【実施例】
【0083】
上頸神経節細胞を用いた試験
交感神経ニューロンの培養のため(非特許文献15、非特許文献25、非特許文献26、非特許文献27、非特許文献28)、出生後(P)0〜3日のマウスの上頸神経節をコラゲナーゼ(2.5mg/mL、ワージントン)、ディスパーゼ(5mg/mL、ロシュモレキュラーバイオケミカルズ)、及びトリプシン(10mg/mL、ワージントン)を用いて37°Cで45分間消化し、シリコン処理したガラスパスツールピペットで機械的に解離した。広範なプレプレーティングにより、非神経細胞を除去した。ほぼ純粋なニューロンを、ポリオルニチン/ラミニン(シグマ)でコーティングされた35mmプラスチックディッシュにおいて、ニューロベーサル培地及びB27サプリメント(インビトロジェン/ギブコ)中の小型標準マイクロアイランドで、30ng/mLのマウス神経成長因子(NGF)(プロメガ)の存在下で5〜6日間培養した。徹底的な洗浄と機能阻害抗NGF抗体(ロシュ)の添加によりNGFを除去した。ニューロンを、特別なニューロンマイクロインジェクション装置(非特許文献15、非特許文献25、非特許文献26、非特許文献27、非特許文献29)で圧力マイクロインジェクションした(非特許文献27、非特許文献30)。生存分析のため、マイクロアイランド上の全てのニューロンを実験の開始時(初期数)及び終了時(3日間)にカウントし、初期に対する割(%)で表した。
【0084】
交感神経ニューロンのマイクロインジェクションを、前述のように行った(非特許文献29)。CDNF用のプラスミドは先に述べた。簡単に説明すれば、新生マウスSCGニューロンをNGF(プロメガ)で5〜6日間成長させた後、完全長(FL)−CDNF及びC−CDNF用の発現プラスミドを、高感度緑色蛍光タンパク質(EGFP)用のレポータープラスミドと共に、各実験で10ng/uLのベクター濃度を用いて、核にマイクロインジェクションした。50ng/uLのプラスミド濃度でも同様の結果が得られた。タンパク質のマイクロインジェクションでは、200ng/uLのPBS中の組み換え完全長(FL)−CDNF、C−CDNFタンパク質を、注入に成功したニューロンの識別を容易にする蛍光レポーターであるデキストランテキサスレッド(分子量70000Da)(インビトロジェン、モレキュラープローブス)と共に、直接細胞質にマイクロインジェクションした。翌日、ツニカマイシン(2μM)を添加し、3日後に生きている蛍光ニューロンをカウントした。生きている蛍光(EGFPを発現、又はデキストランテキサスレッドを含む)ニューロンを3日後に「盲目的に(blindly)」カウントし、マイクロインジェクションの2〜3時間後にカウントした初期の生きている蛍光ニューロンに対する割合(%)として表した。プラスミドを用いた実験を、プラスミド実験のために独立した培養で5回繰り返し、一方で4回の独立したタンパク質注入実験を行った。平均して、実験群につき50〜80個のニューロンで注入に成功した。結果を平均±SEMで表した。各実験群のデータを、一元配置分散分析及び事後のDunnettのt検定により、コントロールプラスミドPCR3.1(ベクター)又はPBS(タンパク質注入実験において)と比較した。帰無仮説はp<0.05で棄却した。
【0085】
CDNF発現プラスミド
完全長(FL)又はカルボキシ末端(C)ドメインをコードする構築物を、TOPO/TAクローニングシステム(インビトロジェン)又は制限エンドヌクレアーゼを用いて、pCR3.1ベクター(インビトロジェン)に挿入した。pCR3.1ベクター中の完全長CDNFは、それぞれ537bp(179アミノ酸)及び561bp(187アミノ酸)のアミノ酸長であり、ERターゲティングのためのN末端シグナル配列を有する。C−CDNFは186bpの長さであり、FL−CDNFのアミノ酸127−187に相当する。
【0086】
E511:pCR3.1中のヒトCDNF/双方向TOPO TA。停止コドンを含む完全長cDNA(タグなし)。アンピシリン選択。DH5α。シーケンシングにより検証済み。
E811:シグナル配列を有するpCR3.1 hCDNF C−ヒトCDNF C末端配列。PCR及びインビトロジェンTAクローニングシステムによりクローニング。挿入サイズ207bp。DH5a細胞に形質転換。アンピシリン選択。シーケンシングにより検証済み。
【0087】
タンパク質及びペプチド断片を発現するプラスミド
ヒト組み換えCDNF(26アミノ酸長のシグナル配列と161アミノ酸長の成熟CDNF配列とを有する、187アミノ酸からなる完全長pre−CDNF)、ヒトN−CDNF(26アミノ酸のヒトCDNFシグナル配列と成熟CDNFのアミノ酸1〜アミノ酸100の部分とからなる)、及びヒトC−CDNF(アミノ酸101からアミノ酸161に及ぶ成熟CDNFのC末端ドメインと融合した26アミノ酸長のCDNFシグナル配列からなる)。
【0088】
ヒト組み換えMANF(21アミノ酸長のシグナル配列と158アミノ酸長の成熟MANF配列とを有する、179アミノ酸からなる完全長のpre−MANF)、ヒトN−MANF(21アミノ酸のヒトMANFシグナル配列と成熟MANFのアミノ酸1〜アミノ酸95の部分とからなる)、及びヒトC−MANF(アミノ酸96からアミノ酸158に及ぶ成熟MANFのC末端ドメインと融合した21アミノ酸長のCDNFシグナル配列からなる)。
【0089】
コドンによりhMANF及びhCDNFのcDNA合成を最適化し、それらのドメインをジーンウィズに注文して、それぞれのpQMCF発現ベクターを構築した。N−CDNF、C−CDNF、N−MANF、及びC−MANF構築物は、C末端にヒスチジンタグを有した。最終ベクターでシーケンシングすることにより、cDNAを検証した。hMANF及びhCDNFタンパク質をCHO由来の懸濁細胞株CHOEBNALT85により産生し、既知組成無血清培地を細胞培養に用いた。
【0090】
CHOEBNALT85細胞に1μgの発現プラスミドをトランスフェクトした。トランスフェクションの48時間後に、700μg/mLのG418を添加して、細胞集団を含むプラスミドを選択した。タンパク質の発現及び分泌を、トランスフェクションの48時間後に、細胞溶解物及び上清において還元状態で分析した。
【0091】
hMANF及びhCDNFタンパク質を、2段階イオン交換クロマトグラフィーで精製し、PBS(pH7.4)中にゲルろ過した。CDNF抗体及びMANF抗体(MANF 4E12−HRP及びCDNF−7D6−HRP、イコサゲン タルトゥ、エストニア)を用いたSDS−PAGE及びウェスタンブロット分析の結果、使用したタンパク質の純度は99%以上であった。
【0092】
CDNF及びMANFのC末端ドメイン及びN末端ドメインをNiアフィニティーカラムで精製し、当該タンパク質を、抗Hisタグマウスモノクローナル抗体(カタログ番号A00186、ジェンスクリプト)を用いてSDS−PAGE及びウエスタンブロッティングにより分析した。
産生されたタンパク質は以下の配列を有した。
【0093】
成熟ヒトCDNF:
QEAGGRPGADCEVCKEFLNRFYKSLIDRGVNFSLDTIEKELISFCLDTKGKENRLCYYLGATKDAATKILSEVTRPMSVHMPAMKICEKLKKLDSQICELKYEKTLDLASVDLRKMRVAELKQILHSWGEECRACAEKTDYVNLIQELAPKYAATHPKTEL(配列番号7)
【0094】
ヒトN−CDNF:
QEAGGRPGADCEVCKEFLNRFYKSLIDRGVNFSLDTIEKELISFCLDTKGKENRLCYYLGATKDAATKILSEVTRPMSVHMPAMKICEKLKKLDSQICEL(配列番号8)
【0095】
ヒトC−CDNF:
KYEKTLDLASVDLRKMRVAELKQILHSWGEECRACAEKTDYVNLIQELAPKYAATHPKTEL(配列番号4)
【0096】
成熟ヒトMANF:
LRPGDCEVCISYLGRFYQDLKDRDVTFSPATIENELIKFCREARGKENRLCYYIGATDDAATKIINEVSKPLAHHIPVEKICEKLKKKDSQICELKYDKQIDLSTVDLKKLRVKELKKILDDWGETCKGCAEKSDYIRKINELMPKYAPKAASARTDL(配列番号9)
【0097】
ヒトN−MANF:
LRPGDCEVCISYLGRFYQDLKDRDVTFSPATIENELIKFCREARGKENRLCYYIGATDDAATKIINEVSKPLAHHIPVEKICEKLKKKDSQICEL(配列番号10)
【0098】
ヒトC−MANF:
KYDKQIDLSTVDLKKLRVKELKKILDDWGETCKGCAEKSDYIRKINELMPKYAPKAASARTDL(配列番号5)
【0099】
ドーパミンニューロンを用いた試験
ドーパミンニューロンを試験するため(非特許文献31、非特許文献32)、13.5日齢のNMRI系マウスの胚の腹側中脳から中脳底を切除した。組織を0.5%トリプシン(ICNバイオケミカル)を用いてインキュベートした後、大きな先端熱加工パスツールピペットを用いて機械的に解離した。ニューロンを、ポリ−L−オルニチン(シグマ))でコーティングされた96ウェル培養プレート上で、N2サプリメント(インビトロジェン)を含むDMEM/F12培地(インビトロジェン)を用い、GDNF(100ng/mL)の存在下又は非存在下で、又は種々の濃度のCDNF、MANF、C−CDNF、及びC−MANFポリペプチドと共に5日間成長させた。実験の開始時に、同量のニューロンを各ウェルにプレーティングした。神経栄養因子を添加しない培養物を、ネガティブコントロールとした。中脳培養物はいくつかのニューロン種を含むため、培養物を固定し、ドーパミン作動性ニューロンの特異的マーカーであるチロシンヒドロキシラーゼ(TH)(ミリポア)に対する抗体で免疫染色した。各ウェルの画像をCellInsight(商標)でスキャンし、免疫陽性ニューロンをCellProfiler及びCellProfiler解析ソフトウェアでカウントした。データを、GDNF保持TH陽性ニューロンに対する割合(%)として表す。全ての実験を、独立した培養で少なくとも3回繰り返した。結果を平均SEMで表し、有意性について一元配置分散分析及びTukeyの事後検定、又は2−両側Studentのt検定のいずれかによりテストした。帰無仮説はp≦0.05で棄却した。
【0100】
CDNF、C−CDNF、C−MANFのヨウ素化
ラクトペルオキシダーゼ法を用いて、CDNF、C−CDNF、及びC−MANFを
125I−Naでヨウ素化した。問題のタンパク質を30μLの0.25Mリン酸緩衝液(pH7.5)に溶解し、
125I−Na(1mCi/2.8μL、1mCi=37mBq、GEヘルスケア)と混合した。50μg/mLのラクトペルオキシダーゼ10μLと0.05%H
2O
2とを加えることにより、反応を開始した。混合物を室温で20分間インキュベートし、0.1M NaI、0.4M NaClを含む3容量の0.1Mリン酸緩衝液(pH7.5)を加えて反応を停止した後、25μLの2.5%BSAを加えた。Sephadex G−25カラム(PM10、GEヘルスケア)でのゲルろ過により、遊離ヨウ素とヨウ素化タンパク質とを分離した。カラムの平衡と溶出には、1%BSAを含む0.1Mリン酸緩衝液(pH7.5)を使用した。場合によっては、ヨウ素化成長因子をYM−10 Centriconカラム(ミリポア)を用いて濃縮した。
125I標識CDNF、C−CDNF、N−CDNF、C-MANF、及びN-MANFの比活性を、Wizard3 1480自動ガンマカウンター(パーキンエルマー、ウォラック)で測定したところ、約10
8cpm/μgタンパク質であった。標識タンパク質を4°Cに保ち、標識後3週間以内に使用した。
【0101】
El3.5ドーパミン作動性ニューロンの内在化実験
24ウェルプレート上で成長させたマウスの培養El3.5ドーパミンニューロンを、ウェルあたり30,000cpmのヨウ素化CDNF又はC−CDNFと共に37℃で2時間インキュベートした。細胞を氷に移し、0.5mLの氷冷培地で1回洗浄した。次に、細胞をエッペンドルフチューブに移し、4℃で0.2M酢酸、0.5M NaCl(pH2.8)で1回洗浄した。1000gで10分間遠心分離した後、細胞を0.5mLの0.5N NaOHに溶解し、Wizard3 1480自動ガンマカウンター(パーキンエルマー、ウォラック)でカウントした。
【0102】
ラットの血液脳関門透過試験
125I-CDNF、
125IC−CDNF、又は
125IC−MANF(全てのタンパク質について10μL中10
6cpm)を、成体雄ウィスターラットに皮下注射した。2時間後に動物にPBSを灌流した。ガンマカウンターにより、種々の脳領域で放射能を分析した。データを平均±SEMで示す。群間の違いをANOVAで分析した後、Tukey−Kramer事後検定を行った。
【0103】
PC6.3細胞の内在化実験
ラットPC6.3褐色細胞腫細胞を、24ウェルプレート上で、10%FCS及び5%ウマ血清を含むDMEM培養液で成長させた。細胞をPBSで洗浄し、ウェルあたり30,000cpmのヨウ素化CDNF、C−CDNF、又はC−MANFと共に37℃で90分間インキュベートした。細胞を氷上に置き、0.5mLの氷冷培地で1回洗浄した。次に、細胞をエッペンドルフチューブに移し、0.2M酢酸、0.5M NaCl(pH2.8)で1回洗浄した。1000gで10分間遠心分離した後、細胞を0.5mLの0.5N NaOHに溶解し、Wizard3 1480自動ガンマカウンター(パーキンエルマー、ウォラック)でカウントした。
【0104】
PDのラット6−OHDAモデルにおける神経修復試験
PDの神経修復モデルでは、前述のようにラットを6−OHDAで損傷させた(非特許文献4、非特許文献5、非特許文献33)。簡単に説明すれば、ラットに対し、イソフルラン麻酔下で、左線条体に3×2μgの6−OHDAを片側定位注射(10°の角度)した(ブレグマ及び硬膜に対する座標A/P +1.6;L/M −2.8;D/V −6、A/P 0.0:L/M −4.1;D/V −5.5、及びA/P −1.2;L/M −4.5;D/V −5.5)。2週間後、アンフェタミン誘発回転の結果(損傷のサイズ)に基づいて、ラットを群分けした。その後、CDNF(10μg)、C−CDNF(CDNF10μgと等モル)、及びN-CDNF(CDNF10μgと等モル)を、6−OHDAと同じ座標を使用してラットに線条体内注射した。ラットを群分けした後の参照実験では、浸透圧ミニポンプを皮下に挿入し、カニューレを損傷線条体に入れた。ミニポンプによりMANF4(即ち、MANFペプチドCKGC、特許文献4参照)、GDNF、又はビヒクル溶液を線条体へ2週間送達した後、ミニポンプとカニューレを取り除いた。ニューロン内部において、6−OHDAは相乗的に作用する以下の2つの作用を有する:1)サイトゾルに蓄積し、酸化ストレスを引き起こすフリーラジカルを形成する、2)ミトコンドリア呼吸鎖複合体I及びIVの強力阻害剤である。ノルアドレナリン作動性ニューロンは、NAT阻害剤デシプラミンを用いて(15mg/kg、腹腔内投与、6−OHDA注射の30分前)、保護した。片側損傷のサイズ及び治療効果を、CDNF、C−CDNF、N−CDNF、及びPBS処理ラットを対象とした実験では損傷から2、4、6、及び8週間後に、MANF4及びGDNFを対象とした参照実験では1、4、8、10、及び12週後に、アンフェタミン誘発回転行動で測定した。アンフェタミンに誘発される(2.5mg/kg、腹腔内投与)完全な(360°)同側及び反対側への回転数を、30分間の馴化期間の後、120分間記録した。結果を損傷側への正味同側回転で表す。除外基準は、平均(正味回転数)±2×STDEVとした。
【0105】
チロシンヒドロキシラーゼ(TH)−免疫組織化学
灌流及び組織処理。神経修復試験の直後、ペントバルビタールナトリウムの過剰投与(90mg/kg、腹腔内投与、オリオンファーマ)によりラットに麻酔をかけ、PBSで、続いて0.1Mリン酸ナトリウム緩衝液(pH7.4)中の4%パラホルムアルデヒドで心内灌流した。脳を摘出し、後固定を4時間行い、20%スクロースを含むリン酸ナトリウム緩衝液に4℃で保存した。厚さ40μmの連続冠状凍結切片をスライド式ミクロトームで切り出した。他に記載されているように(非特許文献4)、免疫組織化学を行った。灌流した脳を、4℃で一晩、パラホルムアルデヒド中で後固定し、20%スクロース中で保存した。脳を、6つの連続した厚さ40μmの切片にカットした。浮動性切片をリン酸緩衝生理食塩水(PBS)で洗浄し、内因性ペルオキシダーゼ活性を0.3%過酸化水素(シグマアルドリッチ)でクエンチした。抗体の非特異的結合をブロックするために、切片をブロッキング緩衝液(1×PBS中の4%ウシ血清アルブミン及び0.1%Triton X−100)で1時間インキュベートした。切片を、4°Cで、ブロッキング緩衝液中のマウスモノクローナル抗チロシンヒドロキシラーゼ(TH)抗体(1:2,000、カタログ番号MAB318、RRID:AB_2201528、ミリポア、ビレリカ、マサチューセッツ州)で一晩インキュベートした後、ビオチン化二次抗体(1:200、抗ラット又は抗マウス、ベクター、バーリンゲーム、カリフォルニア州)でインキュベートした。アビジン−ビオチン−酵素複合体(ABCキット、ベクター)で染色を増強し、色素原としての3’,3’−ジアミノベンジジンを用いてシグナルを可視化した。
【0106】
黒質からのTH陽性細胞数
黒質緻密部(SNpc)のTH陽性細胞について、ブレグマに対しておよそA/P −4.5〜−6.0のSNpcにまたがる6つの切片から分析した。3DHistechスキャナーで得られた画像から、Matlab(RRID:nlx_153890、マスワークス、ネイティック、マサチューセッツ州)アルゴリズムを用いて細胞をカウントした。スキャナーの解像度は、×20NA0.8対物で0.24μm/ピクセルとした。
【0107】
線条体のTH陽性神経突起の吸光度分析
線条体のTH陽性神経突起の吸光度は、各ラットのブレグマに対しておよそA/P +2.2、+0.84、及び−0.12の3つの線条体切片で測定した。バックグラウンドシグナルを減らすために、切片を自動スキャナー(3DHistech、ブダペスト、ハンガリー;ヘルシンキ大学バイオテクノロジー研究所が提供するスキャンサービス)でスキャンし、画像を16ビットグレースケールに変換した。脳梁にはTHシグナルがないため、それを非特異的バックグラウンド染色の尺度として用いた。得られた画像から、面積当たりの総密度(integrated densities)をImageJ(NIH)で分析した。データを、健側に対する割合(%)で表す。
【0108】
ベータ細胞増殖アッセイ
8週齢の雌の処女C57bl6Rccマウスから膵島を単離した。膵島を成長培地中で一晩回復させ、翌日、同数の膵島/ウェル(70/ウェル)を胎盤性ラクトゲン(PL 500ng/mL)、C−MANF、又はMANFで5日間処理した。培地の半分を、成長因子を含む新鮮な培地に毎日交換した。BrdUに代わるヌクレオシド類似体Edu(Click−iT(登録商標)Edu増殖キット、インビトロジェン)を、膵島採取の48時間前に添加した。膵島をトリプシンで破壊し、細胞遠心分離機のスライドガラス上に遠心分離した。サイトスピン及び増殖細胞をClick−iT AlexaFluorアジド発色試薬で染色した後、固定し、4℃で一晩インスリン染色(モルモット1:200、アブカム、ケンブリッジ、英国)してベータ細胞を検出した。細胞を洗浄し、Alexa Fluor(登録商標)488(1:400、モレキュラープローブス、ライフテクノロジーズ、カリフォルニア州、米国)と結合した二次抗体で染色した。スライドを、DAPI(ベクターラボラトリーズ、バーリンゲーム、カリフォルニア州、米国)を含むベクタシールドマウンティング媒体(Vectashield mounting medium)でマウントした。12個の画像(倍率10倍)を、40×/Plan−Apochromat/0.95 Corr M27、及び63×/Plan−Apochromat/1.40 Oil/M27、及び483 AxioCam HRmカメラを装備した蛍光Zeiss AxioImager M2 482落射蛍光顕微鏡で、AxioVision4ソフトウェアを用いて取得し、Image Pro Plusソフトウェア(メディアサイバネティクス、ベセスダ、メリーランド州、米国)により分析し、DAPI陽性核の数を定量した。増殖中のベータ細胞の相対数を定量し、3〜5反復/処理のウェルと比較した。
【0109】
ALSのマウスモデル
トランスジェニックSOD1 G93Aマウスを、この試験におけるALSのトランスジェニックマウスモデルとした。種々のヒトSOD1変異を含むトランスジェニックマウスは、進行性の神経変性及び運動ニューロン(MN)死を発症し、前臨床試験で一般的に使用され、FALSの病因の理解に大きく貢献している動物モデルを提供する(非特許文献34)。トランスジェニックSOD1マウスは、常染色体優性様式で伝染するALS様の臨床的特徴を示す。これらのマウスでは、後肢の脱力と振戦様運動が初期症状として8〜10週齢で現れ、その後、進行性の運動麻痺及び神経原性筋萎縮等の主要な症状が現れる(非特許文献35)。これらのマウスは、その後、歩行、飲食の障害を示し、数週間以内に、通常14〜16週齢で死亡する。グリシン93をアラニンに変異させたヒトSOD1を保有するトランスジェニックマウスは、元々The Jackson Laboratory(http://www.jax.org、バーハーバー、メイン州、系統B6SJL−TgN(SOD1−G93A)1Gur)から入手した。トランスジェニック発現は、DNAテールテスト及びPCRで、他者が以前行った特定のオリゴヌクレオチド及び条件を用いて(Jackson Labのホームページ参照)、分析した。全ての実験において、野生型B6SJL−TgN(SOD1)2Gurをコントロールとして含めた。
【0110】
ALSマウスの実験設定(セットアップ)
単回投与実験において、約13週齢のマウスに、イソフルラン麻酔下でPBS又はC−CDNF(PBSで希釈した、完全長CDNF10μgと等モルである3.75μg)を脳室内に単回注射した。その後、病気の徴候及び体重変化について、マウスを週2回評価した。評価は、マウスの運動活動を評価するように考案された、ロータロッド等のテストを含む一連の行動テストにより完了した。
【0111】
長期注入実験において、12週齢のSOD1マウスに、イソフルラン麻酔下で脳注入カニューレ(カテーテルチューブを介してAlzet浸透圧ミニポンプに接続)を右側脳室に挿入した。C−CDNF(1.5μg/24h)を28日間注入した。運動行動をロータロッドで評価した。マウスの臨床徴候及び体重変化を評価した。
【0112】
ALSマウスの臨床スコアリング
ジャクソン研究所からの説明書を用いてSOD1マウスの臨床スコアリングを行った。マウスを、12週齢になった後、週に2回注意深く検査した。動物を尾の付け根でそっと持ち上げ、震え、こわばり、手足を伸ばす能力を観察することにより、採点した。臨床スコアリングは、ALSTDI(ALSセラピー開発研究所)の後肢神経スコアリングシステムに基づいた1〜5段階である。
【0113】
ロータロッド
ロータロッドでは、マウスを回転ロッド(加速度4〜40rpm/分)に置いた(ウゴバジレ、イタリア)。カットオフ時間を4分とした。ロータロッド試験は、マウスが12週齢になった後、週に2回行った。
【0114】
脳卒中のモデルとしての中大脳動脈の遠位閉塞
オスのSprague Dawleyラット(体重230〜270g、エンヴィーゴ、オランダ)を実験に用いた。当該実験は、実験動物の管理と使用に関するEU指令2010/63/EUの3R原則(現地の法律及び規制)に従って実施し、フィンランド国立動物実験委員会により承認された。全ての実験を盲検法で行い、ラットを異なる治療群にランダムに割り当てた。ラットに抱水クロラール(0.4g/kg、腹腔内投与)で麻酔をかけた。皮質脳卒中を、上述ように(非特許文献36)、遠位中大脳動脈(dMCA)を両側総頸動脈(CCA)閉塞とともに60分間閉塞することにより誘発した。簡単に説明すれば、両側CCAを特定し、腹側正中頸部切開により単離した。ラットを定位固定装置に入れ、開頭術を右半球で行った。右(MCA)を10−0縫合糸で結紮し、両側総頸動脈(CCA)を非外傷性動脈クランプで60分間結紮した。虚血の60分後、MCAの周囲の縫合糸及びCCAの動脈クリップを取り外して、再灌流障害を誘導した。麻酔から回復後、ラットをホームケージに戻した。手術中及び手術後の体温を37℃に維持した。
【0115】
皮下C−CDNFの神経保護効果を試験するために、50μgのC−CDNFを、dMCA閉塞の30〜50分前及び再灌流直後に、100μLの容量で皮下投与した。リン酸緩衝生理食塩水(PBS)をビヒクルコントロールとして使用した。dMCAoの2日後にラットを安楽死させ、2%塩化2,3,5−トリフェニルテトラゾリウム(TTC、シグマアルドリッチ、セントルイス、ミズーリ州)染色により梗塞体積を測定した。ラットを断頭し、脳を摘出し、アクリル製ラット脳ブロックを用いて厚さ2.0mmの切片にスライスした。脳スライスを2%TTC溶液(シグマ、セントルイス、ミズーリ州、米国)中で室温にて15分間インキュベートした後、固定のため4%パラホルムアルデヒド溶液に移した。各スライスの梗塞領域をデジタルスキャナー及びImageJソフトウェアで測定した。各動物の梗塞体積を、検査した吻側脳スライスの平均スライス厚(2mm)と梗塞面積の合計との積から得た。統計分析にはStudentのt検定を使用した。
【0116】
健常動物における皮下注射したC−CDNFの効果
野生型マウスに、3週間、週に2回C−CDNF(0.17mg/kg、1.77又は17.7mg/kg)を注射した。マウスの自発運動を、C−CDNF皮下注射の直後に週に1回、オープンフィールド試験で60分間測定した。C−CDNF皮下注射を繰り返しても体重の変化は見られなかった。コントロール群とC−CDNFの投与を受けた群との間で、行動パターンの統計的差異は検出されなかった。結果を
図15に示す。
【0117】
ハンチントン病ラットモデルにおけるC−CDNFの効果
成体ウィスターラットに、座標:A/P +0.7;L/M +2.8;D/V −6.0へのキノリン酸(QA)225nmolの片側線条体内注射を単回投与した。キノリン酸は、興奮毒性プロセスにより線条体ニューロンの死を誘導する毒素である。2週間後、ラットに対し、同じ座標へPBS、CDNF(10マイクログラム)、C−CDNF(等モル量のCDNFに相当する量)の線条体内注射を単回投与した。処理を開始する前に、ラットを群にランダムに分けた。ロータロッド及び握力テストを毎週行った。
【0118】
キノリン酸損傷後、ロータロッド試験及び握力試験において、C−CDNFのみが、CDNFとは異なり、統計的に有意に運動行動を改善し、C−CDNFは3週間及び5週間の時点で能力を大幅に改善した。結果を
図16に示す。
【0119】
参照文献
Aalto, A.P., L.P. Sarin, A.A. van Dijk, M. Saarma, M.M. Poranen, U. Arumae, and D.H. Bamford. 2007. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase. RNA. 13:422-429.
Airavaara, M., H. Shen, C.C. Kuo, J. Peranen, M. Saarma, B. Hoffer, and Y. Wang. 2009. Mesencephalic astrocyte-derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats. J.Comp.Neurol. 515 (1): 116-124.
Airavaara M, Harvey BK, Voutilainen MH, Shen H, Chou J, Lindholm P, Lindahl M, Tuominen RK, Saarma M, Hoffer B, and Wang Y. CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant. 2012;21(6):1213-23. doi: 10.3727/096368911X600948.
Bai M, Vozdek R, Hnizda A, Jiang C, Wang B, Kuchar L, Li T, Zhang Y, Wood C, Feng L, Dang Y, and Ma DK. Conserved roles of C. elegans and human MANFs in sulfatide binding and cytoprotection. Nat Commun. 2018 Mar 1;9(1):897. doi: 10.1038/s41467-018-03355-0.
Bode & Lowik, Constrained cell penetrating peptides. Drug Discovery Today: Technologies; 2017, Vol. 26, pages 33-42
Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents. Molecules. 2018 Jan 31;23(2). pii: E295. doi: 10.3390/molecules23020295.
Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke. 1986;17(4):738-743.
Dornburg R (1995), Gene Therap. 2: 301-310.
Gurney, ME., Cutting, FB., Zhai, P., Doble, A., Taylor, CP., Andrus, PK. and Hall, ED. 1996 Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 39 (2) 147-57
Hamner, S., U. Arumae, Y. Li-Ying, Y.F. Sun, M. Saarma, and D. Lindholm. 2001. Functional characterization of two splice variants of rat bad and their interaction with Bcl-w in sympathetic neurons. Mol.Cell.Neurosci. 17:97-106.
Hellman, M., U. Arumae, L.Y. Yu, P. Lindholm, J. Peranen, M. Saarma, and P. Permi. 2011. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J.Biol.Chem. 286:2675-2680.
Kalafatovic & Giralt, Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity. Molecules. 2017 Nov 8;22(11). pii: E1929. doi: 10.3390/molecules22111929.
Mie Kristensen, Ditlev Birch and Hanne Morck Nielsen. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos. Int. J. Mol. Sci. 2016, 17, 185; doi:10.3390/ijms17020185
Lindahl M, Saarma M, Lindholm P, M. 2017 Unconventional neurotrophic factors CDNF and MANF: structure, physiological functions and therapeutic potential. Neurobiology of Disease, 97, 90-102.
Lindahl M, Danilova T, Palm E, Pulkkila P, Voikar V, Hakonen E, Ustinov J, Andressoo J-O, Harvery B, Otonkoski T, Rossi J and Saarma M. 2014. MANF is indispensable for the proliferation and survival of pancreatic β-cells. Cell Reports, 7(2):366-75.
Lindholm, D., E.A. Mercer, L.Y. Yu, Y. Chen, J. Kukkonen, L. Korhonen, and U. Arumae. 2002. Neuronal apoptosis inhibitory protein: Structural requirements for hippocalcin binding and effects on survival of NGF-dependent sympathetic neurons. Biochim. Biophys. Acta. 1600:138-147.
Lindholm, P., and M. Saarma. 2010. Novel CDNF/MANF family of neurotrophic factors. Dev. Neurobiol. 70:360-371.
Lindholm, P., M.H. Voutilainen, J. Lauren, J. Peranen, V.M. Leppanen, J.O. Andressoo, M. Lindahl, S. Janhunen, N. Kalkkinen, T. Timmusk, R.K. Tuominen, and M. Saarma. 2007. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 448:73-77.
Lindstrom, R., P. Lindholm, J. Kallijarvi, Y. Li-ying, T.P. Piepponen, U. Arumae, M. Saarma and T.I. Heino, 2013. Characterization of the Structural and Functional Determinants of MANF/CDNF in Drosophila In Vivo Model. PLoS One 8(9),e73928.
Marino, Giada, Ulrich Eckhard, and Christopher M. Overall, Protein Termini and Their Modifications Revealed by Positional Proteomics. 2015, ACS Chem. Biol. 10:1754-1764
Nadella R, Voutilainen MH, Saarma M, Gonzalez-Barrios JA, Leon-Chavez BA, Jimenez JM, Jimenez SH, Escobedo L, Martinez-Fong D. Transient transfection of human CDNF gene reduces the 6-hydroxydopamine-induced neuroinflammation in the rat substantia nigra. J. Neuroinflammation. 11: 209, 2014.
Neves J, Zhu J, Sousa-Victor P, Konjikusic M, Riley R, Chew S, Qi Y, Jasper H, Lamba DA, Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 2016 Jul 1;353(6294).
Oakes and Papa, Annu. Rev. Pathol. Mech. Dis. 2015. 10:173-94.
Parkash, V., P. Lindholm, J. Peranen, N. Kalkkinen, E. Oksanen, M. Saarma, V.M. Leppanen, and A. Goldman. 2009. The structure of the conserved neurotrophic factors MANF and CDNF explains why they are bifunctional. Protein Eng.Des.Sel. 22:233-241.
Penttinen AM, I. Suleymanova, K Albert, J Anttila, MH Voutilainen, M Airavaara. 2016 Characterization of a new low-dose 6-hydroxydopamine model of Parkinson's disease in rat. J Neurosci Res. Jan 13. doi: 10.1002/jnr.23708
Shibata, N. 2001. Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Neuropathology 21(1):82-92
Sun, Y.F., L.Y. Yu, M. Saarma, and U. Arumae. 2003. Mutational analysis of N-Bak reveals different structural requirements for antiapoptotic activity in neurons and proapoptotic activity in nonneuronal cells. Mol.Cell.Neurosci. 23:134-143.
Sun, Y.F., L.Y. Yu, M. Saarma, T. Timmusk, and U. Arumae. 2001. Neuron-specific Bcl-2 homology 3 domain-only splice variant of Bak is anti-apoptotic in neurons, but pro-apoptotic in non-neuronal cells. J.Biol.Chem. 276:16240-16247.
Voutilainen, M.H., S. Back, J. Peranen, P. Lindholm, A. Raasmaja, P.T. Mannisto, M. Saarma, and R.K. Tuominen. 2011. Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson's disease. Exp.Neurol. 228:99-108.
Voutilainen, M.H., S. Back, E. Porsti, L. Toppinen, L. Lindgren, P. Lindholm, J. Peranen, M. Saarma, and R.K. Tuominen. 2009. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson's disease. J.Neurosci. 29:9651-9659. doi: 10.1523/JNEUROSCI.0833-09.2009.
Voutilainen, MH, Arumae U, Airavaara M, Saarma M. 2015 Therapeutic potential of the endoplasmic reticulum located and secreted CDNF/MANF family of neurotrophic factors in Parkinson's disease. FEBS letters 589 3739-3748.
Voutilainen MH, De Lorenzo F, Stepanova P, Back S, Yu LY, Lindholm P, Porsti E, Saarma M, Mannisto PT, Tuominen RK 2017 Evidence for an Additive Neurorestorative Effect of Simultaneously Administered CDNF and GDNF in Hemiparkinsonian Rats: Implications for Different Mechanism of Action. eNeuro. Mar 13;4(1)
Yu, L.Y., and U. Arumae. 2008. Survival assay of transiently transfected dopaminergic neurons. J.Neurosci.Methods. 169:8-15.
Yu, L.Y., E. Jokitalo, Y.F. Sun, P. Mehlen, D. Lindholm, M. Saarma, and U. Arumae. 2003. GDNF-deprived sympathetic neurons die via a novel nonmitochondrial pathway. J.Cell Biol. 163:987-997.
Yu, L.Y., M. Saarma, and U. Arumae. 2008. Death receptors and caspases but not mitochondria are activated in the GDNF- or BDNF-deprived dopaminergic neurons. J.Neurosci. 28:7467-7475.
Zhao H, Liu Y, Cheng L, Liu B, Zhang W, Guo YJ, Nie L. 2013 Mesencephalic astrocyte-derived neurotrophic factor inhibits oxygen-glucose deprivation-induced cell damage and inflammation by suppressing endoplasmic reticulum stress in rat primary astrocytes. J. Mol. Neurosci. 51(3): 671-8, 2013.
引用特許文献:
欧州特許第58481号明細書
欧州特許第1969003号明細書
米国特許3773919号明細書
国際公開第2007/068803号
国際公開第2009/133247号
国際公開第2013/034805号
国際公開第2014/191630号
国際公開第2016/057579号