【実施例】
【0102】
本発明の化合物の製造方法:
式Aで示される化合物およびその合成方法は、国際公開第2017/132408号として公開された国際出願PCT/US2017/15178、および米国特許出願公開第2017/319580号に記載されている。Zが−O−である本開示の化合物は、例えば、必要に応じて下記のスキーム1に従って、式Aで示される化合物を好適なアルキル化およびアシル化剤と反応させることにより製造することができる。同様の変換を行う他の方法は当業者に知られている。
【化4】
【0103】
本開示の他の化合物は、当業者に知られている類似の手順によって製造することができる。
【0104】
本発明の化合物のジアステレオマーの単離または精製は、当該技術分野で知られている慣用方法、例えば、カラム精製法、分取薄層クロマトグラフィー、分取HPLC、結晶化、トリチュレーション、擬似移動床法などによって行うことができる。
【0105】
本開示の化合物の塩は、米国特許第6,548,493号;第7,238,690号;第6,552,017号;第6,713,471号;第7,183,282号;米国再特許第39680号;米国再特許第39679号;および国際公開第2009/114181号(米国特許公開第2011/112105号)(それぞれの記載内容は全体として出典明示により本明細書の一部とする)に同様に記載されているように製造することができる。
【0106】
製造された化合物のジアステレオマーは、例えば、室温でCHIRALPAK(登録商標)AY−H(5μ、30×250mm)を用いてHPLCによって分離し、10%エタノール/90%ヘキサン/0.1%ジメチルエチルアミンで溶出することができる。230nmでピークを検出して、98〜99.9%eeのジアステレオマーを生成することができる。
【0107】
実施例1: 4−((6bR,10aS)−2−オキソ−2,3,6b,9,10,10a−ヘキサヒドロ−1H,7H−ピリド[3',4':4,5]ピロロ[1,2,3−de]キノキサリン−8−イル)−1−(4−フルオロ−フェニル)−ブタン−1−オンの合成
【化5】
(6bR,10aS)−2−オキソ−2,3,6b,9,10,10a−ヘキサヒドロ−1H,7H−ピリド[3',4':4,5]ピロロ[1,2,3−de]キノキサリン−8−カルボン酸エチルエステル(6.4g、21.2mmol)を室温でHBr酢酸溶液(64mL、33%w/w)に懸濁する。混合物を50℃で16時間加熱する。冷却し、酢酸エチル(300mL)で処理した後、混合物を濾過する。濾過ケーキを酢酸エチル(300mL)で洗浄し、次いで、真空乾燥する。次いで、得られたHBr塩をメタノール(200mL)に懸濁し、イソプロパノール中にてドライアイスで冷却する。強撹拌下にて、該懸濁液にアンモニア溶液(10mL、メタノール中7N)を徐々に添加して、混合物のpHを10に調整する。得られた混合物を、さらなる精製を行わずに真空乾燥して、粗(6bR、10aS)−2−オキソ−2,3,6b,9,10,10a−ヘキサヒドロ−1H,7H−ピリド[3',4':4,5]ピロロ[1,2,3−de]キノキサリン(8.0g)を得、これを次工程に直接使用する。MS (ESI) m/z 230.2 [M+H]
+。
【0108】
該粗(6bR,10aS)−2−オキソ−2,3,6b,9,10,10a−ヘキサヒドロ−1H,7H−ピリド[3',4':4,5]ピロロ[1,2,3−de]キノキサリン(1.4g)をDMF(14mL)に溶解し、次いで、KI(2.15g)および4−クロロ−4'−フルオロブチロフェノン(2mL)を連続して添加する。混合物をアルゴンで脱気した後、N,N−ジイソプロピルエチルアミン(DIPEA、2mL)を添加する。該混合物を78℃で2時間加熱する。冷却後、溶媒を減圧除去する。暗褐色(dark brown)の残留物をジクロロメタン(100mL)に懸濁し、次いで、水(30mL)で抽出する。有機層を分取し、K
2CO
3で乾燥させる。濾過後、溶媒を減圧除去する。得られた粗生成物を、0.1%のメタノール中7Nアンモニアを含有する酢酸エチル中0〜10%のメタノールで溶離するシリカゲルカラムクロマトグラフィーにより精製して、4−((6bR,10aS)−2−オキソ−2,3,6b,9,10,10a−ヘキサヒドロ−1H,7H−ピリド[3',4':4,5]ピロロ[1,2,3−de]キノキサリン−8−イル)−1−(4−フルオロ−フェニル)−ブタン−1−オンを淡黄色(light yellow)固体として得る(767mg)。
1H NMR (500 MHz, DMSO-d
6) δ 10.3 (s, 1H), 8.1 - 8.0 (m, 2H), 7.3 (dd, J = 8.86 Hz, 2H), 6.8 (d, J = 7.25 Hz, 1H), 6.6 (dd, J = 7.55 Hz, 1H), 6.6 (d, J = 7.74 Hz, 1H), 3.8 (d, J = 14.49 Hz, 1H), 3.3 - 3.3 (m, 1H), 3.2 - 3.2 (m, 1H), 3.1 - 3.0 (m, 1H), 3.0 (t, J = 6.88 Hz, 2H), 2.8 - 2.8 (m, 1H), 2.6 - 2.5 (m, 1H), 2.3 - 2.2 (m, 2H), 2.1 - 2.0 (m, 1H), 1.9 - 1.8 (m, 1H), 1.8 (t, J = 6.99 Hz, 2H), 1.6 (t, J = 11.25 Hz, 2H). MS (ESI) m/z 394.2 [M+H]
+。
【0109】
実施例2: (6bR,10aS)−8−(3−(4−フルオロフェノキシ)プロピル)−6b,7,8,9,10,10a−ヘキサヒドロ−1H−ピリド[3',4':4,5]ピロロ[1,2,3−de]キノキサリン−2(3H)−オンの合成
【化6】
(6bR,10aS)−6b,7,8,9,10,10a−ヘキサヒドロ−1H−ピリド[3',4':4,5]ピロロ[1,2,3−de]キノキサリン−2(3H)−オン(100mg、0.436mmol)、1−(3−クロロプロポキシ)−4−フルオロベンゼン(100μL、0.65mmol)およびKI(144mg、0.87mmol)のDMF(2mL)中混合物をアルゴンで3分間脱気し、DIPEA(150μL、0.87mmol)を添加する。得られた混合物を78℃に加熱し、この温度で2時間撹拌する。該混合物を室温に冷却し、次いで、濾過する。濾過ケーキを、溶離液としてメタノール/メタノール中7N NH
2(1:0.1v/v)の混合物中0〜100%の酢酸エチルの勾配液を使用するシリカゲルカラムクロマトグラフィーによって精製して、部分的に精製したプロドラッグを生成し、これをさらに、0.1%のギ酸を含有する水中0〜60%のアセトニトリルの勾配液を使用する半分取HPLCシステムで16分間精製して、標記生成物を固体として得る(50mg、収率30%)。MS (ESI) m/z 406.2 [M+1]
+.
1H NMR (500 MHz, DMSO-d
6) δ 10.3 (s, 1H), 7.2 - 7.1 (m, 2H), 7.0 - 6.9 (m, 2H), 6.8 (dd, J = 1.03, 7.25 Hz, 1H), 6.6 (t, J = 7.55 Hz, 1H), 6.6 (dd, J = 1.07, 7.79 Hz, 1H), 4.0 (t, J = 6.35 Hz, 2H), 3.8 (d, J = 14.74 Hz, 1H), 3.3 - 3.2 (m, 3H), 2.9 (dd, J = 6.35, 11.13 Hz, 1H), 2.7 - 2.6 (m, 1H), 2.5 - 2.3 (m, 2H), 2.1 (t, J = 11.66 Hz, 1H), 2.0 (d, J = 14.50 Hz, 1H), 1.9 - 1.8 (m, 3H), 1.7 (t, J = 11.04 Hz, 1H)。
【0110】
実施例3: 細胞および核受容体機能アッセイ(Cellular and Nuclear Receptor Functional Assay)
細胞および核受容体機能アッセイは、Wang, J.B. et al. (1994), FEBS Lett., 338:217-222の手順に従って、実施例1の化合物について行われる。該化合物をいくつかの濃度で試験して、IC
50またはEC
50を決定する。細胞アゴニスト効果は、各標的について公知の基準アゴニストに対する対照応答のパーセントとして算出され、細胞アンタゴニスト効果は、各標的について対照基準アゴニスト応答の阻害パーセントとして算出される。
【0111】
以下のアッセイは、μ(MOP)(h)受容体に対する実施例1の化合物の効果を決定するために行われる:
【表1】
【0112】
アンタゴニストについて、見かけの解離定数(K
B)は、改変したチェンプルソフ式(Cheng Prusoff equation):
【数1】
[式中、A=アッセイにおける基準アゴニストの濃度、およびEC
50A=基準アゴニストのEC
50値]
を用いて算出される。
【0113】
実施例1の化合物は、1.3×10
-6MのIC
50および1.4×10
-7MのK
Bをもって、μ(MOP)(h)(アンタゴニスト効果)を有することが判明する。
【0114】
アゴニスト活性結果は、実施例1の化合物の存在下で得られた、対照アゴニスト応答のパーセント:
【数2】
として表され、また、アンタゴニスト活性は対照アゴニスト最大応答の阻害パーセント:
【数3】
として表される。
【0115】
EC
50値(最大半量応答を生じる濃度)およびIC
50値(対照アゴニスト応答の最大半量阻害を生じる濃度)は、ヒル式(Hill equation)カーブフィッティング:
【数4】
[式中、Y=応答、A=曲線の左漸近線、D=曲線の右漸近線、C=化合物濃度、およびC
50=EC
50またはIC
50、およびnH=傾斜因子]
を用いて平均反復値を用いて作成した濃度応答曲線の非線形回帰分析によって決定される。該分析は、自社で開発したソフトウェアを用いて行われ、市販のソフトウェアSigmaPlot(登録商標)4.0 for Windows(登録商標)(SPSS Inc.による著作権1997)によって作成されたデータとの比較によって正当性が認められる。
【0116】
実施例4: 受容体結合プロファイル
受容体結合は、実施例1および2の化合物について決定される。下記の文献(各文献は出典明示によりその全体として本明細書の一部を構成する)の手順が使用される:5−HT
2A:Bryant, H.U. et al. (1996), Life Sci., 15:1259-1268;D
2:Hall, D.A. and Strange, P.G. (1997), Brit. J. Pharmacol., 121:731-736;D
1:Zhou, Q.Y. et al. (1990), Nature, 347:76-80; SERT: Park, Y.M. et al. (1999), Anal. Biochem., 269:94-104;μオピエート受容体:Wang, J.B. et al. (1994), FEBS Lett., 338:217-222。
【0117】
一般に、結果は、試験化合物の存在下で得られた、対照特異的結合のパーセント:
【数5】
として、また、対照特異的結合の阻害パーセント:
【数6】
として表される。
【0118】
IC
50値(対照特異的結合の最大半量阻害を生じる濃度)およびヒル係数(nH)は、ヒル式カーブフィッティング:
【数7】
[式中、Y=特異的結合、A=曲線の左漸近線、D=曲線の右漸近線、C=化合物濃度、C
50=IC
50、およびnH=傾斜因子]
を用いて平均反復値を用いて作成した競合曲線の非線形回帰分析によって決定される。この分析は、自社ソフトウェアを用いて行われ、市販のソフトウェアSigmaPlot(登録商標)4.0 for Windows(登録商標)(SPSS Inc.による著作権1997)によって作成されたデータとの比較によって正当性が認められる。阻害定数(Ki)は、チェンプルソフ式:
【数8】
[式中、L=アッセイにおける放射性リガンドの濃度、およびK
D=受容体に対する放射性リガンドの親和性]
を用いて算出された。K
Dを決定するためにスキャッチャードプロットが用いられる。
【0119】
以下の受容体親和性の結果が得られる:
【表2】
【0120】
実施例5: マウスのDOI誘発性頭部攣縮モデル
R−(−)−2,5−ジメトキシ−4−ヨードアンフェタミン(DOI)は、セロトニン5−HT
2受容体ファミリーのアゴニストである。それは、マウスに投与されると、高頻度の頭部攣縮と関連する行動プロファイルを生じる。所定の期間中のこれら頭部攣縮の頻度は、脳内の5−HT
2受容体アゴニズムの推定値として取ることができる。逆に、この行動アッセイは、アンタゴニストを用いるかまたは用いずにDOIを投与し、アンタゴニストの投与後のDOI誘発性頭部攣縮の減少を記録することによって、脳内の5−HT
2受容体アンタゴニズムを決定するために使用することができる。
【0121】
若干の改変を伴ってDarmani et al., Pharmacol Biochem Behav. (1990) 36:901-906(この内容は出典明示によりその全体として本明細書の一部を構成する)の方法が使用される。(±)−DOI HClを皮下注射し、該マウスをすぐに慣用のプラスチックケージに収容する。DOI投与の1分後から始めて6分間、頭部攣縮の回数をカウントする。DOI注射の0.5時間前に被験化合物を経口投与する。結果は、DOI誘発性頭部攣縮を減少させるためのEC
50として算出される。結果は下記の表に示される:
【表3】
結果は、式AおよびCで示される参照化合物と比べて、実施例1および2の化合物がDOI頭部攣縮を強くブロックし、実施例4に示されるインビトロ5−HT2A結果と一致することを示している。
【0122】
実施例6: マウステールフリック(tail flick)アッセイ
マウステールフリックアッセイは、拘束されたマウスの疼痛反射閾値によって示される鎮痛作用の測定である。雄性CD−1マウスを、高強度赤外熱源の収束ビーム下にその尾がくるように配置し、尾が加熱される。動物は不快になるといつでも熱源から尾を引き抜くことができる。加熱装置を付けた時と熱源の経路の外側にマウスの尾をフリックした時との間の時間量(潜時(latency))を記録する。モルヒネの投与により、鎮痛作用がもたらされ、これにより、熱に対するマウスの反応の遅延が生じる(潜時の増大)。モルヒネ受容体(MOR)アンタゴニスト、すなわち、ナロキソン(NAL)の前投与により、この効果は逆転し、正常な潜時となる。この試験は、μオピエート受容体のアンタゴニズムを計測するための機能アッセイとして使用される。
【0123】
実施例6a: 実施例1および2の化合物によるモルヒネ誘発性鎮痛作用のアンタゴニズム
5つの処置グループの各々に10匹の雄性CD−1マウス(約8週齢)が割り当てられる。グループは以下のとおり処置される:グループ(1)[陰性対照]:テールフリック試験の60分前に0.25%メチルセルロースビヒクルが経口投与され、テールフリック試験の30分前にセイラインビヒクルが投与される;グループ(2)[陽性対照]:該試験の60分前に0.25%メチルセルロースビヒクルが経口投与され、該試験の30分前にセイライン中モルヒネ5mg/kgが投与される;グループ(3)[陽性対照]:該試験の50分前にセイライン中ナロキソン3mg/kgが投与され、該試験の30分前にセイライン中モルヒネ5mg/kgが投与される;グループ(4)〜(6):該試験の60分前に0.25%メチルセルロースビヒクル中被験化合物0.1mg/kg、0.3mg/kgまたは1mg/kgが経口投与され、該試験の30分前にモルヒネ5mg/kgが投与される。実験は実施例1および実施例2の化合物について繰り返される。結果は、秒で測定した平均潜時として下記の表に示される:
【表4】
【0124】
結果は、実施例1および実施例2の化合物がともにモルヒネ誘発性μオピエート受容体活性の用量依存的遮断を発揮することを示している。
【0125】
実施例6b: ナロキソンによって阻害される、実施例2の化合物による鎮痛作用
上記のマウステールフリックアッセイを用いる第2の研究において、さらに、3mg/kg(腹腔内)のナロキソンによる前投与を行った場合および行わなかった場合で、実施例2の化合物を1.0mg/kg、3.0mg/kgおよび10mg/kgの投与量で、5mg/kgのモルヒネと比較する。前処置グループでは、テールフリック試験の20分前にナロキソンを投与する。非前処置対照では、テールフリック試験の20分前にセイラインを投与する。各グループにおいて、ビヒクル、テールフリック試験の30分前にモルヒネまたは実施例2の化合物を投与する。結果を平均潜時(秒)として下記の表に示す:
【表5】
【0126】
全ての投与量での実施例2の化合物の投与がテールフリックに対する潜時を有意に増加させること、およびこの効果がナロキソンによる前処置により弱まることが分かる。この結果は、実施例2の化合物によって生じる用量依存的鎮痛効果を示しており、さらに、この効果がμオピオイド受容体アゴニズムによって媒介されることを示唆している。
【0127】
実施例6c: 鎮痛作用の経時変化、実施例2の化合物
上記のテールフリックアッセイを繰返して、実施例2の化合物の投与により得られる鎮痛作用の経時変化を決定する。マウスに、(1)アッセイの30分前にビヒクルを、(2)アッセイの30分前に5mg/kgのモルヒネを、または(3)〜(7)アッセイの30分前、2時間前、4時間前、8時間前または24時間前に1mg/kgの実施例3の化合物を、皮下投与する。結果を平均潜時(秒)として下記の表に示す:
【表6】
【0128】
結果は、実施例2の化合物がテールフリックアッセイの30分前または2時間前に投与された場合に有効な鎮痛作用をもたらすことを示している(ANOVA、対ビヒクルP<0.001)。テールフリックアッセイの4時間前、8時間前または24時間前に投与した場合、1mg/kgの実施例2の化合物は、ビヒクル対照と有意に異なる鎮痛効果をもたらさない。したがって、実施例2の化合物は長期の鎮痛作用をもたらさず、これは、実施例3の化合物が、他のオピエート鎮痛薬と比較して、乱用の可能性が低く、かつ、薬物間相互作用のリスクが低いことを意味する。
【0129】
実施例6d: 実施例2の化合物の慢性投与による鎮痛作用
動物が14日慢性処置レジメンを受け、次いで、テールフリックアッセイの30分前に急性処置を受ける試験モデルを用いて、上記のテールフリックアッセイを繰り返す。マウスを、それぞれマウス10匹を有する6つのサブグループをもつ3つの大きなグループに分ける。この3つのグループに、慢性処置として、(A)ビヒクル、(B)0.3mg/kgの実施例2の化合物、または(C)3.0mg/kgの実施例2の化合物のいずれかを投与する。さらに、各サブグループに、急性処置として、(1)ビヒクル、または(2)〜(6)0.01、0.03、0.1、0.3または1.0mg/kgの実施例2の化合物のいずれかを投与する。全ての処置は皮下投与される。結果を、テールフリックに対する平均潜時(秒)として下記の表に示す:
【表7】
【0130】
実施例2の化合物による0.1、0.3および1.0mg/kg急性処置が、ビヒクルによるグループ内急性処置と比較して統計的に有意な用量依存性鎮痛効果をもたらすことが分かる。これは、慢性グループ(A)、(B)および(C)にあてはまる。ビヒクルによる前処置と比較して、0.3mg/kgまたは3.0mg/kgの実施例2の化合物による前処置は、同一急性処置サブグループを比較した場合、一般的にテールフリック潜時の統計的に有意な減少を示した。これらの結果は、14日間の慢性処置の後に実施例2の化合物の鎮痛効果に対するある程度の耐性が生じるが、得られた鎮痛作用は慢性前処置にもかかわらず有効なままであることを示している。
【0131】
実施例7: CNSリンタンパク質プロファイル
実施例1および実施例2の化合物の中枢神経系(CNS)プロファイルを試験するために、包括的な分子リン酸化研究も行われる。マウスの側坐核において、選択された重要な中枢神経系タンパク質についてのタンパク質リン酸化の程度が測定される。被験タンパク質としてはERK1、ERK2、Glu1、NR2BおよびTH(チロシンヒドロキシラーゼ)が挙げられ、実施例1および3の化合物を統合失調症治療薬であるリスペリドンおよびハロペリドールと比較した。
【0132】
3mg/kgの実施例1もしくは2の化合物、または2mg/kgのハロペリドールでマウスを処置した。マウスを、注射後30分〜2時間で、収束したマイクロ波全脳照射によって屠殺し、死亡時に脳のリンタンパク質は存在しているのでそれを貯蔵する。次いで、各マウスの脳から側坐核を解体し、スライスし、液体窒素で凍結させた。Zhu H, et al., Brain Res. 2010 Jun 25; 1342:11-23に記載されるように、SDS−PAGE電気泳動に次いでリンタンパク質特異的イムノブロット法によるリンタンパク質分析のために、さらに試料を調製した。各部位でのリン酸化を定量化し、該タンパク質(非リン酸化)の全レベルに正規化し、ビヒクル処置した対照マウスにおけるリン酸のレベルのパーセントとして表した。
【0133】
結果は、THリン酸化において400%を超える増加を生じるハロペリドールおよび500%を超える増加を生じるリスペリドンとは対照的に、実施例1および実施例2のいずれの化合物も、30分目および60分目に、Ser40でのチロシンヒドロキシラーゼリン酸化に対して有意な効果を有しないことを示している。これは、本発明の化合物がドパミン代謝を妨害しないことを示している。
【0134】
結果は、さらに、実施例1および実施例2のいずれの化合物も、30〜60分でのTyr1472でのNR2Bリン酸化に対して有意な効果を有しないことを示している。該化合物は、Ser845でGluR1リン酸化のわずかな増加を生じ、Thr183およびTyr185でERK2リン酸化のわずかな減少を生じる。特定のタンパク質の様々な部位でのタンパク質リン酸化は、タンパク質輸送、イオンチャネル活性、シナプスシグナル伝達の強度および遺伝子発現の変化などの細胞の様々な活動に関連していることが知られている。NMDAグルタミン酸受容体におけるTyr1472のリン酸化は、神経障害性疼痛の維持に不可欠であることが示されている。GluR1 AMPA型グルタミン酸受容体のSer845のリン酸化は、シナプス伝達の強化と受容体のシナプス局在の強化のいくつかの側面に関連しており、認知能力に関連する長期増強をサポートする。この残基のリン酸化により、チャネルが開く確率が高くなることも報告されている。MAPキナーゼカスケードのメンバーであるERK2キナーゼの残基T183およびY185でのリン酸化は、このキナーゼの完全な活性化に必要であり、ERK2は、細胞の増殖、生存、および転写の調節を含む細胞生理学の多くの側面に関与する。このキナーゼは、シナプス形成と認知機能において重要であると報告されている。
【0135】
実施例8: マウスのビー玉埋め(marble-burying)研究(OCDモデル)
げっ歯類の反復行動および不安関連行動を測定するためにビー玉埋め試験が使用される。これは、ラットおよびマウスが有害または無害な物体を寝具に埋めるという観察に基づいており、OCDなどの反復行動の処置における薬理学的介入の効果を測定するための動物モデルとして使用されている。
【0136】
まず、マウスを4つの処置グループに分ける:(1)ビヒクル陰性対照、(2)実施例2の化合物0.3mg/kg、(3)実施例2の化合物1.5mg/kg、および(4)MPEP(2−メチル−6−(フェニルエチニル)ピリジン)20mg/kg陽性対照。MPEPは、選択的mGluR5グルタミン酸受容体アンタゴニストである。(2)および(3)のマウスには試験の30分前に0.5%メチルセルロース水性ビヒクル中の所定の投与量で実施例2の化合物を経口投与する。グループ(1)のマウスにはビヒクルを経口投与し、グループ(4)のマウスには試験直前にMPEPの腹腔内注射を行う。
【0137】
試験は、気を散らすものを最小限にするために窓のシェードを下げてドアを閉めた部屋の中で、4〜5cmのウッドチップ寝具を備えた長方形のケージ内で行う。15個のきれいなビー玉を、ビー玉5個の列3つで寝具の上に均等に配置される。各ケージにマウス1匹を収容する。マウスとケージを30分間そのままにしておく。試験の最後に、マウスを取り出し、少なくとも2/3の深さまで埋まっているビー玉の数を数える。結果を下記の表に示す:
【表8】
【0138】
結果は、対照と比較して、実施例2の化合物0.3mg/kg(p<0.01)および実施例2の化合物1.5mg/kg(p<0.001)で処置したマウスのビー玉埋めが統計学的に有意に減少することを示している。さらに、明らかな用量反応関係が明らかである。この結果は、OCD治療適応における実施例2の化合物の有用性を示唆している。
【0139】
実施例9: μオピエート受容体活性アッセイ
HTRFベースのcAMPアッセイキット(CisbioからのcAMP Dynamic2 Assay Kit、#62AM4PEB)を使用して、hOP3(ヒトμオピエート受容体μ1サブタイプ)を発現するCHO−K1細胞において実施例1および2の化合物を試験する。凍結細胞を37℃の水浴で解凍し、10%FBSを含有するHam F−12培地10mLに再懸濁する。遠心分離により細胞を回収し、アッセイバッファー(5nM KCl、1.25mM MgSO
4、124mM NaCl、25mM HEPES、13.3mM グルコース、1.25mM KH
2PO
4、1.45mM CaCl
2、0.5g/L プロテアーゼ不含BSA、1mM IBMX添加)に再懸濁する。μオピエート受容体部分アゴニストであるブプレノルフィン、およびμオピエート受容体アンタゴニストであるナロキソン、および合成オピオイドペプチド完全アゴニストであるDAMGOを対照として使用する。
【0140】
アゴニストアッセイのために、384ウェル白色プレートのウェル中にて、細胞懸濁液12μL(2500細胞/ウェル)をフォルスコリン6μL(最終アッセイ濃度10μM)と混合し、漸増濃度の試験化合物6μLを合わせ、該プレートを室温で30分間インキュベートする。溶解バッファーを添加し、さらに1時間インキュベートした後、キットの説明書に従ってcAMP濃度を測定する。全てのアッセイポイントは、3回測定される。XLfitソフトウエア(IDBS)を用いてカーブフィッティングを行い、4パラメータロジスティックスフィットを用いてEC
50値を決定する。アゴニストアッセイは、フォルスコリン刺激cAMP蓄積を阻害する試験化合物の能力を測定する。
【0141】
アンタゴニストアッセイのために、細胞懸濁液12μL(2500細胞/ウェル)を漸増濃度の試験化合物6μLと混合し、384ウェル白色プレートのウェル中にて合わせ、該プレートを室温で10分間インキュベートする。DAMGO(D−Ala
2−N−MePhe
4−Gly−オール−エンケフェリン、最終アッセイ濃度10nM)とフォルスコリン(最終アッセイ濃度10μM)との混合物6μLを添加し、該プレートを室温で30分間インキュベートする。溶解バッファーを添加し、さらに1時間インキュベートした後、キットの説明書に従ってcAMP濃度を測定する。全てのアッセイポイントは、3回測定される。XLfitソフトウエア(IDBS)を用いてカーブフィッティングを行い、4パラメータロジスティックスフィットを用いてIC
50値を測定する。改変Cheng−Prusoff式を用いて見かけの解離定数(K
B)を算出する。アンタゴニストアッセイは、DAMGOによって引き起こされるフォルスコリン誘発cAMP蓄積の阻害を逆転させる試験化合物の能力を測定する。
【0142】
結果を下記の表に示す。結果は、実施例2の化合物が、ナロキソンと比較して非常に高いIC
50を示す、μ受容体の弱いアンタゴニストであること、および、それが中程度に高い親和性であるが、DAMGOに比べて(DAMGOに比べて約79%のブプレノルフィンの活性と比較して)約22%のアゴニスト活性しか示さない、部分アゴニストであることを示している。実施例1の化合物はまた、中程度に強い部分アゴニスト活性を有することも示されている。
【表9】
【0143】
ブプレノルフィンは、慢性疼痛処置およびオピエート離脱に使用される薬物であるが、その高い部分アゴニスト活性のために、使用者は中毒になり得るという問題を抱えている。これを相殺するために、ブプレノルフィンとナロキソンの市販の組合せが使用されている(Suboxoneとして販売されている)。理論に拘束されるものではないが、ブプレノルフィンよりも弱い部分μアゴニストであり、ある程度の中程度のアンタゴニスト活性を有する本発明の化合物により、患者を、より低い中毒リスクをもって、疼痛および/またはオピエート離脱に対してより効果的に処置できると考えられる。
【0144】
組換えヒトMOP−β停止シグナル伝達経路を使用する追加の関連研究では、実施例2の化合物が、10μMまでの濃度ではMOP受容体を介するβ停止シグナル伝達を刺激しないが、IC
50が0.189μMであるアンタゴニストであることが見出されている。対照的に、完全オピオイドアゴニストであるMet−エンケファリンは、0.08μMのEC
50でβ停止シグナル伝達を刺激する。
【0145】
実施例10: ラット耐性/依存性研究
実施例2の化合物を、雄性スプラーグドーリーラットへの反復(28日)毎日皮下投与中に評価して、投薬に対する薬物効果をモニターし、薬理学的耐性が生じるかどうかを判定する。さらに、化合物が離脱への身体的依存症を誘発するかどうかを判断するために、反復投与の突然の中止の後にラットの行動的、身体的および生理学的兆候をモニターする。また、耐性および依存性研究で使用される特定の用量での化合物の血漿薬物曝露レベルを決定するために、耐性および依存性研究と並行して薬理学的研究を行う。該モデルの有効性を確保するための陽性対照として、また、類似の薬理学的クラスからの参考対照薬として、モルヒネを使用する。
【0146】
実施例2の化合物を、1日4回皮下投与される2つの用量、0.3および3mg/kgで評価する。反復投与により、0.3mg/kgの投与では15〜38ng/mL(平均、n=3)、また、3mg/kgの投与では70〜90ng/mL(平均、n=3)のピーク血漿濃度が得られることが見出される。投与後30分から1.5時間でピーク濃度に達し、同等の結果が投与1日目、14日目および28日目に得られる。
【0147】
実施例2の両方の用量で、投与期間または離脱期のいずれかの間、動物の体重、食物および水の摂取、または体温に有意な影響がないことが見出される。0.3mg/kgでの反復投与により引き起こされる主な行動的および身体的影響は、投与期の間、猫背の姿勢(hunched posture)、ストラウブ挙尾(Straub tail)および立毛(piloerection)であることが見出される。高用量では、観察される主な行動的および身体的兆候は、猫背の姿勢、不活発な行動(subdued behavior)、ストラウブ挙尾、テールラトル(tail rattle)および立毛である。
【0148】
研究の28日目に化合物を突然に休止した後に行動的および身体的兆候の同様のプロファイルが観察される。0.3mg/kgでの投与期間中に立ち上がり(rearing)および身体の緊張の高まり(increased body tone)は観察されないが、離脱期の間は有意に増大することが見出される。高用量では、投与期間中に軽度の立ち上がりが観察されるが、離脱期の間は、立ち上がりがより顕著になり、身体の緊張の高まりが観察される。
【0149】
陽性対照として、モルヒネ30mg/kgを1日2回経口投与する。この投薬レジメンは、予想とおり、体重、食物および水の摂取、および直腸温の変化、ならびに耐性および離脱誘発性依存症の発症と一致する臨床的兆候に関連していることが観察される。体重は、2日目および3日目に、ビヒクル処置対照グループと比較して有意に増加したが、5日目に有意に減少した。モルヒネは1〜9日目に食物摂取を有意に減少させた。その後、食物摂取は、一般的に、対照グループよりも少ないことが観察されるが、9、13、14、16、18、21、22および25日目には対照と有意な差はなかった。体重および食物摂取に対するこれらの影響は、モルヒネの影響に対する耐性を示している。
【0150】
モルヒネ処置グループの水摂取もまた、投与期間の間、28日間のうち25日で対照グループよりも有意に少ないことが見出される。体温もまた、一般的に、投与期間の間、対照グループよりも有意に低く、20日目、21日目および27日目に顕著である。投与期間中にモルヒネにより誘発される主な行動的影響が、ストラウブ挙尾、ジャンピング、ディギング(digging)、身体の緊張の高まり、自発運動活性の増大、爆発的動作(explosive movement)および眼球突出(exopthalmus)であることが観察される。
【0151】
さらにまた、28日目のモルヒネ投与の離脱は、食物摂取の初期のさらなる減少、その後の反跳性過食をもたらし、33日目に対照グループと比較して食物摂取が有意に増加することが観察される。食物摂取は35日目までに対照レベルに戻る。同様に、以前にモルヒネを投与されていたラットもまた、29日目に水摂取の初期の減少、その後の反跳性多渇症(rebound hyperdipsia)(水消費量は31日目までに対照レベルに戻る)が観察される。さらに、投与中に直腸体温の統計学的に有意な低下が観察されるが、離脱期の間、体温は対照レベルに戻る。
【0152】
さらにまた、モルヒネからの離脱期の間、新しい行動的および身体的兆候が観察され、これは、依存性の存在を示している。これらの兆候として、立毛、運動失調/千鳥足(rolling gait)、激しい震え(wet dog shakes)および腹部の縮こまり(pinched abdomen)が挙げられる。投与期間中に観察される他の異常な行動は、離脱期に徐々に消失する。35日目までに、立ち上がりが、以前にモルヒネを投与されたラットにおいて高い発生率で観察された唯一の行動または身体的兆候となった。
【0153】
したがって、モルヒネの反復投与は、体重、食物および水の摂取、および直腸温の変化、ならびに耐性および離脱誘発性依存症の発症と一致する臨床的兆候とともに、この研究において耐性および依存症の明確な兆候を引き起こすことが示される。これは、投与中および投与休止の間の生理学的変化の検出における該研究方法の妥当性を示している。
【0154】
対照的に、0.3および3mg/kgのどちらでも、実施例2の化合物の4回の反復投与は、28日間の皮下投与の間、耐性を引き起こさない。さらに、離脱時に、高用量では、行動的および身体的兆候の同様であるが減少するプロファイルが観察されるが、これは臨床的意義をもつとは考えられない。したがって、全体として、実施例2の化合物は、投与中止への身体的依存症症候群を引き起こさないことが判明した。
【0155】
実施例11: マウスにおけるオキシコドン依存性離脱研究
オキシコドンを、雄性C57BL/6Jマウスに、1〜2日目、3〜4日目、5〜6日目、および7〜8日目にそれぞれ9、17.8、23.7、および33mg/kg b.i.d.(注射の間隔は7時間)の漸増用量レジメンで8日間投与する。9日目の朝に、マウスに0.3、1または3mg/kgのいずれかの実施例3の化合物を皮下投与する。30分後に、ビヒクルの注射または3mg/kgのナロキソンの注射を行う。別のコホートのマウスは陰性対照として機能し、これらのマウスには、オキシコドンの代わりに、1〜8日目にセイラインを投与する。9日目に、これらのマウスにビヒクル(上記のように、ナロキソンが続く)または3mg/kg(s.c.)の実施例2の化合物(上記のように、ナロキソンが続く)のいずれかを投与する。
【0156】
9日目に、ナロキソン(またはビヒクル)の注射直後に、マウスを個別に透明なプラスチックケージに収容し、30分間連続して観察する。マウスを、ジャンピング、激しい震え、足振戦(paw tremor)、後退り(backing)、眼瞼下垂および下痢を包含するオピエート離脱の一般的な身体的兆候についてモニターする。そのような行動はすべて、少なくとも1秒間隔があいた場合または正常な行動によって中断された場合には新しい発生として記録される。ナロキソン(またはビヒクル)注射の直前および30分後の動物の体重もまた記録する。ANOVA、適切な場合には、次いで、多重比較のためのTukey検定によりデータを解析する。有意なレベルはp<0.05で確立される。
【0157】
結果を下記の表に示す:
【表10】
【0158】
兆候の総数には、足振戦、ジャンプ、および激しい震えが含まれる。オキシコドン処置マウスにおいて、ナロキソンがかなりの総数の兆候、足振戦、ジャンプおよび体重変化(それぞれについてp≦0.0001)を誘発することが判明する。実施例2の化合物は、試験した全ての用量で、兆候の総数および足振戦の有意な減少をもたらす。さらに、該化合物は、3.0mg/kgでは、ジャンプの有意な減少および体重減少の減衰(attenuated body weight loss)ももたらす。
【0159】
これらの結果は、実施例2の化合物が、オピエート依存性ラットにおいてオピエート投与の突然の休止後のオピエート離脱の兆候および症状を用量依存的に減少させることを示している。
【0160】
実施例12: ホルマリン足試験(Formalin Paw Test)(炎症性疼痛モデル)
ホルマリンなどの化学刺激の足底下投与は、マウスに即時の痛みと不快感を引き起こし、次いで、炎症を引き起こす。2.5%ホルマリン溶液(37wt%ホルムアルデヒド水溶液、セイラインで希釈した)を後足に皮下注射することにより、二相性反応:急性疼痛反応および遅延炎症反応が生じる。したがって、この動物モデルは、同一の動物において急性疼痛および亜急性/強直性疼痛のどちらに関する情報も提供する。
【0161】
C57マウスを観察チャンバー内で慣らす。ホルマリン投与の30分前に、ビヒクルを皮下注射により、5mg/kgのモルヒネ(セイライン中)を皮下注射により、または0.3、1.0もしくは3.0mg/kgのいずれかの実施例2の化合物(45%w/vシクロデキストリン水溶液)を皮下注射により、マウスに投与する。さらに、別のセットのマウスを対照ビヒクルまたは3.0mg/kgの実施例2の化合物で、皮下注射ではなく経口投与により処置する。
【0162】
次いで、マウスの左後ろ足の足底表面に2.5%ホルマリン溶液20μLを皮下注射する。次の40分間にわたって、処置した後足のリッキング(licking)またはバイティング(biting)に費やされた合計時間を記録する。最初の10分間は急性侵害受容反応を表し、後の30分間は遅延炎症反応を表す。1ミンター(minter)間隔で、0〜4のスケールでスコア付けされる「平均行動評価(Mean Behavioral Rating)」を使用して各動物の行動を評価する:
0: 反応なし、動物は眠っている
1: 動物は処置した足で、例えばつま先で、軽快に歩いている
2: 動物は処置した足を上げている
3: 動物は処置した足を震わせている
4: 動物は処置した足をリッキングまたはバイティングしている
ANOVA、適切な場合には、次いで、Fisher検定を用いるポストホック比較によりデータを解析する。有意性はp<0.05で確立される。
【0163】
結果を下記の表に示す。
【表11】
【0164】
結果は、初期段階(0〜10分)および後期段階(11〜40分)のどちらの反応期間中でも有意な処置効果を示している。ポストホック比較は、ビヒクル処置と比較して、モルヒネまたは実施例2の化合物(3mg/kg)の皮下注射が、ホルマリン注射によって引き起こされる疼痛行動評価を有意に減衰させ、リッキング時間を有意に減少させることを示す。ポストホック比較もまた、モルヒネまたは実施例2の化合物(3mg/kg)の皮下注射、および実施例2の化合物(3mg/kg)の経口投与により、リッキングに費やされた時間を有意に減少させることを示す。1.0mg/kgの化合物の皮下使用、および3.0mg/kgの経口使用で平均疼痛行動評価も低下したが、これらの効果はこの研究では統計学的に有意ではなかった。1.0mg/kgの実施例2の化合物の皮下使用でリッキング時間も同様に減少したが、結果は、この研究では統計学的に有意ではなかった。体重の有意な変化を受けた研究のマウスはどの研究グループにもいなかったことが判明した。
【0165】
実施例13: ヘロイン維持ラットにおける自己投与
ヘロイン中毒ラットが実施例2の化合物を自己投与するかどうかを決定するために研究が行われ、それらがそうしないことが判明し、さらに、本開示の化合物の非中毒性の性質が強調される。
【0166】
研究は3段階で行われる。第1段階では、ラットは、まず食物のレバーを押すように訓練され、次に、静脈内頚静脈カテーテルが留置され、ヘロインを自己投与するように訓練される。合図(ケージ内のライトの点灯)に応答して、動物がレバーを3回押すことにより、カテーテルを介してヘロインが1回注射される。ヘロインは、初期用量0.05mg/kg/注射で提供され、その後、0.015mg/kg/注射に増加する。次いで、ヘロインの供給をセイラインに置き換えることにより、この訓練された反応を消失させる。第2段階では、セイライン溶液を、0.0003mg/kg/注射、0.001mg/kg/注射、0.003mg/kg/注射および0.010mg/kg/注射の4つのうちの1つの用量での実施例2の化合物の溶液に置き換える。個々のマウスに、1種類または2種類の用量の化合物を上昇する方法で投与する。次いで、この反応をセイライン注射で消失させ、その後、0.015mg/kg/注射でのヘロインの使用を繰り返す第3段階を行う。第3段階の目的は、研究の終わりに依然としてラットがヘロインへの嗜癖行動を示すことを実証することである。研究結果を下記の表に示す:
【表12】
【0167】
結果は、ヘロインを投与している場合にラットがレバーを押す回数が統計学的に有意に増加するが、セイラインまたは実施例2の化合物を投与している場合には有意な差はなかったことを示している。したがって、結果は、ラットが実施例2の化合物の中毒にならないことを示唆している。
【0168】
実施例14: 動物の薬物動態データ
標準手順を使用して、数匹の動物において実施例2の化合物の薬物動態プロファイルを研究する。
【0169】
実施例14a: ラットPK研究
第1の研究では、ラットに実施例2の化合物を、45%Trapposolビヒクル中1mg/kgの静脈内ボーラス投与(IV)で投与するかまたは0.5%CMCビヒクル中10mg/kgで経口(PO)投与する(各グループ、N=3)。第2の研究では、ラットに実施例2の化合物を、それぞれ45%Trapposolビヒクル中、10mg/kgでPO投与するかまたは3mg/kgで皮下(SC)投与する(各グループについて、N=6)。投与後0〜48時間の時点で薬物の血漿濃度を測定する。代表的な結果を下記の表に示す(*は、血漿濃度が測定可能な定量レベルを下回ることを示す):
【表13】
【0170】
実施例14b: マウスPK研究
実施例2の化合物の10mg/kgPO投与を使用して、マウスにおける同様の研究を行い、以下の結果が得られる:Tmax=0.25時間;Cmax=279ng/mL;AUC(0〜4h)=759ng−hr/mL;血液−血漿比(0.25〜4h)は3.7〜6.6にわたる。該研究は0.1mg/kgSCの用量でも行われる。代表的な結果を下記の表に示す:
【表14】
【0171】
これらの結果は、総合して、実施例2の化合物が十分に吸収され、脳および組織に分布し、適度に長い半減期で保持されて、治療用量の1日1回投与を可能にすることを示している。
【0172】
実施例15: 胃腸機能
活性炭ボーラス投与の腸通過割合をモニターすることにより、ラットの胃腸運動に対する実施例2の化合物の影響を調べる。ラットを、15%活性炭水溶液の経口ボーラス投与の30分前に、(1)カルボキシメチルセルロース水性ビヒクル、(2)モルヒネ(5mg/kg、SC)または(3)実施例3の化合物(0.3、1.0または3.0mg/kg、SC)のいずれかで処置する。測定結果は、該炭が移動した距離を動物の腸の全長の割合として算出した運動率である。結果を下記の表に示す:
【表15】
【0173】
これらの結果は、実施例2の化合物が3mg/kgまでの用量では胃腸運動に対して有意な影響を及ぼさないことを示している。対照的に、予想どおりに、モルヒネは、胃運動を約50%低下させる。
【0174】
さらなる実験において、ラットを炭ボーラス投与の60分前にビヒクル、モルヒネ(5mg/kg)または実施例2の化合物(3mg/kg)のいずれかで各々SCで前処置し、次いで、モルヒネ(5mg/kg)、モルヒネ+実施例2の化合物(0.3mg/kgまたは3mg/kg)、または実施例2の化合物(3mg/kg)単独のいずれかで処置する。結果を下記の表に示す。グループ2および3では、まずモルヒネを注射し、その直後に実施例2の化合物を注射した:
【表16】
【0175】
結果は、実施例2の化合物が、モルヒネと同時に投与されたかまたはモルヒネの前に連続投与された場合にはモルヒネによって引き起こされる胃腸運動の阻害を逆転させ、前処置を用いた場合にはモルヒネの効果の遮断が強くなることを示している。
【0176】
理論に拘束されることなく、これらの差は、実施例2の化合物がMOPバイアスリガンドとして作用すること、および、それが、便秘および呼吸抑制を含むオピエート関連副作用を媒介することが示されている経路である下流のβアレスチンシグナル伝達経路を活性化させないことから生じると考えられる。
【0177】
実施例16: 肺機能
0.3、1.0および3.0mg/kgの実施例2の化合物を皮下投与した後のラットの呼吸数、一回換気量および毎分換気量をビヒクル対照と比較してモニターすることにより、ラットの肺機能に対する実施例2の化合物の影響を調べる。化合物の投与後0分、15分、60分、120分および240分で測定を行う。いずれの時点でも、ビヒクルといずれの試験グループとの間に有意な差がないことが判明する。得られた結果の典型である、60分間の結果を下記の表に示す:
【表17】
【0178】
実施例17: 1−(アシルオキシ)アルキル誘導体の合成
前駆化合物14から出発して、Zが−O−であり、R
5が−C(R
6)(R
7)−O−C(O)−R
8であり、R
6、R
7およびR
8が以下の通りである式Iで示される一連の化合物を製造する:
【表18】
【0179】
化合物17aである(6bR,10aS)−8−(3−(4−フルオロフェノキシ)プロピル)−6b,7,8,9,10,10a−ヘキサヒドロ−1H−ピリド[3',4':4,5]ピロロ[1,2,3−de]キノキサリン−2(3H)−オンを適切なクロロメチルアルキレート17x(R
8CO
2C(R
6)(R
7)Cl)と反応させることにより各化合物が製造される。必要なクロロメチルアルキレートは、それぞれ対応する酸塩化物であるR
8COClから製造される。
【化7】
【0180】
例えば、ドデカン酸クロロメチル(CH
3(CH
2)
10−C(O)O−CH
2Cl)を以下のとおり製造する。アルゴン下にて、塩化亜鉛(II)(294mg、2.16mmol)およびパラホルムアルデヒド(842mg、28.08mmol)の0℃の無水アセトニトリル(4mL)中撹拌懸濁液に塩化ラウリル(5.0mL、21.6mmol)を滴下する。該懸濁液を0℃で10分間撹拌し、次いで、室温で10分間撹拌し、次いで、70℃まで24時間加熱する。次いで、反応混合物を室温に冷却し、ジクロロメタン(100mL)中に注ぐ。得られた懸濁液を真空濾過し、ジクロロメタン(2×10mL)で洗浄する。合わせた濾液に飽和重炭酸ナトリウム(100mL)を添加し、該混合物を室温で1.5時間撹拌する。ジクロロメタン相を分取し、飽和重炭酸ナトリウム(2×60mL)で洗浄し、減圧下で蒸発乾固させる。得られた残留物を高真空下でさらに乾燥させて、クロロメチルドデカノエートを淡い橙色(light orange)の油状物として得る(4.523g、収率84%)。この粗生成物を、さらなる精製を行わずに直接次反応に使用する。ドデカン酸クロロメチルを化合物17bの製造に使用する。化合物17cの製造のために、塩化パルミトイルおよびパラホルムアルデヒドから製造されるパルミチン酸クロロメチルを使用する。類似化合物17xは、アセトアルデヒド、プロピオンアルデヒドまたはイソブチルアルデヒドなどの他のアルデヒドとともに塩化オクタノイルまたは塩化ステアリルなどの他の酸塩化物を用いて同様に製造することができる。
【0181】
化合物17b。ヨウ化カリウム(131mg、0.786mmol)、炭酸カリウム(181mg、1.31mmol)、N,N−ジイソプロピルエチルアミン(137μL、0.786mmol)、N,N−ジメチルピリジン−4−アミン(64mg、0.524mmol)、ドデカン酸クロロメチル(522mg、2.10mmol)および17a(212mg、0.556mmol)の無水DMF(1.5mL)中懸濁液にアルゴンを5分間通気する。得られた懸濁液を超音波により125℃まで5時間加熱し、溶媒を減圧除去する。得られた粗生成物を、溶離液としてヘキサン中0〜100%酢酸エチルの勾配液を使用してシリカゲルカラムクロマトグラフィーにより精製して、ドデカン酸((6bR,10aS)−8−(3−(4−フルオロフェノキシ)プロピル)−2−オキソ−6b,7,8,9,10,10a−ヘキサヒドロ−1H−ピリド[3',4':4,5]ピロロ[1,2,3−de]キノキサリン−3(2H)−イル)メチル(17b)を淡い橙色の固体として得る(150mg、収率45%)。MS (ESI) m/z 594.4089 [M + H]+。
1H NMR (500 MHz, Chloroform-d) δ 6.96 (dd, J = 9.1, 8.2 Hz, 2H), 6.90 (s, 1H), 6.82 (d, J = 7.0 Hz, 4H), 6.16 (d, J = 10.5 Hz, 1H), 5.70 (d, J = 10.5 Hz, 1H), 4.05 (d, J = 14.5 Hz, 1H), 3.99 (d, J = 6.6 Hz, 2H), 3.42 (d, J = 14.4 Hz, 1H), 3.38 - 3.25 (m, 1H), 2.91 (d, J = 28.2 Hz, 1H), 2.74 (s, 1H), 2.50 (s, 2H), 2.34 (t, J = 7.5 Hz, 2H), 2.28 (t, J = 7.9 Hz, 1H), 1.96 (s, 3H), 1.86 (s, 1H), 1.70 - 1.59 (m, 2H), 1.54 (s, 1H), 1.35 - 1.16 (m, 17H), 0.88 (t, J = 6.9 Hz, 3H)。
【0182】
適切なハロゲン化物14xを使用して類似の方法で化合物17cを製造する。例えば、パルミチン酸クロロメチルを使用して化合物17cを得る。MS (ESI) m/z 650.4348 [M + H]+。1H NMR (500 MHz, Chloroform-d) δ 6.96 (dd, J = 9.1, 8.2 Hz, 2H), 6.89 (dd, J = 5.5, 2.8 Hz, 1H), 6.86 - 6.78 (m, 4H), 6.16 (d, J = 10.5 Hz, 1H), 5.70 (d, J = 10.5 Hz, 1H), 4.05 (d, J = 14.5 Hz, 1H), 3.97 (t, J = 6.3 Hz, 2H), 3.41 (d, J = 14.5 Hz, 1H), 3.32 (d, J = 5.6 Hz, 2H), 2.97 - 2.89 (m, 1H), 2.74 (d, J = 11.3 Hz, 1H), 2.57 - 2.42 (m, 2H), 2.34 (t, J = 7.5 Hz, 2H), 2.30 - 2.20 (m, 1H), 2.00 - 1.91 (m, 3H), 1.85 (t, J = 11.0 Hz, 1H), 1.62 (p, J = 7.4 Hz, 2H), 1.53 (s, 2H), 1.35 - 1.18 (m, 23H), 0.88 (t, J = 6.9 Hz, 3H)。
【0183】
実施例18: アルコキシカルボニル(カルバメート)誘導体の合成
Zが−O−であり、R
5が−C(O)−O−C(R
a)(R
b)(R
c)であり、R
a、R
bおよびR
cが以下の通りである式Iで示される一連の化合物を製造する:
【表19】
【0184】
化合物17aを適切なアルコキシカルボニルクロリドであるR
cCH
2O(CO)Clと反応させることにより各化合物が製造される:
【化8】
【0185】
化合物18b。N,N−ジイソプロピルエチルアミン(219μL、1.572mmol)、N,N−ジメチル−ピリジン−4−アミン(64mg、0.524mmol)、ヘキサデシルオキシカルボニルクロリド(320mg、1.05mmol)および17a(200mg、0.524mmol)の無水DMF(3mL)中混合物にアルゴンを5分間通気する。該混合物を室温で5時間撹拌し、溶媒を減圧除去する。得られた残留物を、溶離液としてヘキサン中0〜100%酢酸エチルの勾配液を使用してシリカゲルカラムクロマトグラフィーにより精製して、標記化合物を淡い橙色の固体として得る(197mg、収率58%)。MS (ESI) m/z 650.4970 [M + H]+。1H NMR (500 MHz, Chloroform-d) δ 7.04 (d, J = 8.2 Hz, 1H), 6.96 (dd, J = 9.2, 8.2 Hz, 2H), 6.91 (d, J = 7.3 Hz, 1H), 6.86 - 6.76 (m, 3H), 4.40 (t, J = 6.7 Hz, 2H), 4.04 - 3.94 (m, 3H), 3.35 (d, J = 14.1 Hz, 2H), 3.26 (d, J = 5.3 Hz, 1H), 2.92 (s, 1H), 2.74 (s, 1H), 2.50 (s, 2H), 2.24 (d, J = 14.8 Hz, 1H), 2.00 - 1.86 (m, 4H), 1.83 - 1.74 (m, 2H), 1.48 - 1.38 (m, 2H), 1.26 (s, 25H), 0.88 (t, J = 6.9 Hz, 3H)。
【0186】
化合物18a。ドデカンオキシカルボニルクロリドを使用して類似の方法で化合物18aを得る。MS (ESI) m/z 594.4180 [M + H]+。1H NMR (500 MHz, Chloroform-d) δ 7.06 (dd, J = 8.2, 0.9 Hz, 1H), 6.99 - 6.91 (m, 3H), 6.86 - 6.76 (m, 3H), 4.41 (t, J = 6.7 Hz, 2H), 4.00 - 3.96 (m, 2H), 3.53 (s, 1H), 3.36 (d, J = 14.0 Hz, 1H), 3.29 (d, J = 4.0 Hz, 1H), 3.12 (s, 1H), 2.96 (s, 1H), 2.70 (d, J = 11.9 Hz, 2H), 2.48 (s, 1H), 2.19 (s, 1H), 2.13 - 2.02 (m, 2H), 2.03 - 1.94 (m, 1H), 1.83 - 1.72 (m, 2H), 1.47 - 1.39 (m, 2H), 1.27 (d, J = 6.3 Hz, 18H), 0.88 (t, J = 6.9 Hz, 3H)。
【0187】
実施例19: 化合物17bおよび18aの薬物動態分析
実施例14aで用いたプロトコールと同じプロトコールに実質的に従ってラットPK研究を行う。ラットに実施例2の化合物、化合物17bまたは化合物18aを、通常のセイライン(0.9%NaCl)中3%CMC、0.1%Tween20からなるビヒクル中30mg/kgで皮下投与する(各グループについて、N=4)。血漿サンプルを2分目、5分目、15分目および30分目、ならびに1時間目、2時間目、6時間目、8時間目、12時間目、24時間目、48時間目、72時間目、96時間目、120時間目、144時間目、168時間目、240時間目、336時間目、504時間目および720時間目に採取する。サンプルを、投与した化合物(実施例2、化合物17bまたは18a)の濃度について、および実施例2の化合物(化合物17bおよび18aの加水分解代謝物である)について、分析する。代表的な結果を下記の表に示す(*は、分析物レベルが測定可能な定量レベルを下回ることを示す):
【表20】
【0188】
これらの結果は、本開示の化合物が有効な代謝加水分解を受けて、活性薬物部分、実施例2の化合物、の治療的血漿濃度が得られることを示している。さらに、該結果は、これらの化合物が、測定可能な血漿濃度の実施例2の化合物が見られる時間枠を有意に延長する漸進的インビボ加水分解を受けることを示している(実施例14aで示される結果との比較による)。例えば、実施例2の化合物を3mg/kgの治療有効用量でラットに皮下投与した場合、薬物の血漿濃度は投与後24時間でほぼベースラインレベルまで低下する(実施例14aを参照)。対照的に、プロドラッグ化合物17bを30mg/kgの用量で投与した場合、有意な血漿濃度の実施例2の化合物が336時間後まで得られる。