特表2019-537388(P2019-537388A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電産株式会社の特許一覧 ▶ 株式会社WGRの特許一覧

特表2019-537388導波路装置モジュール、マイクロ波モジュール
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2019-537388(P2019-537388A)
(43)【公表日】2019年12月19日
(54)【発明の名称】導波路装置モジュール、マイクロ波モジュール
(51)【国際特許分類】
   H01P 5/08 20060101AFI20191122BHJP
   H01P 3/123 20060101ALI20191122BHJP
   H01P 1/211 20060101ALI20191122BHJP
   H01P 5/107 20060101ALI20191122BHJP
【FI】
   H01P5/08 L
   H01P5/08 Z
   H01P3/123
   H01P1/211
   H01P5/107 G
【審査請求】未請求
【予備審査請求】未請求
【全頁数】77
(21)【出願番号】特願2019-529947(P2019-529947)
(86)(22)【出願日】2017年12月1日
(85)【翻訳文提出日】2019年6月3日
(86)【国際出願番号】JP2017043266
(87)【国際公開番号】WO2018105513
(87)【国際公開日】20180614
(31)【優先権主張番号】特願2016-236912(P2016-236912)
(32)【優先日】2016年12月6日
(33)【優先権主張国】JP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】000232302
【氏名又は名称】日本電産株式会社
(71)【出願人】
【識別番号】315008773
【氏名又は名称】株式会社WGR
(74)【代理人】
【識別番号】100101683
【弁理士】
【氏名又は名称】奥田 誠司
(74)【代理人】
【識別番号】100135703
【弁理士】
【氏名又は名称】岡部 英隆
(74)【代理人】
【識別番号】100188813
【弁理士】
【氏名又は名称】川喜田 徹
(72)【発明者】
【氏名】桐野 秀樹
(72)【発明者】
【氏名】加茂 宏幸
【テーマコード(参考)】
5J006
【Fターム(参考)】
5J006JB06
5J006LA02
5J006PB01
5J006PB02
(57)【要約】
マイクロ波ICから送受信アンテナに至る導波路における損失をより低減する技術を提供する。導波路装置モジュールは、導電部材と導波部材との間に形成された導波路を有する。導波部材は、幹部、および、幹部の端部から延びる第1梢部および第2梢部を含む複数の梢部を有する。第1梢部の第1位置には第1導線が接続され、第2梢部の第2位置には第2導線が接続される。導波路は、幹部の端部から第1位置までの第1導波路、および、幹部の端部から第2位置までの第2導波路を含む。第1および第2導線が、マイクロ波ICの2つの端子にそれぞれ接続され、第1および第2導波路に同じ周波数で互いに逆の位相を有する第1および第2電磁波が伝搬するとき、第1電磁波が第1導波路を伝搬する間の位相の変化量と、第2電磁波が第2導波路を伝搬する間の位相の変化量との差が180度の奇数倍±90度の範囲内に入るよう第1および第2導波路が形成される。
【特許請求の範囲】
【請求項1】
導電性表面を有する導電部材と、
前記導電性表面と対向して前記導電性表面に沿って延び、かつ、導電性の導波面を有する導波部材であって、幹部、および、前記幹部の端部から延びる第1梢部および第2梢部を含む複数の梢部 を有する導波部材と、
前記導波部材の両側の人工磁気導体と、
前記第1梢部の第1位置に接続された第1導線、および、前記第2梢部の第2位置に接続された第2導線を含む複数の導線と
を備え、
前記導電部材および前記導波部材は導波路を形成し、前記導波路は、前記幹部の前記端部から前記第1位置までの第1導波路、および、前記幹部の前記端部から前記第2位置までの第2導波路を含み、
前記第1導線および前記第2導線が、マイクロ波集積回路素子の第1および第2アンテナ入出力端子にそれぞれ接続されて、前記第1導波路および前記第2導波路に、同じ周波数で互いに逆の位相を有する第1電磁波および第2電磁波が伝搬するとき、
前記第1導波路および前記第2導波路は、前記第1電磁波が前記第1導波路を伝搬する間の位相の変化量と、前記第2電磁波が前記第2導波路を伝搬する間の位相の変化量との差が180度の奇数倍±90度の範囲内に入る関係を有する、導波路装置モジュール。
【請求項2】
前記第1導波路および前記第2導波路は、前記第1電磁波が前記第1導波路を伝搬する間の位相の変化量と、前記第2電磁波が前記第2導波路を伝搬する間の位相の変化量との差が180度の奇数倍±60度の範囲内に入る関係を有する、請求項1に記載の導波路装置モジュール。
【請求項3】
前記第1電磁波および前記第2電磁波の波長をそれぞれλgとするとき、
前記第1導波路の長さ、および、前記第2導波路の長さの差は(λg/2)の奇数倍±(λg/4)の範囲内に入る、請求項1に記載の導波路装置モジュール。
【請求項4】
前記第1電磁波および前記第2電磁波の波長をそれぞれλgとするとき、
前記第1導波路の長さ、および、前記第2導波路の長さの差は(λg/2)の奇数倍±(λg/6)の範囲内に入る、請求項1に記載の導波路装置モジュール。
【請求項5】
前記第1導波路の、前記導電部材と前記導波部材との間隔および前記導波部材の導波面の幅、前記第2導波路の、前記導電部材と前記導波部材との間隔および前記導波部材の導波面の幅、の少なくとも1つが局所的に変化する、請求項1に記載の導波路装置モジュール。
【請求項6】
前記第1導波路の長さと前記第2導波路の長さとは相違する、請求項2から4のいずれかに記載の導波路装置モジュール。
【請求項7】
前記第1導波路および前記第2導波路の一方は屈曲部を有する、請求項6に記載の導波路装置モジュール。
【請求項8】
前記第1導波路および前記第2導波路の他方は直線状である、請求項7に記載の導波路装置モジュール。
【請求項9】
前記第1梢部および前記第2梢部の各々は、前記幹部と反対側に端部を有し、前記端部はチョーク構造の一部を構成する、請求項1から8のいずれかに記載の導波路装置モジュール。
【請求項10】
前記マイクロ波集積回路素子の前記第1アンテナ入出力端子は能動的な信号が印加される信号端子であり、前記第2アンテナ入出力端子はグランド端子であり、
前記第1導線は、前記第1アンテナ入出力端子と接続され、
前記第2導線は、前記第2アンテナ入出力端子と接続される、請求項1から9のいずれかに記載の導波路装置モジュール。
【請求項11】
前記マイクロ波集積回路素子の前記第1アンテナ入出力端子は、能動的な第1信号が印加される信号端子であり、前記第2アンテナ入出力端子は、前記第1アンテナ入出力端子に印加される前記能動的な第1信号と同じ振幅を有し、かつ、極性が反転した能動的な第2信号が印加される信号端子であり、
前記第1導線は、前記第1アンテナ入出力端子と接続されて前記第1信号を伝送し、
前記第2導線は、前記第2アンテナ入出力端子と接続されて前記第2信号を伝送する、
請求項1から9のいずれかに記載の導波路装置モジュール。
【請求項12】
前記導波部材の前記複数の梢部は、前記幹部の端部から延びる第3梢部を有し、
前記複数の導線は、前記第3梢部の第3位置に接続された第3導線であって、前記マイクロ波集積回路素子の第3アンテナ入出力端子に接続される第3導線を有し、
前記導電部材および前記導波部材が形成する前記導波路は、前記幹部の前記端部から前記第3位置までの第3導波路をさらに含み、
前記第3導線が、マイクロ波集積回路素子の第3アンテナ入出力端子に接続されて、前記第3導波路に、前記第1電磁波および前記第2電磁波と同じ周波数の第3電磁波が伝搬するとき、
前記第1導波路および前記第3導波路は、前記第1電磁波が前記第1導波路を伝搬する間の位相の変化量と、前記第3電磁波が前記第3導波路を伝搬する間の位相の変化量との差が180度の奇数倍±90度の範囲内に入る関係を有し、
前記第2導波路および前記第3導波路は、前記第2電磁波が前記第2導波路を伝搬する間の位相の変化量と、前記第3電磁波が前記第3導波路を伝搬する間の位相の変化量との差が180度の偶数倍±90度の範囲内に入る関係を有する、請求項1から10のいずれかに記載の導波路装置モジュール。
【請求項13】
前記第1導波路の長さと前記第2導波路の長さとは相違し、前記第1導波路の長さと前記第3導波路の長さとは相違する、請求項12に記載の導波路装置モジュール。
【請求項14】
前記第1導波路、前記第2導波路および前記第3導波路の少なくとも1つは屈曲部を有する、請求項13に記載の導波路装置モジュール。
【請求項15】
前記第1導波路は直線状である、請求項12または13に記載の導波路装置モジュール。
【請求項16】
前記第1梢部、前記第2梢部および前記第3梢部の各々は、前記幹部と反対側に端部を有し、前記端部はチョーク構造の一部を構成する、請求項12から15のいずれかに記載の導波路装置モジュール。
【請求項17】
請求項1から11のいずれかに記載の導波路装置モジュールと、
前記第1導線および前記第2導線とそれぞれ接続される前記第1および第2アンテナ入出力端子を有する前記マイクロ波集積回路素子と
を備える、マイクロ波モジュール。
【請求項18】
前記第1のアンテナ入出力端子は信号端子であり、
前記第2のアンテナ入出力端子はグランド端子である、請求項17に記載のマイクロ波モジュール。
【請求項19】
請求項12から16のいずれかに記載の導波路装置モジュールと、
前記第1導線、前記第2導線および前記第3導線とそれぞれ接続される第1、第2および第3のアンテナ入出力端子を含む、複数の端子を有するマイクロ波集積回路素子と
を備える、マイクロ波モジュール。
【請求項20】
前記第1のアンテナ入出力端子は信号端子であり、
前記第2のアンテナ入出力端子はグランド端子であり、
前記第3のアンテナ入出力端子はグランド端子である、請求項19に記載のマイクロ波モジュール。
【請求項21】
前記複数の導線を有する基板をさらに備える請求項17から20のいずれかに記載のマイクロ波モジュール。
【請求項22】
前記基板は第1面および前記第1面と反対側の第2面を有し、前記複数の導線の各々について、一方の端部は前記第1面上に存在し、他方の端部は前記第2面上に存在する、請求項21に記載のマイクロ波モジュール。
【請求項23】
前記基板は第1面および前記第1面と反対側の第2面を有し、前記複数の導線の各々について、一方の端部および他方の端部は前記第1面上に存在する、請求項21に記載のマイクロ波モジュール。
【請求項24】
前記複数の導線の各々について、前記一方の端部と前記他方の端部との間の中間部分は、前記第2面上に現れている、請求項23に記載のマイクロ波モジュール。
【請求項25】
前記基板の、前記導波部材が配置されている側と反対側に、人工磁気導体をさらに備える、請求項21から24のいずれかに記載の導波路装置モジュール。
【請求項26】
前記導波部材、前記基板、前記マイクロ波集積回路素子、および、前記人工磁気導体が順に配置されており、
前記マイクロ波集積回路素子と、前記基板の、前記導波部材が配置されている側と反対側の人工磁気導体との間に絶縁樹脂をさらに備えた、請求項25に記載のマイクロ波モジュール。
【請求項27】
前記マイクロ波集積回路素子、および、前記導波路装置が配置されている側と反対側の人工磁気導体は前記絶縁樹脂に接触する、請求項26に記載のマイクロ波モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、人工磁気導体を利用して電磁波の導波を行う導波路装置モジュール、マイクロ波モジュール、レーダ装置およびレーダシステムに関する。
【背景技術】
【0002】
レーダシステムで用いられるマイクロ波(ミリ波を含む)は、基板に実装された集積回路(以下本明細書では「マイクロ波IC」と称する。)によって生成される。マイクロ波ICは、製法に応じて「MIC」(Microwave Integrated Circuit)、「MMIC」(Monolithic Microwave Integrated Circuit、又はMicrowave and Millimeter wave Integrated Circuit)とも呼ばれる。マイクロ波ICは、送信する信号波のもととなる電気信号を生成し、マイクロ波ICの信号端子に出力する。電気信号は、ボンディングワイヤ等の導体線、および、後述する基板上の導波路を経て、変換部に至る。変換部は、当該導波路と導波管との接続部、つまり異なる導波路の境界部に設けられる。
【0003】
変換部は高周波信号発生部を含む。「高周波信号発生部」とは、マイクロ波ICの信号端子から導線で導かれた電気信号を、導波管の直前で高周波電磁界に変換するための構成を有する部位をいう。高周波信号発生部によって変換された電磁波は導波管に導かれる。
【0004】
マイクロ波ICの信号端子から、導波管直前の高周波信号発生部に至る構造として、次の2つの構造が一般的であった。
【0005】
第一の構造は、特許文献1で例示される。即ち、マイクロ波ICに対応する高周波回路モジュール8の信号端子と高周波信号発生部に対応する給電ピン10とを可能な限り接近した状態で接続し、高周波信号発生部で変換された電磁波を導波管1にて受ける構造である。この構造では、マイクロ波ICの信号端子が伝送線路9により直接高周波信号発生部に接続される。その結果、高周波信号の減衰が小さくなる。他方、この第一の構造では、導波管をマイクロ波ICの信号端子近くまで導く必要がある。導波管は、導電性金属により構成され、導波する電磁波の波長に対応して高周波では高精細な加工が求められる。逆に低い周波数では構造が大型化するとともに、導波する方向も制限される。その結果、第一の構造では、マイクロ波ICおよびその実装基板によって形成される処理回路が大きくなるという課題があった。
【0006】
一方、第二の構造は、特許文献2で例示される。即ち、ミリ波ICの信号端子を、マイクロストリップライン(Micro Strip Line、以下本明細書では「MSL」と略記することがある。)と呼ばれる伝送路を経由して、基板上に形成されたMSL高周波信号発生部に導き、これに導波管を接続する構造である。MSLは、基板表面にある細帯状の導体と基板裏面にある導体層とによって構成され、表面導体と裏面導体との間に生じる電界と、表面導体周囲を囲む磁界とによる電磁波を伝搬させる導波路をいう。
【0007】
第二の構造では、マイクロ波ICの信号端子と、導波管に繋がる高周波信号発生部との間にMSLが介在する。ある実験例によれば、MSLでは、その長さ1mm当たり約0.4dBの減衰が生じると言われ、電磁波電力の減衰が問題になっている。またMSLの終端にある高周波信号発生部においては、電磁波の発振状態を安定させる等の目的のために、誘電層と導体層との複雑な構造が必要となる(特許文献2の図3図8参照)。
【0008】
他方、この第二の構造は、高周波信号発生部と導波管との接続部位を、マイクロ波ICから離れて配置することができる。これにより導波管構造を簡素化できるため、マイクロ波処理回路の小型化が可能であった。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2010−141691号公報
【特許文献2】特表2012−526434号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
従来、ミリ波を含む電磁波の用途拡大に伴い、一つのマイクロ波ICに組み込まれる信号波用チャンネルの数が複数化してきている。加えて、回路集積度の向上による小型化が進んでいる。そして一つのマイクロ波ICには、複数チャンネルの信号端子が密に配置されてきた。その結果、マイクロ波ICの信号端子から導波管に至る部位に、上述の第一の構造を採用することが難しくなり、もっぱら第二の構造が採用されていた。
【0011】
近年、ミリ波を用いる車載用レーダシステムなどの、車載用途への要求拡大に伴い、対象車両から一層遠方の状況をミリ波レーダにて認識することが求められている。またミリ波レーダを車室内に設置することで、レーダの設置容易性やメンテナンス性の向上も求められている。即ち、マイクロ波ICから送受アンテナに至る導波路の電磁波の減衰による損失を最小にすることが求められている。またミリ波レーダを車両前方の状況認識に加えて、側方や後方の認識用途にも適用されつつある。その場合は、サイドミラーボックス内に設置する等の小型化と、多数使用することに対する低価格化への要請も強い。
【0012】
これらの要請に対し、上述の第二の構造では、マイクロストリップラインでの損失と、導波管を用いることによる小型化の困難性・高精度加工の必要性等の課題があった。
【課題を解決するための手段】
【0013】
本開示の一態様に係る導波路装置モジュールは、導電性表面を有する導電部材と、前記導電性表面と対向して前記導電性表面に沿って延び、かつ、導電性の導波面を有する導波部材であって、幹部、および、前記幹部の端部から延びる第1梢部および第2梢部を含む複数の梢部を有する導波部材と、前記導波部材の両側の人工磁気導体と、前記第1梢部の第1位置に接続された第1導線、および、前記第2梢部の第2位置に接続された第2導線を含む複数の導線とを備え、前記導電部材および前記導波部材は導波路を形成し、前記導波路は、前記幹部の前記端部から前記第1位置までの第1導波路、および、前記幹部の前記端部から前記第2位置までの第2導波路を含み、前記第1導線および前記第2導線が、マイクロ波集積回路素子の第1および第2アンテナ入出力端子にそれぞれ接続されて、前記第1導波路および前記第2導波路に、同じ周波数で互いに逆の位相を有する第1電磁波および第2電磁波が伝搬するとき、前記第1導波路および前記第2導波路は、前記第1電磁波が前記第1導波路を伝搬する間の位相の変化量と、前記第2電磁波が前記第2導波路を伝搬する間の位相の変化量との差が180度の奇数倍±90度の範囲内に入る関係を有する。
【発明の効果】
【0014】
本開示の例示的な実施形態によれば、マイクロ波ICから送受アンテナに至る導波路における損失をより低減することができる。
【図面の簡単な説明】
【0015】
図1図1は、導波路装置が備える基本構成の限定的ではない例を模式的に示す斜視図である。
図2A図2Aは、導波路装置100のXZ面に平行な断面の構成を模式的に示す図である。
図2B図2Bは、断面がU字またはV字に近い形状である面の底部を有する導電性表面120aを示す図である。
図3図3は、わかりやすさのため、導電部材110と導電部材120との間隔を極端に離した状態にある導波路装置100を模式的に示す斜視図である。
図4図4は、図2Aに示す構造における各部材の寸法の範囲の例を示す図である。
図5A図5Aは、導波部材122の導波面122aと導電部材110の導電性表面110aとの間隙における幅の狭い空間を伝搬する電磁波を模式的に示す図である。
図5B図5Bは、参考のため、中空導波管130の断面を模式的に示す図である。
図5C図5Cは、導電部材120上に2個の導波部材122が設けられている形態を示す断面図である。
図5D図5Dは、参考のため、2つの中空導波管130を並べて配置した導波路装置の断面を模式的に示す図である。
図6A図6Aは、ミリ波MMIC(ミリ波IC)2の裏面における端子の配置(ピン配置)の例を示す平面図である。
図6B図6Bは、図6Aに示されるアンテナ入出力端子20a、20bをミリ波IC2のフットプリントよりも外側の領域に引き出すための配線パターン40の例を模式的に示す平面図である。
図7A図7Aは、本開示におけるマイクロ波モジュール1000の概略的な全体構成の例を示す平面模式図である。
図7B図7Bは、マイクロ波モジュール1000の他の態様を示す平面模式図である。
図7C図7Cは、マイクロ波モジュール1000のさらに他の態様を示す平面模式図である。
図8A図8Aは、例示的な実施形態1にかかる導波路装置100の導波部材122の形状、および、配線パターン40Sおよび40Gを有する回路基板4を示す図である。
図8B図8Bは、図8AにおけるA−A’線に沿った断面図である。
図9図9は、主として導波部材122の形状を示す図である。
図10図10は、梢部導波路WSおよび梢部導波路WGの各々を伝搬する各電磁波の位相の差を説明するための図である。
図11図11は、例示的な実施形態2にかかる導波路装置100の導波部材122の形状、および、配線パターン40S、40G1および40G2を有する回路基板4を示す図である。
図12図12は、主として導波部材122の形状を示す図である。
図13A図13Aは、実施形態3にかかる導波路装置100の導波部材122の形状、および、2つの配線パターン40S1および40S2を有する回路基板4を示す図である。
図13B図13Bは、図13A におけるC−C’線に沿った断面図である。
図14図14 は、主として導波部材122の形状を示す図である。
図15図15は、回路基板4の−Z側の面に対向して、ミリ波IC2および導波部材122が設けられた第1の変形例を示す図である。
図16図16は、回路基板4の−Z側の面に対向して、ミリ波IC2および導波部材122が設けられた第2の変形例を示す図である。
図17A図17Aは、図8Bの構成の+Z側に人工磁気導体101を追加した例を示す断面図である。
図17B図17Bは、図15の構成の+Z側に人工磁気導体101を追加した例を示す断面図である。
図17C図17Cは、図16の構成の+Z側に人工磁気導体101を追加した例を示す断面図である。
図18図18は、ミリ波IC2または回路基板4と、導電性ロッド124’との間に設けられた絶縁樹脂160を示す図である。
図19図19は、放射素子として機能する複数のスロットを有するスロットアレーアンテナ300の構造の一部を模式的に示す斜視図である。
図20A図20Aは、図19に示す20個のスロットが5行4列に配列されたアレーアンテナ300をZ方向からみた上面図である。
図20B図20Bは、図20AのD−D’線による断面図である。
図20C図20Cは、第1の導波路装置350aにおける導波部材322Uの平面レイアウトを示す図である。
図20D図20Dは、第2の導波路装置350bにおける導波部材322Lの平面レイアウトを示す図である。
図21図21は、自車両500と、自車両500と同じ車線を走行している先行車両502とを示す図である。
図22図22は、自車両500の車載レーダシステム510を示す図である。
図23A図23Aは、車載レーダシステム510のアレーアンテナAAと、複数の到来波k(k:1〜Kの整数;以下同じ。Kは異なる方位に存在する物標の数。)との関係を示す図である。
図23B図23Bは、k番目の到来波を受信するアレーアンテナAAを示す図である。
図24図24は、本開示による例示的な用途である車両走行制御装置600の基本構成の一例を示すブロック図である。
図25図25は、車両走行制御装置600の構成の他の例を示すブロック図である。
図26図26は、車両走行制御装置600のより具体的な構成の例を示すブロック図である。
図27図27は、本応用例におけるレーダシステム510のより詳細な構成例を示すブロック図である。
図28図28は、三角波生成回路581が生成した信号に基づいて変調された送信信号の周波数変化を示す図である。
図29図29は、「上り」の期間におけるビート周波数fu、および「下り」の期間におけるビート周波数fdを示す図である。
図30図30は、信号処理回路560がプロセッサPRおよびメモリ装置MDを備えるハードウェアによって実現されている形態の例を示す図である。
図31図31は、3つの周波数f1、f2、f3の関係を示す図である。
図32図32は、複素平面上の合成スペクトルF1〜F3の関係を示す図である。
図33図33は、本開示の変形例による相対速度および距離を求める処理の手順を示すフローチャートである。
図34図34は、車両500における、本開示の技術を応用したスロットアレーアンテナを有するレーダシステム510、および車載カメラシステム700を備えるフュージョン装置に関する図である。
図35図35は、ミリ波レーダ510の設置位置と車載カメラシステム700の設置位置との関係を示す図である。
図36図36は、ミリ波レーダによる監視システム1500の構成例を示す図である。
図37図37は、デジタル式通信システム800Aの構成を示すブロック図である。
図38図38は、電波の放射パターンを変化させることのできる送信機810Bを含む通信システム800Bの例を示すブロック図である。
図39図39は、MIMO機能を実装した通信システム800Cの例を示すブロック図である。
【発明を実施するための形態】
【0016】
<用語>
「マイクロ波」は、周波数が300MHzから300GHzまでの範囲にある電磁波を意味する。「マイクロ波」のうち、周波数が30GHzから300GHzまでの範囲にある電磁波を「ミリ波」と称する。真空中における「マイクロ波」の波長は、1mmから1mの範囲にあり、「ミリ波」の波長は、1mmから10mmの範囲にある。
【0017】
「マイクロ波IC(マイクロ波集積回路素子)」は、マイクロ波帯域の高周波信号を生成または処理する半導体集積回路のチップまたはパッケージである。「パッケージ」は、マイクロ波帯域の高周波信号を生成または処理する1個または複数個の半導体集積回路チップ(モノリシックICチップ)を含むパッケージである。単一の半導体基板の上に1個以上のマイクロ波ICが集積化された場合には、特に「モノリシックマイクロ波集積回路」(MMIC)と呼ばれる。本開示では、「マイクロ波IC」を「MMIC」と称する場合があるが、これは一例である。単一の半導体基板の上に1個以上のマイクロ波ICが集積化されることは必須ではない。また、ミリ波帯域の高周波信号を生成または処理する「マイクロ波IC」を「ミリ波IC」と称する場合がある。
【0018】
「IC実装基板」は、マイクロ波ICが搭載された状態の実装基板を意味し、構成要素として、「マイクロ波IC」と「実装基板」とを備えている。単なる「実装基板」は、実装用の基板を意味し、マイクロ波ICが搭載されていない状態にある。
【0019】
「導波路モジュール」は、「マイクロ波IC」が搭載されていない状態の「実装基板」と「導波路装置」とを備える。これに対して、「マイクロ波モジュール」は、「マイクロ波ICが搭載された状態の実装基板(IC実装基板)」と「導波路装置」とを備える。
【0020】
本開示の実施形態を説明する前に、以下の各実施形態で使用される導波路装置の基本構成と動作原理とを説明する。
【0021】
<導波路装置>
前述のリッジ導波路は、人工磁気導体として機能し得るワッフルアイアン構造中に設けられている。このような人工磁気導体を本開示に基づいて利用するリッジ導波路(以下、WRG:Waffle−iron Ridge waveGuideと称する場合がある。)は、マイクロ波またはミリ波帯において、損失の低いアンテナ給電路を実現できる。また、このようなリッジ導波路を利用することにより、アンテナ素子(放射素子)を高密度に配置することが可能である。以下、そのような導波路構造の基本的な構成および動作の例を説明する。
【0022】
人工磁気導体は、自然界には存在しない完全磁気導体(PMC: Perfect Magnetic Conductor)の性質を人工的に実現した構造体である。完全磁気導体は、「表面における磁界の接線成分がゼロになる」という性質を有している。これは、完全導体(PEC: Perfect Electric Conductor)の性質、すなわち、「表面における電界の接線成分がゼロになる」という性質とは反対の性質である。完全磁気導体は、自然界には存在しないが、例えば複数の導電性ロッドの配列のような人工的な構造によって実現され得る。人工磁気導体は、その周期構造によって定まる特定の周波数帯域において、完全磁気導体として機能する。人工磁気導体は、特定の周波数帯域(伝搬阻止帯域)に含まれる周波数を有する電磁波が人工磁気導体の表面に沿って伝搬することを抑制または阻止する。このため、人工磁気導体の表面は、高インピーダンス面と呼ばれることがある。
【0023】
従来知られている導波路装置、例えば(1)国際公開第2010/050122号、(2)米国特許第8803638号、(3)欧州特許出願公開第1331688号、(4)Kirino et al., "A 76 GHz Multi-Layered Phased Array Antenna Using a Non-MetalContact Metamaterial Waveguide", IEEE Transaction on Antennas and Propagation, Vol. 60, No. 2, February 2012, pp 840-853、(5)Kildal et al., "Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates", IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009, pp84-87 に開示されている導波路装置では、行および列方向に配列された複数の導電性ロッドによって人工磁気導体が実現されている。このような導電性ロッドは、ポストまたはピンと呼ばれることもある突出部である。これらの導波路装置のそれぞれは、全体として、対向する一対の導電プレートを備えている。一方の導電プレートは、他方の導電プレートの側に突出するリッジと、リッジの両側に位置する人工磁気導体とを有している。リッジの上面(導電性を有する面)は、ギャップを介して、他方の導電プレートの導電性表面に対向している。人工磁気導体の伝搬阻止帯域に含まれる波長を有する電磁波(信号波)は、この導電性表面とリッジの上面との間の空間(ギャップ)をリッジに沿って伝搬する。
【0024】
図1は、このような導波路装置が備える基本構成の限定的ではない例を模式的に示す斜視図である。図1では、互いに直交するX、Y、Z方向を示すXYZ座標が示されている。図示されている導波路装置100は、対向して平行に配置されたプレート状の第1の導電部材110および第2の導電部材120を備えている。第2の導電部材120には複数の導電性ロッド124が配列されている。
【0025】
なお、本願の図面に示される構造物の向きは、説明のわかりやすさを考慮して設定されており、本開示の実施形態が現実に実施されるときの向きをなんら制限するものではない。また、図面に示されている構造物の全体または一部分の形状および大きさも、現実の形状および大きさを制限するものではない。
【0026】
図2Aは、導波路装置100のXZ面に平行な断面の構成を模式的に示す図である。図2Aに示されるように、導電部材110は、導電部材120に対向する側に導電性表面110aを有している。導電性表面110aは、導電性ロッド124の軸方向(Z方向)に直交する平面(XY面に平行な平面)に沿って二次元的に拡がっている。この例における導電性表面110aは平滑な平面であるが、後述するように、導電性表面110aは平面である必要は無い。
【0027】
図3は、わかりやすさのため、導電部材110と導電部材120との間隔を極端に離した状態にある導波路装置100を模式的に示す斜視図である。現実の導波路装置100では、図1および図2Aに示したように、導電部材110と導電部材120との間隔は狭く、導電部材110は、導電部材120の全ての導電性ロッド124を覆うように配置されている。
【0028】
再び図2Aを参照する。導電部材120上に配列された複数の導電性ロッド124は、それぞれ、導電性表面110aに対向する先端部124aを有している。図示されている例において、複数の導電性ロッド124の先端部124aは同一平面上にある。この平面は人工磁気導体の表面125を形成している。導電性ロッド124は、その全体が導電性を有している必要はなく、ロッド状構造物の少なくとも表面(上面および側面)が導電性を有していればよい。また、導電部材120は、複数の導電性ロッド124を支持して人工磁気導体を実現できれば、その全体が導電性を有している必要はない。導電部材120の表面のうち、複数の導電性ロッド124が配列されている側の面120aが導電性を有し、隣接する複数の導電性ロッド124の表面を電気的に短絡していればよい。言い換えると、導電部材120および複数の導電性ロッド124の組み合わせの全体は、導電部材110の導電性表面110aに対向する凹凸状の導電性表面を有していればよい。
【0029】
導電部材120上には、複数の導電性ロッド124の間にリッジ状の導波部材122が配置されている。より詳細には、導波部材122の両側にそれぞれ人工磁気導体が位置しており、導波部材122は両側の人工磁気導体によって挟まれている。図3からわかるように、この例における導波部材122は、導電部材120に支持され、Y方向に直線的に延びている。図示されている例において、導波部材122は、導電性ロッド124の高さおよび幅と同一の高さおよび幅を有している。後述するように、導波部材122の高さおよび幅は、導電性ロッド124の高さおよび幅とは異なっていてもよい。導波部材122は、導電性ロッド124とは異なり、導電性表面110aに沿って電磁波を案内する方向(この例ではY方向)に延びている。導波部材122も、全体が導電性を有している必要は無く、導電部材110の導電性表面110aに対向する導電性の導波面122aを有していればよい。導電部材120、複数の導電性ロッド124、および導波部材122は、連続した単一構造体の一部であってもよい。さらに、導電部材110も、この単一構造体の一部であってもよい。
【0030】
導波部材122の両側において、各人工磁気導体の表面125と導電部材110の導電性表面110aとの間の空間は、特定周波数帯域内の周波数を有する電磁波を伝搬させない。そのような周波数帯域は「禁止帯域」と呼ばれる。導波路装置100内を伝搬する電磁波(以下、「信号波」と称することがある。)の周波数(以下、「動作周波数」と称することがある。)が禁止帯域に含まれるように人工磁気導体は設計される。禁止帯域は、導電性ロッド124の高さ、すなわち、隣接する複数の導電性ロッド124の間に形成される溝の深さ、導電性ロッド124の径、配置間隔、および導電性ロッド124の先端部124aと導電性表面110aとの間の間隙の大きさによって調整され得る。
【0031】
次に、図4を参照しながら、各部材の寸法、形状、配置等の例を説明する。
【0032】
図4は、図2Aに示す構造における各部材の寸法の範囲の例を示す図である。導波路装置は、所定の帯域(「動作周波数帯域」と称する。)の電磁波の送信および受信の少なくとも一方に用いられる。本明細書において、導電部材110の導電性表面110aと導波部材122の導波面122aとの間の導波路を伝搬する電磁波(信号波)の自由空間における波長の代表値(例えば、動作周波数帯域の中心周波数に対応する中心波長)をλoとする。また、動作周波数帯域における最高周波数の電磁波の自由空間における波長をλmとする。各導電性ロッド124のうち、導電部材120に接している方の端の部分を「基部」と称する。図4に示すように、各導電性ロッド124は、先端部124aと基部124bとを有する。各部材の寸法、形状、配置等の例は、以下のとおりである。
【0033】
(1)導電性ロッドの幅
導電性ロッド124の幅(X方向およびY方向のサイズ)は、λm/2未満に設定され得る。この範囲内であれば、X方向およびY方向における最低次の共振の発生を防ぐことができる。なお、XおよびY方向だけでなくXY断面の対角方向でも共振が起こる可能性があるため、導電性ロッド124のXY断面の対角線の長さもλm/2未満であることが好ましい。ロッドの幅および対角線の長さの下限値は、工法的に作製できる最小の長さであり、特に限定されない。
【0034】
(2)導電性ロッドの基部から導電部材110の導電性表面までの距離
導電性ロッド124の基部124bから導電部材110の導電性表面110aまでの距離は、導電性ロッド124の高さよりも長く、かつλm/2未満に設定され得る。当該距離がλm/2以上の場合、導電性ロッド124の基部124bと導電性表面110aとの間において共振が生じ、信号波の閉じ込め効果が失われる。
【0035】
導電性ロッド124の基部124bから導電部材110の導電性表面110aまでの距離は、導電部材110と導電部材120との間隔に相当する。例えば導波路をミリ波帯である76.5±0.5GHzの電磁波が伝搬する場合、電磁波の波長は、3.8934mmから3.9446mmの範囲内である。したがって、この場合λmは前者となるので、導電部材110と導電部材120との間隔λm/2は、3.8934mmの半分よりも小さく設定される。導電部材110と導電部材120とが、このような狭い間隔を実現するように対向して配置されていれば、導電部材110と導電部材120とが厳密に平行である必要はない。また、導電部材110と導電部材120との間隔がλm/2未満であれば、導電部材110および/または導電部材120の全体または一部が曲面形状を有していても良い。他方、導電部材110、120の平面形状(XY面に垂直に投影した領域の形状)および平面サイズ(XY面に垂直に投影した領域のサイズ)は、用途に応じて任意に設計され得る。
【0036】
図2Aで示される例において、導電性表面120aは平面であるが、本開示の実施形態はこれに限られない。例えば、図2Bに示すように、導電性表面120aは断面がU字またはV字に近い形状である面の底部であっても良い。導電性ロッド124または導波部材122が、基部に向かって幅が拡大する形状をもつ場合に、導電性表面120aはこのような構造になる。このような構造であっても、導電性表面110aと導電性表面120aとの間の距離が波長λmの半分よりも短ければ、図2Bに示す装置は、本開示の実施形態における導波路装置として機能し得る。
【0037】
(3)導電性ロッドの先端部から導電性表面までの距離L2
導電性ロッド124の先端部124aから導電性表面110aまでの距離L2は、λm/2未満に設定される。当該距離がλm/2以上の場合、導電性ロッド124の先端部124aと導電性表面110aとの間を往復する伝搬モードが生じ、電磁波を閉じ込められなくなるからである。なお、複数の導電性ロッド124のうち、少なくとも導波部材122と隣り合うものについては、先端が導電性表面110aとは電気的には接触していない状態にある。ここで、導電性ロッドの先端が導電性表面に電気的に接触していない状態とは、先端と導電性表面との間に空隙がある状態、あるいは、導電性ロッドの先端と導電性表面とのいずれかに絶縁層が存在し、導電性ロッドの先端と導電性表面が絶縁層を間に介して接触している状態、のいずれかを指す。
【0038】
(4)導電性ロッドの配列および形状
複数の導電性ロッド124のうちの隣接する2つの導電性ロッド124の間の隙間は、例えばλm/2未満の幅を有する。隣接する2つの導電性ロッド124の間の隙間の幅は、当該2つの導電性ロッド124の一方の表面(側面)から他方の表面(側面)までの最短距離によって定義される。このロッド間の隙間の幅は、ロッド間の領域で最低次の共振が起こらないように決定される。共振が生じる条件は、導電性ロッド124の高さ、隣接する2つの導電性ロッド間の距離、および導電性ロッド124の先端部124aと導電性表面110aとの間の帯状間隙の容量の組み合わせによって決まる。よって、ロッド間の隙間の幅は、他の設計パラメータに依存して適宜決定される。ロッド間の隙間の幅には明確な下限はないが、製造の容易さを確保するために、ミリ波帯の電磁波を伝搬させる場合には、例えばλm/16以上であり得る。なお、隙間の幅は一定である必要はない。λm/2未満であれば、導電性ロッド124の間の隙間は様々な幅を有していてもよい。
【0039】
複数の導電性ロッド124の配列は、人工磁気導体としての機能を発揮する限り、図示されている例に限定されない。複数の導電性ロッド124は、直交する行および列状に並んでいる必要は無く、行および列は90度以外の角度で交差していても良い。複数の導電性ロッド124は、行または列に沿って直線上に配列されている必要は無く、単純な規則性を示さずに分散して配置されていても良い。各導電性ロッド124の形状およびサイズも、導電部材120上の位置に応じて変化していて良い。
【0040】
複数の導電性ロッド124の先端部124aが形成する人工磁気導体の表面125は、厳密に平面である必要は無く、微細な凹凸を有する平面または曲面であってもよい。すなわち、各導電性ロッド124の高さが一様である必要はなく、導電性ロッド124の配列が人工磁気導体として機能し得る範囲内で個々の導電性ロッド124は多様性を持ち得る。
【0041】
さらに、導電性ロッド124は、図示されている角柱形状に限らず、例えば円筒状の形状を有していてもよい。さらに、導電性ロッド124は、単純な柱状の形状を有している必要はない。人工磁気導体は、導電性ロッド124の配列以外の構造によっても実現することができ、多様な人工磁気導体を本開示の導波路装置に利用することができる。なお、導電性ロッド124の先端部124aの形状が角柱形状である場合は、その対角線の長さはλm/2未満であることが好ましい。楕円形状であるときは、長軸の長さがλm/2未満であることが好ましい。先端部124aがさらに他の形状をとる場合でも、その差し渡し寸法は一番長い部分でもλm/2未満であることが好ましい。
【0042】
導電性ロッド124の高さ、すなわち、基部124bから先端部124aまでの長さは、導電性表面110aと導電性表面120aとの間の距離(λm/2未満)よりも短い値、例えば、λo/4に設定され得る。
【0043】
(5)導波面の幅
導波部材122の導波面122aの幅、すなわち、導波部材122が延びる方向に直交する方向における導波面122aのサイズは、λm/2未満(例えばλm/8)に設定され得る。導波面122aの幅がλm/2以上になると、幅方向で共振が起こり、共振が起こるとWRGは単純な伝送線路としては動作しなくなるからである。
【0044】
(6)導波部材の高さ
導波部材122の高さ(図示される例ではZ方向のサイズ)は、λm/2未満に設定される。当該距離がλm/2以上の場合、導電性ロッド124の基部124bと導電性表面110aとの距離がλm/2以上となるからである。同様に、導電性ロッド124(特に、導波部材122に隣接する導電性ロッド124)の高さについても、λm/2未満に設定される。
【0045】
(7)導波面と導電性表面との間の距離L1
導波部材122の導波面122aと導電性表面110aとの間の距離L1については、λm/2未満に設定される。当該距離L1がλm/2以上の場合、導波面122aと導電性表面110aとの間で共振が起こり、導波路として機能しなくなるからである。ある例では、当該距離L1はλm/4以下である。製造の容易さを確保するために、ミリ波帯の電磁波を伝搬させる場合には、距離L1を、例えばλm/16以上とすることが好ましい。
【0046】
導電性表面110aと導波面122aとの距離L1の下限、および導電性表面110aとロッド124の先端部124aとの距離L2の下限は、機械工作の精度と、上下の2つの導電部材110、120を一定の距離に保つように組み立てる際の精度とに依存する。プレス工法またはインジェクション工法を用いた場合、上記距離の現実的な下限は50マイクロメートル(μm)程度である。MEMS(Micro−Electro−Mechanical System)技術を用いて例えばテラヘルツ領域の製品を作る場合には、上記距離の下限は、2〜3μm程度である。
【0047】
上記の構成を有する導波路装置100によれば、動作周波数の電磁波は、人工磁気導体の表面125と導電部材110の導電性表面110aとの間の空間を伝搬することはできず、導波部材122の導波面122aと導電部材110の導電性表面110aとの間の空間を伝搬する。このような導波路構造における導波部材122の幅は、中空導波管とは異なり、伝搬すべき電磁波の半波長以上の幅を有する必要はない。また、導電部材110と導電部材120とを厚さ方向(YZ面に平行)に延びる金属壁によって接続する必要もない。
【0048】
図5Aは、導波部材122の導波面122aと導電部材110の導電性表面110aとの間隙における幅の狭い空間を伝搬する電磁波を模式的に示している。図5Aにおける3本の矢印は、伝搬する電磁波の電界の向きを模式的に示している。伝搬する電磁波の電界は、導電部材110の導電性表面110aおよび導波面122aに対して垂直である。
【0049】
導波部材122の両側には、それぞれ、複数の導電性ロッド124によって形成された人工磁気導体が配置されている。電磁波は導波部材122の導波面122aと導電部材110の導電性表面110aとの間隙を伝搬する。図5Aは、模式的であり、電磁波が現実に作る電磁界の大きさを正確には示していない。導波面122a上の空間を伝搬する電磁波(電磁界)の一部は、導波面122aの幅によって区画される空間から外側(人工磁気導体が存在する側)に横方向に拡がっていてもよい。この例では、電磁波は、図5Aの紙面に垂直な方向(Y方向)に伝搬する。このような導波部材122は、Y方向に直線的に延びている必要は無く、不図示の屈曲部および/または分岐部を有し得る。電磁波は導波部材122の導波面122aに沿って伝搬するため、屈曲部では伝搬方向が変わり、分岐部では伝搬方向が複数の方向に分岐する。
【0050】
図5Aの導波路構造では、伝搬する電磁波の両側に、中空導波管では不可欠の金属壁(電気壁)が存在していない。このため、この例における導波路構造では、伝搬する電磁波が作る電磁界モードの境界条件に「金属壁(電気壁)による拘束条件」が含まれず、導波面122aの幅(X方向のサイズ)は、電磁波の波長の半分未満である。
【0051】
図5Bは、参考のため、中空導波管130の断面を模式的に示している。図5Bには、中空導波管130の内部空間132に形成される電磁界モード(TE10)の電界の向きが矢印によって模式的に表されている。矢印の長さは電界の強さに対応している。中空導波管130の内部空間132の幅は、波長の半分よりも広く設定されなければならない。すなわち中空導波管130の内部空間132の幅は、伝搬する電磁波の波長の半分よりも小さく設定され得ない。
【0052】
図5Cは、導電部材120上に2個の導波部材122が設けられている形態を示す断面図である。このように隣接する2個の導波部材122の間には、複数の導電性ロッド124によって形成される人工磁気導体が配置されている。より正確には、各導波部材122の両側に複数の導電性ロッド124によって形成される人工磁気導体が配置され、各導波部材122が独立した電磁波の伝搬を実現することが可能である。
【0053】
図5Dは、参考のため、2つの中空導波管130を並べて配置した導波路装置の断面を模式的に示している。2つの中空導波管130は、相互に電気的に絶縁されている。電磁波が伝搬する空間の周囲が、中空導波管130を構成する金属壁で覆われている必要がある。このため、電磁波が伝搬する内部空間132の間隔を、金属壁の2枚の厚さの合計よりも短縮することはできない。金属壁の2枚の厚さの合計は、通常、伝搬する電磁波の波長の半分よりも長い。したがって、中空導波管130の配列間隔(中心間隔)を、伝搬する電磁波の波長よりも短くすることは困難である。特に、電磁波の波長が10mm以下となるミリ波帯、あるいはそれ以下の波長の電磁波を扱う場合は、波長に比して十分に薄い金属壁を形成することが難しくなる。このため、商業的に現実的なコストで実現することが困難になる。
【0054】
これに対して、人工磁気導体を備える導波路装置100は、複数の導波部材122を近接させた構造を容易に実現することができる。このため、複数のアンテナ素子が近接して配置されたアレーアンテナへの給電に好適に用いられ得る。
【0055】
上述の構造を有する導波路装置と、MMICを搭載した実装基板とを接続して、高周波信号のやりとりを行うためには、MMICの端子と導波路装置の導波路とを効率的に結合することが求められる。
【0056】
前述したように、ミリ波帯域のような、30GHzを超える周波数領域では、マイクロストリップ線路を伝搬するときの誘電体損失が大きくなる。それにもかかわらず、従来は、実装基板上に設けたマイクロストリップ線路にMMICの端子を接続することが行われてきた。このことは、導波路装置の導波路そのものがマイクロストリップ線路ではなく、中空導波管によって実現されている場合であっても同様であった。すなわち、MMICの端子と中空導波管との間にマイクロストリップ線路が介在する接続が行われてきた。
【0057】
図6Aは、ミリ波MMIC(ミリ波IC)2の裏面における端子の配置(ピン配置)の例を示す平面図である。ミリ波IC2は、例えば、約76GHz帯の高周波信号を生成、処理するマイクロ波集積回路素子である。図示されているミリ波IC2の裏面には、多数の端子20が行および列状に配列されている。これらの端子20は、第1のアンテナ入出力端子20aおよび第2のアンテナ入出力端子20bを含む。図示されている例では、第1のアンテナ入出力端子20aが信号端子として機能し、第2のアンテナ入出力端子20bがグランド端子として機能する。複数の端子20のうち、アンテナ入出力端子20a、20b以外の端子は、例えば電源端子、制御信号端子、および信号入出力端子である。
【0058】
後述の実施形態1では、1つの第1のアンテナ入出力端子20aおよび1つの第2のアンテナ入出力端子20bを含む端子群20Aを利用する。実施形態2では、1つの第1のアンテナ入出力端子20aおよび2つの第2のアンテナ入出力端子20bを含む端子群20Bを利用する。実施形態3では、2つの第1のアンテナ入出力端子20aを含む端子群20Cを利用する。実施形態3では、端子群20Cは、2つの第1のアンテナ入出力端子20aの各々に隣接する2つの第2のアンテナ入出力端子20bを含まないとする。
【0059】
図6Bは、図6Aに示されるアンテナ入出力端子20a、20bをミリ波IC2のフットプリントよりも外側の領域に引き出すための配線パターン40の例を模式的に示す平面図である。このような配線パターン40は、不図示の誘電体基板上に形成されており、従来はマイクロストリップ線路を介して導波路装置の中空導波管に接続されていた。図6Bに示される例では、端子群20Aおよび20Bにより、2チャネルのミリ波信号がミリ波IC2のアンテナ入出力端子20a、20bを介して入出力され、端子群20Cにより、1チャネルのミリ波信号がミリ波IC2のアンテナ入出力端子20aを介して入出力され得る。なお、この例では、ミリ波IC2の端子20が誘電体基板上の配線パターン40に直接に接続されているが、ボンディングワイヤを介して端子20と配線パターン40との接続も行われ得る。
【0060】
ミリ波などの周波数の高い高周波信号が配線パターン40およびマイクロストリップ線路を伝搬するとき、誘電体基板による大きな損失が発生する。例えば約76GHz帯のミリ波がマイクロストリップ線路を伝搬するとき、誘電体損失によって線路長1mmあたりで約0.4dBの減衰が発生し得る。このように従来技術では、MMICと導波路装置との間にはマイクロストリップ線路などの配線が介在するため、ミリ波帯域で大きな誘電体損失が発生していた。
【0061】
以下に説明する新規な接続構造を採用すると、上述の損失の低減を大きく抑制することができる。
【0062】
図7Aは、本開示におけるマイクロ波モジュール1000の概略的な全体構成の例を示す平面模式図である。マイクロ波モジュール1000は、ミリ波IC2と、回路基板4と、導波路装置100とを備えている。
【0063】
図6Aおよび図6Bで示したミリ波IC2の端子20は、回路基板4と対向する。
【0064】
回路基板4はいわゆる両面基板であり、回路基板4の両面に配線パターン40が設けられている。一方の面の配線パターンと他方の面の配線パターンとは、例えば導電ペーストが充填されたビアを介して電気的に接続されている。後述する実施形態1および2については、一方の面の配線パターンはミリ波IC2の第1のアンテナ入出力端子20aおよび第2のアンテナ入出力端子20bと電気的に接続される。他方の面の配線パターン40は導波路装置100の導波部材と電気的に接続される。これにより、導波部材とミリ波IC2の第1のアンテナ入出力端子20aおよび第2のアンテナ入出力端子20bとが接続される。後述する実施形態3については、一方の面の配線パターンはミリ波IC2の第1のアンテナ入出力端子20aと電気的に接続され、他方の面の配線パターン40は導波路装置100の導波部材と電気的に接続される。これにより、導波部材とミリ波IC2の第1のアンテナ入出力端子20aとが接続される。
【0065】
図7Aに示す導波路装置100は、本明細書においては、局所的には図5Cに示すような2本の導波部材を備えている。2本の配線パターン40の各々は、ハンダボール等により、2本の導波部材の各々と接続される。導波路装置100の2本の導波部材の配置は後に詳述する。
【0066】
図1図4等を参照しながら説明したように、導波路装置100は、対向する第1導電部材110および第2導電部材120を有する。回路基板4は、第1導電部材110および第2導電部材120の間に挿入され、回路基板4上の2本の配線パターン40が2本の導波部材と接続される。図7Aでは、ミリ波IC2が回路基板4の上側に配置され、導波路装置100の導波部材は回路基板4の下側に配置されている。
【0067】
回路基板4はまた、ミリ波IC2に必要な電源や信号を供給する。回路基板4は、エポキシ樹脂、ポリイミド樹脂、高周波基板素材であるフッ素樹脂等の剛性ある基板でも良いし、柔軟性があるフレキシブル基板でも良い。図7Aに示す回路基板4は、フレキシブルプリント配線基板(FPC)の一部である。回路基板4からは柔軟性を持つ配線部4bが延びている。
【0068】
図7Bは、マイクロ波モジュール1000の他の態様を示す平面模式図である。図7Aと同様、図7Bの例においても、回路基板4は、導波路装置100の第1導電部材110および第2導電部材120の間に挿入されている。図7Bでは、ミリ波IC2が回路基板4の下側に配置され、導波路装置100の導波部材もまた回路基板4の下側に配置されている。以下では、このような構成を、「図7Bの第1の構成」と呼ぶことがある。
【0069】
回路基板4は、一方の面に配線パターン40を有する。配線パターン40の一端は、ミリ波IC2の第1のアンテナ入出力端子20aおよび第2のアンテナ入出力端子20bと電気的に接続され、配線パターン40の他端は導波路装置100の導波部材と電気的に接続されている。配線部4bなどの回路基板4の他の構成は図7Aの例と同じであり説明は省略する。
【0070】
なお、図7Bの構成は、配線パターン40の両方の端部が一方の面に存在していればよい。両方の端部の間の配線は、他方の面を通ってもよい。以下では、このような構成を、「図7Bの第2の構成」と呼ぶことがある。
【0071】
図7Cは、マイクロ波モジュール1000のさらに他の態様を示す平面模式図である。図示されているマイクロ波モジュール1000では、ミリ波IC2は実装基板1上に実装されている。ミリ波IC2の第1のアンテナ入出力端子20aおよび第2のアンテナ入出力端子20bは、ボンディングワイヤで導波路装置100の導波部材と接続されている。
【0072】
図7A図7Cは、あくまでも本開示における実施形態の例を示しており、この例に限定されない。以下では、主として図7Aの構成を例に説明する。なお、図7Bの第1の構成および第2の構成は、それぞれ、図17Bおよび図17Cに示す。
【0073】
以下、本開示による、導波路装置を含む導波路装置モジュール、およびその応用例を説明する。
【0074】
本開示による導波路装置モジュールは、上述した導波部材(いわゆるリッジ導波路)が分岐しており、分岐した各導波部材上の位置に配線パターンが接続されている。各配線パターンの他端は、ミリ波ICの各アンテナ入出力端子に接続される。ミリ波ICの各アンテナ入出力端子から高周波信号が出力されると、導波部材の各接続点と、対向する第1の導電部材との間には高周波電磁界(電磁波)が発生し、リッジ導波路を伝搬してゆく。本願発明者は、互いに逆の位相の電磁波が伝搬する複数の導波路について、その合流点(分岐点)までの長さを調整して電磁波同士にさらに180度の位相差が生じるように調整した。これにより、合流点において各電磁波は同位相になり、互いに強め合った電磁波をさらに導波部材に沿って伝搬させることができる。
【0075】
(実施形態1)
図8Aは、本実施形態にかかる導波路装置100の導波部材122の形状、および、配線パターン40Sおよび40Gを有する回路基板4を示す。図8Bは、図8AにおけるA−A’線に沿った断面図である。
【0076】
図8Aおよび図8Bに示すように、配線パターン40Sの一端は位置Srにおいて導波部材122と接続され、他端はミリ波IC2の第1のアンテナ入出力端子20aと接続されている。配線パターン40Gも同様に、その一端が位置Grにおいて導波部材122と接続され、他端がミリ波IC2の第2のアンテナ入出力端子20bと接続されている。位置SrおよびGrにおいて、配線パターン40Sおよび40Gは、例えばハンダ付け等により導波部材122と接続される。
【0077】
本明細書では、導波路装置100と、導波路装置100の導波部材122に接続された1つまたは複数の配線パターンを「導波路装置モジュール」と呼ぶ。導波路装置モジュールは、ミリ波IC2を含まない。
【0078】
本実施形態では、ミリ波IC2の第1のアンテナ入出力端子(「S端子」とも記述する。)20aおよび第2のアンテナ入出力端子(「G端子」とも記述する。)20bは、不平衡(UnBalance)型の信号端子である。「不平衡型」とは、ミリ波IC2のS端子20aに印加された能動的な信号に対応して、G端子20bにはこの信号とは反対の位相の信号が誘起される性質をいう。
【0079】
以下では、まず本実施形態にかかる導波部材122の形状等を説明し、その後、ミリ波IC2による高周波電磁界(電磁波)の生成原理を説明する。
【0080】
図9は、主として導波部材122の形状を示す。例えば図1から図4を参照しながら説明したように、導波部材122は、第1の導電部材110(図1図4等)の導電性表面110aに沿って延びており、導電性の導波面122aを有している。導波面122aと導電性表面110aとの間には導波路が形成される。
【0081】
本実施形態の導波部材122は、分岐した形状を有している。すなわち導波部材122は、幹部122Tと、幹部122Tの+Y側の端部122Mからさらに+Y方向に延びる第1梢部122Sと、−X方向に延びる第2梢部122Gを有している。幹部122Tと導電性表面110aとの間、第1梢部122Sと導電性表面110aとの間、および、第2梢部122Gと導電性表面110aとの間の空間は、いずれも導波路として機能する。以下では、幹部122Tと導電性表面110aとによって形成される導波路を「幹部導波路WT」と記述し、第1梢部122Sと導電性表面110aとによって形成される導波路を「梢部導波路WS」、第2梢部122Gと導電性表面110aとによって形成される導波路を「梢部導波路WG」と記述する。図9には、幹部122T、第1梢部122Sおよび第2梢部122Gとともに「WT」、「WS」、「WG」が示されている。
【0082】
幹部122Tおよび第1梢部122Sは直線状であるため、幹部導波路WTおよび梢部導波路WSもまた直線状である。一方、第2梢部122Gは−X方向に延びた後、屈曲して+Y方向に延びている。そのため、第2梢部122Gに沿って梢部導波路WGも屈曲している。
【0083】
幹部122Tの+Y側の端部122Mから、配線パターン40Sが接続される位置Srまでの距離と、幹部122Tの+Y側の端部122Mから、配線パターン40Gが接続される位置Grまでの距離とは異なる。この距離の差は、梢部導波路WSの長さと、位置Grまでの梢部導波路WGの長さとの差として現れる。
【0084】
再び図8Aを参照する。
【0085】
ミリ波IC2がS端子20aに高周波電圧信号を印加する。すると、高周波電圧信号の振幅の変化が配線パターン40Sを介して位置Srに現れる。その結果、梢部導波路WSには、Z方向の高周波電界が生じ、さらに高周波電界に対応して高周波磁界が誘起される。誘起された高周波電界および高周波磁界は、高周波電磁界(電磁波)として梢部導波路WSを−Y方向に伝搬する。
【0086】
一方、ミリ波IC2のS端子20aに高周波電圧信号が印加されると、G端子20bには、当該高周波電圧信号により、当該高周波電圧信号と同じ振幅で、かつ、その位相と逆の位相の電圧を有する高周波電圧信号が誘起される。端的に言えば、高周波電圧信号の位相と「逆の位相」とは、高周波電圧信号の位相と180度ずれた位相を意味する。時刻tにおけるS端子20aに印加される高周波電圧信号が+a(t)と表されるとき、G端子20bには−a(t)と表される高周波電圧信号が誘起される。すると、G端子20bに誘起された高周波電圧信号の振幅の変化は配線パターン40Gを介して位置Grに現れる。その結果、梢部導波路WGにも、同様の原理で高周波電界および高周波磁界が誘起される。位置Grに発生した電磁波の位相は、位置Srに発生した電磁波の位相と180度ずれている。誘起された高周波電界および高周波磁界は、高周波電磁界(電磁波)として梢部導波路WGを−Y方向に伝搬し、その後、屈曲した第2梢部122Gに沿って+X方向に伝搬する。
【0087】
梢部導波路WSおよび梢部導波路WGをそれぞれ伝搬する電磁波は、幹部122Tの+Y側の端部122Mにおいて合流する。本願発明者は、合流する端部122Mにおいて、梢部導波路WSおよび梢部導波路WGをそれぞれ伝搬する電磁波の位相が一致するよう、梢部導波路WSおよび梢部導波路WGの長さを調整した。
【0088】
本実施形態では、梢部導波路WSおよび梢部導波路WGの長さは、位置Srから端部122Mまでの梢部導波路WSを伝搬する電磁波(第1電磁波)の位相の変化量と、位置Grから端部122Mまでの梢部導波路WGを伝搬する電磁波(第2電磁波)の位相の変化量との差が、180度の奇数倍になる関係を有するよう設定されている。その理由は、上述の通り、位置Grに発生した第2電磁波の位相と、位置Srに発生した第1電磁波の位相とが180度ずれているからである。このように梢部導波路WSおよび梢部導波路WGの長さを調整することにより、端部122Mにおいて2つの電磁波の位相は整合する。合流した後の電磁波は互いに強め合って幹部導波路WTを−Y方向に伝搬する。例えば、位置Srに発生した電磁波の、ある位相における信号レベルを+1とすると、位置Grに発生した電磁波の信号レベルは−1となる。つまり、両者の振幅は同じで位相は180度ずれている。2つの電磁波の位相を端部122Mにおいて整合させて両者を合流させることにより、合流した後の電磁波の振幅は2となる。
【0089】
上述した180度の奇数倍の位相差は典型例であり、異なる位相差であっても許容され得る。実際の製品では、製造のばらつき等から、梢部導波路WSおよび梢部導波路WGの長さに誤差が生じ得る。その結果、端部122Mにおいて、2つの電磁波の位相が一致しない(位相差が存在する)ことがあり得る。実用上はこの位相差には、用途により、一定の許容範囲がある。例えば後述する車載レーダシステムでは、±60度程度の位相差は許容され得る。具体例を挙げると、梢部導波路WSの位置Srで発生した電磁波の、ある位相における信号レベルが+1、梢部導波路WGの位置Grで発生した電磁波の信号レベルが−1の場合、合流した後の電磁波の振幅は2から1.5の範囲の値になる。このような振幅の範囲であれば、車載レーダシステムは実用上十分機能する。また他のシステムでは、合流した後の電磁波の振幅が2から1の範囲の値であれば十分機能する場合もある。この場合は、例えば±90度の位相差まで許容されることもあり得る。
【0090】
上述の許容範囲と波長との関係は以下のとおりである。導波路を伝搬させようとする電磁波の波長をλgとする。位相差が±60度の範囲内の場合には、梢部導波路WSおよび梢部導波路WGの長さの差は、(λg/2)の奇数倍±(λg/6)以下になる。位相差が±90度の範囲内の場合には、当該長さの差は、(λg/2)の奇数倍±(λg/4)以下になる。
【0091】
許容される誤差の大きさは、複数の梢部導波路を1本の導波路として統合した場合の電磁波の信号レベルによって決定され得る。例えば、ミリ波IC2のS端子20aに印加される高周波電圧信号の信号レベルが+1であるとき、各導波路の合流点での信号レベルが、例えば+1以上であれば、適切な導波路装置として機能していると言い得る。そのような場合には、合流点において複数の電磁波の位相が一致していなくてもよく、生じている位相差は許容され得る。なお、各導波路の合流点での信号レベルが+1以上であることは一例である。減衰等を考慮して+1よりも低い場合があっても良い。
【0092】
図10は、梢部導波路WSおよび梢部導波路WGの各々を伝搬する各電磁波の位相の差を説明するための図である。説明の便宜のため、梢部導波路WSを伝搬する第1電磁波の位相と、梢部導波路WGを伝搬する第2電磁波の位相との差が、180度の奇数倍である典型例を示す。
【0093】
図10の(a)は、梢部導波路WSを伝搬する電磁波の伝搬長と位相の変化量を示す。図10の(b)は、梢部導波路WGを伝搬する電磁波の伝搬長と位相の変化量を示す。(a)の例では、梢部導波路WSを伝搬する電磁波は、位置Srから幹部122Tの+Y側の端部122Mまでの導波路を進む。(b)の例では、梢部導波路GSを伝搬する電磁波は、位置Grから幹部122Tの+Y側の端部122Mまでの導波路を進む。梢部導波路WSよりも梢部導波路WGの方が長いため、梢部導波路WSを伝搬する電磁波の位相変化量よりも、梢部導波路WGを伝搬する電磁波の位相変化量の方が大きい。
【0094】
(b)に注目する。梢部導波路WG上を伝搬する電磁波が、梢部導波路WSの導波路長に対応する長さだけ進んだときの位相変化量をθ1とする。そして、その後、ΔLの導波路長だけさらに進んで、端部122Mに到達したときまでの位相変化量をθ2とする。ΔθをΔθ=θ2−θ1と定義すると、本実施形態の典型例では下記の式が成り立つ。
Δθ=180度x(2n−1) ただしnは正の整数
【0095】
つまり、梢部導波路WSおよび梢部導波路WGに同じ周波数の電磁波が伝搬するとき、梢部導波路WSおよび梢部導波路WGは、2つの電磁波の位相の変化量の差が180度の奇数倍になる関係を有している。180度の奇数倍は、伝搬する電磁波の半波長の奇数倍と同義である。よって、導波路を伝搬させようとする電磁波の波長をλgとするとき、ΔLは、nを正の整数として、ΔL=(λg/2)x(2n−1)と表すことができる。上述の条件を満たすよう、梢部導波路WGの長さを、梢部導波路WSよりもΔLだけ長くすれば、幹部122Tの+Y側の端部122Mにおいて梢部導波路WSおよび梢部導波路WGをそれぞれ伝搬してきた電磁波の位相を整合させることができる。
【0096】
例えば、図8Aに示す例では、梢部導波路WGは梢部導波路WSよりも、導電性ロッド124の幅2本分、および、導電性ロッド124の間隔2つ分だけ長い。導電性ロッド124の幅、および、導電性ロッド124の間隔をいずれもλm/8とすると、ΔL=λm/2(半波長)であり、180度の位相の変化量の差が生じることになる。よって上述した条件を満足する。
【0097】
なお、本実施形態では梢部導波路WSよりも梢部導波路WGが長いとして説明しているが、これは一例である。両者を入れ替えて、梢部導波路WSが梢部導波路WGよりもΔLだけ長くてもよい。
【0098】
図9を参照する。第1梢部122Sおよび第2梢部122Gの+Y側の端部には、それぞれ、チョーク構造50Sおよび50Gが設けられている。チョーク構造50Sは、第1梢部122Sの端部と、その先の+Y方向に存在する複数の導電性ロッド124によって構成される。チョーク構造50Gは、第2梢部122Gの端部と、その先の+Y方向に存在する複数の導電性ロッド124によって構成される。
【0099】
チョーク構造50Sおよび50Gは、電磁波が梢部導波路WSおよび梢部導波路WGの端部から漏洩することを抑制し、効率よく電磁波を伝送させる。梢部導波路WSおよび梢部導波路WG内の電磁波は、チョーク構造50Sおよび50Gへも進入するが、入射波と反射波との間には約180度の位相差を与えることができる。これにより、端部から電磁波が漏洩することを抑制できる。
【0100】
(実施形態2)
図11は、本実施形態にかかる導波路装置100の導波部材122の形状、および、配線パターン40S、40G1および40G2を有する回路基板4を示す。なお、図11におけるB−B’線に沿った断面は、図8Bに示す例と同じである。
【0101】
実施形態1では、2つのアンテナ入出力端子20aおよび20bを有するミリ波IC2と接続される導波路装置モジュールを説明した。本実施形態にかかる導波路装置モジュールは、3つのアンテナ入出力端子を有するミリ波IC2との接続に好適である。3つのアンテナ入出力端子は、1つのS端子20aと、2つのG端子20bである。
【0102】
図11に示すように、導波路装置100の導波部材122は、3つの梢部に分岐している。3つの梢部には、3本の配線パターン40S、40G1および40G2の各一端が接続される。3本の配線パターンの各他端が、ミリ波IC2の1つのS端子20aと、2つのG端子20bに接続される。以下では便宜的に、図面上側(−X側)のG端子20bを「G1端子20b」と記述し、下側(+X側)のG端子20bを「G2端子20b」と記述する。以下、詳細に説明する。
【0103】
図11に示すように、配線パターン40Sの一端は位置Srにおいて導波部材122と接続され、他端はミリ波IC2のS端子20aと接続されている。配線パターン40G1の一端は位置Gr1において導波部材122と接続され、他端はミリ波IC2のG1端子20bと接続されている。さらに配線パターン40G2の一端は位置Gr2において導波部材122と接続され、他端はミリ波IC2のG2端子20bと接続されている。各位置Sr、Gr1およびGr2において、配線パターン40S、40G1および40G2は、例えばハンダ付け等により導波部材122と接続される。
【0104】
実施形態1と同様、本実施形態でも、ミリ波IC2のS端子20a、G1端子20bおよびG2端子20bは不平衡(UnBalance)型の信号端子である。ミリ波IC2のS端子20aに印加された能動的な信号に対応して、G1およびG2端子20bにはこの信号とは反対の位相の信号が誘起される。G端子はミリ波IC2のグランドに接続されている。より詳細な説明は後述する。
【0105】
図12は、主として導波部材122の形状を示す。導波部材122は、第1の導電部材110(図1図4等)の導電性表面110aに沿って延びており、導電性の導波面122aを有している。導波面122aと導電性表面110aとの間には導波路が形成される。
【0106】
本実施形態の導波部材122は、幹部122Tの幹部122Tの+Y側の端部122Mから3本に分岐した形状を有している。すなわち導波部材122は、幹部122Tと、端部122Mからさらに+Y方向に延びる第1梢部122Sと、端部122Mから−X方向に延びる第2梢部122G1と、端部122Mから+X方向に延びる第3梢部122G2とを有している。
【0107】
幹部122Tと導電性表面110aとの間、第1梢部122Sと導電性表面110aとの間、第2梢部122G1と導電性表面110aとの間、および、第3梢部122G2と導電性表面110aとの間の空間は、いずれも導波路として機能する。
【0108】
以下では、幹部122Tと導電性表面110aとによって形成される導波路を「幹部導波路WT」と記述し、第1梢部122Sと導電性表面110aとによって形成される導波路を「梢部導波路WS」、第2梢部122G1と導電性表面110aとによって形成される導波路を「梢部導波路WG1」、第3梢部122G2と導電性表面110aとによって形成される導波路を「梢部導波路WG2」と記述する。図11には、幹部122T、第1梢部122S、第2梢部122G1および第3梢部122G2とともに「WT」、「WS」、「WG1」、「WG2」が示されている。
【0109】
幹部122Tおよび第1梢部122Sは直線状であるため、幹部導波路WTおよび梢部導波路WSもまた直線状である。一方、第2梢部122G1は−X方向に延びた後、屈曲して+Y方向に延びている。また第3梢部122G2は+X方向に延びた後、屈曲して+Y方向に延びている。そのため、第2梢部122G1および第3梢部122G2に沿って梢部導波路WG1およびWG2も屈曲している。なお、本実施形態では、図示されている範囲では、導波部材122の形状は、直線状に配置された幹部122Tおよび第1梢部122Sに関し対称である。
【0110】
再び図11を参照する。
【0111】
ミリ波IC2がS端子20aに高周波電圧信号を印加したとき、梢部導波路WSには高周波電磁界(電磁波)が発生し、−Y方向に伝搬する。詳細は実施形態1において説明した通りであるため、ここでは実施形態1の説明を援用し、再度の記載は省略する。
【0112】
一方、ミリ波IC2のS端子20aに高周波電圧信号が印加されると、G1およびG2端子20bには、当該高周波電圧信号により、それぞれ、当該高周波電圧信号の半分の振幅で、かつ、その位相と逆位相の電圧を有する高周波電圧信号が誘起される。これは、S端子20aに印加された高周波電圧信号を打ち消すような信号が誘起されるためである。具体的には、S端子20aに印加された高周波電圧信号の、ある位相における信号レベルを+1とすると、2つのG1およびG2端子20bにそれぞれ−0.5ずつの高周波電圧信号が誘起される。
【0113】
G1端子20bと接続された第2梢部122G1の位置Gr1、および、G2端子20bと接続された第3梢部122G2の位置Gr2に誘起された高周波電圧信号によって、各位置には高周波電磁界(電磁波)が発生する。位置Srに発生する電磁波の信号レベルを+1と表すとすると、位置Gr1およびGr2にそれぞれ発生する電磁波の信号レベルは−0.5である。実施形態1と同様、本実施形態においても、位置Gr1およびGr2に発生した電磁波の位相は、位置Srに発生した電磁波の位相と180度ずれている。位置Gr1およびGr2において発生した各電磁波は、梢部導波路WG1およびWG2を−Y方向に伝搬する。その後、梢部導波路WG1では電磁波は屈曲した第2梢部122G1に沿って+X方向に伝搬し、梢部導波路WG2では電磁波は屈曲した第2梢部122G2に沿って−X方向に伝搬する。
【0114】
梢部導波路WS、WG1およびWG2をそれぞれ伝搬する電磁波は、幹部122Tの+Y側の端部122Mにおいて合流する。本実施形態においても、典型的には、合流する端部122Mにおいて梢部導波路WSおよび梢部導波路WG1をそれぞれ伝搬する電磁波の位相が一致するよう、梢部導波路WSおよび梢部導波路WG1の長さが調整されている。その方法は、実施形態1と同じである。また、導波部材122のX軸方向の形状は対称であるから、梢部導波路WG1と同じ長さになるよう、梢部導波路WG2の長さも調整されている。
【0115】
なお、図示されている範囲において、導波部材122のX軸方向の形状が幹部122Tおよび第1梢部122Sに関し対称であることは、一例であって必須ではない。以下の条件が満たされていれば、導波部材122の形状は、幹部122Tおよび第1梢部122Sに関して非対称であってもよい。非対称である場合、または、位置Gr1およびGr2がY方向に関して異なる場合には、位置Gr1およびGr2から端部122Mまでの梢部導波路WG1およびWG2の長さが異なる。長さの差は、典型的には、180度の偶数倍であるが、180度の偶数倍±90度の範囲内に入っていればよい。
【0116】
まず、梢部導波路WSおよび梢部導波路WG1の長さは、梢部導波路WSを伝搬する電磁波の位相変化量と梢部導波路WG1を伝搬する電磁波の位相変化量との差が180度の奇数倍になるような関係を有する。そして同時に、梢部導波路WSおよび梢部導波路WG2の長さは、梢部導波路WSを伝搬する電磁波の位相変化量と梢部導波路WG2を伝搬する電磁波の位相変化量との差が180度の奇数倍になるような関係を有する。このとき、「奇数倍」に対応する両者の値は異なっていてもよい。梢部導波路WG1および梢部導波路WG2は、各梢部導波路WG1およびWG2を伝搬する電磁波の位相変化量の差が180度の偶数倍、または360度の整数倍になるような関係を有していればよいと言える。当該条件を満たす限り、合流した後の電磁波の信号は、位置Srにおいて発生した電磁波の信号の2倍に増幅される。
【0117】
実施形態1にかかる例と同様、本実施形態の例でも、上述の「位相変化量との差が180度の奇数倍」であることは必須ではない。梢部導波路WS、梢部導波路WG1およびWG2の長さに誤差が存在することにより、端部122Mにおいて合流する3つの電磁波の位相が一致しないことがあり得る。しかしながら、位相差が用途に応じた許容範囲内であれば問題はない。許容範囲内の位相差の例は、±60度程度から±90度程度の範囲である。
【0118】
なお、図11に示されるように、本実施形態においても、各梢部導波路WS、WG1およびWG2の+Y側の端部周辺には、それぞれ、チョーク構造50S、50G1および50G2が設けられている。各チョーク構造は、第1梢部122S、第2梢部122G1および122G2の各端部と、その先の+Y方向に存在する複数の導電性ロッド124とによって構成される。これらのチョーク構造を設けることにより、電磁波が梢部導波路WSおよび梢部導波路WGの端部から漏洩することを抑制し、効率よく電磁波を伝送させることができる。詳細は実施形態1で説明した通りである。
【0119】
(実施形態3)
図13Aは、本実施形態にかかる導波路装置100の導波部材122の形状、および、2つの配線パターン40S1および40S2を有する回路基板4を示す。図13Bは、図13AにおけるC−C’線に沿った断面図である。
【0120】
本実施形態にかかる導波路装置モジュールは、4つのアンテナ入出力端子を有するミリ波IC2との接続に好適である。4つのアンテナ入出力端子は、2つのS端子20aと、2つのG端子20bである。ただし本実施形態では、2つのG端子20bは導波部材122とは接続されていない。以下では便宜的に、図面上側(−X側)のS端子20aを「S1端子20a」と記述し、下側(+X側)のS端子20aを「S2端子20a」と記述する。
【0121】
図13Aに示すように、導波路装置100の導波部材122は、−Y側から+Y側に向かってみたとき、端部122SCにおいて2つの梢部に分岐している。2つの梢部には、2本の配線パターン40S1および40S2が接続される。配線パターン40S1の一端は位置Sr1において導波部材122と接続され、他端はミリ波IC2のS1端子20aと接続される。配線パターン40S2の一端は位置Sr2において導波部材122と接続され、他端はミリ波IC2のS2端子20aと接続される。各位置Sr1およびSr2において、配線パターン40S1および40S2は、例えばハンダ付け等により導波部材122と接続される。
【0122】
本実施形態においては、ミリ波IC2のS1およびS2端子20aは平衡型の信号端子である。S1およびS2端子20aには、それぞれ、振幅は同じで極性が反転した信号が能動的に入出力される。「極性が反転した」とは、位相差が180度、またはその奇数倍の位相差を有していることを言う。このような性質を表すため、例えばS1端子20aは「+S端子」と表現され、S2端子20aは「−S端子」と表現することができる。
【0123】
なお、図13Aに示す回路基板4の大きさは一例である。配線パターン40S1および40S2を設けることが可能であれば、回路基板4の大きさは任意である。例えば回路基板4のX軸方向の幅はより短くてもよいし、長くてもよい。
【0124】
以下では、まず本実施形態にかかる導波部材122の形状等を説明し、その後、ミリ波IC2による高周波電磁界(電磁波)の生成原理を説明する。
【0125】
図14は、主として導波部材122の形状を示す。例えば図1から図4を参照しながら説明したように、導波部材122は、第1の導電部材110(図1図4等)の導電性表面110aに沿って延びており、導電性の導波面122aを有している。導波面122aと導電性表面110aとの間には導波路が形成される。
【0126】
本実施形態の導波部材122は、2つに分岐した形状を有している。すなわち導波部材122は、幹部122Tと、幹部122Tの+Y側の端部122SCから−X方向に延びる第1梢部122S−1と、端部122SCから+Y方向に延びる第2梢部122S−2とを有している。
【0127】
幹部122Tと導電性表面110aとの間、第1梢部122S−1と導電性表面110aとの間、および、第2梢部122S−2と導電性表面110aとの間の空間は導波路として機能する。
【0128】
以下では、幹部122Tと導電性表面110aとによって形成される導波路を「幹部導波路WT」と記述し、第1梢部122S−1および第2梢部122S−2によってそれぞれ形成される導波路は「梢部導波路WS1」および「梢部導波路WS2」と記述する。図14には、導波部材122の各位置に対応して形成される各導波路の位置を示す「WT」、「WS1」、「WS2」が示されている。
【0129】
図14に示す導波部材122の第1梢部122S−1は、直線部分と屈曲部分とを有している。そのため、梢部導波路WS1もまた、直線部分および屈曲部分を有する。なお、本実施形態では幹部導波路WTは直線形状であるが、幹部導波路WTの形状および配置は、導波路装置100のサイズ、幹部導波路WTと接続される他の導波路の配置等の、種々の要因によって当業者が任意に決定し得る。
【0130】
ここで、梢部導波路WS1およびWS2に注目する。第1梢部122S−1の位置Sr1には、配線パターン40S1を介してミリ波IC2のS1(+S)端子20aが接続される。また、第2梢部122S−2の位置Sr2には、配線パターン40S2を介してミリ波IC2のS2(−S)端子20aが接続される。上述の通り、S1およびS2端子20aには、それぞれ、振幅が同じで極性の反転した信号が能動的に入出力される。その結果、位置Sr1およびSr2には、同じ周波数で位相が180度ずれた電磁波が発生する。2つの電磁波はそれぞれ、幹部122Tの+Y側の端部である位置122SCの方向に伝搬し、位置122SCにおいて合流する。
【0131】
本実施形態においても、合流する位置122SCにおいて梢部導波路WS1およびWS2をそれぞれ伝搬する電磁波の位相が一致するよう、梢部導波路WS1およびWS2の長さが調整されている。その方法は、実施形態1と同じであるため、ここでは実施形態1の説明を援用し、再度の記載は省略する。なお、図10およびその説明も援用するが、図10(a)および(b)に示す「梢部導波路WS」および「梢部導波路WG」はそれぞれ「梢部導波路WS2」および「梢部導波路WS1」に読み替えればよい。この結果、梢部導波路WS1およびWS2をそれぞれ伝搬してきた電磁波は、位置122SCにおいて2倍に増幅され、幹部導波路WTに沿って、幹部導波路WTの−Y方向に伝搬する。
【0132】
実施形態1および2と同様、複数の梢部導波路を伝搬してきた電磁波が端部122Mの位置において合流する際には、用途に応じた許容範囲内であれば電磁波間の位相差が存在していてもよい。許容範囲内の位相差の例は、±60度程度から±90度程度の範囲である。
【0133】
以下、上述した実施形態1〜3の変形例を説明する。実施形態1の変形例を説明するが、当業者であれば実施形態2および3にも同様に適用可能である。
【0134】
図15は、回路基板4の−Z側の面に対向して、ミリ波IC2および導波部材122が設けられた第1の変形例を示す。図15の構成は、図8Bに示す構成の変形例であり、上述した図7Bの第1の構成に対応する。
【0135】
図15では、ミリ波IC2および導波部材122が回路基板4の同じ側に配置されているため、配線パターン40Sは回路基板4の−Z側の面にのみ設けられている。図8Bでは、ミリ波IC2は回路基板4の+Z側に配置され、導波部材122は回路基板4の−Z側に配置されていた。そのため、配線パターン40Sは、回路基板4の+Z側および−Z側の両方にまたがっていた。
【0136】
図15のような構成を採用した場合でも、実施形態1で説明した方法で、導波部材122と第1の導電部材110との間に形成される導波路群の長さを調整すれば同じ効果を得ることができる。なお、ミリ波IC2は導体薄板を支持体として有するトレイ60上に配置される。
【0137】
図16は、回路基板4の−Z側の面に対向して、ミリ波IC2および導波部材122が設けられた第2の変形例を示す。図15の構成は、図8Bに示す構成の変形例であり、上述した図7Bの第2の構成に対応する。
【0138】
図16の変形例では、配線パターン40Sの両方の端部が回路基板4の−Z側の面に配置されているが、両方の端部の間の配線は、回路基板4の+Z側の面を通過している。このような変形例によれば、当業者は、回路基板4と導波部材122との配置、回路基板4とミリ波IC2との配置を柔軟に決定し得ることが理解される。なお、配線パターン40以外については、第2の変形例は第1の変形例と同じである。
【0139】
次に、人工磁気導体を追加した変形例を説明する。
【0140】
図17Aは、図8Bの構成の+Z側に人工磁気導体101を追加した例を示す断面図である。図17Aには、第1の導電部材110、ミリ波IC2、回路基板4等の上部(+Z方向)に配置された、導電性ロッド124’を有する人工磁気導体101が示されている。各導電性ロッド124’の−Z側の先端部は、第1の導電部材110、ミリ波IC2等と接触していない。第1の導電部材110およびミリ波IC2の+Z方向側の面の位置は異なり得るため、その位置に応じて各導電性ロッド124’の長さも調整されている。また、例えば各導電性ロッド124’の基部からミリ波IC2までの距離は、λm/2未満に設定されている。ここでλmは動作周波数帯域における最高周波数の電磁波の自由空間における波長である。なお、各導電性ロッド124’の長さは、一定にしても良い。敢えて長さを調節しなくとも、ミリ波IC2を、人工磁気導体101と回路基板4の間の間隙に収容できる場合も少なくないからである。このような導電性ロッド124’を有する人工磁気導体101を配置することにより、ミリ波IC2および回路基板4からの電磁波の漏れを大きく低減できる。
【0141】
図17Bは、図15の構成の+Z側に人工磁気導体101を追加した例を示す断面図である。また図17Cは、図16の構成の+Z側に人工磁気導体101を追加した例を示す断面図である。図17Aの例と同様、図17Bおよび図17Cの例でも、人工磁気導体101を配置することにより、ミリ波IC2および回路基板4からの電磁波の漏れを大きく低減できる。
【0142】
図17A図17Cでは、回路基板4の上方(+Z方向)に導電性ロッド124’を有する人工磁気導体101が設けられており、回路基板4と導電性ロッド124’および/またはミリ波IC2と導電性ロッド124’とは接触しておらず隙間が存在していた。以下、当該隙間を樹脂で埋める例を説明する。
【0143】
図18は、ミリ波IC2または回路基板4と、導電性ロッド124’との間に設けられた絶縁樹脂160を示す。なお、図18には、ミリ波IC2または回路基板4の上面(+Z側の面)に表面導電部材110dが設けられている例を示している。
【0144】
絶縁樹脂160のような絶縁材料を、導電性ロッド124’の先端部と回路基板4またはミリ波IC2の表面との間に設けることにより、両者の接触を防止することが可能になる。
【0145】
ここで、ロッド基部(導電部材120’の導電性表面)と導電層との間隔の条件を検討する。
【0146】
導電部材120’の導電性表面と表面導電部材110dとの間隔Lの条件は、空気層と絶縁樹脂160の層との間で電磁波が伝搬することによって定在波が立たない条件、即ち半周期未満の位相条件を満たしていることが必要である。
【0147】
いま、絶縁樹脂160の厚さをd、空気層の厚さをa、絶縁樹脂160内部の電磁波の波長をλε、空気層の電磁波の波長をλ0とすると、以下の関係が成り立つ必要がある。
(d/(λε/2))+(a/(λ0/2))<1
【0148】
なお導電性ロッド124’の先端部にのみ絶縁樹脂160を置く場合は、導電性ロッド124’の基部(導電部材120’の導電性表面)と表面導電部材110dの間は空気層のみになる。そのときは、導電部材120’の導電性表面と表面導電部材110dとの間隔はλ0/2未満であれば良い。
【0149】
絶縁樹脂160として熱伝導率が所定値以上の樹脂を採用すると、ミリ波IC2において発生した熱を導電部材120’に伝達させることができる。これにより、モジュールの放熱効率を向上させることができる。
【0150】
さらに、図18に示すように、導電部材120’の+Z側の面に直接ヒートシンク170を設けてもよい。ヒートシンク170は、上述した熱伝導率が高い樹脂によって構成されていてもよいし、窒化アルミニウムや窒化ケイ素などの熱伝導率の高いセラミック部材を用いてもよい。これらにより、冷却性能の高いモジュール100を構成できる。ヒートシンク170の形状も任意である。
【0151】
なお、絶縁樹脂160およびヒートシンク170は、図18に示すように同時に組み込む必要は無い。当業者は別個独立に組み込むか否かを決定することができる。
【0152】
上述の実施形態の説明では、導波部材122上の位置Sr、Sr1、Sr2、Gr、Gr1、Gr2において、配線パターン40がはんだ付けされる例を挙げた。はんだ付けするためには、導波部材122の表面がハンダ付けに適した材質や表面状態等であることが好適である。具体的には、導波部材122の表面は溶融ハンダに対する親和性が高いことが好ましい。例えば、導波部材122および第2導電部材120が、一体的にアルミダイキャスト成型(鋳造)された導電性金属体である場合には、鋳造、表面研磨、洗浄、メッキ処理(表面の活性化処理等も含む。)、BGAはんだ付け、の工程を経ることで、導波部材122の表面をハンダ付けに適した材質や表面状態にすることができる。なお、導波部材122は、研磨部分を考慮して少し大きめに鋳造されることになる。導波部材122を冷間鍛造によって製造する例では、表面研磨を省略することができる場合があるが、それ以外は鋳造の例と同様である。メッキ処理の一例として、導波部材122がアルミ製である場合、はんだ付けを行う導波部材122の位置およびその近傍にニッケルメッキを施し、異種金属層(メッキ層)を形成すればよい。
【0153】
上述の実施形態の説明では、複数の梢部導波路同士の導波路長を調整することにより、合流点における電磁波の位相を整合させる例を説明した。しかしながら、電磁波の位相を整合させるための方法は、導波路長の調整のみに限られない。
【0154】
例えば、導波部材の幅を変更する、または、導波路を形成する導波部材と第1の導電部材110との間隔を変更すると、変更位置における電磁波の波長は局所的に変化する。波長の変化は位相の変化に直接対応する。そのため、導波部材の幅を変更することにより、および/または、導波路を形成する導波部材と第1の導電部材110との間隔を変更することにより、位相の変化量を調整することが可能になる。これらの変更は、導波路のインダクタンスまたはキャパシタンスの変動を生じさせることを意味する。よって、広義には、導波路のインダクタンスまたはキャパシタンスの変動を生じさせる方法によれば、導波路内を伝搬する電磁波の位相を、所望の特性に応じて調整することができる。なお、種々の条件が関連するため、導波路のインダクタンスまたはキャパシタンスを局所的に変更することによって波長の長さまたは位相がどのように変わるかは、一概に言えない。なお、導波路長による調整と組み合わせて、導波路のインダクタンスまたはキャパシタンスの変更を位相の変化量を微調整するために利用してもよい。
【0155】
次に、上述した各実施形態の応用例を説明する。ミリ波IC2を用いて自由空間に電波を放射する場合を例に挙げる。上述の通り、1個の導波部材には、ミリ波IC2のS端子20a上に印加された高周波信号によって発生した高周波電磁界信号、および、当該高周波信号とは逆位相の、G端子20bに誘起された電磁波とが合成された高周波電磁界信号が伝搬される。以下では複数個の導波部材が存在する構成を説明するが、各導波部材には、1個または2個のS端子20aおよび1個または2個のG端子20bの組を用いたときの、合成された高周波電磁界信号が伝搬される。ミリ波IC2は、図6Aに示す端子群20A、20B、20Cを複数有していてもよい。または、各々が1以上の端子群20A、20B、20Cを有する複数のミリ波IC2が利用されてもよい。
【0156】
<応用例1>
以下、マイクロ波モジュール1000をレーダ装置に応用するための構成を説明する。具体例として、マイクロ波モジュール1000と放射素子とを組み合わせたレーダ装置の例を説明する。
【0157】
まず、スロットアレーアンテナの構成を説明する。スロットアレーアンテナにはホーンを設けているが、ホーンの有無は任意である。
【0158】
図19は、放射素子として機能する複数のスロットを有するスロットアレーアンテナ300の構造の一部を模式的に示す斜視図である。このスロットアレーアンテナ300は、二次元的に配列された複数のスロット312および複数のホーン314を有する第1の導電部材310と、複数の導波部材322Uおよび複数の導電性ロッド324Uが配列された第2の導電部材320とを備える。第1の導電部材310における複数のスロット312は、第1の導電部材310の第1の方向(Y方向)および第1の方向に交差(この例では直交)する第2の方向(X方向)に配列されている。図19は、簡単のため、導波部材322Uの各々の端部または中央に配置され得るポートおよびチョーク構造の記載は省略されている。本実施形態では、導波部材322Uの数は4個であるが、導波部材322Uの数は2個以上であればよい。
【0159】
図20Aは、図19に示す20個のスロットが5行4列に配列されたアレーアンテナ300をZ方向からみた上面図である。図20Bは、図20AのD−D’線による断面図である。このアレーアンテナ300における第1の導電部材310は、複数のスロット312にそれぞれ対応して配置された複数のホーン314を備えている。複数のホーン314の各々は、スロット312を囲む4つの導電壁を有している。このようなホーン314により、指向特性を向上させることができる。
【0160】
図示されるアレーアンテナ300においては、スロット312に直接的に結合する導波部材322Uを備える第1の導波路装置350aと、第1の導波路装置350aの導波部材322Uに結合する他の導波部材322Lを備える第2の導波路装置350bとが積層されている。第2の導波路装置350bの導波部材322Lおよび導電性ロッド324Lは、第3の導電部材340上に配置されている。第2の導波路装置350bは、基本的には、第1の導波路装置350aの構成と同様の構成を備えている。
【0161】
図20Aに示すように、導電部材310は、第1の方向(Y方向)および第1の方向に直交する第2の方向(X方向)に配列された複数のスロット312を備える。複数の導波部材322Uの導波面322aは、Y方向に延びており、複数のスロット312のうち、Y方向に並んだ4つのスロットに対向している。この例では導電部材310は、5行4列に配列された20個のスロット312を有しているが、スロット312の数はこの例に限定されない。各導波部材322Uは、複数のスロット312のうち、Y方向に並んだ全てのスロットに対向している例に限らず、Y方向に隣接する少なくとも2つのスロットに対向していればよい。隣接する2つの導波面322aの中心間隔は、例えば波長λoよりも短く設定される。このような構造とすることで、グレーティングローブの発生を回避できる。隣接する2つの導波面122aの中心間隔は短い程グレーティングローブの影響は現れにくくなるが、λo/2未満とすることは必ずしも好ましくはない。導電部材や導電性ロッドの幅を狭くする必要が生ずるためである。
【0162】
図20Cは、第1の導波路装置350aにおける導波部材322Uの平面レイアウトを示す図である。図20Dは、第2の導波路装置350bにおける導波部材322Lの平面レイアウトを示す図である。これらの図から明らかなように、第1の導波路装置350aにおける導波部材322Uは直線状に延びており、分岐部も屈曲部も有していない。一方、第2の導波路装置350bにおける導波部材322Lは分岐部および屈曲部の両方を有している。第2の導波路装置350bにおける「第2の導電部材320」と「第3の導電部材340」との組み合わせは、第1の導波路装置350aにおける「第1の導電部材310」と「第2の導電部材320」との組み合わせに相当する。
【0163】
第1の導波路装置350aにおける導波部材322Uは、第2の導電部材320が有するポート(開口部)345Uを通じて第2の導波路装置350bにおける導波部材322Lに結合する。言い換えると、第2の導波路装置350bの導波部材322Lを伝搬してきた電磁波は、ポート345Uを通って第1の導波路装置350aの導波部材322Uに達し、第1の導波路装置350aの導波部材322Uを伝搬することができる。このとき、各スロット312は、導波路を伝搬していきた電磁波を空間に向けて放射するアンテナ素子として機能する。反対に、空間を伝搬してきた電磁波がスロット312に入射すると、その電磁波はスロット312の直下に位置する第1の導波路装置350aの導波部材322Uに結合し、第1の導波路装置350aの導波部材322Uを伝搬する。第1の導波路装置350aの導波部材322Uを伝搬してきた電磁波は、ポート345Uを通って第2の導波路装置350bの導波部材322Lに達し、第2の導波路装置350bの導波部材322Lを伝搬することも可能である。第2の導波路装置350bの導波部材322Lは、第3の導電部材340のポート345Lを介して、外部にあるモジュールに結合され得る。
【0164】
図20Dは、マイクロ波モジュール1000における導波部材122と、第3の導電部材340の導波部材322Lとが接続された構成例を示している。上述の通り、導波部材122の+Y側の端部は、ミリ波IC2の端子と接続される。その結果、ミリ波IC2によって生成された信号波が、導波部材122上の導波面122aおよび導波部材322L上の導波面を伝搬する。
【0165】
図20Aに示される第1の導電部材310を「放射層」と呼ぶことができる。また、図20Cに示される第2の導電部材320、導波部材322U、および導電性ロッド324Uの全体を「励振層」と呼び、図20Dに示される第3の導電部材340、導波部材322L、および導電性ロッド324Lの全体を「分配層」と呼んでも良い。また「励振層」と「分配層」とをまとめて「給電層」と呼んでも良い。「放射層」、「励振層」および「分配層」は、それぞれ、一枚の金属プレートを加工することによって量産され得る。放射層、励振層、分配層、および分配層の背面側に設けられる電子回路は、モジュール化された1つの製品として製造され得る。
【0166】
この例におけるアレーアンテナでは、図20Bからわかるように、プレート状の放射層、励振層および分配層が積層されているため、全体としてフラットかつ低姿勢(low profile)のフラットパネルアンテナが実現している。例えば、図20Bに示す断面構成を持つ積層構造体の高さ(厚さ)を10mm以下にすることができる。
【0167】
図20Dに示される例では、導波部材122から導波部材322Lを経て、第2の導電部材320の各ポート345U(図20C参照)に至るまでの複数の導波路の各距離が、全て等しい。このため、導波部材122の導波面122aを伝搬し、導波部材322Lに入力された信号波は、第2の導波部材322UのY方向における中央に配置された4つのポート345Uのそれぞれに同じ位相で到達する。その結果、第2の導電部材320上に配置された4個の導波部材322Uは、同位相で励振され得る。
【0168】
なお、用途によっては、アンテナ素子として機能する全てのスロット312が同位相で電磁波を放射する必要はない。励振層および分配層における導波部材322のネットワークパターンは任意であり、図示される形態に限定されない。
【0169】
図20Cに示すように、本実施形態では、複数の導波部材322における隣接する2つの導波面322aの間にはY方向に配列された1列の導電性ロッド324Uしか存在していない。このように形成することにより、その2つの導波面の間は、電気壁だけでなく磁気壁(人工磁気導体)も含まない空間になる。このような構造により、隣接する2つの導波部材322の間隔を短縮することができる。その結果、X方向に隣接する2つのスロット312の間隔も同様に短縮することができる。これにより、グレーティングローブの発生の抑制を図ることができる。
【0170】
<応用例2:車載レーダシステム>
次に、上述したアレーアンテナを利用する応用例として、アレーアンテナを備えた車載レーダシステムの一例を説明する。車載レーダシステムに利用される送信波は、例えば76ギガヘルツ(GHz)帯の周波数を有し、その自由空間中の波長λoは約4mmである。
【0171】
自動車の衝突防止システムおよび自動運転などの安全技術には、特に自車両の前方を走行する1または複数の車両(物標)の識別が不可欠である。車両の識別方法として、従来、レーダシステムを用いた到来波の方向を推定する技術の開発が進められてきた。
【0172】
図21は、自車両500と、自車両500と同じ車線を走行している先行車両502とを示す。自車両500は、上述した任意の実施形態にかかるアレーアンテナを有する車載レーダシステムを備えている。自車両500の車載レーダシステムが高周波の送信信号を放射すると、その送信信号は先行車両502に到達して先行車両502で反射され、その一部は再び自車両500に戻る。車載レーダシステムは、その信号を受信して、先行車両502の位置、先行車両502までの距離、速度等を算出する。
【0173】
図22は、自車両500の車載レーダシステム510を示す。車載レーダシステム510は車内に配置されている。より具体的には、車載レーダシステム510は、リアビューミラーの鏡面と反対側の面に配置されている。車載レーダシステム510は、車内から車両500の進行方向に向けて高周波の送信信号を放射し、進行方向から到来した信号を受信する。
【0174】
本応用例による車載レーダシステム510は、本開示の実施形態におけるアレーアンテナを有している。スロットアレーアンテナは、互いに平行な複数の導波部材を有し得る。本応用例では、複数の導波部材の各々が延びる方向が鉛直方向に一致し、複数の導波部材の配列方向が水平方向に一致するように配置される。このため、複数のスロットを正面から見たときの横方向および縦方向の寸法をより小さくできる。
【0175】
上述のアレーアンテナを含むアンテナ装置の寸法の一例は、横×縦×奥行きが、60×30×10mmである。76GHz帯のミリ波レーダシステムのサイズとしては非常に小型であることが理解される。
【0176】
なお、従来の多くの車載レーダシステムは、車外、例えばフロントノーズの先端部に設置されている。その理由は、車載レーダシステムのサイズが比較的大きく、本開示のように車内に設置することが困難であるからである。本応用例による車載レーダシステム510は、前述のように車内に設置できるが、フロントノーズの先端に搭載してもよい。フロントノーズにおいて、車載レーダシステムが占める領域を減少させられるため、他の部品の配置が容易になる。
【0177】
本応用例によれば、送信アンテナに用いられる複数の導波部材(リッジ)の間隔を狭くすることができるため、隣接する複数の導波部材に対向して設けられる複数のスロットの間隔も狭くすることができる。これにより、グレーティングローブの影響を抑制することができる。例えば、横方向に隣接する2つのスロットの中心間隔を送信波の自由空間波長λoよりも短く(約4mm未満に)した場合には、グレーティングローブは前方には発生しない。スロットの中心間隔を送信波の波長λoの半分よりも大きい場合であっても、一般の車載レーダシステム用送信アンテナと比較すると、隣接するアンテナ素子の間隔を狭くすることができる。これにより、グレーティングローブの影響を抑制できる。なお、グレーティングローブは、アンテナ素子の配列間隔が電磁波の波長の半分よりも大きくなると出現する。しかし、配列間隔が波長未満であればグレーティングローブは前方には現れない。このため、アレーアンテナを構成する各アンテナ素子から放射される電波に位相差を付与するビームステアリングを行わない場合は、アンテナ素子の配置間隔が波長よりも小さければ、グレーティングローブは実質的には影響しない。送信アンテナのアレーファクタを調整することにより、送信アンテナの指向性を調整することができる。複数の導波部材上を伝送される電磁波の位相を個別に調整できるように、位相シフタを設けてもよい。この場合は、グレーティングローブの影響を避けるために、アンテナ素子の配置間隔は送信波の自由空間波長λoの半分未満とする事がより好ましい。位相シフタを設けることにより、送信アンテナの指向性を任意の方向に変更することができる。位相シフタの構成は周知であるため、その構成の説明は省略する。
【0178】
本応用例における受信アンテナは、グレーティングローブに由来する反射波の受信を低減できるため、以下に説明する処理の精度を向上させることができる。以下、受信処理の一例を説明する。
【0179】
図23Aは、車載レーダシステム510のアレーアンテナAAと、複数の到来波k(k:1〜Kの整数;以下同じ。Kは異なる方位に存在する物標の数。)との関係を示している。アレーアンテナAAは、直線状に配列されたM個のアンテナ素子を有する。原理上、アンテナは送信および受信の両方に利用することが可能であるため、アレーアンテナAAは送信アンテナおよび受信アンテナの両方を含み得る。以下では受信アンテナが受信した到来波を処理する方法の例を説明する。
【0180】
アレーアンテナAAは、様々な角度から同時に入射する複数の到来波を受ける。複数の到来波の中には、同じ車載レーダシステム510の送信アンテナから放射され、物標で反射された到来波が含まれる。さらに、複数の到来波の中には、他の車両から放射された直接的または間接的な到来波も含まれる。
【0181】
到来波の入射角度(すなわち到来方向を示す角度)は、アレーアンテナAAのブロードサイドBを基準とする角度を表している。到来波の入射角度は、アンテナ素子群が並ぶ直線方向に垂直な方向に対する角度を表す。
【0182】
いま、k番目の到来波に注目する。「k番目の到来波」とは、異なる方位に存在するK個の物標からアレーアンテナにK個の到来波が入射しているときにおける、入射角θkによって識別される到来波を意味する。
【0183】
図23Bは、k番目の到来波を受信するアレーアンテナAAを示している。アレーアンテナAAが受信した信号は、M個の要素を持つ「ベクトル」として、数1のように表現できる。
(数1)
S=[s1,s2,…,sMT
【0184】
ここで、sm(m:1〜Mの整数;以下同じ。)は、m番目のアンテナ素子が受信した信号の値である。上付きのTは転置を意味する。Sは列ベクトルである。列ベクトルSは、アレーアンテナの構成によって決まる方向ベクトル(ステアリングベクトルまたはモードベクトルと称する。)と、物標(波源または信号源とも称する。)における信号を示す複素ベクトルとの積によって与えられる。波源の個数がKであるとき、各波源から個々のアンテナ素子に到来する信号の波が線形的に重畳される。このとき、smは数2のように表現できる。
【数2】
【0185】
数2におけるak、θkおよびφkは、それぞれ、k番目の到来波の振幅、到来波の入射角度、および初期位相である。λは到来波の波長を示し、jは虚数単位である。
【0186】
数2から理解されるように、smは、実部(Re)と虚部(Im)とから構成される複素数として表現されている。
【0187】
ノイズ(内部雑音または熱雑音)を考慮してさらに一般化すると、アレー受信信号Xは数3のように表現できる。
(数3)
X=S+N
【0188】
Nはノイズのベクトル表現である。
【0189】
信号処理回路は、数3に示されるアレー受信信号Xを用いて到来波の自己相関行列Rxx(数4)を求め、さらに自己相関行列Rxxの各固有値を求める。
【数4】
【0190】
ここで、上付きのHは複素共役転置(エルミート共役)を表す。
【0191】
求めた複数の固有値のうち、熱雑音によって定まる所定値以上の値を有する固有値(信号空間固有値)の個数が、到来波の個数に対応する。そして、反射波の到来方向の尤度が最も大きくなる(最尤度となる)角度を算出することにより、物標の数および各物標が存在する角度を特定することができる。この処理は、最尤推定法として公知である。
【0192】
次に、図24を参照する。図24は、本開示による車両走行制御装置600の基本構成の一例を示すブロック図である。図24に示される車両走行制御装置600は、車両に実装されたレーダシステム510と、レーダシステム510に接続された走行支援電子制御装置520とを備えている。レーダシステム510は、アレーアンテナAAと、レーダ信号処理装置530とを有している。
【0193】
アレーアンテナAAは、複数のアンテナ素子を有しており、その各々が1個または複数個の到来波に応答して受信信号を出力する。上述のように、アレーアンテナAAは高周波のミリ波を放射することも可能である。
【0194】
レーダシステム510のうち、アレーアンテナAAは車両に取り付けられる必要がある。しかしながらレーダ信号処理装置530の少なくとも一部の機能は、車両走行制御装置600の外部(例えば自車両の外)に設けられたコンピュータ550およびデータベース552によって実現されてもよい。その場合、レーダ信号処理装置530のうちで車両内に位置する部分は、車両の外部に設けられたコンピュータ550およびデータベース552に、信号またはデータの双方向通信が行えるように、常時または随時に接続され得る。通信は、車両が備える通信デバイス540、および一般の通信ネットワークを介して行われる。
【0195】
データベース552は、各種の信号処理アルゴリズムを規定するプログラムを格納していてもよい。レーダシステム510の動作に必要なデータおよびプログラムの内容は、通信デバイス540を介して外部から更新され得る。このように、レーダシステム510の少なくとも一部の機能は、クラウドコンピューティングの技術により、自車両の外部(他の車両の内部を含む)において実現し得る。したがって、本開示における「車載」のレーダシステムは、構成要素のすべてが車両に搭載されていることを必要としない。ただし、本願では、簡単のため、特に断らない限り、本開示の構成要素のすべてが1台の車両(自車両)に搭載されている形態を説明する。
【0196】
レーダ信号処理装置530は、信号処理回路560を有している。この信号処理回路560は、アレーアンテナAAから直接または間接に受信信号を受け取り、受信信号、または受信信号から生成した二次信号を到来波推定ユニットAUに入力する。受信信号から二次信号を生成する回路(不図示)の一部または全部は、信号処理回路560の内部に設けられている必要はない。このような回路(前処理回路)の一部または全部は、アレーアンテナAAとレーダ信号処理装置530との間に設けられていてもよい。
【0197】
信号処理回路560は、受信信号または二次信号を用いて演算を行い、到来波の個数を示す信号を出力するように構成されている。ここで、「到来波の個数を示す信号」は、自車両の前方を走行する1または複数の先行車両の数を示す信号ということができる。
【0198】
この信号処理回路560は、公知のレーダ信号処理装置が実行する各種の信号処理を実行するように構成されていればよい。例えば、信号処理回路560は、MUSIC法、ESPRIT法、およびSAGE法などの「超分解能アルゴリズム」(スーパーレゾリューション法)、または相対的に分解能が低い他の到来方向推定アルゴリズムを実行するように構成され得る。
【0199】
図24に示す到来波推定ユニットAUは、任意の到来方向推定アルゴリズムにより、到来波の方位を示す角度を推定し、推定結果を示す信号を出力する。信号処理回路560は、到来波推定ユニットAUが公知のアルゴリズムを実行することにより、到来波の波源である物標までの距離、物標の相対速度、物標の方位を推定し、推定結果を示す信号を出力する。
【0200】
本開示における「信号処理回路」の用語は、単一の回路に限られず、複数の回路の組み合わせを概念的に1つの機能部品として捉えた態様も含む。信号処理回路560は、1個または複数のシステムオンチップ(SoC)によって実現されてもよい。例えば、信号処理回路560の一部または全部がプログラマブルロジックデバイス(PLD)であるFPGA(Field−Programmable Gate Array)であってもよい。その場合、信号処理回路560は、複数の演算素子(例えば汎用ロジックおよびマルチプライヤ)および複数のメモリ素子(例えばルックアップテーブルまたはメモリブロック)を含む。または、信号処理回路560は、汎用プロセッサおよびメインメモリ装置の集合であってもよい。信号処理回路560は、プロセッサコアとメモリとを含む回路であってもよい。これらは信号処理回路560として機能し得る。
【0201】
走行支援電子制御装置520は、レーダ信号処理装置530から出力される各種の信号に基づいて車両の走行支援を行うように構成されている。走行支援電子制御装置520は、所定の機能を発揮するように各種の電子制御ユニットに指示を行う。所定の機能は、例えば、先行車両までの距離(車間距離)が予め設定された値よりも短くなったときに警報を発してドライバにブレーキ操作を促す機能、ブレーキを制御する機能、アクセルを制御する機能を含む。例えば、自車両のアダプティブクルーズコントロールを行う動作モードのとき、走行支援電子制御装置520は、各種の電子制御ユニット(不図示)およびアクチュエータに所定の信号を送り、自車両から先行車両までの距離を予め設定された値に維持したり、自車両の走行速度を予め設定された値に維持したりする。
【0202】
MUSIC法による場合、信号処理回路560は、自己相関行列の各固有値を求め、それらのうちの熱雑音によって定まる所定値(熱雑音電力)より大きい固有値(信号空間固有値)の個数を示す信号を、到来波の個数を示す信号として出力する。
【0203】
次に、図25を参照する。図25は、車両走行制御装置600の構成の他の例を示すブロック図である。図25の車両走行制御装置600におけるレーダシステム510は、受信専用のアレーアンテナ(受信アンテナとも称する。)Rxおよび送信専用のアレーアンテナ(送信アンテナとも称する。)Txを含むアレーアンテナAAと、物体検知装置570とを有している。
【0204】
送信アンテナTxおよび受信アンテナRxの少なくとも一方は、上述した導波路構造を有している。送信アンテナTxは、例えばミリ波である送信波を放射する。受信専用の受信アンテナRxは、1個または複数個の到来波(例えばミリ波)に応答して受信信号を出力する。
【0205】
送受信回路580は、送信波のための送信信号を送信アンテナTxに送り、また、受信アンテナRxで受けた受信波による受信信号の「前処理」を行う。前処理の一部または全部は、レーダ信号処理装置530の信号処理回路560によって実行されてもよい。送受信回路580が行う前処理の典型的な例は、受信信号からビート信号を生成すること、および、アナログ形式の受信信号をデジタル形式の受信信号に変換することを含み得る。
【0206】
なお、本開示によるレーダシステムは、車両に搭載される形態の例に限定されず、道路または建物に固定されて使用され得る。
【0207】
続いて、車両走行制御装置600のより具体的な構成の例を説明する。
【0208】
図26は、車両走行制御装置600のより具体的な構成の例を示すブロック図である。図26に示される車両走行制御装置600は、レーダシステム510と、車載カメラシステム700とを備えている。レーダシステム510は、アレーアンテナAAと、アレーアンテナAAに接続された送受信回路580と、信号処理回路560とを有している。
【0209】
車載カメラシステム700は、車両に搭載される車載カメラ710と、車載カメラ710によって取得された画像または映像を処理する画像処理回路720とを有している。
【0210】
本応用例における車両走行制御装置600は、アレーアンテナAAおよび車載カメラ710に接続された物体検知装置570と、物体検知装置570に接続された走行支援電子制御装置520とを備えている。この物体検知装置570は、前述したレーダ信号処理装置530(信号処理回路560を含む)に加えて、送受信回路580および画像処理回路720を含んでいる。物体検知装置570は、レーダシステム510によって得られる情報だけではなく、画像処理回路720によって得られる情報を利用して、道路上または道路近傍における物標を検知することができる。例えば自車両が同一方向の2本以上の車線のいずれかを走行している最中において、自車両が走行している車線がいずれの車線であるかを、画像処理回路720によって判別し、その判別の結果を信号処理回路560に与えることができる。信号処理回路560は、所定の到来方向推定アルゴリズム(例えばMUSIC法)によって先行車両の数および方位を認識するとき、画像処理回路720からの情報を参照することにより、先行車両の配置について、より信頼度の高い情報を提供することが可能になる。
【0211】
なお、車載カメラシステム700は、自車両が走行している車線がいずれの車線であるかを特定する手段の一例である。他の手段を利用して自車両の車線位置を特定してもよい。例えば、超広帯域無線(UWB:Ultra Wide Band)を利用して、複数車線のどの車線を自車両が走行しているかを特定することができる。超広帯域無線が位置測定および/またはレーダとして利用可能なことは広く知られている。超広帯域無線を利用すれば、レーダの距離分解能が高まるため、前方に多数の車両が存在する場合でも、距離の差に基づいて個々の物標を区別して検知できる。このため、路肩のガードレール、または中央分離帯からの距離を精度よく特定することが可能である。各車線の幅は、各国の法律などで予め定められている。これらの情報を利用して、自車両が現在走行中の車線の位置を特定することができる。なお、超広帯域無線は一例である。他の無線による電波を利用してもよい。また、ライダー(LIDAR:Light Detection and Ranging)をレーダと組み合わせて用いてもよい。LIDARは、レーザレーダと呼ばれることもある。
【0212】
アレーアンテナAAは、一般的な車載用ミリ波アレーアンテナであり得る。本応用例における送信アンテナTxは、ミリ波を送信波として車両の前方に放射する。送信波の一部は、典型的には先行車両である物標によって反射される。これにより、物標を波源とする反射波が発生する。反射波の一部は、到来波としてアレーアンテナ(受信アンテナ)AAに到達する。アレーアンテナAAを構成している複数のアンテナ素子の各々は、1個または複数個の到来波に応答して、受信信号を出力する。反射波の波源として機能する物標の個数がK個(Kは1以上の整数)である場合、到来波の個数はK個であるが、到来波の個数Kは既知ではない。
【0213】
図24の例では、レーダシステム510はアレーアンテナAAも含めて一体的にリアビューミラーに配置されるとした。しかしながら、アレーアンテナAAの個数および位置は、特定の個数および特定の位置に限定されない。アレーアンテナAAは、車両の後方に位置する物標を検知できるように車両の後面に配置されてもよい。また、車両の前面または後面に複数のアレーアンテナAAが配置されていてもよい。アレーアンテナAAは、車両の室内に配置されていてもよい。アレーアンテナAAとして、各アンテナ素子が上述したホーンを有するホーンアンテナが採用される場合でも、そのようなアンテナ素子を備えるアレーアンテナは車両の室内に配置され得る。
【0214】
信号処理回路560は、受信アンテナRxによって受信され、送受信回路580によって前処理された受信信号を受け取り、処理する。この処理は、受信信号を到来波推定ユニットAUに入力すること、または、受信信号から二次信号を生成して二次信号を到来波推定ユニットAUに入力すること、を含む。
【0215】
図26の例では、信号処理回路560から出力される信号および画像処理回路720から出力される信号を受け取る選択回路596が物体検知装置570内に設けられている。選択回路596は、信号処理回路560から出力される信号および画像処理回路720から出力される信号の一方または両方を走行支援電子制御装置520に与える。
【0216】
図27は、本応用例におけるレーダシステム510のより詳細な構成例を示すブロック図である。
【0217】
図27に示すように、アレーアンテナAAは、ミリ波の送信を行う送信アンテナTxと、物標で反射された到来波を受信する受信アンテナRxとを備えている。図面上では送信アンテナTxは1つであるが、特性の異なる2種類以上の送信アンテナが設けられていてもよい。アレーアンテナAAは、M個(Mは3以上の整数)のアンテナ素子111、112、・・・、11Mを備えている。複数のアンテナ素子111、112、・・・、11Mの各々は、到来波に応答して、受信信号S1、S2、・・・、SM図23B)を出力する。
【0218】
アレーアンテナAAにおいて、アンテナ素子111〜11Mは、例えば、固定された間隔を空けて直線状または面状に配列されている。到来波は、アンテナ素子111〜11Mが配列されている面の法線に対する角度θの方向からアレーアンテナAAに入射する。このため、到来波の到来方向は、この角度θによって規定される。
【0219】
1個の物標からの到来波がアレーアンテナAAに入射するとき、アンテナ素子111〜11Mには、同一の角度θの方位から平面波が入射すると近似できる。異なる方位にあるK個の物標からアレーアンテナAAにK個の到来波が入射しているとき、相互に異なる角度θ1〜θKによって個々の到来波を識別することができる。
【0220】
図27に示されるように、物体検知装置570は、送受信回路580と信号処理回路560とを含む。
【0221】
送受信回路580は、三角波生成回路581、VCO(Voltage−Controlled−Oscillator:電圧制御可変発振器)582、分配器583、ミキサ584、フィルタ585、スイッチ586、A/Dコンバータ587、制御器588を備える。本応用例におけるレーダシステムは、FMCW方式でミリ波の送受信を行うように構成されているが、本開示のレーダシステムは、この方式に限定されない。送受信回路580は、アレーアンテナAAからの受信信号と送信アンテナTxのための送信信号とに基づいて、ビート信号を生成するように構成されている。
【0222】
信号処理回路560は、距離検出部533、速度検出部534、方位検出部536を備える。信号処理回路560は、送受信回路580のA/Dコンバータ587からの信号を処理し、検出された物標までの距離、物標の相対速度、物標の方位を示す信号をそれぞれ出力するように構成されている。
【0223】
まず、送受信回路580の構成および動作を詳細に説明する。
【0224】
三角波生成回路581は三角波信号を生成し、VCO582に与える。VCO582は、三角波信号に基づいて変調された周波数を有する送信信号を出力する。図28は、三角波生成回路581が生成した信号に基づいて変調された送信信号の周波数変化を示している。この波形の変調幅はΔf、中心周波数はf0である。このようにして周波数が変調された送信信号は分配器583に与えられる。分配器583は、VCO582から得た送信信号を、各ミキサ584および送信アンテナTxに分配する。こうして、送信アンテナは、図28に示されるように三角波状に変調された周波数を有するミリ波を放射する。
【0225】
図28には、送信信号に加えて、単一の先行車両で反射された到来波による受信信号の例が記載されている。受信信号は、送信信号に比べて遅延している。この遅延は、自車両と先行車両との距離に比例している。また、受信信号の周波数は、ドップラー効果により、先行車両の相対速度に応じて増減する。
【0226】
受信信号と送信信号とを混合すると、周波数の差異に基づいてビート信号が生成される。このビート信号の周波数(ビート周波数)は、送信信号の周波数が増加する期間(上り)と、送信信号の周波数が減少する期間(下り)とで異なる。各期間におけるビート周波数が求められると、それらのビート周波数に基づいて、物標までの距離と、物標の相対速度が算出される。
【0227】
図29は、「上り」の期間におけるビート周波数fu、および「下り」の期間におけるビート周波数fdを示している。図29のグラフにおいて、横軸が周波数、縦軸が信号強度である。このようなグラフは、ビート信号の時間−周波数変換を行うことによって得られる。ビート周波数fu、fdが得られると、公知の式に基づいて、物標までの距離と、物標の相対速度が算出される。本応用例では、以下に説明する構成および動作により、アレーアンテナAAの各アンテナ素子に対応したビート周波数を求め、それに基づいて物標の位置情報を推定することが可能になる。
【0228】
図27に示される例において、各アンテナ素子111〜11Mに対応したチャンネルCh1〜ChMからの受信信号は、増幅器によって増幅され、対応するミキサ584に入力される。ミキサ584の各々は、増幅された受信信号に送信信号を混合する。この混合により、受信信号と送信信号との間にある周波数差に対応したビート信号が生成される。生成されたビート信号は、対応するフィルタ585に与えられる。フィルタ585は、チャンネルCh1〜ChMのビート信号の帯域制限を行い、帯域制限されたビート信号をスイッチ586に与える。
【0229】
スイッチ586は、制御器588から入力されるサンプリング信号に応答してスイッチングを実行する。制御器588は、例えばマイクロコンピュータによって構成され得る。制御器588は、ROMなどのメモリに格納されたコンピュータプログラムに基づいて、送受信回路580の全体を制御する。制御器588は、送受信回路580の内部に設けられている必要はなく、信号処理回路560の内部に設けられていてもよい。つまり、送受信回路580は信号処理回路560からの制御信号にしたがって動作してもよい。または、送受信回路580および信号処理回路560の全体を制御する中央演算ユニットなどによって、制御器588の機能の一部または全部が実現されていてもよい。
【0230】
フィルタ585の各々を通過したチャンネルCh1〜ChMのビート信号は、スイッチ586を介して、順次、A/Dコンバータ587に与えられる。A/Dコンバータ587は、スイッチ586から入力されるチャンネルCh1〜ChMのビート信号を、サンプリング信号に同期してデジタル信号に変換する。
【0231】
以下、信号処理回路560の構成および動作を詳細に説明する。本応用例では、FMCW方式によって、物標までの距離および物標の相対速度を推定する。レーダシステムは、以下に説明するFMCW方式に限定されず、2周波CWまたはスペクトル拡散などの他の方式を用いても実施可能である。
【0232】
図27に示される例において、信号処理回路560は、メモリ531、受信強度算出部532、距離検出部533、速度検出部534、DBF(デジタルビームフォーミング)処理部535、方位検出部536、物標引継ぎ処理部537、相関行列生成部538、物標出力処理部539および到来波推定ユニットAUを備えている。前述したように、信号処理回路560の一部または全部がFPGAによって実現されていてもよく、汎用プロセッサおよびメインメモリ装置の集合によって実現されていてもよい。メモリ531、受信強度算出部532、DBF処理部535、距離検出部533、速度検出部534、方位検出部536、物標引継ぎ処理部537、および到来波推定ユニットAUは、それぞれ、別個のハードウェアによって実現される個々の部品であってもよいし、1つの信号処理回路における機能上のブロックであってもよい。
【0233】
図30は、信号処理回路560がプロセッサPRおよびメモリ装置MDを備えるハードウェアによって実現されている形態の例を示している。このような構成を有する信号処理回路560も、メモリ装置MDに格納されたコンピュータプログラムの働きにより、図27に示す受信強度算出部532、DBF処理部535、距離検出部533、速度検出部534、方位検出部536、物標引継ぎ処理部537、相関行列生成部538、到来波推定ユニットAUの機能が果たされ得る。
【0234】
本応用例における信号処理回路560は、デジタル信号に変換された各ビート信号を受信信号の二次信号として、先行車両の位置情報を推定し、推定結果を示す信号を出力するよう構成されている。以下、本応用例における信号処理回路560の構成および動作を詳細に説明する。
【0235】
信号処理回路560内のメモリ531は、A/Dコンバータ587から出力されるデジタル信号をチャンネルCh1〜ChMごとに格納する。メモリ531は、例えば、半導体メモリ、ハードディスクおよび/または光ディスクなどの一般的な記憶媒体によって構成され得る。
【0236】
受信強度算出部532は、メモリ531に格納されたチャンネルCh1〜ChMごとのビート信号(図28の下図)に対してフーリエ変換を行う。本明細書では、フーリエ変換後の複素数データの振幅を「信号強度」と称する。受信強度算出部532は、複数のアンテナ素子のいずれかの受信信号の複素数データ、または、複数のアンテナ素子のすべての受信信号の複素数データの加算値を周波数スペクトルに変換する。こうして得られたスペクトルの各ピーク値に対応するビート周波数、すなわち距離に依存した物標(先行車両)の存在を検出することができる。全アンテナ素子の受信信号の複素数データを加算すると、ノイズ成分が平均化されるため、S/N比が向上する。
【0237】
物標、すなわち先行車両が1個の場合、フーリエ変換の結果、図29に示されるように、周波数が増加する期間(「上り」の期間)および減少する期間(「下り」の期間)に、それぞれ、1個のピーク値を有するスペクトルが得られる。「上り」の期間におけるピーク値のビート周波数を「fu」、「下り」の期間におけるピーク値のビート周波数を「fd」とする。
【0238】
受信強度算出部532は、ビート周波数毎の信号強度から、予め設定された数値(閾値)を超える信号強度を検出することによって、物標が存在していることを判定する。受信強度算出部532は、信号強度のピークを検出した場合、ピーク値のビート周波数(fu、fd)を対象物周波数として距離検出部533、速度検出部534へ出力する。受信強度算出部532は、周波数変調幅Δfを示す情報を距離検出部533へ出力し、中心周波数f0を示す情報を速度検出部534へ出力する。
【0239】
受信強度算出部532は、複数の物標に対応する信号強度のピークが検出された場合には、上りのピーク値と下りのピーク値とを予め定められた条件によって対応づける。同一の物標からの信号と判断されたピークに同一の番号を付与し、距離検出部533および速度検出部534に与える。
【0240】
複数の物標が存在する場合、フーリエ変換後、ビート信号の上り部分とビート信号の下り部分のそれぞれに物標の数と同じ数のピークが表れる。レーダと物標の距離に比例して、受信信号が遅延し、図28における受信信号は右方向にシフトするので、レーダと物標との距離が離れるほど、ビート信号の周波数は、大きくなる。
【0241】
距離検出部533は、受信強度算出部532から入力されるビート周波数fu、fdに基づいて、下記の式により距離Rを算出し、物標引継ぎ処理部537へ与える。
R={C・T/(2・Δf)}・{(fu+fd)/2}
【0242】
また、速度検出部534は、受信強度算出部532から入力されるビート周波数fu、fdに基づいて、下記の式によって相対速度Vを算出し、物標引継ぎ処理部537へ与える。
V={C/(2・f0)}・{(fu−fd)/2}
【0243】
距離Rおよび相対速度Vを算出する式において、Cは光速度、Tは変調周期である。
【0244】
なお、距離Rの分解能下限値は、C/(2Δf)で表される。したがって、Δfが大きくなるほど、距離Rの分解能が高まる。周波数f0が76GHz帯の場合において、Δfを660メガヘルツ(MHz)程度に設定するとき、距離Rの分解能は例えば0.23メートル(m)程度である。このため、2台の先行車両が併走しているとき、FMCW方式では車両が1台なのか2台なのかを識別することが困難である場合がある。このような場合、角度分解能が極めて高い到来方向推定アルゴリズムを実行すれば、2台の先行車両の方位を分離して検出することが可能である。
【0245】
DBF処理部535は、アンテナ素子111、112、・・・、11Mにおける信号の位相差を利用して、入力される各アンテナに対応した時間軸でフーリエ変換された複素データを、アンテナ素子の配列方向にフーリエ変換する。そして、DBF処理部535は、角度分解能に対応した角度チャネル毎のスペクトルの強度を示す空間複素数データを算出し、ビート周波数毎に方位検出部536に出力する。
【0246】
方位検出部536は、先行車両の方位を推定するために設けられている。方位検出部536は、算出されたビート周波数毎の空間複素数データの値の大きさのうち、一番大きな値を取る角度θを対象物が存在する方位として物標引継ぎ処理部537に出力する。
【0247】
なお、到来波の到来方向を示す角度θを推定する方法は、この例に限定されない。前述した種々の到来方向推定アルゴリズムを用いて行うことができる。
【0248】
物標引継ぎ処理部537は、今回算出した対象物の距離、相対速度、方位の値と、メモリ531から読み出した1サイクル前に算出された対象物の距離、相対速度、方位の値とのそれぞれの差分の絶対値を算出する。そして、差分の絶対値が、それぞれの値毎に決められた値よりも小さいとき、物標引継ぎ処理部537は、1サイクル前に検知した物標と今回検知した物標とを同じものと判定する。その場合、物標引継ぎ処理部537は、メモリ531から読み出したその物標の引継ぎ処理回数を1つだけ増やす。
【0249】
物標引継ぎ処理部537は、差分の絶対値が決められた値よりも大きな場合には、新しい対象物を検知したと判断する。物標引継ぎ処理部537は、今回の対象物の距離、相対速度、方位およびその対象物の物標引継ぎ処理回数をメモリ531に保存する。
【0250】
信号処理回路560で、受信した反射波を基にして生成された信号であるビート信号を周波数解析して得られるスペクトラムを用い、対象物との距離、相対速度を検出することができる。
【0251】
相関行列生成部538は、メモリ531に格納されたチャンネルCh1〜ChMごとのビート信号(図28の下図)を用いて自己相関行列を求める。数4の自己相関行列において、各行列の成分は、ビート信号の実部および虚部によって表現される値である。相関行列生成部538は、さらに自己相関行列Rxxの各固有値を求め、得られた固有値の情報を到来波推定ユニットAUへ入力する。
【0252】
受信強度算出部532は、複数の対象物に対応する信号強度のピークが複数検出された場合、上りの部分および下りの部分のピーク値ごとに、周波数が小さいものから順番に番号をつけて、物標出力処理部539へ出力する。ここで、上りおよび下りの部分において、同じ番号のピークは、同じ対象物に対応しており、それぞれの識別番号を対象物の番号とする。なお、煩雑化を回避するため、図27では、受信強度算出部532から物標出力処理部539への引出線の記載は省略している。
【0253】
物標出力処理部539は、対象物が前方構造物である場合に、その対象物の識別番号を物標として出力する。物標出力処理部539は、複数の対象物の判定結果を受け取り、そのどちらもが前方構造物である場合、自車両の車線上にある対象物の識別番号を物標が存在する物体位置情報として出力する。また、物標出力処理部539は、複数の対象物の判定結果を受け取り、そのどちらもが前方構造物である場合であって、2つ以上の対象物が自車両の車線上にある場合、メモリ531から読み出した物標引継ぎ処理回数が多い対象物の識別番号を物標が存在する物体位置情報として出力する。
【0254】
再び図26を参照し、車載レーダシステム510が図26に示す構成例に組み込まれた場合の例を説明する。画像処理回路720は、映像から物体の情報を取得し、その物体の情報から物標位置情報を検出する。画像処理回路720は、例えば、取得した映像内のオブジェクトの奥行き値を検出して物体の距離情報を推定したり、映像の特徴量から物体の大きさの情報などを検出したりすることにより、予め設定された物体の位置情報を検出するように構成されている。
【0255】
選択回路596は、信号処理回路560および画像処理回路720から受け取った位置情報を選択的に走行支援電子制御装置520に与える。選択回路596は、例えば、信号処理回路560の物体位置情報に含まれている、自車両から検出した物体までの距離である第1距離と、画像処理回路720の物体位置情報に含まれている、自車両から検出した物体までの距離である第2距離とを比較してどちらが自車両に対して近距離であるかを判定する。例えば、判定された結果に基づいて、自車両に近いほうの物体位置情報を選択回路596が選択して走行支援電子制御装置520に出力し得る。なお、判定の結果、第1距離および第2距離が同じ値であった場合には、選択回路596は、そのいずれか一方または両方を走行支援電子制御装置520に出力し得る。
【0256】
なお、物標出力処理部539(図27)は、受信強度算出部532から物標候補がないという情報が入力された場合には、物標なしとしてゼロを物体位置情報として出力する。そして、選択回路596は、物標出力処理部539からの物体位置情報に基づいて予め設定された閾値と比較することで信号処理回路560あるいは画像処理回路720の物体位置情報を使用するか選択している。
【0257】
物体検知装置570によって先行物体の位置情報を受け取った走行支援電子制御装置520は、予め設定された条件により、物体位置情報の距離や大きさ、自車両の速度、降雨、降雪、晴天などの路面状態などの条件と併せて、自車両を運転しているドライバに対して操作が安全あるいは容易となるような制御を行う。例えば、走行支援電子制御装置520は、物体位置情報に物体が検出されていない場合、予め設定されている速度までスピードを上げるようにアクセル制御回路526に制御信号を送り、アクセル制御回路526を制御してアクセルペダルを踏み込むことと同等の動作を行う。
【0258】
走行支援電子制御装置520は、物体位置情報に物体が検出されている場合において、自車両から所定の距離であることが分かれば、ブレーキバイワイヤなどの構成により、ブレーキ制御回路524を介してブレーキの制御を行う。すなわち、速度を落とし、車間距離を一定に保つように操作する。走行支援電子制御装置520は、物体位置情報を受けて、警告制御回路522に制御信号を送り、車内スピーカを介して先行物体が近づいていることをドライバに知らせるように音声またはランプの点灯を制御する。走行支援電子制御装置520は、先行車両の配置を含む物体位置情報を受け取り、予め設定された走行速度の範囲であれば、先行物体との衝突回避支援を行うために自動的にステアリングを左右どちらかに操作し易くするか、あるいは、強制的に車輪の方向を変更するようにステアリング側の油圧を制御することができる。
【0259】
物体検知装置570では、選択回路596が前回検出サイクルにおいて一定時間連続して検出していた物体位置情報のデータで、今回検出サイクルで検出できなかったデータに対して、カメラで検出したカメラ映像からの先行物体を示す物体位置情報が紐付けされれば、トラッキングを継続させる判断を行い、信号処理回路560からの物体位置情報を優先的に出力するようにしても構わない。
【0260】
信号処理回路560および画像処理回路720の出力を選択回路596に選択するための具体的構成の例および動作の例は、米国特許第8446312号明細書、米国特許第8730096号明細書、および米国特許第8730099号明細書に開示されている。この公報の内容の全体をここに援用する。
【0261】
[第1の変形例]
上記の応用例の車載用レーダシステムにおいて、変調連続波FMCWの1回の周波数変調の(掃引)条件、つまり変調に要する時間幅(掃引時間)は、例えば1ミリ秒である。しかし、掃引時間を100マイクロ秒程度に短くすることもできる。
【0262】
ただし、そのような高速の掃引条件を実現するためには、送信波の放射に関連する構成要素のみならず、当該掃引条件下での受信に関連する構成要素をも高速に動作させる必要が生じる。例えば、当該掃引条件下で高速に動作するA/Dコンバータ587(図27)を設ける必要がある。A/Dコンバータ587のサンプリング周波数は、例えば10MHzである。サンプリング周波数は10MHzよりも早くてもよい。
【0263】
本変形例においては、ドップラーシフトに基づく周波数成分を利用することなく、物標との相対速度を算出する。本変形例では、掃引時間Tm=100マイクロ秒であり、非常に短い。検出可能なビート信号の最低周波数は1/Tmであるので、この場合は10kHzとなる。これは、およそ20m/秒の相対速度を持つ物標からの反射波のドップラーシフトに相当する。即ち、ドップラーシフトに頼る限り、これ以下の相対速度を検出することはできない。よって、ドップラーシフトに基づく計算方法とは異なる計算方法を採用することが好適である。
【0264】
本変形例では、一例として、送信波の周波数が増加するアップビート区間で得られた、送信波と受信波との差の信号(アップビート信号)を利用する処理を説明する。FMCWの1回の掃引時間は100マイクロ秒で、波形は、アップビート部分のみからなる鋸歯形状である。即ち、本変形例において、三角波/CW波生成回路581が生成する信号波は鋸歯形状を有する。また、周波数の掃引幅は500MHzである。ドップラーシフトに伴うピークは利用しないので、アップビート信号とダウンビート信号を生成して双方のピークを利用する処理は行わず、何れか一方の信号のみで処理を行う。ここではアップビート信号を利用する場合について説明するが、ダウンビート信号を用いる場合も同様の処理を行うことができる。
【0265】
A/Dコンバータ587(図27)は、10MHzのサンプリング周波数で各アップビート信号をサンプリングして、数百個のデジタルデータ(以下「サンプリングデータ」と呼ぶ。)を出力する。サンプリングデータは、例えば、受信波が得られる時刻以後で、かつ、送信波の送信が終了した時刻までのアップビート信号に基づいて生成される。なお、一定数のサンプリングデータが得られた時点で処理を終了してもよい。
【0266】
本変形例では、連続して128回アップビート信号の送受信を行い、各々について数百個のサンプリングデータを得る。このアップビート信号の数は128個に限られない。256個であってもよいし、あるいは8個であってもよい。目的に応じて様々の個数を選択することができる。
【0267】
得られたサンプリングデータは、メモリ531に格納される。受信強度算出部532はサンプリングデータに2次元の高速フーリエ変換(FFT)を実行する。具体的には、まず、1回の掃引で得られたサンプリングデータ毎に、1回目のFFT処理(周波数解析処理)を実行してパワースペクトルを生成する。次に、速度検出部534は、処理結果を、全ての掃引結果に渡って集めて2回目のFFT処理を実行する。
【0268】
同一物標からの反射波により各掃引期間で検出される、パワースペクトルのピーク成分の周波数はいずれも同じである。一方、物標が異なるとピーク成分の周波数は異なる。1回目のFFT処理によれば、異なる距離に位置する複数の物標を分離することができる。
【0269】
物標に対する相対速度がゼロでない場合は、アップビート信号の位相は、掃引毎に少しずつ変化する。つまり、2回目のFFT処理によれば、上述した位相の変化に応じた周波数成分のデータを要素として有するパワースペクトルが、1回目のFFT処理の結果毎に求められることになる。
【0270】
受信強度算出部532は、2回目に得られたパワースペクトルのピーク値を抽出して速度検出部534に送る。
【0271】
速度検出部534は、位相の変化から相対速度を求める。例えば、連続して得られたアップビート信号の位相が、位相θ[RXd]ずつ変化していたとする。送信波の平均波長をλとすると、1回のアップビート信号が得られるごとに距離がλ/(4π/θ)だけ変化したことを意味する。この変化は、アップビート信号の送信間隔Tm(=100マイクロ秒)で生じた。よって、{λ/(4π/θ)}/Tm により、相対速度が得られる。
【0272】
以上の処理によれば、物標との距離に加えて、物標との相対速度を求めることができる。
【0273】
[第2の変形例]
レーダシステム510は、1つまたは複数の周波数の連続波CWを用いて、物標を検知することができる。この方法は、車両がトンネル内にある場合の様に、周囲の静止物から多数の反射波がレーダシステム510に入射する環境において、特に有用である。
【0274】
レーダシステム510は、独立した5チャンネルの受信素子を含む受信用のアンテナアレイを備えている。このようなレーダシステムでは、入射する反射波の到来方位の推定は、同時に入射する反射波が4つ以下の状態でしか行うことができない。FMCW方式のレーダでは、特定の距離からの反射波のみを選択することで、同時に到来方位の推定を行う反射波の数を減らすことができる。しかし、トンネル内など、周囲に多数の静止物が存在する環境では、電波を反射する物体が連続的に存在しているのに等しい状況にあるため、距離に基づいて反射波を絞り込んでも、反射波の数が4つ以下にならない状況が生じ得る。しかし、それら周囲の静止物は、自車両に対する相対速度が全て同一で、しかも前方を走行する他車両よりも相対速度が大きいため、ドップラーシフトの大きさに基づいて、静止物と他車両とを区別し得る。
【0275】
そこで、レーダシステム510は、複数の周波数の連続波CWを放射し、受信信号において静止物に相当するドップラーシフトのピークを無視し、それよりもシフト量が小さなドップラーシフトのピークを用いて距離を検知する処理を行う。FMCW方式とは異なり、CW方式では、ドップラーシフトのみに起因して、送信波と受信波との間に周波数差が生じる。つまり、ビート信号に現れるピークの周波数はドップラーシフトのみに依存する。
【0276】
なお、本変形例の説明でも、CW方式で利用される連続波を「連続波CW」と記述する。上述のとおり、連続波CWの周波数は一定であり、変調されていない。
【0277】
レーダシステム510が周波数fpの連続波CWを放射し、物標で反射した周波数fqの反射波を検出したとする。送信周波数fpと受信周波数fqとの差はドップラー周波数と呼ばれ、近似的にfp−fq=2・Vr・fp/c と表される。ここでVrはレーダシステムと物標との相対速度、cは光速である。送信周波数fp、ドップラー周波数(fp−fq)、および光速cは既知である。よって、この式から相対速度Vr=(fp−fq)・c/2fpを求めることができる。物標までの距離は、後述するように位相情報を利用して算出する。
【0278】
連続波CWを用いて、物標までの距離を検出ためには2周波CW方式を採用する。2周波CW方式では、少しだけ離れた2つの周波数の連続波CWが、それぞれ一定期間ずつ放射され、各々の反射波が取得される。例えば76GHz帯の周波数を用いる場合には、2つの周波数の差は数百キロヘルツである。なお、後述する様に、2つの周波数の差は、使用するレーダが物標を検知できる限界の距離を考慮して定められることがより好ましい。
【0279】
レーダシステム510が周波数fp1およびfp2(fp1<fp2)の連続波CWを順次放射し、2種類の連続波CWが1つの物標で反射されることにより、周波数fq1およびfq2の反射波がレーダシステム510に受信されたとする。
【0280】
周波数fp1の連続波CWとその反射波(周波数fq1)とによって、第1のドップラー周波数が得られる。また、周波数fp2の連続波CWとその反射波(周波数fq2)とによって、第2のドップラー周波数が得られる。2つのドップラー周波数は実質的に同じ値である。しかしながら、周波数fp1およびfp2の相違に起因して、受信波の複素信号における位相が異なる。この位相情報を用いることにより、物標までの距離を算出できる。
【0281】
具体的には、レーダシステム510は、距離RをR=c・Δφ/4π(fp2−fp1)として求めることができる。ここで、Δφは2つのビート信号の位相差を表す。2つのビート信号とは、周波数fp1の連続波CWとその反射波(周波数fq1)との差分として得られるビート信号1、および、周波数fp2の連続波CWとその反射波(周波数fq2)との差分として得られるビート信号2である。ビート信号1の周波数fb1およびビート信号2の周波数fb2の特定方法は、上述した単周波数の連続波CWにおけるビート信号の例と同じである。
【0282】
なお、2周波CW方式での相対速度Vrは、以下のとおり求められる。
Vr=fb1・c/2・fp1 または Vr=fb2・c/2・fp2
【0283】
また、物標までの距離を一意に特定できる範囲は、Rmax<c/2(fp2−fp1)の範囲に限られる。これよりも遠い物標からの反射波より得られるビート信号は、Δφが2πを超え、より近い位置の物標に起因するビート信号と区別がつかなくなるためである。そこで、2つの連続波CWの周波数の差を調節して、Rmaxをレーダの検出限界距離よりも大きくすることがより好ましい。検出限界距離が100mであるレーダでは、fp2−fp1を例えば1.0MHzとする。この場合、Rmax=150mとなるため、Rmaxを超える位置にある物標からの信号は検出されない。また、250mまで検出できるレーダを搭載する場合は、fp2−fp1を例えば500kHzとする。この場合は、Rmax=300mとなるため、やはりRmaxを超える位置にある物標からの信号は検出されない。また、レーダが、検出限界距離が100mで水平方向の視野角が120度の動作モードと、検出限界距離が250mで水平方向の視野角が5度の動作モードとの、両方を備えている場合は、各々の動作モードにおいて、fp2−fp1の値を、1.0MHzと500kHzとにそれぞれ切り替えて動作させることがより好ましい。
【0284】
N個(N:3以上の整数)の異なる周波数で連続波CWを送信し、各々の反射波の位相情報を利用することにより、各物標までの距離をそれぞれ検出することが可能な検出方式が知られている。当該検出方式によれば、N−1個までの物標については距離を正しく認識できる。そのための処理として、例えば高速フーリエ変換(FFT)を利用する。いま、N=64、あるいは128として、各周波数の送信信号と受信信号との差であるビート信号のサンプリングデータについてFFTを行って周波数スペクトル(相対速度)を得る。その後、同一の周波数のピークに関してCW波の周波数でさらにFFTを行って距離情報を求めることができる。
【0285】
以下、より具体的に説明する。
【0286】
説明の簡単化のため、まず、3つの周波数f1,f2,f3の信号を時間的に切り換えて送信する例を説明する。ここでは、f1>f2>f3であり、かつ、f1−f2=f2−f3=Δfであるとする。また、各周波数の信号波の送信時間をΔtとする。図31は、3つの周波数f1、f2、f3の関係を示す。
【0287】
三角波/CW波生成回路581(図27)は、それぞれが時間Δtだけ持続する周波数f1、f2、f3の連続波CWを、送信アンテナTxを介して送信する。受信アンテナRxは、各連続波CWが1または複数の物標で反射された反射波を受信する。
【0288】
ミキサ584は、送信波と受信波とを混合してビート信号を生成する。A/Dコンバータ587はアナログ信号としてのビート信号を、例えば数百個のデジタルデータ(サンプリングデータ)に変換する。
【0289】
受信強度算出部532は、サンプリングデータを用いてFFT演算を行う。FFT演算の結果、送信周波数f1,f2,f3の各々について、受信信号の周波数スペクトルの情報が得られる。
【0290】
その後受信強度算出部532は、受信信号の周波数スペクトルの情報から、ピーク値を分離する。所定以上の大きさを有するピーク値の周波数は、物標との相対速度に比例する。受信信号の周波数スペクトルの情報から、ピーク値を分離することは、相対速度の異なる1または複数の物標を分離することを意味する。
【0291】
次に、受信強度算出部532は、送信周波数f1〜f3の各々について、相対速度が同一または予め定められた範囲内のピーク値のスペクトル情報を計測する。
【0292】
いま、2つの物標AおよびBが、同程度の相対速度で、かつ、それぞれが異なる距離に存在する場合を考える。周波数f1の送信信号は物標AおよびBの両方で反射され、受信信号として得られる。物標AおよびBからの各反射波のビート信号の周波数は、概ね同一になる。そのため、受信信号の、相対速度に相当するドップラー周波数でのパワースペクトルは、2つの物標AおよびBの各パワースペクトルを合成した合成スペクトルF1として得られる。
【0293】
同様に、周波数f2およびf3の各々についても、受信信号の、相対速度に相当するドップラー周波数でのパワースペクトルは、2つの物標AおよびBの各パワースペクトルを合成した合成スペクトルF2およびF3として得られる。
【0294】
図32は、複素平面上の合成スペクトルF1〜F3の関係を示す。合成スペクトルF1〜F3の各々を張る2つのベクトルの方向に向かって、右側のベクトルが物標Aからの反射波のパワースペクトルに対応する。図32ではベクトルf1A〜f3Aに対応する。一方、合成スペクトルF1〜F3の各々を張る2つのベクトルの方向に向かって、左側のベクトルが物標Bからの反射波のパワースペクトルに対応する。図32ではベクトルf1B〜f3Bに対応する。
【0295】
送信周波数の差分Δfが一定のとき、周波数f1およびf2の各送信信号に対応する各受信信号の位相差と、物標までの距離は比例する関係にある。よって、ベクトルf1Aとf2Aの位相差と、ベクトルf2Aとf3Aの位相差とは同じ値θAになり、位相差θAが物標Aまでの距離に比例する。同様に、ベクトルf1Bとf2Bの位相差と、ベクトルf2Bとf3Bの位相差とは同じ値θBになり、位相差θBが物標Bまでの距離に比例する。
【0296】
周知の方法を用いて、合成スペクトルF1〜F3、および、送信周波数の差分Δfから物標AおよびBの各々までの距離を求めることができる。この技術は、例えば米国特許6703967号に開示されている。この公報の内容の全体をここに援用する。
【0297】
送信する信号の周波数が4以上になった場合も同様の処理を適用することができる。
【0298】
なお、N個の異なる周波数で連続波CWを送信する前に、2周波CW方式で各物標までの距離および相対速度を求める処理を行ってもよい。そして、所定の条件下で、N個の異なる周波数で連続波CWを送信する処理に切り換えてもよい。例えば、2つの周波数の各々のビート信号を用いてFFT演算を行い、各送信周波数のパワースペクトルの時間変化が30%以上である場合には、処理の切り換えを行ってもよい。各物標からの反射波の振幅はマルチパスの影響等で時間的に大きく変化する。所定の以上の変化が存在する場合には、複数の物標が存在する可能性があると考えられる。
【0299】
また、CW方式では、レーダシステムと物標との相対速度がゼロである場合、すなわちドップラー周波数がゼロの場合には物標を検知できないことが知られている。しかしながら、例えば以下の方法によって擬似的にドップラー信号を求めると、その周波数を用いて物標を検知することは可能である。
【0300】
(方法1)受信用アンテナの出力を一定周波数シフトさせるミキサを追加する。送信信号と、周波数がシフトされた受信信号とを用いることにより、擬似ドップラー信号を得ることができる。
【0301】
(方法2)受信用アンテナの出力とミキサとの間に、時間的に連続して位相を変化させる可変位相器を挿入し、受信信号に擬似的に位相差を付加する。送信信号と、位相差が付加された受信信号とを用いることにより、擬似ドップラー信号を得ることができる。
【0302】
方法2による、可変位相器を挿入して擬似ドップラー信号を発生させる具体的構成の例および動作の例は、特開2004−257848号公報に開示されている。この公報の内容の全体をここに援用する。
【0303】
相対速度がゼロの物標、または、非常に小さな物標を検知する必要がある場合は、上述の擬似ドップラー信号を発生させる処理を使用してもよいし、または、FMCW方式による物標検出処理への切り換えを行ってもよい。
【0304】
次に、図33を参照しながら、車載レーダシステム510の物体検知装置570によって行われる処理の手順を説明する。
【0305】
以下では、2個の異なる周波数fp1およびfp2(fp1<fp2)で連続波CWを送信し、各々の反射波の位相情報を利用することにより、物標との距離をそれぞれ検出する例を説明する。
【0306】
図33は、本変形例による相対速度および距離を求める処理の手順を示すフローチャートである。
【0307】
ステップS41において、三角波/CW波生成回路581は、少しだけ周波数が離れている、2種類の異なる連続波CWを生成する。周波数はfp1およびfp2とする。
【0308】
ステップS42において、送信アンテナTxおよび受信アンテナRxは、生成された一連の連続波CWの送受信を行う。なお、ステップS41の処理およびステップS42の処理はそれぞれ、三角波/CW波生成回路581および送信アンテナTx/受信アンテナRxにおいて並列的に行われる。ステップS41の完了後にステップS42が行われるのではないことに留意されたい。
【0309】
ステップS43において、ミキサ584は、各送信波と各受信波とを利用して2つの差分信号を生成する。各受信波は、静止物由来の受信波と、物標由来の受信波とを含む。そのため、次に、ビート信号として利用する周波数を特定する処理を行う。なお、ステップS41の処理、ステップS42の処理およびステップ43の処理はそれぞれ、三角波/CW波生成回路581、送信アンテナTx/受信アンテナRxおよびミキサ584において並列的に行われる。ステップS41の完了後にステップS42が行われるのではなく、また、ステップS42の完了後にステップS43が行われるのでもないことに留意されたい。
【0310】
ステップS44において、物体検知装置570は、2つの差分信号の各々について、閾値として予め定められた周波数以下で、かつ予め定められた振幅値以上の振幅値を有し、なおかつ互いの周波数の差が所定の値以下であるピークの周波数を、ビート信号の周波数fb1およびfb2として特定する。
【0311】
ステップS45において、受信強度算出部532は、特定した2つのビート信号の周波数のうちの一方に基づいて相対速度を検出する。受信強度算出部532は、例えばVr=fb1・c/2・fp1 により、相対速度を算出する。なお、ビート信号の各周波数を利用して相対速度を算出してもよい。これにより、受信強度算出部532は、両者が一致しているか否かの検証し、相対速度の算出精度を高めることができる。
【0312】
ステップS46において、受信強度算出部532は、2つのビート信号1および2の位相差Δφを求め、物標までの距離R=c・Δφ/4π(fp2−fp1)を求める。
【0313】
以上の処理により、物標までの相対速度および距離を検出することができる。
【0314】
なお、3以上のN個の異なる周波数で連続波CWを送信し、各々の反射波の位相情報を利用して、相対速度が同一で、かつ異なる位置に存在する複数の物標までの距離を検出してもよい。
【0315】
以上で説明した、車両500は、レーダシステム510に加えて、さらに他のレーダシステムを有していてもよい。例えば車両500は、車体の後方、または側方に検知範囲を持つレーダシステムをさらに備えていてもよい。車体の後方に検知範囲を持つレーダシステムを有する場合には、当該レーダシステムは後方を監視し、他車両によって追突される危険性があるときは、警報を出す等の応答をすることができる。車体の側方に検知範囲を持つレーダシステムを有する場合には、当該レーダシステムは、自車両が車線変更などを行う場合に、隣接車線を監視し、必要に応じて警報を出す等の応答をすることができる。
【0316】
以上で説明したレーダシステム510の用途は、車載用途に限られない。種々の用途のセンサとして利用することができる。例えば、家屋その他の建築物の周囲を監視するためのレーダとして利用できる。あるいは、屋内において特定の場所における人物の有無、あるいはその人物の動きの有無等を、光学的画像に寄らずに監視するためのセンサとして利用することができる。
【0317】
[処理の補足]
前記したアレーアンテナに関する2周波CWまたはFMCWについて、他の実施形態を説明する。前述したとおり、図27の例において、受信強度算出部532は、メモリ531に格納されたチャンネルCh1〜ChMごとのビート信号(図28の下図)に対してフーリエ変換を行う。その際のビート信号は、複素信号である。その理由は、演算対象としている信号の位相を特定するためである。これにより、到来波方向を正確に特定できる。しかしこの場合、フーリエ変換のための演算負荷量が増大し、回路規模が大きくなる。
【0318】
これを克服するために、ビート信号としてスカラ信号を生成し、それぞれ生成された複数のビート信号に対して、アンテナ配列に沿った空間軸方向および時間の経過に沿った時間軸方向についての2回の複素フーリエ変換を実行することにより、周波数分析結果を得てもよい。これにより、最終的には、少ない演算量で、反射波の到来方向を特定可能なビーム形成を行うことができ、ビーム毎の周波数分析結果を得ることができる。本件に関連する特許公報として、米国特許第6339395号明細書の開示内容全体を本明細書に援用する。
【0319】
[カメラ等の光学センサとミリ波レーダ]
次に、上述したアレーアンテナと従来のアンテナとの比較、および、本アレーアンテナと光学センサ、例えばカメラ、との双方を利用した応用例について説明する。なお、光学センサとして、ライダー(LIDAR)等を用いてもよい。
【0320】
ミリ波レーダは、物標までの距離とその相対速度を直接検出することが可能である。また、薄暮を含む夜間、または降雨、霧、降雪等の悪天候時にも、検出性能が大きく低下しないという特徴がある。一方、ミリ波レーダは、カメラに比較して、物標を2次元的にとらえることが容易ではない、とされている。他方、カメラは、物標を2次元的にとらえ、その形状を認識することが比較的容易である。しかし、カメラは、夜間または悪天候時には、物標を撮像できないことがあり、この点が大きな課題となっている。特に採光部分に水滴が付着した場合、または霧で視界が狭くなった場合には、この課題が顕著である。同じ光学系センサであるLIDAR等でも、この課題は同様に存在する。
【0321】
近年、車両の安全運行要求が高まる中、衝突等を未然に回避する運転者補助システム(Driver Assist System)が開発されている。運転者補助システムは、車両進行方向の画像をカメラまたはミリ波レーダ等のセンサで取得し、車両運行上障害になると予想される障害物を認識した場合に、自動的にブレーキ等を操作することで、衝突等を未然に回避する。このような衝突防止機能は、夜間または悪天候時といえども、正常に機能することが求められる。
【0322】
そこで、センサとして、従来のカメラ等の光学センサに加えて、ミリ波レーダを搭載し、双方の利点を生かした認識処理を行う、いわゆるフュージョン構成の運転者補助システムが普及しつつある。そのような運転者補助システムについては、後述する。
【0323】
一方、ミリ波レーダそのものに求められる要求機能は、一層高まっている。車載用途のミリ波レーダでは、76GHz帯の電磁波が主に使用されている。そのアンテナの空中線電力(antenna power)は、各国の法律等により、一定以下に制限されている。例えば日本国では0.01W以下に制限されている。このような制限の中で、車載用途のミリ波レーダには、例えばその検出距離は200m以上、アンテナのサイズは60mm×60mm以下、水平方向の検知角度は90度以上、距離分解能は20cm以下、10m以内の近距離での検出も可能であること等、の要求性能を満たすことが求められている。従来のミリ波レーダは、導波路としてマイクロストリップラインを用い、アンテナとしてパッチアンテナを用いていた(以下、これらを合わせて「パッチアンテナ」という)。しかしパッチアンテナでは、上記の性能を実現することは困難であった。
【0324】
発明者は、本開示の技術を応用したスロットアレーアンテナを用いることで、上記性能を実現することに成功した。これにより、従来のパッチアンテナ等に比較して、小型、高効率、高性能なミリ波レーダを実現した。加えて、このミリ波レーダと、カメラ等の光学センサとを組み合わせることで、従来存在しなかった小型、高効率、高性能のフュージョン装置を実現した。以下、これについて詳述する。
【0325】
図34は、車両500における、本開示の技術を応用したスロットアレーアンテナを有するレーダシステム510(以下、ミリ波レーダ510とも称する。)、および車載カメラシステム700を備えるフュージョン装置に関する図である。この図を参照しながら、以下に、種々の実施形態について説明する。
【0326】
[ミリ波レーダの車室内設置]
従来のパッチアンテナによるミリ波レーダ510’は、車両のフロントノーズにあるグリル512の後方内側に配置される。アンテナから放射される電磁波は、グリル512の隙間を抜け、車両500の前方に放射される。この場合、電磁波通過領域には、ガラス等の電磁波エネルギーを減衰させ、または反射する誘電層は存在しない。これにより、パッチアンテナによるミリ波レーダ510’から放射された電磁波は、遠距離、例えば150m以上、の物標にも届く。そしてこれに反射した電磁波をアンテナで受信することで、ミリ波レーダ510’は、物標を検出できる。しかしこの場合、アンテナが車両のグリル512の後方内側に配置されることで、車両が障害物に衝突した場合に、レーダが破損することがある。また雨天等の際に泥等がかぶることで、アンテナに汚れが付着し、電磁波の放射や受信を阻害することがある。
【0327】
本開示の実施形態におけるスロットアレーアンテナを用いたミリ波レーダ510では、従来と同様に、車両のフロントノーズにあるグリル512の後方に配置することができる(図示せず)。これにより、アンテナから放射される電磁波のエネルギーを100%活用することができ、従来を超える遠距離、例えば250m以上の距離にある物標の検出が可能となる。
【0328】
さらに、本開示の実施形態によるミリ波レーダ510は、車両の車室内に配置することもできる。その場合、ミリ波レーダ510は、車両のフロントガラス511の内側で、且つリアビューミラー(図示せず)の鏡面とは反対側の面との間のスペースに配置される。一方、従来のパッチアンテナによるミリ波レーダ510’は、車室内に置くことはできなかった。その理由は、主に次の2つである。第1の理由は、サイズが大きいため、フロントガラス511とリアビューミラーとの間のスペースに収まらないことである。第2の理由は、前方に放射された電磁波が、フロントガラス511により反射され、誘電損により減衰する為、求められる距離まで到達できないことである。その結果、従来のパッチアンテナによるミリ波レーダを車室内に置いた場合、例えば前方100mに存在する物標までしか検出できなかった。他方、本開示の実施形態によるミリ波レーダは、フロントガラス511での反射または減衰があっても、200m以上の距離にある物標を検出できる。これは従来のパッチアンテナによるミリ波レーダを車室外に置いた場合と同等、あるいはそれ以上の性能である。
【0329】
[ミリ波レーダとカメラ等の車室内配置によるフュージョン構成]
現在、多くの運転者補助システム(Driver Assist System)で用いられている主たるセンサには、CCDカメラ等の光学的撮像装置が用いられている。そして通常、カメラ等は、外的環境等の悪影響を考慮して、フロントガラス511の内側の車室内に配置されている。その際、雨滴等の影響を最小にするために、カメラ等は、フロントガラス511の内側で且つワイパー(図示せず)が作動する領域に配置される。
【0330】
近年、車両の自動ブレーキ等の性能向上要請から、どんな外的環境でも確実に作動する自動ブレーキ等が求められている。この場合、運転者補助システムのセンサをカメラ等の光学機器のみで構成した場合、夜間や悪天候時においては確実な作動が保証できないという課題があった。そこで、カメラ等の光学センサに加えて、ミリ波レーダも併用し、連携処理することで、夜間や悪天候時でも確実に動作する運転者補助システムが求められている。
【0331】
前述したとおり、本スロットアレーアンテナを用いたミリ波レーダは、小型化できたこと、および放射される電磁波の効率が従来のパッチアンテナに比較して著しく高まったことで、車室内に配置することが可能になった。この特性を活用し、図34に示す通り、カメラ等の光学センサ(車載カメラシステム700)のみならず、本スロットアレーアンテナを用いたミリ波レーダ510も、共に車両500のフロントガラス511の内側に配置することが可能になった。これにより以下の新たな効果が生じた。
【0332】
(1)運転者補助システム(Driver Assist System)の車両500への取付けが容易になった。従来のパッチアンテナによるミリ波レーダ510’では、フロントノーズにあるグリル512の後方に、レーダを配置するスペースを確保する必要があった。このスペースは車両の構造設計に影響する部位を含むことから、レーダのサイズが変化した場合、新たに構造設計をやり直す必要が生じる場合があった。しかしミリ波レーダを車室内に配置することで、そのような不都合は解消された。
【0333】
(2)車両の外的環境である雨天や夜間等に影響されず、より信頼性の高い動作が確保できるようになった。特に図35に示す通り、ミリ波レーダ(車載レーダシステム)510と車載カメラシステム700を車室内のほぼ同じ位置に置くことで、それぞれの視野・視線が一致し、後述する「照合処理」、即ちそれぞれが捉えた物標情報が同一物であることを認識する処理、が容易になる。他方、ミリ波レーダ510’を車室外のフロントノーズにあるグリル512の後方に置いた場合、そのレーダ視線Lは、車室内に置いた場合のレーダ視線Mと異なることから、車載カメラシステム700で取得された画像とのずれが大きくなる。
【0334】
(3)ミリ波レーダの信頼性が向上した。前述の通り、従来のパッチアンテナによるミリ波レーダ510’は、フロントノーズにあるグリル512の後方に配置されていることから、汚れが付着しやすく、また小さな接触事故等でも破損する場合があった。これらの理由により、清掃および機能確認が常時必要であった。また、後述する通り、事故等の影響でミリ波レーダの取付け位置または方向がずれた場合、カメラとの位置合わせを再度行う必要が生じていた。しかし、ミリ波レーダを車室内に配置することで、これらの確率は小さくなり、そのような不都合は解消された。
【0335】
このようなフュージョン構成の運転者補助システムでは、カメラ等の光学センサと、本スロットアレーアンテナを用いたミリ波レーダ510とは、相互に固定された一体の構成を有してもよい。その場合、カメラ等の光学センサの光軸と、ミリ波レーダのアンテナの方向とは、一定の位置関係を確保する必要がある。これについては後述する。またこの一体構成の運転者補助システムを、車両500の車室内に固定する場合、カメラの光軸等が車両前方の所要の方向に向くように調整する必要がある。これについては、米国特許出願公報2015/193366号、米国特許出願公報2015/0264230号、米国特許出願15/067503、米国特許出願15/248141、米国特許出願15/248149、米国特許出願15/248156が存在し、これらを援用する。また、これに関連するカメラを中心とした技術として、米国特許第7355524号明細書、および米国特許第7420159号明細書があり、これらの開示内容全体を本明細書に援用する。
【0336】
また、カメラ等の光学センサとミリ波レーダとを車室内に配置することについては、米国特許第8604968号明細書、米国特許第8614640号明細書、および米国特許第7978122号明細書等が存在する。これらの開示内容全体を本明細書に援用する。しかし、これらの特許の出願時点では、ミリ波レーダとしてはパッチアンテナを含む従来のアンテナしか知られておらず、従って、十分な距離の観測ができない状態であった。例えば、従来のミリ波レーダで観測可能な距離はせいぜい100m〜150mと考えられる。また、ミリ波レーダをフロントガラスの内側に配置した場合、レーダのサイズが大きいため、運転者の視野を遮り、安全運転に支障をきたす等の不都合が生じていた。これに対し、本開示の実施形態にかかるスロットアレーアンテナを用いたミリ波レーダは、小型であること、および放射される電磁波の効率が従来のパッチアンテナに比較して著しく高まったことで、車室内に配置することが可能になった。これにより、200m以上の遠距離の観測が可能となるとともに、運転者の視野を遮ることもない。
【0337】
[ミリ波レーダとカメラ等との取付け位置の調整]
フュージョン構成の処理(以下「フュージョン処理」ということがある)においては、カメラ等で得られた画像とミリ波レーダにて得られたレーダ情報とが、同じ座標系に対応付けられることが求められる。相互に位置および物標のサイズが異なった場合、双方の連携処理に支障をきたすからである。
【0338】
これについては次の3つの観点で、調整する必要がある。
【0339】
(1)カメラ等の光軸と、ミリ波レーダのアンテナの方向とが一定の固定関係にあること。
【0340】
カメラ等の光軸とミリ波レーダのアンテナの方向とが相互に一致していることが求められる。あるいは、ミリ波レーダでは、2以上の送信アンテナと2以上の受信アンテナを持つ場合があり、それぞれのアンテナの方向が意図的に異なっている場合もある。従ってカメラ等の光軸と、これらのアンテナの指向性との間には、少なくとも一定の既知の関係があることを保証することが求められる。
【0341】
前述の、カメラ等とミリ波レーダとが相互に固定された一体の構成を有する場合、カメラ等とミリ波レーダとの位置関係は固定されている。従ってこの一体構成の場合は、これらの要件は満たされている。他方、従来のパッチアンテナ等では、ミリ波レーダは、車両500のグリル512の後方に配置される。この場合は、これらの位置関係は、通常次の(2)により調整される。
【0342】
(2)カメラ等による取得画像とミリ波レーダのレーダ情報とが、車両に取り付けられた場合の初期状態(例えば出荷時)において、一定の固定関係にあること。
【0343】
カメラ等の光学センサ、およびミリ波レーダ510または510’の、車両500における取付け位置は、最終的に、以下の手段で決定される。即ち、車両500の前方の所定位置800に、基準となるチャート、またはレーダによって観測させる物標(以下、それぞれ「基準チャート」、「基準物標」といい、両者をまとめて「基準対象物」ということがある)を正確に配置する。これをカメラ等の光学センサ、あるいはミリ波レーダ510によって観測する。観測された基準対象物の観測情報と、予め記憶された基準対象物の形状情報等とを比較し、現状のずれ情報を定量的に把握する。このずれ情報に基づき、以下の少なくとも一方の手段で、カメラ等の光学センサ、およびミリ波レーダ510または510’の取付け位置を調整または補正する。なお、同様の結果をもたらす、これ以外の手段を用いてもよい。
(i)基準対象物がカメラとミリ波レーダの中央に来るように、カメラとミリ波レーダの取付け位置を調整する。この調整には、別途設けられた治具等を使用してもよい。
(ii)基準対象物に対するカメラとミリ波レーダの方位のずれ量を求め、カメラ画像の画像処理およびレーダ処理にて、それぞれの方位のずれ量を補正する。
【0344】
注目すべき点は、カメラ等の光学センサと、本開示の実施形態にかかるスロットアレーアンテナを用いたミリ波レーダ510とが、相互に固定された一体の構成を有する場合は、カメラあるいはレーダの何れかについて、基準対象物とのずれを調整すれば、他方についてもずれ量が分かり、他方について再度基準対象物のずれを検査する必要がない点である。
【0345】
即ち、車載カメラシステム700について、基準チャートを所定位置750に置き、その撮像画像と、予め基準チャート画像がカメラの視野の何処に位置すべきかを示す情報と、を比較することで、ずれ量を検出する。これに基づき、上記(i)、(ii)の少なくとも一方の手段により、カメラの調整を行う。次にカメラで求めたずれ量を、ミリ波レーダのずれ量に換算する。その後、レーダ情報について、上記(i)、(ii)の少なくとも一方の手段により、ずれ量を調整する。
【0346】
あるいは、これをミリ波レーダ510に基づいて行ってもよい。即ち、ミリ波レーダ510について、基準物標を所定位置800に置き、そのレーダ情報と、予め基準物標がミリ波レーダ510の視野の何処に位置すべきかを示す情報とを比較することで、ずれ量を検出する。これに基づき、上記(i)、(ii)の少なくとも一方の手段により、ミリ波レーダ510の調整を行う。次に、ミリ波レーダで求めたずれ量を、カメラのずれ量に換算する。その後、カメラで得られた画像情報について、上記(i)、(ii)の少なくとも一方の手段により、ずれ量を調整する。
【0347】
(3)カメラ等による取得画像とミリ波レーダのレーダ情報とが、車両における初期状態以降においても、一定の関係が維持さていること。
【0348】
通常、カメラ等による取得画像とミリ波レーダのレーダ情報とは、初期状態において固定され、車両事故等がない限り、その後変化することは少ないとされる。しかし、仮にこれらにずれが生じた場合は、以下の手段で調整することが可能である。
【0349】
カメラは、その視野内に、例えば自車両の特徴部分513、514(特徴点)が入る状態で取り付けられている。この特徴点のカメラによる現実の撮像位置と、カメラが本来正確に取付けられている場合のこの特徴点の位置情報と、を比較し、そのずれ量を検出する。この検出されたずれ量に基づき、それ以降に撮像された画像の位置を補正することで、カメラの物理的な取付け位置のずれを補正することができる。この補正により、車両に求められる性能が十分発揮できる場合は、前記(2)の調整は不要となる。またこの調整手段を、車両500の起動時や稼働中でも定期的に行うことで、新たにカメラ等のずれが生じた場合でも、ずれ量の補正が可能であり、安全な運行を実現できる。
【0350】
ただしこの手段は、前記(2)で述べた手段に比較して、一般に、調整精度が落ちると考えられている。基準対象物をカメラで撮影して得られる画像に基づいて、調整を行う場合、基準対象物の方位が高精度で特定できるため、高い調整精度を容易に達成できる。しかし本手段では、基準対象物に代えて車体の一部の画像を調整に利用するため、方位の特性精度を高める事はやや難しい。そのため、調整精度も落ちることになる。但し事故や車室内でのカメラ等に大きな外力が加わった場合等が原因で、カメラ等の取付け位置が大きく狂った場合の補正手段としては有効である。
【0351】
[ミリ波レーダとカメラ等とが検出した物標の対応付け:照合処理]
フュージョン処理においては、1つの物標に対して、カメラ等で得られた画像とミリ波レーダにて得られたレーダ情報とが「同一物標である」と認識されている必要がある。例えば車両500の前方に、2つの障害物(第1の障害物と第2の障害物)、例えば2台の自転車、が出現した場合を考える。この2つの障害物は、カメラの画像として撮像されると同時に、ミリ波レーダのレーダ情報としても検出される。その際、第1の障害物について、カメラ画像とレーダ情報とは、相互に同一の物標であることが対応づけられている必要がある。同様に、第2の障害物について、そのカメラ画像とそのレーダ情報とは、相互に同一の物標であることが対応づけられている必要がある。仮に誤って、第1の障害物であるカメラ画像と、第2の障害物であるミリ波レーダのレーダ情報とが、同一物標であると誤認された場合、大きな事故に繋がる可能性が生じる。以下、本明細書においては、このようなカメラ画像上の物標とレーダ画像上の物標とが同一物標であるか否かを判断する処理を、「照合処理」と称することがある。
【0352】
この照合処理については、以下に述べる種々の検出装置(または方法)がある。以下これらについて、具体的に説明する。なお以下の検出装置は、車両に設置され、少なくとも、ミリ波レーダ検出部と、ミリ波レーダ検出部が検出する方向と重複する方向に向けて配置されたカメラ等の画像検出部と、照合部とを備える。ここで、ミリ波レーダ検出部は、本開示のいずれかの実施形態におけるスロットアレーアンテナを有し、少なくとも、その視野におけるレーダ情報を取得する。画像取得部は、少なくとも、その視野における画像情報を取得する。照合部は、ミリ波レーダ検出部による検出結果と画像検出部による検出結果とを照合し、これら2つの検出部で同一の物標を検出しているか否かを判断する処理回路を含む。ここで画像検出部は、光学カメラ、LIDAR、赤外線レーダ、超音波レーダの何れか1つ、または2つ以上が選択されて構成され得る。以下の検出装置は、照合部における検出処理が異なっている。
【0353】
第1の検出装置における照合部は、次の2つの照合を行う。第1の照合は、ミリ波レーダ検出部によって検出された注目する物標に対して、その距離情報および横位置情報を得るのと並行して、画像検出部で検出された1または2以上の物標の中で、最も近い位置にある物標を照合し、それらの組合せを検出することを含む。第2の照合は、画像検出部によって検出された注目する物標に対して、その距離情報および横位置情報を得るのと並行して、ミリ波レーダ検出部によって検出された1または2以上の物標の中で、最も近い位置にある物標を照合し、それらの組合せを検出することを含む。さらにこの照合部は、ミリ波レーダ検出部によって検出されたこれらの各物標に対する組合せと、画像検出部によって検出されたこれらの各物標に対する組合せとにおいて一致する組合せがあるか否かを判定する。そして一致する組合せがある場合には、2つの検出部で同一の物体を検出していると判断する。これにより、ミリ波レーダ検出部と画像検出部とでそれぞれ検出された物標の照合を行う。
【0354】
これに関連する技術は、米国特許第7358889号明細書に記載されている。その開示内容全体を本明細書に援用する。この公報において、画像検出部は、2つのカメラを有する、いわゆるステレオカメラを例示して、説明されている。しかしこの技術は、これに限定されるものではない。画像検出部が1つのカメラを有する場合でも、検出された物標に対して適宜画像認識処理等を行うことで、物標の距離情報と横位置情報とが得られればよい。同様に画像検出部としてレーザスキャナ等のレーザセンサを用いてもよい。
【0355】
第2の検出装置における照合部は、所定時間毎に、ミリ波レーダ検出部による検出結果と画像検出部による検出結果とを照合する。照合部は、前回の照合結果で2つの検出部で同一の物標を検出していると判断した場合、その前回の照合結果を用いて照合を行う。具体的には、照合部は、ミリ波レーダ検出部で今回検出された物標および画像検出部で今回検出された物標と、前回の照合結果において判断されている2つの検出部で検出された物標とを照合する。そして、照合部は、ミリ波レーダ検出部で今回検出された物標との照合結果と、画像検出部で今回検出された物標との照合結果とに基づいて、2つの検出部で同一の物標を検出しているか否かを判断する。このように、この検出装置は、2つの検出部による検出結果を直接照合するのではなく、前回の照合結果を利用して2つの検出結果と時系列での照合を行う。このため、瞬間的な照合しか行わない場合に比べて検出精度が向上し、安定的な照合を行うことができる。特に、瞬間的に検出部の精度が低下したときでも、過去の照合結果を利用しているので、照合が可能である。また、この検出装置では、前回の照合結果を利用することにより、2つの検出部の照合を簡単に行うことができる。
【0356】
また、この検出装置の照合部は、前回の照合結果を利用した今回の照合において、2つの検出部で同一の物体を検出していると判断した場合、その判断された物体を除いて、ミリ波レーダ検出部で今回検出された物体と、画像検出部で今回検出された物体とを照合する。そして、この照合部は、2つの検出部で今回検出された同一の物体があるか否かを判断する。このように、物体検出装置は、時系列での照合結果を考慮した上で、その一瞬一瞬で得られた2つの検出結果により瞬間的な照合を行う。そのため、物体検出装置は、今回の検出で検出した物体も確実に照合することができる。
【0357】
これらに関連する技術は、米国特許第7417580号明細書に記載されている。その開示内容全体を本明細書に援用する。この公報においては、画像検出部は、2つのカメラを有する、いわゆるステレオカメラを例示して、説明されている。しかしこの技術は、これに限定されるものではない。画像検出部が1つのカメラを有する場合でも、検出された物標に対して適宜画像認識処理等を行うことで、物標の距離情報と横位置情報とが得られればよい。同様に、画像検出部としてレーザスキャナ等のレーザセンサを用いてもよい。
【0358】
第3の検出装置における2つの検出部および照合部は、所定の時間間隔で物標の検出とこれらの照合を行い、これらの検出結果と照合結果とが時系列でメモリなどの記憶媒体に記憶される。そして照合部は、画像検出部によって検出された物標の画像上のサイズの変化率と、ミリ波レーダ検出部によって検出された自車両から物標までの距離およびその変化率(自車両との相対速度)とに基づいて、画像検出部によって検出された物標とミリ波レーダ検出部によって検出された物標とが同一物体であるかどうかを判断する。
【0359】
照合部は、これらの物標が同一物体であると判断した場合には、画像検出部によって検出された物標の画像上の位置と、ミリ波レーダ検出部によって検出された自車から物標までの距離および/またはその変化率とに基づき、車両との衝突の可能性を予測する。
【0360】
これらに関連する技術は、米国特許第6903677号明細書に記載されている。その開示内容全体を本明細書に援用する。
【0361】
以上説明した通り、ミリ波レーダとカメラ等の画像撮像装置とのフュージョン処理においては、カメラ等で得られた画像とミリ波レーダにて得られたレーダ情報とが、照合される。上述した本開示の実施形態によるアレーアンテナを用いたミリ波レーダは、高性能且つ小型に構成可能である。従って、上記照合処理を含むフュージョン処理全体について、高性能化と小型化等が達成できる。これにより、物標認識の精度が向上し、車両のより安全な運行制御が可能となる。
【0362】
[他のフュージョン処理]
フュージョン処理においては、カメラ等で得られた画像とミリ波レーダ検出部にて得られたレーダ情報との照合処理に基づき、種々の機能が実現される。その代表的な機能を実現する処理装置の例を以下に説明する。
【0363】
以下の処理装置は、車両に設置され、少なくとも、所定方向に電磁波を送受するミリ波レーダ検出部と、このミリ波レーダ検出部の視野と重複する視野を有する単眼カメラ等の画像取得部と、これらから情報を得て物標の検出等を行う処理部とを備える。ミリ波レーダ検出部は、その視野におけるレーダ情報を取得する。画像取得部は、その視野における画像情報を取得する。画像取得部には、光学カメラ、LIDAR、赤外線レーダ、超音波レーダの何れか1つ、または2以上が選択されて使用され得る。処理部は、ミリ波レーダ検出部および画像取得部に接続された処理回路によって実現され得る。以下の処理装置は、この処理部における処理内容が異なっている。
【0364】
第1の処理装置の処理部は、ミリ波レーダ検出部によって検出された物標と同一であると認識される物標を、画像取得部によって撮像された画像から抽出する。即ち、前述した検出装置による照合処理が行われる。そして、抽出された物標の画像の右側エッジおよび左側エッジの情報を取得し、取得された右側エッジおよび左側エッジの軌跡を近似する直線または所定の曲線である軌跡近似線を両エッジについて導出する。この軌跡近似線上に存在するエッジの数が多い方を物標の真のエッジとして選択する。そして真のエッジとして選択された方のエッジの位置に基づいて物標の横位置を導出する。これにより、物標の横位置の検出精度をより向上させることが可能である。
【0365】
これらに関連する技術は、米国特許第8610620号明細書に記載されている。この文献の開示内容全体を本明細書に援用する。
【0366】
第2の処理装置の処理部は、物標の有無の決定に際して、画像情報に基づいて、レーダ情報における物標の有無の決定に用いられる判断基準値を変更する。これにより、例えば車両運行の障害物となる物標画像がカメラ等にて確認できた場合、あるいは物標の存在が推定された場合等において、ミリ波レーダ検出部による物標検出の判断基準を最適に変更することで、より正確な物標情報を得ることができる。即ち、障害物の存在する可能性が高い場合には、判断基準を変更することより、確実にこの処理装置を作動させることが可能となる。他方、障害物の存在する可能性が低い場合に、この処理装置の不要な作動を防止できる。これにより、適切なシステムの作動が行える。
【0367】
さらにこの場合、処理部は、レーダ情報に基づいて画像情報の検出領域を設定し、この領域内の画像情報に基づいて障害物の存在を推定することも可能である。これにより検出処理の効率化を図ることができる。
【0368】
これらに関連する技術は、米国特許第7570198号明細書に記載されている。この文献の開示内容全体を本明細書に援用する。
【0369】
第3の処理装置の処理部は、複数の異なる画像撮像装置およびミリ波レーダ検出部により得られた画像およびレーダ情報に基づく画像信号を、少なくとも1台の表示装置に表示する複合表示を行う。この表示処理において、水平、垂直同期信号を複数の画像撮像装置およびミリ波レーダ検出部で相互に同期させ、これらの装置からの画像信号に対して、1水平走査期間内もしくは1垂直走査期間内で所望の画像信号に選択的に切り替え可能とする。これにより、水平および垂直同期信号に基づき、選択された複数の画像信号の像を並べて表示可能とし、かつ、表示装置から所望の画像撮像装置およびミリ波レーダ検出部における制御動作を設定する制御信号を送出する。
【0370】
複数台の異なる表示装置にそれぞれの画像等が表示された場合は、それぞれの画像間の比較が困難となる。また表示装置が第3の処理装置本体とは別個に配置される場合には装置に対する操作性がよくない。第3の処理装置は、このような欠点を克服する。
【0371】
これらに関連する技術は、米国特許第6628299号明細書、および米国特許第7161561号明細書に記載されている。これらの開示内容全体を本明細書に援用する。
【0372】
第4の処理装置の処理部は、車両の前方にある物標について、画像取得部およびミリ波レーダ検出部に指示し、その物標を含む画像およびレーダ情報を取得する。処理部は、その画像情報の内、その物標が含まれる領域を決定する。処理部は、さらに、この領域におけるレーダ情報を抽出し、車両から物標までの距離および車両と物標との相対速度を検出する。処理部は、これらの情報に基づいて、その物標が車両に衝突する可能性を判定する。これによりいち早く物標との衝突可能性を判定する。
【0373】
これらに関連する技術は、米国特許第8068134号明細書に記載されている。これらの開示内容全体を本明細書に援用する。
【0374】
第5の処理装置の処理部は、レーダ情報により、またはレーダ情報と画像情報とに基づくフュージョン処理により、車両前方の1または2以上の物標を認識する。この物標には、他の車両または歩行者等の移動体、道路上の白線によって示された走行レーン、路肩およびそこにある静止物(側溝および障害物等を含む)、信号機、横断歩道等が含まれる。処理部は、GPS(Global Positioning System)アンテナを含み得る。GPSアンテナによって自車両の位置を検出し、その位置に基づき、道路地図情報を格納した記憶装置(地図情報データベース装置と称する)を検索し、地図上の現在位置を確認してもよい。この地図上の現在位置と、レーダ情報等によって認識された1または2以上の物標とを比較し、走行環境を認識することができる。これに基づき、処理部は、車両走行に障害となると推定される物標を抽出し、より安全な運行情報を見出し、必要に応じて表示装置に表示し、運転者に知らせてもよい。
【0375】
これらに関連する技術は、米国特許第6191704号明細書に記載されている。その開示内容全体を本明細書に援用する。
【0376】
第5の処理装置は、さらに、車両外部の地図情報データベース装置と通信するデータ通信装置(通信回路を有する)を有していてもよい。データ通信装置は、例えば毎週1回または月1回程度の周期で、地図情報データベース装置にアクセスし、最新の地図情報をダウンロードする。これにより、最新の地図情報を用いて、上記の処理を行うことができる。
【0377】
第5の処理装置は、さらに、上記の車両運行時に取得した最新の地図情報と、レーダ情報等によって認識された1または2以上の物標に関する認識情報とを比較し、地図情報にはない物標情報(以下「地図更新情報」という)を抽出してもよい。そしてこの地図更新情報を、データ通信装置を介して地図情報データベース装置に送信してもよい。地図情報データベース装置は、この地図更新情報を、データベース内の地図情報に関連付けて記憶し、必要があれば現在の地図情報そのものを更新してもよい。更新に際しては、複数の車両から得られた地図更新情報を比較することで、更新の確実性を検証してもよい。
【0378】
なお、この地図更新情報には、現在の地図情報データベース装置が有する地図情報より詳しい情報を含むことができる。例えば一般の地図情報では、道路の概形は把握できるが、例えば路肩部分の幅またはそこにある側溝の幅、新たに生じた凹凸または建造物の形状等の情報は通常は含まれない。また、車道と歩道の高さ、または歩道に繋がるスロープの状況等の情報も含まれない。地図情報データベース装置は、別途設定された条件に基づき、これらの詳しい情報(以下「地図更新詳細情報」という)を、地図情報と関連付けて記憶しておくことができる。これらの地図更新詳細情報は、自車両を含む車両に、元の地図情報よりも詳しい情報を提供することで、車両の安全走行の用途に加えて、他の用途でも利用可能となる。ここで「自車両を含む車両」とは、例えば自動車でもよいし、二輪車、自転車、あるいは今後新たに出現する自動走行車両、例えば電動車椅子等であってもよい。地図更新詳細情報は、これらの車両が運行する際に利用される。
【0379】
(ニューラルネットワークによる認識)
第1から第5の処理装置は、さらに、高度認識装置を備えていてもよい。高度認識装置は、車両の外部に設置されていてもよい。その場合、車両は、高度認識装置と通信する高速データ通信装置を備え得る。高度認識装置は、いわゆるディープラーニング等を含むニューラルネットワークにて構成されてもよい。このニューラルネットワークは、例えば、畳み込みニューラルネットワーク(Convolutional Neural Network、以下「CNN」という)を含むことがある。CNNは、画像認識で成果を挙げているニューラルネットワークであり、その特徴の1つは、畳み込み層(Convolutional Layer)とプーリング層(Pooling Layer)と呼ばれる2つの層の組を一または複数持つ点にある。
【0380】
処理装置における畳み込み層に入力される情報として、少なくとも次の3種類の何れかがあり得る。
(1)ミリ波レーダ検出部で取得されたレーダ情報に基づき得られた情報
(2)レーダ情報に基づき、画像取得部で取得された特定画像情報に基づき得られた情報(3)レーダ情報と、画像取得部で取得された画像情報とに基づいて得られたフュージョン情報、またはこのフュージョン情報に基づき得られた情報
これらの何れかの情報、あるいはこれらの組み合わせられた情報に基づき、畳み込み層に対応する積和演算が行われる。その結果は、次段のプーリング層に入力され、予め設定されたルールに基づき、データの選択が行われる。そのルールとしては、例えば、画素値の最大値を選ぶ最大プーリング(max pooling)では、畳み込み層の分割領域ごとに、その中の最大値を選択し、これがプーリング層における対応する位置の値とされる。
【0381】
CNNで構成された高度認識装置は、このような畳み込み層とプーリング層を一組、あるいは複数組、直列につなぐ構成を有することがある。これにより、レーダ情報および画像情報に含まれた車両周辺の物標を正確に認識することができる。
【0382】
これらに関連する技術は、米国特許第8861842号明細書、米国特許第9286524号明細書、および米国特許出願公開第2016/0140424号明細書に記載されている。これらの開示内容全体を本明細書に援用する。
【0383】
第6の処理装置の処理部は、車両のヘッドランプ制御に関係する処理を行う。車両を夜間に走行させる際、運転者は、自車両の前方に他の車両または歩行者が存在するか否かを確認し、自車両のヘッドランプのビームを操作する。他の車両の運転者または歩行者が、自車両のヘッドランプで幻惑されることを防ぐためである。この第6の処理装置は、レーダ情報、またはレーダ情報とカメラ等による画像との組み合わせを用いて、自車両のヘッドランプを自動で制御する。
【0384】
処理部は、レーダ情報により、またはレーダ情報と画像情報とに基づくフュージョン処理により、車両前方の車両あるいは歩行者に該当する物標を検出する。この場合、車両前方の車両には、前方の先行車両、対向車線の車両、2輪車等が含まれる。処理部は、これらの物標を検出した場合、ヘッドランプのビームを下げる指令を出す。この指令を受けた車両内部の制御部(制御回路)は、ヘッドランプを操作し、そのビームを下げる。
【0385】
これらに関連する技術は、米国特許第6403942号明細書、米国特許第6611610号明細書、米国特許第8543277号明細書、米国特許第8593521号明細書、および米国特許第8636393号明細書に記載されている。これらの開示内容全体を本明細書に援用する。
【0386】
以上説明したミリ波レーダ検出部による処理、およびミリ波レーダ検出部とカメラ等の画像撮像装置とのフュージョン処理においては、ミリ波レーダを高性能且つ小型に構成可能であることから、レーダ処理、またはフュージョン処理全体の高性能化と小型化等が達成できる。これにより、物標認識の精度が向上し、車両のより安全な運行制御が可能となる。
【0387】
<応用例3:各種監視システム(自然物、建造物、道路、見守り、セキュリティ)>
本開示の実施形態によるアレーアンテナを備えるミリ波レーダ(レーダーシステム)は、自然物、気象、建造物、セキュリティ、介護等における監視の分野でも、広く活用することができる。これに関係する監視システムでは、ミリ波レーダを含む監視装置は、例えば固定した位置に設置され、監視対象を常時監視する。その際、ミリ波レーダは、監視対象における検知分解能を最適値に調整し、設定される。
【0388】
本開示の実施形態によるアレーアンテナを備えるミリ波レーダは、例えば100GHzを超える高周波電磁波による検出が可能である。また、レーダ認識に用いられる方式、例えばFMCW方式等における変調帯域については、当該ミリ波レーダは、現在4GHzを超える広帯域を実現している。即ち前述した超広帯域(UWB:Ultra Wide Band)に対応している。この変調帯域は、距離分解能に関係する。即ち従来のパッチアンテナにおける変調帯域は600MHz程度までであったことから、その距離分解能は25cmであった。これに対し、本アレーアンテナに関係するミリ波レーダでは、その距離分解能が3.75cmとなる。これは、従来のLIDARの距離分解能にも匹敵する性能を実現できることを示している。一方、LIDAR等の光学式センサは、前述したとおり、夜間または悪天候時には物標を検出できない。これに対してミリ波レーダでは、昼夜、天候にかかわらず、常時検出が可能である。これにより従来のパッチアンテナを利用したミリ波レーダでは適用できなかった多様な用途で、本アレーアンテナに関係するミリ波レーダを利用することが可能になった。
【0389】
図36は、ミリ波レーダによる監視システム1500の構成例を示す図である。ミリ波レーダによる監視システム1500は、少なくとも、センサ部1010と本体部1100とを備える。センサ部1010は、少なくとも、監視対象1015に照準を合わせたアンテナ1011と、送受される電磁波に基づいて物標を検出するミリ波レーダ検出部1012と、検出されたレーダ情報を送信する通信部(通信回路)1013とを備える。本体部1100は、少なくとも、レーダ情報を受信する通信部(通信回路)1103と、受信したレーダ情報に基づいて所定の処理を行う処理部(処理回路)1101と、過去のレーダ情報および所定の処理に必要な他の情報等を蓄積するデータ蓄積部(記録媒体)1102とを備える。センサ部1010と本体部1100との間には、通信回線1300があり、これを介して両者間での情報およびコマンドの送信および受信が行われる。ここで通信回線とは、例えば、インターネット等の汎用の通信ネットワーク、携帯通信ネットワーク、専用の通信回線等の何れかを含み得る。なお、本監視システム1500は、通信回線を介することなく、センサ部1010と本体部1100とが直接接続される構成でもよい。センサ部1010には、ミリ波レーダに加えて、カメラ等の光学センサを併設することもできる。これにより、レーダ情報とカメラ等による画像情報とのフュージョン処理による物標認識を行うことで、監視対象1015等のより高度な検出が可能になる。
【0390】
以下これらの応用事例を実現する監視システムの例を、具体的に説明する。
【0391】
[自然物監視システム]
第1の監視システムは、自然物を対象に監視するシステム(以下「自然物監視システム」という)である。図36を参照して、この自然物監視システムについて説明する。この自然物監視システム1500における監視対象1015は、例えば河川、海面、山岳、火山、地表等であり得る。例えば河川が監視対象1015である場合、定位置に固定されたセンサ部1010が、河川1015の水面を常時監視する。その水面情報は、常時、本体部1100における処理部1101に送信される。そして水面が一定以上の高さになった場合、処理部1101は、本監視システムとは別に設けられた、例えば気象観測監視システム等の他のシステム1200に、通信回線1300を介してその旨を知らせる。あるいは、処理部1101は、河川1015に設けられた水門等(図示せず)を自動的に閉鎖するための指示情報を、水門を管理するシステム(図示せず)に送付する。
【0392】
この自然物監視システム1500は、1つの本体部1100で、複数のセンサ部1010、1020等を監視することができる。この複数のセンサ部が、一定の地域に分散して配置された場合、その地域における河川の水位状況を同時に把握できる。これにより、この地域における降雨が、河川の水位にどの様に影響し、洪水等の災害に繋がる可能性があるか否かを評価することも可能になる。これに関する情報は、通信回線1300を介して、気象観測監視システム等の他のシステム1200に知らせることができる。これにより、気象観測監視システム等の他のシステム1200は、より広域の気象観測または災害予想に、通知された情報を活用することができる。
【0393】
この自然物監視システム1500は、河川以外の他の自然物にも同様に適用できる。例えば津波または高潮を監視する監視システムにおいては、その監視対象は、海面水位である。また海面水位の上昇に対応して、防潮堤の水門を自動的に開閉することも可能である。あるいは、降雨または地震等による山崩れを監視する監視システムでは、その監視対象は、山岳部の地表等である。
【0394】
[交通路監視システム]
第2の監視システムは、交通路を監視するシステム(以下「交通路監視システム」という)である。この交通路監視システムにおける監視対象は、例えば、鉄道の踏切、特定の線路、空港の滑走路、道路の交差点、特定の道路、または駐車場等であり得る。
【0395】
例えば監視対象が鉄道の踏切である場合、踏切内部を監視できる位置にセンサ部1010が配置される。この場合、センサ部1010は、ミリ波レーダに加えて、カメラ等の光学センサも併設してよい。この場合には、レーダ情報と画像情報とのフュージョン処理により、より多角的に監視対象における物標を検出できる。センサ部1010によって得られた物標情報は、通信回線1300を介して、本体部1100に送られる。本体部1100は、より高度な認識処理、制御で必要となる他の情報(例えば電車の運行情報等)の収集、およびこれらに基づく必要な制御指示等を行う。ここで、必要な制御指示とは、例えば、踏切閉鎖時に踏切内部に人または車両等が確認された場合に、電車を停止させる等の指示をいう。
【0396】
また、例えば監視対象を空港の滑走路とした場合は、滑走路上を所定の分解能、例えば滑走路上の5cm角以上の異物が検出できる分解能を実現できる様に、複数のセンサ部1010、1020等が、滑走路に沿って配置される。監視システム1500は、滑走路上を昼夜、天候を問わず常時監視する。この機能は、UWB対応が可能な本開示の実施形態におけるミリ波レーダを用いるからこそ実現できる機能である。また、本ミリ波レーダは、小型、高解像、低コストで実現できるので、滑走路全面を隈なくカバーする場合にも、現実的な対応が可能である。この場合、本体部1100は、複数のセンサ部1010、1020等を統合管理する。本体部1100は、滑走路上に異物を確認した場合、空港管制システム(図示せず)に、異物の位置と大きさに関する情報を送信する。これを受けた空港管制システムは、その滑走路での離着陸を一時的に禁止する。その間、本体部1100は、例えば別途設けられた滑走路上を自動的に清掃する車両等に対して、異物の位置と大きさに関する情報を送信する。これを受けた清掃車両は、自力で異物がある位置に移動し、その異物を自動的に除去する。清掃車両は、異物の除去が完了すると、本体部1100にその旨の情報を送信する。そして本体部1100は、その異物を検出したセンサ部1010等が「異物がない」ことを再度確認し、安全であることを確認した後、空港管制システムにその旨を伝える。これを受けた空港管制システムは、該当する滑走路の離着陸禁止を解除する。
【0397】
さらに、例えば監視対象を駐車場とした場合、駐車場のどの位置が空いているのかを、自動的に認識することができる。これに関連する技術は、米国特許第6943726号明細書に記載されている。その開示内容全体を、本明細書に援用する。
【0398】
[セキュリティ監視システム]
第3の監視システムは、私有敷地内または家屋への不法侵入者を監視するシステム(以下「セキュリティ監視システム」という)である。このセキュリティ監視システムでの監視対象は、例えば、私有敷地内または家屋内等の特定領域である。
【0399】
例えば、監視対象を私有敷地内とした場合、これを監視できる1または2以上の位置にセンサ部1010が配置される。この場合、センサ部1010として、ミリ波レーダに加えて、カメラ等の光学センサも併設してよい。この場合には、レーダ情報と画像情報とのフュージョン処理により、より多角的に監視対象における物標を検出できる。センサ部1010で得られた物標情報は、通信回線1300を介して、本体部1100に送られる。本体部1100において、より高度な認識処理、制御で必要となる他の情報(例えば侵入対象が人であるか犬または鳥等の動物であるかを正確に認識するために必要となる参照データ等)の収集、およびこれらに基づく必要な制御指示等が行われる。ここで、必要な制御指示とは、例えば、敷地内に設置された警報を鳴らすとか、照明を点ける等の指示に加えて、携帯通信回線等を通じて敷地の管理者に直接通報する等の指示を含む。本体部1100における処理部1101は、検出された物標を、内蔵した、ディープラーニング等の手法を採用した高度認識装置に認識させてもよい。あるいは、この高度認識装置は、外部に配置されていてもよい。その場合、高度認識装置は、通信回線1300によって接続され得る。
【0400】
これに関連する技術は、米国特許第7425983号明細書に記載されている。その開示内容全体を本明細書に援用する。
【0401】
このようなセキュリティ監視システムの他の実施形態として、空港の搭乗口、駅の改札口、建物の入り口等に設置される人監視システムにも応用することができる。この人監視システムでの監視対象は、例えば、空港の搭乗口、駅の改札口、建物の入り口等である。
【0402】
例えば監視対象が空港の搭乗口である場合、センサ部1010は、例えば搭乗口の持ち物検査装置に設置され得る。この場合、その検査方法には次の2通りの方法がある。1つは、ミリ波レーダが、自らが送信した電磁波が監視対象である搭乗者で反射して戻ってきた電磁波を受信することで、搭乗者の持ち物等を検査する方法である。もう1つは、搭乗者自らの人体から放射される微弱なミリ波をアンテナで受けることで、搭乗者が隠し持つ異物を検査する方法である。後者の方法では、ミリ波レーダには、受信するミリ波をスキャンする機能を持つことが望ましい。このスキャン機能は、デジタルビームフォーミングを利用することによって実現してもよいし、機械的なスキャン動作によって実現してもよい。なお、本体部1100の処理については、前述した例と同様の通信処理および認識処理を用いることもできる。
【0403】
[建造物検査システム(非破壊検査)]
第4の監視システムは、道路もしくは鉄道の高架橋または建造物等のコンクリートの内部、または道路もしくは地面の内部等の監視または検査を行うシステム(以下「建造物検査システム」という)である。この建造物検査システムでの監視対象は、例えば、高架橋もしくは建造物等のコンクリートの内部、または道路もしくは地面の内部等である。
【0404】
例えば、監視対象がコンクリート建造物の内部である場合、センサ部1010は、コンクリート建造物の表面に沿ってアンテナ1011を走査させることができる構造を有する。ここで「走査」は、手動で実現してもよいし、走査用の固定レールを別途設置し、このレール上をモータ等の駆動力を用いて移動させることで実現してもよい。また、監視対象が道路または地面の場合は、アンテナ1011を車両等に下向きに設置し、車両を一定速度で走行させることによって「走査」を実現してもよい。センサ部1010で使用される電磁波は、例えば100GHzを超える、いわゆるテラヘルツ領域のミリ波を用いてもよい。前述したとおり、本開示の実施形態におけるアレーアンテナによれば、例えば100GHzを超える電磁波にも、従来のパッチアンテナ等に比較して、より少ない損失のアンテナを構成できる。より高周波の電磁波は、コンクリート等の検査対象物に、より深く浸透することができ、より正確な非破壊検査を実現できる。なお、本体部1100の処理については、前述した他の監視システム等と同様の通信処理や認識処理も用いることができる。
【0405】
これに関連する技術は、米国特許第6661367号明細書に記載されている。その開示内容全体を本明細書に援用する。
【0406】
[人監視システム]
第5の監視システムは、介護対象者を見守るシステム(以下「人見守りシステム」という)である。この人見守りシステムでの監視対象は、例えば、介護者または病院の患者等である。
【0407】
例えば監視対象を介護施設の室内における介護者とした場合、この室内に、室内全体を監視できる1または2以上の位置に、センサ部1010が配置される。この場合、センサ部1010には、ミリ波レーダに加えて、カメラ等の光学センサも併設してよい。この場合には、レーダ情報と画像情報とのフュージョン処理により、より多角的に監視対象を監視できる。他方、監視対象を人とした場合、プライバシー保護の観点から、カメラ等での監視は適当でない場合がある。この点を考慮して、センサを選択する必要がある。なお、ミリ波レーダでの物標検出では、監視対象の人を、画像ではなくその影ともいえる信号によって取得することができる。従って、ミリ波レーダは、プライバシー保護の観点から、望ましいセンサと言える。
【0408】
センサ部1010で得られた介護者の情報は、通信回線1300を介して、本体部1100に送られる。センサ部1010は、より高度な認識処理、制御で必要となる他の情報(例えば介護者の物標情報を正確に認識するために必要となる参照データ等)の収集、およびこれらに基づく必要な制御指示等、を行う。ここで、必要な制御指示とは、例えば、検出結果に基づき、管理者に直接通報する等の指示を含む。また、本体部1100の処理部1101は、検出された物標を、内蔵した、ディープラーニング等の手法を採用した高度認識装置に認識させてもよい。この高度認識装置は、外部に配置されてもよい。その場合、高度認識装置は、通信回線1300によって接続され得る。
【0409】
ミリ波レーダで人を監視対象とする場合、少なくとも次の2つの機能を追加することができる。
【0410】
第1の機能は、心拍数・呼吸数の監視機能である。ミリ波レーダでは、電磁波は衣服を透過して、人体の皮膚表面の位置および動きを検出できる。処理部1101は、まず監視対象となる人とその外形を検出する。次に、例えば心拍数を検知する場合は、心拍の動きが検出しやすい体表面の位置を特定し、そこの動きを時系列化して検出する。これにより、例えば1分間の心拍数を検出することができる。呼吸数を検知する場合も同様である。この機能を用いることで、介護者の健康状態を常時確認することができ、より質の高い介護者への見守りが可能である。
【0411】
第2の機能は、転倒検出機能である。老人等の介護者は、足腰が弱っていることに起因して、転倒することがある。人が転倒する場合、人体の特定部位、例えば頭部等、の速度、または加速度が一定以上になる。ミリ波レーダで人を監視対象とする場合、常時、対象物標の相対速度または加速度を検出することができる。従って、例えば監視対象として頭部を特定し、その相対速度または加速度を時系列的に検知することで、一定値以上の速度を検出した場合、転倒したと認識することができる。処理部1101は、転倒を認識した場合、例えば的確な介護支援に対応する指示等を発行することができる。
【0412】
なお、以上説明した監視システム等では、センサ部1010が一定の位置に固定されていた。しかしセンサ部1010を、例えばロボット、車両、ドローン等の飛行体等の移動体に設置することも可能である。ここで車両等には、例えば自動車のみならず、電動車椅子等の小型移動体も含まれる。この場合、この移動体は、自己の現在位置を常に確認するためにGPSを内蔵してもよい。加えてこの移動体は、地図情報および前述の第5の処理装置について説明した地図更新情報を用いて、自らの現在位置の正確性をさらに向上させる機能を有していてもよい。
【0413】
さらに、以上説明した、第1から第3の検出装置、第1から第6の処理装置、第1から第5の監視システム等と類似する装置またはシステムにおいて、これらと同様の構成を利用することで、本開示の実施形態におけるアレーアンテナまたはミリ波レーダを用いることができる。
【0414】
<応用例4:通信システム>
[通信システムの第1の例]
本開示における導波路装置およびアンテナ装置(アレーアンテナ)は、通信システム(telecommunication system)を構成する送信機(transmitter)および/または受信機(receiver)に用いることができる。本開示における導波路装置およびアンテナ装置は、積層された導電部材を用いて構成されるため、導波管を用いる場合に比して、送信機および/または受信機のサイズを小さく抑えることができる。また、誘電体を必要としないため、マイクロストリップ線路を用いる場合に比して、電磁波の誘電損失を小さく抑えることができる。よって、小型で高効率の送信機および/または受信機を備える通信システムを構築することができる。
【0415】
そのような通信システムは、アナログ信号に直接変調をかけて送受信する、アナログ式通信システムであり得る。しかし、デジタル式通信システムであれば、より柔軟で性能の高い通信システムを構築することが可能である。
【0416】
以下、図37を参照しながら、本開示の実施形態における導波路装置およびアンテナ装置を用いた、デジタル式通信システム800Aを説明する。
【0417】
図37は、デジタル式通信システム800Aの構成を示すブロック図である。通信システム800Aは、送信機810Aと受信機820Aとを備えている。送信機810Aは、アナログ/デジタル(A/D)コンバータ812と、符号化器813と、変調器814と、送信アンテナ815とを備えている。受信機820Aは、受信アンテナ825と、復調器824と、復号化器823と、デジタル/アナログ(D/A)コンバータ822とを備えている。送信アンテナ815および受信アンテナ825の少なくとも一方は、本開示の実施形態におけるアレーアンテナによって実現され得る。本応用例において、送信アンテナ815に接続される変調器814、符号化器813、およびA/Dコンバータ812などを含む回路を、送信回路と称する。受信アンテナ825に接続される復調器824、復号化器823、およびD/Aコンバータ822などを含む回路を、受信回路と称する。送信回路と受信回路とを合わせて、通信回路と称することもある。
【0418】
送信機810Aは、信号源811から受け取ったアナログ信号を、アナログ/デジタル(A/D)コンバータ812によってデジタル信号に変換する。次に、デジタル信号は、符号化器813によって符号化される。ここで、符号化とは、送信すべきデジタル信号を操作し、通信に適した形態に変換することを指す。そのような符号化の例としては、CDM(Code−Division Multiplexing)等がある。また、TDM (Time−Division Multiplexing)またはFDM (Frequency Division Multiplexing)、またはOFDM(Orthogonal Frequency Division Multiplexing)を行うための変換も、この符号化の一例である。符号化された信号は、変調器814によって高周波信号に変換され、送信アンテナ815から送信される。
【0419】
なお、通信の分野では、搬送波に重畳される信号を表す波を「信号波」と称することがあるが、本明細書における「信号波」の用語は、そのような意味では用いられていない。本明細書における「信号波」とは、導波路を伝搬する電磁波、およびアンテナ素子を用いて送受信される電磁波を広く意味する。
【0420】
受信機820Aは、受信アンテナ825で受信した高周波信号を、復調器824によって低周波の信号に戻し、復号化器823によってデジタル信号に戻す。復号されたデジタル信号は、デジタル/アナログ(D/A)コンバータ822でアナログ信号に戻され、データシンク(データ受信装置)821に送られる。以上の処理により、一連の送信と受信のプロセスが完了する。
【0421】
通信する主体がコンピュータのようなデジタル機器である場合は、上記の処理において、送信信号のアナログ/デジタル変換、および受信信号のデジタル/アナログ変換は不要である。したがって、図37におけるアナログ/デジタルコンバータ812およびデジタル/アナログコンバータ822は省略可能である。このような構成のシステムも、デジタル式通信システムに含まれる。
【0422】
デジタル式通信システムにおいては、信号強度の確保、または通信容量の拡大のために、様々な方法が用いられる。そのような方法の多くは、ミリ波帯またはテラヘルツ帯の電波を用いる通信システムにおいても有効である。
【0423】
ミリ波帯またはテラヘルツ帯における電波は、より低い周波数の電波に比して直進性が高く、障害物の陰の側に回り込む回折は小さい。このため、受信機が、送信機から送信された電波を直接に受信できないことも少なくない。そのような状況でも、反射波を受信できることは多いが、反射波の電波信号の質は直接波よりも劣ることが多いため、安定した受信はより難しくなる。また、複数の反射波が異なる経路を通って到来することもある。その場合、経路長の異なる受信波は互いに位相が異なり、マルチパス・フェージング(Multi−Path Fading)を引き起こす。
【0424】
このような状況を改善するための技術として、アンテナダイバーシティ(Antenna Diversity)と呼ばれる技術を利用することができる。この技術においては、送信機および受信機の少なくとも一方は、複数のアンテナを備える。それらの複数のアンテナ間の距離が、波長程度以上異なれば、受信波の状態は異なってくる。そこで、最も品質のよい送受信が行えるアンテナが選択して用いられる。こうすることで通信の信頼性を高めることができる。また、複数のアンテナから得られる信号を合成して信号の品質の改善を図ってもよい。
【0425】
図37に示される通信システム800Aにおいて、例えば受信機820Aは受信アンテナ825を複数個備えていてもよい。この場合、複数の受信アンテナ825と復調器824との間には、切り替え器が介在する。受信機820Aは、切り替え器によって、複数の受信アンテナ825の中から最も品質のよい信号が得られるアンテナと復調器824とを接続する。なお、この例において、送信機810Aが送信アンテナ815を複数個備えていてもよい。
【0426】
[通信システムの第2の例]
図38は、電波の放射パターンを変化させることのできる送信機810Bを含む通信システム800Bの例を示すブロック図である。この応用例において、受信機は図37に示す受信機820Aと同一である。このため、図38には受信機は図示されていない。送信機810Bは、送信機810Aの構成に加えて、複数個のアンテナ素子8151を含むアンテナアレイ815bを有する。アンテナアレイ815bは、本開示の実施形態におけるアレーアンテナであり得る。送信機810Bはさらに、複数のアンテナ素子8151と変調器814との間にそれぞれ接続された複数の移相器(PS)816を有する。この送信機810Bにおいて、変調器814の出力は、複数の移相器816に送られ、そこで位相差を付与されて、複数のアンテナ素子8151に導かれる。複数のアンテナ素子8151が等間隔に配置されている場合において、各アンテナ素子8151に、隣り合うアンテナ素子に対して一定量だけ異なる位相の高周波信号が供給される場合、その位相差に応じてアンテナアレイ815bの主ローブ817は正面から傾いた方位を向く。この方法はビームフォーミング(Beam Forming)と呼ばれることがある。
【0427】
各移相器816が付与する位相差を様々に異ならせて主ローブ817の方位を変化させることができる。この方法はビームステアリング(Beam Steering)と呼ばれることがある。送受信の状態が最も良くなる位相差を見つけることにより、通信の信頼性を高めることができる。なお、ここでは移相器816が付与する位相差が、隣り合うアンテナ素子8151の間では一定である例を説明したが、そのような例に限られない。また、直接波だけではなく、反射波が受信機に届く方位に電波が放射されるように、位相差が付与されてもよい。
【0428】
送信機810Bでは、ヌルステアリング(Null Steering)と呼ばれる方法も利用できる。これは、位相差を調節することで、特定の方向に電波が放射されない状態を作る方法を指す。ヌルステアリングを行うことにより、電波を送信したくない他の受信機に向けて放射される電波を抑制することができる。これにより、混信を回避することができる。ミリ波またはテラヘルツ波を用いたデジタル通信は、非常に広い周波数帯域を利用できるが、それでも、可能な限り効率的に帯域幅を利用することが好ましい。ヌルステアリングを利用すれば、同一の帯域で複数の送受信が行えるため、帯域幅の利用効率を高めることができる。ビームフォーミング、ビームステアリング、およびヌルステアリング等の技術を用いて帯域の利用効率を高める方法は、SDMA(Spatial Division Multiple Access)と呼ばれることもある。
【0429】
[通信システムの第3の例]
特定の周波数帯域における通信容量を増やす為に、MIMO(Multiple−Input and Multiple−Output)と呼ばれる方法を適用することもできる。MIMOにおいては、複数の送信アンテナおよび複数の受信アンテナが使用される。複数の送信アンテナの各々から電波が放射される。ある一例において、放射される電波には、それぞれ異なる信号を重畳させることができる。複数の受信アンテナの各々は、送信された複数の電波を何れも受信する。しかし、異なる受信アンテナは、異なる経路を通って到達する電波を受信するため、受信する電波の位相に差異が生じる。この差異を利用することにより、複数の電波に含まれていた複数の信号を受信機の側で分離することが可能である。
【0430】
本開示に係る導波路装置およびアンテナ装置は、MIMOを利用する通信システムにおいても用いることができる。以下、そのような通信システムの例を説明する。
【0431】
図39は、MIMO機能を実装した通信システム800Cの例を示すブロック図である。この通信システム800Cにおいて、送信機830は、符号化器832と、TX−MIMOプロセッサ833と、2つの送信アンテナ8351、8352とを備える。受信機840は、2つの受信アンテナ8451、8452と、RX−MIMOプロセッサ843と、復号化器842とを備える。なお、送信アンテナおよび受信アンテナのそれぞれの個数は、2つより多くてもよい。ここでは、説明を簡単にするため、各アンテナが2つの例を取り上げる。一般には、送信アンテナと受信アンテナの内の少ない方の個数に比例して、MIMO通信システムの通信容量は増大する。
【0432】
データ信号源831から信号を受け取った送信機830は、符号化器832によって信号を送信のために符号化する。符号化された信号は、TX−MIMOプロセッサ833によって、2つの送信アンテナ8351、8352に分配される。
【0433】
MIMO方式のある一例における処理方法においては、TX−MIMOプロセッサ833は、符号化された信号の列を、送信アンテナ8352の数と同じ数である2つに分割し、並列に送信アンテナ8351、8352に送る。送信アンテナ8351、8352は、分割された複数の信号列の情報を含む電波をそれぞれ放射する。送信アンテナがN個である場合は、信号列はN個に分割される。放射された電波は、2つの受信アンテナ8451、8452の両方で同時に受信される。すなわち、受信アンテナ8451、8452の各々で受信された電波には、送信時に分割された2つの信号が混ざって含まれている。この混ざった信号の分離は、RX−MIMOプロセッサ843によって行われる。
【0434】
混ざった2つの信号は、例えば電波の位相差に着目すれば分離することができる。送信アンテナ8351から到達した電波を受信アンテナ8451、8452が受信した場合の2つの電波の位相差と、送信アンテナ8352から到達した電波を受信アンテナ8451、8452が受信した場合の2つの電波の位相差と異なる。すなわち、送受信の経路によって、受信アンテナ間での位相差は異なる。また、送信アンテナと受信アンテナの空間的な配置関係が変化しなければ、それらの位相差は不変である。そこで、2つの受信アンテナで受信された受信信号を、送受信経路によって定まる位相だけずらして相関をとることにより、その送受信経路を通って受信された信号を抽出することができる。RX−MIMOプロセッサ843は、例えばこの方法により、受信信号から2つの信号列を分離し、分割される前の信号列を回復する。回復された信号列は、まだ符号化された状態にあるので、復号化器842に送られて、そこで元の信号に復元される。復元された信号は、データシンク841に送られる。
【0435】
この例におけるMIMO通信システム800Cは、デジタル信号を送受信するが、アナログ信号を送受信するMIMO通信システムも実現可能である。その場合は、図39の構成に、図37を参照して説明した、アナログ/デジタルコンバータと、デジタル/アナログコンバータとが追加される。なお、異なる送信アンテナからの信号を見分けるために利用される情報は、位相差の情報に限られない。一般に、送信アンテナと受信アンテナとの組合せが異なると、受信された電波は、位相以外にも、散乱またはフェージング等の状況が異なり得る。これらは総称してCSI(Channel State Information) と呼ばれる。CSIは、MIMOを利用するシステムにおいて、異なる送受信経路を見分けるために利用される。
【0436】
なお、複数の送信アンテナが、各々独立の信号を含んだ送信波を放射することは、必須の条件ではない。受信アンテナの側で分離できるのであれば、複数の信号を含んだ電波を、各送信アンテナが放射する構成でもよい。また、送信アンテナの側でビームフォーミングを行って、各送信アンテナからの電波の合成波として、単一の信号を含んだ送信波が受信アンテナの側で形成されるように構成することも可能である。この場合も、各送信アンテナは、複数の信号を含む電波を放射する構成となる。
【0437】
この第3の例においても、第1および第2の例と同様、信号の符号化の方法として、CDM、FDM、TDM、OFDM等の種々の方法を用いることができる。
【0438】
通信システムにおいて、信号を処理するための集積回路(信号処理回路または通信回路と称する)を搭載する回路基板は、本開示の実施形態における導波路装置およびアンテナ装置に積層して配置することができる。本開示の実施形態における導波路装置およびアンテナ装置は、板形状の導電部材が積層された構造を持つため、回路基板をそれらの上に積み重ねる配置にすることは容易である。このような配置にすることで、導波管などを用いた場合に比して、容積が小さい送信機および受信機を実現できる。
【0439】
以上で説明した、通信システムの第1から第3の例において、送信機または受信機の構成要素である、アナログ/デジタルコンバータ、デジタル/アナログコンバータ、符号化器、復号化器、変調器、復調器、TX−MIMOプロセッサ、RX−MIMOプロセッサ等は、図37図38図39においては独立した1つの要素として表されているが、必ずしも独立している必要はない。例えば、これらの要素の全てを、1つの集積回路で実現してもよい。あるいは、一部の要素のみを纏めて、1つの集積回路で実現してもよい。いずれの場合も、本開示で説明した機能を実現している限り、本発明を実施しているといえる。
【0440】
上述の車載レーダシステムは一例である。上述したアレーアンテナは、アンテナを利用するあらゆる技術分野において利用可能である。
【産業上の利用可能性】
【0441】
本開示の導波路装置モジュールおよびマイクロ波モジュールは、電磁波を伝搬させるあらゆる技術分野において利用可能である。導波路装置モジュールおよびマイクロ波モジュールは、例えばギガヘルツ帯域またはテラヘルツ帯域の電磁波の送受信を行う各種の用途に利用可能であり、特に小型化が求められる車載レーダシステム、各種の監視システム、屋内測位システム、および無線通信システムなどに好適に用いられ得る。
【符号の説明】
【0442】
2 ミリ波MMIC(ミリ波IC)
4 回路基板
20 端子
20a 第1のアンテナ入出力端子(S端子)
20b 第2のアンテナ入出力端子(G端子)
20c 他の端子
40S、40S1、40S2 配線パターン
40G、40G1、40G2 配線パターン
50S チョーク構造
50G チョーク構造
60 トレイ
100 導波路装置
110 第1の導電部材
110a 第1の導電部材の導電性表面
112、112a、112b、112c、112d スロット
114 ホーン
120 第2の導電部材
120a 第2の導電部材の導電性表面
122 導波部材
122a 導波面
122M 幹部122Tの端部
122T 幹部
122S 第1梢部
122S−1 第1副梢部
122S−2 第2副梢部
122G 第2梢部
122G1 第2梢部
122G2 第3梢部
124、124’ 導電性ロッド
124a 導電性ロッド124の先端部
124b 導電性ロッド124の基部
125 人工磁気導体の表面
130 中空導波管
132 中空導波管の内部空間
300 スロットアレーアンテナ
500 車両
502 先行車両
510 車載レーダシステム
520 走行支援電子制御装置
530 レーダ信号処理装置
540 通信デバイス
550 コンピュータ
552 データベース
560 信号処理回路
570 物体検知装置
580 送受信回路
596 選択回路
600 車両走行制御装置
700 車載カメラシステム
710 カメラ
720 画像処理回路
800A、800B、800C 通信システム
810A、810B、830 送信機
820A、840 受信機
813、832 符号化器
823、842 復号化器
814 変調器
824 復調器
1010、1020 センサ部
1011、1021 アンテナ
1012、1022 ミリ波レーダ検出部
1013、1023 通信部
1015、1025 監視対象
1100 本体部
1101 処理部
1102 データ蓄積部
1103 通信部
1200 他のシステム
1300 通信回線
1500 監視システム
図1
図2A
図2B
図3
図4
図5A
図5B
図5C
図5D
図6A
図6B
図7A
図7B
図7C
図8A
図8B
図9
図10
図11
図12
図13A
図13B
図14
図15
図16
図17A
図17B
図17C
図18
図19
図20A
図20B
図20C
図20D
図21
図22
図23A
図23B
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35
図36
図37
図38
図39
【国際調査報告】