特異的な「BC1」と称する二価の二重特異性構築物を構築した。「BC1」構成の顕著な特徴を、
図6に示す。
【0244】
さらに詳細に、
図3に従ってドメインおよびポリペプチド鎖の参照を示し、天然の配列からの改変を括弧内に示すと、構成は、以下の通りであった:
第1のポリペプチド鎖(配列番号8)
ドメインA=VL(「抗原A」)
ドメインB=CH3(T366K;445K、446S、447Cトリペプチド挿入物)
ドメインD=CH2
ドメインE=CH3(T366W、S354C)
第2のポリペプチド鎖(配列番号9):
ドメインF=VH(「抗原A」)
ドメインG=CH3(L351D;445G、446E、447Cトリペプチド挿入物)
第3のポリペプチド鎖(配列番号10):
ドメインH=VL(「Nivo」)
ドメインI=CL(カッパ)
ドメインJ=CH2
ドメインK=CH3(Y349C、D356E、L358M、T366S、L368A、Y407V)
第4のポリペプチド鎖(配列番号11):
ドメインL=VH(「Nivo」)
ドメインM=CH1。
【0245】
Aドメイン(配列番号12)およびFドメイン(配列番号16)は、「抗原A」に特異的な抗原結合部位(A:F)を形成する。Hドメインは、ニボルマブ由来のVH配列を有し、Lドメインは、ニボルマブ由来のVL配列を有し;HおよびLは会合して、ヒトPD1に特異的な抗原結合部位(H:L)を形成する。
【0246】
Bドメイン(配列番号13)は、いくつかの変異、つまりT366K、445K、446Sおよび447C挿入物を有するヒトIgG1 CH3の配列を有する。T366K変異は、ドメインGにおけるL351D残基の電荷対コグネートである。ドメインBにおける「447C」残基は、C末端KSCトリペプチド挿入物に由来するものである。
【0247】
ドメインD(配列番号14)は、ヒトIgG1 CH2の配列を有する。
【0248】
ドメインE(配列番号15)は、変異T366WおよびS354Cを有するヒトIgG1 CH3の配列を有する。366Wは、「ノブ」変異である。354Cは、ドメインKにおけるコグネート349C変異とジスルフィド結合を形成することができるシステインを導入する。
【0249】
ドメインG(配列番号17)は、以下の変異:L351D、および445G、446E、447Cトリペプチド挿入物を有する、ヒトIgG1 CH3の配列を有する。L351D変異は、ドメインB T366K変異に対する電荷対コグネートを導入する。ドメインGの「447C」残基は、C末端GECトリペプチド挿入物に由来する。
【0250】
ドメインI(配列番号19)は、ヒトCカッパ軽鎖(Cκ)の配列を有する。
【0251】
ドメインJ[配列番号20]は、ヒトIgG1 CH2ドメインの配列を有し、ドメインDの配列と同一である。
【0252】
ドメインK[配列番号21]は、以下の変化:Y349C、D356E、L358M、T366S、L368A、Y407Vを有するヒトIgG1 CH3の配列を有する。349C変異は、ドメインEのコグネート354C変異とジスルフィド結合を形成することができるシステインを導入する。356EおよびL358Mは、免疫原性を減少させるイソアロタイプアミノ酸を導入する。366S、368Aおよび407Vは、「ホール」変異である。
【0253】
ドメインM[配列番号23]は、ヒトIgG1 CH1領域の配列を有する。
【0254】
「BC1」は、哺乳動物発現を使用して100μg/mlを超える濃度で、高レベルで容易に発現することができる。
【0255】
本発明者らは、二価の二重特異性「BC1」タンパク質が、ThermoFisherからのCH1特異的CaptureSelect(商標)親和性樹脂を使用して単一ステップで容易に精製することができることを見出した。
【0256】
図7Aに示すように、SEC解析は、単一ステップのCH1親和性精製ステップにより、ゲル濾過を介して、>98%がモノマーである単一の単分散ピークが得られることを実証する。
図7Bは、CrossMab二価抗体構築物のSEC解析の比較文献データを示す。
【0257】
図8Aは、CaptureSelect(商標)CH1親和性樹脂を使用してワンステップ精製した後の「BC1」の陽イオン交換クロマトグラフィ溶出プロファイルであって、単一のタイトなピークが示されている。
図8Bは、標準的なプロテインA精製を使用して精製した後の「BC1」の陽イオン交換クロマトグラフィ溶出プロファイルであり、不完全な組み立て産物の同時精製と一致する追加的な溶出ピークを示す。
【0258】
図9は、非還元条件下のSDS−PAGEゲルを示す。レーン3でみられるように、CH1親和性樹脂を用いた「BC1」の単一ステップの精製により、ほぼ均一な単一バンドが得られる。レーン4は、続いて陽イオン交換仕上げ工程で最小の追加的な精製を行ったものを示す。レーン7は、比較による、標準的なプロテインA精製を使用した軽度の精製を示し、レーン8〜10は、陽イオン交換クロマトグラフィを使用した、プロテインA精製物質のさらなる精製を示す。
【0259】
図10は、非還元および還元条件下の両方での単一ステップのCH1−親和性精製後の「BC1」のSDS−PAGEゲル(パネルA)を、参照文献で公開されている非還元および還元条件下のCrossMab二重特異性抗体のSDS−PAGEゲル(パネルB)と比較した図である。
【0260】
図11は、還元条件下の2つの別個の重鎖(
図11A)、および2つの別個の軽鎖(
図11B)を実証する「BC1」の質量分析の解析を示す。
図12における質量分析データは、精製後の不完全対形成の非存在を確認する。
【0261】
加速安定性試験を実行して、「BC1」B−Body設計の長期安定性を評価した。精製されたB−BodyをPBSバッファー中8.6mg/mlに濃縮して40℃でインキュベートした。構造的完全性をShodex KW−803カラムを備えた分析的サイズ排除クロマトグラフィ(SEC)を使用して毎週測定した。構造的完全性を、凝集物の形成と関連させて、無傷のモノマーのパーセンテージ(%モノマー)を測定することによって決定した。データを
図13に示す。IgG対照1は、良好な安定性特性を有する陽性対照である。IgG対照2は、インキュベーション条件下で凝集することが公知の陰性対照である。「BC1」B−Bodyは、分析的SECで決定されるように、構造的完全性を何ら失うことなく、8週間、インキュベートされた。
【0262】
また、二価構築物のTMは約72℃であり、本発明者らは、「BC1」が高い耐熱性を有すると決定した。
【0263】
表1は、重要な開発性特徴について、「BC1」とCrossMabとを比較する。
【表1】
6.12.3.
(実施例3)
二価の二重特異性B−Body「BC6」
【0264】
本発明者らは、「BC6」と称する二価の二重特異性B−Bodyを構築した。「BC6」は、「BC1」と同様であるが、ドメインBの残基366およびドメインGの残基351で野生型残基を保持していることを除いてBC1と同一であった。したがって「BC6」は、「BC1」のドメインBとドメインGにおける正しい対形成を容易にするように設計された電荷対コグネートT366KおよびL351Dを欠く。「BC6」構成の顕著な特徴を
図14に示す。
【0265】
「BC1」に存在する電荷対残基の非存在にもかかわらず、CH1親和性樹脂を使用した「BC6」の単一ステップの精製は、高度に均質な試料をもたらすことが分かった。
図15Aは、CaptureSelect(商標)CH1親和性樹脂を使用したワンステップ精製後の「BC6」のSEC解析を示す。データは、単一のステップCH1親和性精製によって、「BC1」での観察と同様に、単一の単分散ピークが得られることを実証し、ポリペプチド鎖1とポリペプチド鎖2との間およびポリペプチド鎖3とポリペプチド鎖4との間のジスルフィド結合が無傷のままであることを実証する。またクロマトグラムは、非共有結合性の凝集物が存在しないことも示す。
【0266】
図15Bは、非還元条件下のSDS−PAGEゲルを示し、レーン1は単一ステップのCH1親和性精製後の「BC6」の第1のロットをローディングしたものであり、レーン2は、単一ステップのCH1親和性精製後の「BC6」の第2のロットをローディングしたものである。レーン3および4は、CH1親和性精製に続けてイオン交換クロマトグラフィを用いて達成しうるさらなる精製を実証する。
6.12.4.
(実施例4)
二価の二重特異性B−Body「BC28」、「BC29」、「BC30」、「BC31」
【0267】
本発明者らは、ドメインBおよびGのCH3境界内の操作されたジスルフィドを「BC1」および「BC6」に存在するC末端ジスルフィドに対する代替的S−S連結として有する二価1×1二重特異性B−Body「BC28」、「BC29」、「BC30」および「BC31」を構築した。文献は、CH3境界のジスルフィド結合が、Fc CH3ドメインの状況で直交性を行使するには不十分であることを示している。これらのB−Body構築物の全体の構成を
図16に概略化し、「BC28」の顕著な特徴を下記に示す:
ポリペプチド鎖1:「BC28」鎖1(配列番号24)
ドメインA=VL(抗原「A」)
ドメインB=CH3(Y349C;445P、446G、447K挿入物)
ドメインD=CH2
ドメインE=CH3(S354C、K366W)
ポリペプチド鎖2:「BC28」鎖2(配列番号25)
ドメインF=VH(抗原「A」)
ドメインG=CH3(S354C;445P、446G、447K挿入物)
ポリペプチド鎖3:「BC1」鎖3(配列番号10)
ドメインH=VL(「Nivo」)
ドメインI=CL(カッパ)
ドメインJ=CH2
ドメインK=CH3(Y349C、D356E、L358M、T366S、L368A、Y407V)
ポリペプチド鎖4:「BC1」鎖4(配列番号11)
ドメインL=VH(「Nivo」)
ドメインM=CH1。
【0268】
「BC28」A:F抗原結合部位は、「抗原A」に特異的である。「BC28」H:L抗原結合部位は、PD1(ニボルマブ配列)に特異的である。「BC28」ドメインBは、野生型CH3と比較して以下の変化:Y349C;445P、446G、447K挿入物を有する。「BC28」ドメインEは、野生型CH3と比較して以下の変化:S354C、K366Wを有する。「BC28」ドメインGは、野生型と比較して以下の変化:S354C;445P、446G、447K挿入物を有する。
【0269】
したがって、「BC28」は、ドメインBの残基349Cに操作されたシステイン、およびドメインGの残基354Cに操作されたシステインを有する(「349C−354C」)。
【0270】
「BC29」は、ドメインBの残基351CおよびドメインGの351Cに、操作されたシステインを有する(「351C−351C」)。「BC30」は、ドメインBの残基354CおよびドメインGの349Cに操作されたシステインを有する(「354C−349C」)。BC31は、残基394Cに操作されたシステイン、およびドメインGの394Cに操作されたシステイン(「394C−394C」)を有する。BC32は、ドメインBの残基407CおよびドメインGの407Cに操作されたシステインを有する(「407C−407C」)。
【0271】
図17は、CaptureSelect(商標)CH1親和性樹脂を使用してワンステップ精製した後の非還元条件下でのSDS−PAGE解析を示す。レーン1および3は、無傷の「BC28」(レーン1)および「BC30」(レーン3)の高レベルの発現および実質的な均一性を示す。レーン2は、BC29のオリゴマー化を示す。レーン4および5は、BC31およびBC32の乏しい発現をそれぞれ示し、BC32の連結が不十分であることを示す。別の構築物BC9(Genentechによって報告された、ドメインBの残基392およびドメインGの399に導入されたシステインを有し(「392C−399C」)、ジスルフィド対を形成する構築物)は、SDS PAGEでオリゴマー化を示した(データは示さず)。
【0272】
図18は、CaptureSelect(商標)CH1親和性樹脂を使用したワンステップ精製後の「BC28」および「BC30」のSEC解析を示す。さらに本発明者らは、「BC28」が、プロテインA樹脂を使用した単一ステップの精製を使用して容易に精製することができることを実証した(結果は示さず)。
6.12.5.
(実施例5)
二価の二重特異性B−Body「BC44」
【0273】
図19は、本発明者らの現行の好ましい二価の二重特異性1×1構築物である二価の二重特異性1×1B−Body「BC44」の一般的構成を示す。
第1のポリペプチド鎖(「BC44」鎖1)(配列番号32)
ドメインA=VL(抗原「A」)
ドメインB=CH3(P343V;Y349C;445P、446G、447K挿入物)
ドメインE=CH2
ドメインE=CH3(S354C、K366W)
第2のポリペプチド鎖(=「BC28」ポリペプチド鎖2)(配列番号25)
ドメインF=VH(抗原「A」)
ドメインG=CH3(S354C;445P、446G、447K挿入物)
第3のポリペプチド鎖(=「BC1」ポリペプチド鎖3)(配列番号10)
ドメインH=VL(「Nivo」)
ドメインI=CL(カッパ)
ドメインJ=CH2
ドメインK=CH3(Y349C、D356E、L358M、T366S、L368A、Y407V)
第4のポリペプチド鎖(=「BC1」ポリペプチド鎖4)(配列番号11)
ドメインL=VH(「Nivo」)
ドメインM=CH1
6.12.6.
(実施例6)
可変−CH3ジャンクション操作
【0274】
本発明者らは、ドメインAとBとの間のVL−CH3ジャンクション、ならびにドメインFとGとの間のVH−CH3ジャンクションを変異させた一連のバリアントを作製し、二価1×1 B−Body構築物の発現レベル、組み立て、および安定性を評価した。多くの解決策がありうるが、本発明者らは、T細胞エピトープの導入を減少させるために、VL、VHおよびCH3ドメイン内で天然に見出される残基のみを使用することを選択した。ドメイン構成の構造的評価は、好ましい配列組合せをさらに限定する。下記表2および表3は、「BC1」および他の二価構築物に基づくいくつかのジャンクションバリアントについてのジャンクションを示す。
【表2】
【表3】
【0275】
図20は、40℃での加速安定性試験プロトコールにおける示された週数での「BC15」および「BC16」試料のサイズ排除クロマトグラフィを示す。「BC15」は安定なままであった;「BC16」は、経時的に不安定となることが分かった。
6.12.7.
(実施例7)
三価2×1二重特異性B−Body構築物(「BC1−2×1」)
【0276】
本発明者らは、「BC1」に基づいて三価2×1二重特異性B−Body「BC1−2×1」を構築した。構成の顕著な特徴を
図22に示す。
【0277】
より詳細には、
図21に要約されているドメインおよびポリペプチド鎖の参照を使用して、
第1のポリペプチド鎖
ドメインN=VL(「抗原A」)
ドメインO=CH3(T366K、447C)
ドメインA=VL(「抗原A」)
ドメインB=CH3(T366K、477C)
ドメインD=CH2
ドメインE=CH3(ノブ、354C)
第5のポリペプチド鎖(=「BC1」鎖2)
ドメインP=VH(「抗原A」)
ドメインQ=CH3(L351D、447C)
第2のポリペプチド鎖(=「BC1」鎖2)
ドメインF=VH(「抗原A」)
ドメインG=CH3(L351D、447C)
第3のポリペプチド鎖(=「BC1」鎖3)
ドメインH=VL(「Nivo」)
ドメインI=CL(カッパ)
ドメインJ=CH2
ドメインK=CH3(ホール、349C)
第4のポリペプチド鎖(=「BC1」鎖4)
ドメインL=VH(「Nivo」)
ドメインM=CH1
【0278】
図23は、ThermoFisher Expi293一過性トランスフェクション系を使用して発現されたタンパク質の非還元SDS−PAGEを示す。
【0279】
レーン1は、CaptureSelect(商標)CH1親和性樹脂を使用してワンステップ精製した後の三価2×1「BC1−2×1」タンパク質の溶離液を示す。レーン2は、CaptureSelect(商標)CH1親和性樹脂を使用してワンステップ精製した後の、より分子量が低く、移動が速い、二価「BC1」タンパク質を示す。レーン3〜5は、プロテインAを使用した「BC1−2×1」の精製を示す。レーン6および7は、CH1親和性樹脂を使用した「BC1−2×1」の精製を示す。
【0280】
図24は、Octet(Pall ForteBio)解析を使用して、二価「BC1」構築物のアビディティを、三価2×1「BC1−2×1」構築物のアビディティと比較したものである。ビオチン化抗原「A」を表面に固定化し、その表面上を、結合解析のために、抗体構築物に通過させる。
6.12.8.
(実施例8)
三価2×1三重特異性B−Body構築物(「TB111」)
【0281】
本発明者らは、
図25に概略化された構成を有する三価2×1三重特異性分子「TB111」を設計した。
図21に示すドメイン命名規則を参照して、TB111は、以下の構成を有する(「Ada」は、アダリムマブ由来のV領域を示す):
ポリペプチド鎖1
ドメインN:VH(「Ada」)
ドメインO:CH3(T366K、394C)
ドメインA:VL(「抗原A」)
ドメインB:CH3(T366K、349C)
ドメインD:CH2
ドメインE:CH3(ノブ、354C)
ポリペプチド鎖5
ドメインP:VL(「Ada」)
ドメインQ:CH3(L351D、394C)
ポリペプチド鎖2
ドメインF:VH(「抗原A」)
ドメインG:CH3(L351D、351C)
ポリペプチド鎖3
ドメインH:VL(「Nivo」)
ドメインI:CL(カッパ)
ドメインJ:CH2
ドメインK:CH3(ホール、349C)
ポリペプチド鎖4(=「BC1」鎖4)
ドメインL:VH(「Nivo」)
ドメインM:CH1
この構築物は、発現しなかった。
6.12.9.
(実施例9)
三価1×2二重特異性構築物(「BC28−1×2」)
【0282】
本発明者らは、以下のドメイン構造を有する三価1×2二重特異性B−Bodyを構築した:
第1のポリペプチド鎖(=「BC28」鎖1)(配列番号24)
ドメインA=VL(抗原「A」)
ドメインB=CH3(Y349C;445P、446G、447K挿入物)
ドメインD=CH2
ドメインE=CH3(S354C、K366W)
第2のポリペプチド鎖(=「BC28」鎖2)(配列番号25)
ドメインF=VH(抗原「A」)
ドメインG=CH3(S354C;445P、446G、447K挿入物)
第3のポリペプチド鎖(配列番号37)
ドメインR=VL(抗原「A」)
ドメインS=CH3(Y349C;445P、446G、447K挿入物)
リンカー=GSGSGS
ドメインH=VL(「Nivo」)
ドメインI=CL
ドメインJ=CH2
ドメインK=CH3(Y349C、D356E、L358M、T366S、L368A、Y407V)
第4のポリペプチド鎖(=「BC1」鎖4)(配列番号11):
ドメインL=VH(「Nivo」)
ドメインM=CH1。
第6のポリペプチド鎖(=「BC28」鎖2)(配列番号25)
ドメインT=VH(抗原「A」)
ドメインU=CH3(S354C;445P、446G、447K挿入物)
【0283】
H:L結合抗原結合部位と同様に、A:F抗原結合部位は「抗原A」に特異的である。R:T抗原結合部位は、PDに対して特異的である。この構築物の特異性は、したがって抗原「A」×(PD1−抗原「A」)である。
6.12.10.
(実施例10)
三価1×2二重特異性構築物(「CTLA4−4×Nivo×CTLA4−4」)
【0284】
本発明者らは、
図27に概略化した一般構造を有する、三価1×2二重特異性分子(「CTLA4−4×Nivo×CTLA4−4」)を構築した。ドメインの命名法を
図26に示す。
【0285】
図28は、SDS−PAGEゲルであり、ここで非還元および還元条件下の「CTLA4−4×Nivo×CTLA4−4」構築物を示すレーンを枠で囲っている。
【0286】
図29は、2つの抗体「CTLA4−4×OX40−8」および「CTLA4−4×Nivo×CTLA4−4」の抗原結合を比較している。「CTLA4−4×OX40−8」は、CTLA4に一価的に結合する一方、「CTLA4−4×Nivo×CTLA4−4」は、CTLA4に二価的に結合する。
6.12.11.
(実施例11)
三価1×2三重特異性構築物「BC28−1×1×1a」
【0287】
本発明者らは、
図30に概略化した一般構造を有する三価1×2三重特異性分子を構築した。
図26に示すドメインの命名法を参照して、
第1のポリペプチド鎖(=「BC28」鎖1)[配列番号24]
ドメインA=VL(抗原「A」)
ドメインB=CH3(Y349C;445P、446G、447K挿入物)
ドメインD=CH2
ドメインE=CH3(S354C、K366W)
第2のポリペプチド鎖(=「BC28」鎖2)(配列番号25)
ドメインF=VH(抗原「A」)
ドメインG=CH3(S354C;445P、446G、447K挿入物)
第3のポリペプチド鎖(配列番号45)
ドメインR=VL(CTLA4−4)
ドメインS=CH3(T366K;445K、446S、447C挿入物)
リンカー=GSGSGS
ドメインH=VL(「Nivo」)
ドメインI=CL
ドメインJ=CH2
ドメインK=CH3(Y349C、D356E、L358M、T366S、L368A、Y407V)
第4のポリペプチド鎖(=「BC1」鎖4)(配列番号11)
ドメインL=VH(「Nivo」)
ドメインM=CH1。
第6のポリペプチド鎖(=hCTLA4−4鎖2)(配列番号53)
ドメインT=VH(CTLA4)
ドメインU=CH3(L351D、445G、446E、447C挿入物)
【0288】
この三重特異性構築物の抗原結合部位は、以下の通りであった:
抗原結合部位A:Fは、「抗原A」に特異的であった;
抗原結合部位H:Lは、PD1(ニボルマブ配列)に特異的であった;
抗原結合部位R:Tは、CTLA4に特異的であった。
【0289】
図31は、単一の明確に確定されるピークを示す、一過性発現およびCaptureSelect(商標)CH1親和性樹脂を使用してワンステップ精製した後の「BC28−1×1×1a」のサイズ排除クロマトグラフィを示す。
6.12.12.
(実施例12)
二価および三価構築物のSDS−PAGE解析
【0290】
図32は、それぞれ一過性発現およびCaptureSelect(商標)CH1親和性樹脂を使用してワンステップ精製した後の様々な構築物の、非還元および還元条件下でのSDS−PAGEゲルを示す。
【0291】
レーン1(非還元条件)およびレーン2(還元条件、+DTT)は、二価1×1二重特異性構築物「BC1」である。レーン3(非還元)およびレーン4(還元)は、三価の二重特異性2×1構築物「BC1−2×1」である(実施例7参照)。レーン5(非還元)およびレーン6(還元)は、三価1×2二重特異性構築物「CTLA4−4×Nivo×CTLA4−4」である(実施例10参照)。レーン7(非還元)およびレーン8(還元)は、実施例11に記載の三価1×2三重特異性「BC28−1×1×1a」構築物である。
【0292】
SDS−PAGEゲルは、各構築物の完全なアセンブリを実証しており、各構築物について、非還元ゲルの主要なバンドが、予測される分子量で示されている。
6.12.13.
(実施例13)
結合解析
【0293】
図33は、3つの抗原:PD1、抗原「A」およびCTLA−4へのOctet結合解析を示す。それぞれの場合において、抗原が固定化され、B−Bodyが検体である。参照のために、1×1二重特異性の「BC1」と「CTLA4−4×OX40−8」も比較すると、1×1 B−Bodyが、抗原結合部位が選択される抗原のみに特異的に結合することが実証された。
【0294】
図33Aは、「BC1」がPD1および抗原「A」に結合するが、CTLA4に結合しないことを示す。
図33Bは、二価の二重特異性1×1構築物「CTLA4−4×OX40−8」がCTLA4に結合するが、抗原「A」またはPD1に結合しないことを示す。
図33Cは、三価三重特異性1×2構築物「BC28−1×1×1a」がPD1、抗原「A」およびCTLA4に結合することを示す。
6.12.14.
(実施例14)
四価構築物
【0295】
図35は、2×2四価二重特異性構築物「BC22−2×2」の全体の構成を示す。2×2四価二重特異性は、それぞれの可変ドメイン−定常ドメインセグメントを複製することによって「BC1」足場で構築した。ドメインの命名法を
図34に概略化する。
【0296】
図36は、SDS−PAGEゲルである。レーン7〜9は、CaptureSelect(商標)CH1親和性樹脂を使用してワンステップ精製した後(「CH1溶離液」)、およびさらにイオン交換クロマトグラフィ精製した後(レーン8、「IEX後のpk1」;レーン9、「IEX後のpk2」)の「BC22−2×2」四価構築物をそれぞれ示す。レーン1〜3は、CH1親和性精製した後(レーン1)、レーン2および3はさらにイオン交換クロマトグラフィした後の三価2×1構築物「BC21−2×1」である。レーン4〜6は、1×2三価構築物「BC12−1×2」である。
【0297】
図37は、2×2四価構築物全体の構成を示す。
【0298】
図39および40は、代替的な構成を有する四価構築物の概略図である。ドメインの命名法を
図38に示す。
6.12.15.
(実施例15)
B−Bodyによる二重特異性抗原係合
【0299】
四価二重特異性2×2 B−Body「B−Body−IgG 2×2」を構築した。より詳細には、
図38にまとめたドメインおよびポリペプチド鎖の参照を使用して、
第1のポリペプチド鎖
ドメインA=VL(セルトリズマブ)
ドメインB=CH3(IgG1、ノブ)
ドメインD=CH2(IgG1)
ドメインE=CH3(IgG1)
ドメインW=VH(抗原「A」)
ドメインX=CH1(IgG1)
第3のポリペプチド鎖(第1のポリペプチド鎖と同一)
ドメインH=VL(セルトリズマブ)
ドメインI=CH3(IgG1、ノブ)
ドメインJ=CH2(IgG1)
ドメインK=CH3(IgG1)
ドメインWW=VH(抗原「A」)
ドメインXX=CH1(IgG1)
第2のポリペプチド鎖
ドメインF=VH(セルトリズマブ)
ドメインG=CH3(IgG1、ホール)
第4のポリペプチド鎖(第3のポリペプチド鎖と同一)
ドメインF=VH(セルトリズマブ)
ドメインG=CH3(IgG1、ホール)
第7のポリペプチド鎖
ドメインY=VH(「抗原A」)
ドメインZ=CLカッパ
第8のポリペプチド鎖(第7のポリペプチド鎖と同一)
ドメインYY=VH(「抗原A」)
ドメインZZ=CLカッパ。
【0300】
これを、実施例1に記載されるようにクローニングし、発現させた。ここで、BLI実験は、ビオチン化抗原「A」のストレプトアビジンセンサー上への固定化、その後の10×カイネティックバッファーを用いたベースラインの確立で構成した。次いで、センサーを、無細胞発現された「B−Body−IgG 2×2」中に浸漬し、次いで、新たなベースラインを確立した。最終的に、センサーを、第2の結合事象が観察された100nM TNFαに浸漬し、単一の「B−Body−IgG 2×2」構築物による両方の抗原の二重特異性結合を確認した。結果を
図41に示す。
6.12.16.
(実施例16)
「BB−IgG 2×2」の抗原特異的細胞結合
【0301】
Expi−293細胞を、Expi−293トランスフェクションキット(Life Technologies)を使用して、mockトランスフェクトするかまたは抗原「B」で一過性トランスフェクトした。トランスフェクションの48時間後、Expi−293細胞を回収し、4%パラホルムアルデヒド中で15分間、室温で固定化した。細胞を、PBS中で2回洗浄した。200,000抗原BまたはMockトランスフェクトされたExpi−293細胞を、V底96ウェルプレート内の100uLのPBS中に入れた。細胞を、3ug/mLの濃度の「B−Body−IgG 2×2」と1.5時間、室温でインキュベートした。細胞を、300×Gで7分間遠心分離し、PBSで洗浄し、8μg/mLの濃度の100μLのFITC標識ヤギ抗ヒト第2抗体と室温で1時間インキュベートした。細胞を300×Gで7分間遠心分離し、PBSで洗浄し、細胞結合をGuava easyCyteを使用してフローサイトメトリーによって確認した。結果を
図42に示す。
6.12.17.
(実施例17)
二価および三価構築物のSDS−PAGE解析
【0302】
図45は、それぞれ一過性発現およびCaptureSelect(商標)CH1親和性樹脂を使用してワンステップ精製した後の様々な構築物の、非還元および還元条件下でのSDS−PAGEゲルを示す。
【0303】
レーン1(非還元条件)およびレーン2(還元条件、+DTT)は、二価1×1二重特異性構築物「BC1」である。レーン3(非還元)およびレーン4(還元)は、二価1×1二重特異性構築物「BC28」である(実施例4参照)。レーン5(非還元)およびレーン6(還元)は、二価1×1二重特異性構築物「BC44」である(実施例5参照)。レーン7(非還元)およびレーン8(還元)は、三価1×2二重特異性「BC28−1×2」構築物である(実施例9参照)。レーン9(非還元)およびレーン10(還元)は、実施例11に記載の三価1×2三重特異性「BC28−1×1×1a」構築物である。
【0304】
SDS−PAGEゲルは、各構築物の完全なアセンブリを実証しており、各構築物について、非還元ゲルの主要なバンドが、予測される分子量で示されている。
6.12.18.
(実施例18)
可変−CH3ジャンクション操作の安定性解析
【0305】
様々なジャンクションバリアントの組合せ間の対形成安定性を評価した。示差走査蛍光定量を行って、鎖1のVL−CH3ポリペプチド(ドメインAおよびB)と鎖2のVH−CH3ポリペプチド(ドメインFおよびG)との間の様々なジャンクションバリアント対形成の融点を決定した。ジャンクションバリアント「BC6jv」、「BC28jv」、「BC30jv」、「BC44jv」および「BC45jv」(それぞれ、上記表2および表3でみられる「BC6」、「BC28」、「BC30」、「BC44」および「BC45」の対応するジャンクション配列を有する)は、76〜77度の範囲のTmを有し、対形成安定性の増加を実証する(表4参照)。
図46は、「BC24jv」、「BC26jv」および「BC28jv」の熱転移の差異を示し、「BC28jv」が3つの中で安定性が最も大きいことを実証している。図のx軸は温度であり、y軸は温度変化で割った蛍光変化(−dFluor/dTemp)である。実験は、教示する全てについて参照により本明細書に組み込まれるNiesenら(Nature Protocols、(2007年)2巻、2212〜2221頁)に記載されているように行った。
【表4】
6.13.配列
【化1】
【化2】
【化3】
【化4】
【化5】
【化6】
【化7】
【化8】
【化9】
【化10】
【化11】
【化12】
【化13】
【化14】
他の配列:
>ヒンジ:DKTHTCPPCP[配列番号56]
>BC1−ポリペプチド1 ドメインジャンクション:IKRTPREP[配列番号57]
>BC15−ポリペプチド1 ドメインジャンクション:IKRTVREP[配列番号58]
>BC16−ポリペプチド1 ドメインジャンクション:IKRTREP[配列番号59]
>BC17−ポリペプチド1 ドメインジャンクション:IKRTVPREP[配列番号60]
>BC26−ポリペプチド1 ドメインジャンクション:IKRTVAEP[配列番号61]
>BC27−ポリペプチド1 ドメインジャンクション:IKRTVAPREP[配列番号62]
>BC1−ポリペプチド2 ドメインジャンクション:SSASPREP[配列番号63]
>BC13−ポリペプチド2 ドメインジャンクション:SSASTREP[配列番号64]
>BC14−ポリペプチド2 ドメインジャンクション:SSASTPREP[配列番号65]
>BC24−ポリペプチド2 ドメインジャンクション:SSASTKGEP[配列番号66]
>BC25−ポリペプチド2 ドメインジャンクション:SSASTKGREP[配列番号67]
7.参照による組み込み
【0306】
本出願で引用された全ての公開文献、特許、特許出願および他の文献は、あたかも個別の公開文献、特許、特許出願または他の文献が、あらゆる目的のために参照により個別に示されて組み込まれているのと同程度に、あらゆる目的のためにそれらの全体が参照によって本明細書に組み込まれる。
8.均等物
【0307】
様々な特定の実施形態を例証および記載してきたが、上記明細書は限定的なものではない。様々な変更が、本発明の趣旨および範囲から逸脱することなく行われうることが理解される。多くの変形が、本明細書を検討すると、当業者には明らかになる。