特表2020-533642(P2020-533642A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ.の特許一覧

特表2020-533642低設置高さおよび切り替え可能視方向を有する多開口撮像デバイス、撮像システム、および多開口撮像デバイスを提供するための方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2020-533642(P2020-533642A)
(43)【公表日】2020年11月19日
(54)【発明の名称】低設置高さおよび切り替え可能視方向を有する多開口撮像デバイス、撮像システム、および多開口撮像デバイスを提供するための方法
(51)【国際特許分類】
   G03B 19/07 20060101AFI20201023BHJP
   G03B 15/00 20060101ALI20201023BHJP
   H04N 5/225 20060101ALI20201023BHJP
   H04N 5/232 20060101ALI20201023BHJP
【FI】
   G03B19/07
   G03B15/00 B
   H04N5/225 400
   H04N5/225 430
   H04N5/225 100
   H04N5/232 480
   H04N5/232
【審査請求】有
【予備審査請求】有
【全頁数】56
(21)【出願番号】特願2020-514987(P2020-514987)
(86)(22)【出願日】2018年9月10日
(85)【翻訳文提出日】2020年4月13日
(86)【国際出願番号】EP2018074328
(87)【国際公開番号】WO2019052952
(87)【国際公開日】20190321
(31)【優先権主張番号】102017216172.8
(32)【優先日】2017年9月13日
(33)【優先権主張国】DE
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】500242786
【氏名又は名称】フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ.
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】フランク・ヴィッパーマン
(72)【発明者】
【氏名】ニコ・ハーゲン
(72)【発明者】
【氏名】アンドレアス・ライマン
【テーマコード(参考)】
2H054
5C122
【Fターム(参考)】
2H054BB02
2H054BB05
5C122DA30
5C122EA41
5C122EA54
5C122FB02
5C122FB03
5C122FB11
5C122FC00
5C122FD00
5C122FF04
5C122GE04
5C122GE05
5C122GE07
5C122GE11
5C122HA82
5C122HB01
5C122HB10
(57)【要約】
多開口撮像デバイスは、画像センサと、光チャネルのアレイであって、各光チャネルは全視野のうちの部分的視野を画像センサの画像センサ領域上に結像するための光学系を備える、光チャネルのアレイと、切り替え移動を実行することによって第1の回転位置と第2の回転位置との間で切り替え可能であり、第1の回転位置で、光チャネルの光路を第1の視方向に偏向し、第2の回転位置で、光チャネルの光路を第2の視方向に偏向するように構成されている、ビーム偏向手段とを備える。アレイは、切り替え移動に基づき、ビーム偏向手段に関するアレイの配向を調整するための調整移動を実行するように構成される。
【特許請求の範囲】
【請求項1】
多開口撮像デバイスであって、
画像センサ(12)と、
光チャネル(16a〜16h)のアレイ(14)であって、各光チャネル(16a〜16h)は全視野(71)のうちの部分的視野(72a〜72d)を前記画像センサ(12)の画像センサ領域(24a〜24h)上に結像するための光学系(64a〜64h)を備える、アレイ(14)と、
切り替え移動を実行することによって第1の回転位置と第2の回転位置との間で切り替え可能であり、前記第1の回転位置において、前記光チャネル(16a〜16h)の光路(26a〜26h)を第1の視方向(271)に偏向し、前記第2の回転位置において、前記光チャネル(16a〜16h)の前記光路(26a〜26h)を第2の視方向(272)に偏向するように構成されているビーム偏向手段(18)とを備え、
前記アレイ(14)は、前記切り替え移動に基づき、前記ビーム偏向手段(18)に関する前記アレイ(14)の配向を調整するための調整移動(11)を実行するように構成される、多開口撮像デバイス。
【請求項2】
前記調整移動(11)は、それ自体を焦点調整および光学的像安定化のための移動と区別する、請求項1に記載の多開口撮像デバイス。
【請求項3】
前記調整移動(11)は、前記画像センサ(12)と前記アレイ(14)との間の前記光チャネルの延長に平行に配置構成されている方向に沿って前記アレイ(14)と前記画像センサ(12)との間の並進距離を維持しながら行われる、請求項1または2に記載の多開口撮像デバイス。
【請求項4】
前記アレイ(14)と前記ビーム偏向手段(18)との間の相対的位置を調整するために前記調整移動(11)時に前記アレイ(14)を移動するように構成される、請求項1から3のいずれか一項に記載の多開口撮像デバイス。
【請求項5】
前記調整移動(11)に基づき、前記切り替え移動によって必要とされる前記ビーム偏向手段(18)の移動範囲の少なくとも一部は、移動可能でないアレイと比較して縮小される請求項1から4のいずれか一項に記載の多開口撮像デバイス。
【請求項6】
前記第1の回転位置および前記第2の回転位置において、前記画像センサと前記アレイとの間の軸方向(x)に垂直に、ライン延長方向(z)に垂直に、配置構成されている、前記多開口撮像デバイスの厚さ方向(y)に沿った前記ビーム偏向手段の横方向位置は、少なくとも20%の程度に等しい、請求項1から5のいずれか一項に記載の多開口撮像デバイス。
【請求項7】
前記切り替え移動は、前記ビーム偏向手段(18)の回転移動(38)を含み、前記調整移動(11)は、前記ライン延長方向(z)に垂直であり、前記多開口撮像デバイスの厚さ方向に平行である移動方向(y)に沿った前記アレイ(14)の並進移動(111)を含む、請求項1から6のいずれか一項に記載の多開口撮像デバイス。
【請求項8】
前記切り替え移動は、前記ビーム偏向手段(18)の前記回転移動(38)と、第1の移動方向(y)に沿った前記ビーム偏向手段(18)の第1の並進移動(17)とを含み、前記調整移動(11)は、前記移動方向に沿った前記アレイ(14)の第2の並進移動(111)を含む、請求項1から7のいずれか一項に記載の多開口撮像デバイス。
【請求項9】
前記第1の移動方向(y)は、前記第1の視方向(271)に沿って配置構成される、請求項8に記載の多開口撮像デバイス。
【請求項10】
前記第1の並進移動(17)および第2の並進移動(111)は、その大きさに関して20%の許容範囲内で等しい、請求項8または9に記載の多開口撮像デバイス。
【請求項11】
前記第1の回転位置から前記第2の回転位置への前記切り替え移動は、前記ビーム偏向手段(18)の第1の回転移動(38)を含み、前記調整移動(11)は、第2の回転移動(112)を含む、請求項1から10のいずれか一項に記載の多開口撮像デバイス。
【請求項12】
前記第1の回転移動(38)および前記第2の回転移動(112)は、同じ方向に生じる、請求項11に記載の多開口撮像デバイス。
【請求項13】
前記第1の回転移動(38)の角度のサイズと前記第2の回転移動(112)の角度(δ1、δ2)のサイズとを足すと結果として20%の許容範囲内で90°になる、請求項11または12に記載の多開口撮像デバイス。
【請求項14】
前記切り替え移動は、前記回転移動(38)によって排他的に実行され、多開口撮像デバイスの厚さ方向に沿った前記回転移動(38)の回転軸は、前記厚さ方向(y)に沿って前記ビーム偏向手段(18)の最大拡大に関して20%の許容範囲内で中心に合わされる、請求項11から13のいずれか一項に記載の多開口撮像デバイス。
【請求項15】
前記第1の回転位置から前記第2の回転位置への前記切り替え移動は、前記ビーム偏向手段(18)の第1の回転移動(38)と、第1の移動方向(y)に沿った前記ビーム偏向手段(18)の並進移動(17)とを含み、
前記調整移動(11)は、前記第1の移動方向(y)に沿った前記アレイ(14)の並進移動(111)を含み、第2の回転移動(112)を含む、請求項1から6のいずれか一項に記載の多開口撮像デバイス。
【請求項16】
前記調整移動(11)は、前記多開口撮像デバイスの前記厚さ方向(y)に沿った並進移動(111)を含む、請求項1から15のいずれか一項に記載の多開口撮像デバイス。
【請求項17】
前記アレイ(14)は、前記調整移動(11)を実行して前記光チャネル(16a〜16h)の前記光路(26a〜26h)の発散ビームが少なくとも90%の程度で前記ビーム偏向手段(18)に当たるように構成される、請求項1から16のいずれか一項に記載の多開口撮像デバイス。
【請求項18】
前記第1の視方向(271)および前記第2の視方向(272)は、±30°の許容範囲内で対向方向に配置構成される、請求項1から17のいずれか一項に記載の多開口撮像デバイス。
【請求項19】
前記アレイ(14)のライン延長方向に垂直であり、前記画像センサ(12)と前記アレイ(14)との間の前記光路のコースに垂直である方向に沿った前記多開口撮像デバイスの必要な寸法Dは、条件
D<A+2*B
を満たし、
Aは、前記第1の視方向(271)または前記第2の視方向(272)に平行な厚さ方向(y)に沿った前記アレイおよび前記画像センサの最大寸法の値を記述し、Bは、前記厚さ方向(y)に沿った前記第1の回転位置および前記第2の回転位置における前記アレイ(14)に関する前記ビーム偏向手段(18)のオーバーハングを記述する、請求項1から18のいずれか一項に記載の多開口撮像デバイス。
【請求項20】
前記アレイ(14)および前記画像センサ(12)は互いに機械的に結合され、前記調整移動(11)を相互に実行するように構成される、請求項1から19のいずれか一項に記載の多開口撮像デバイス。
【請求項21】
前記アレイ(14)、前記画像センサ(12)、および焦点調整を行うためのアクチュエータ、および/または光学的像安定化のためのアクチュエータは、互いに機械的に結合され、前記調整移動(11)を相互に実行するように構成される、請求項1から20のいずれか一項に記載の多開口撮像デバイス。
【請求項22】
前記ビーム偏向手段(18)は、第1の反射するメイン側(174a)と第2の反射するメイン側(174b)とを備え、前記第1の反射するメイン側(174a)および前記第2の反射するメイン側(174b)はせいぜい60°の角度(δ)で互いの方へ傾斜している、請求項1から21のいずれか一項に記載の多開口撮像デバイス。
【請求項23】
前記アレイ(14)と前記ビーム偏向手段(18)との間のスリット(291、292)を少なくとも部分的に閉じるように配置構成されているダイアフラム構造(22、22')を備える、請求項1から22のいずれか一項に記載の多開口撮像デバイス。
【請求項24】
各部分的視野(72〜d)は、前記光チャネル(16a〜16h)の前記光路(26a〜26h)が前記ビーム偏向手段(18)により偏向される方向を割り当てられ、前記ダイアフラム構造(22、22')は、前記部分的視野に割り当てられている前記方向と異なる前記視方向(271、272)に沿った方向から光が入るのを少なくとも部分的に低減するように構成される、請求項1から23のいずれか一項に記載の多開口撮像デバイス。
【請求項25】
前記ダイアフラム構造(22、22')は、前記ビーム偏向手段(18)に機械的に接続され、前記ビーム偏向手段(18)と一緒に移動可能である、請求項23または24に記載の多開口撮像デバイス。
【請求項26】
前記第1の位置および前記第2の位置において、前記ダイアフラム構造(22、22')は、一方では、前記アレイ(14)または前記ビーム偏向手段(18)の方へ向かう粒子の進入を少なくとも部分的に低減するように構成されている透明構造(42a、42b)と機械的に接触し、他方では、前記ビーム偏向手段(18)と機械的に接触している、請求項23から25のいずれか一項に記載の多開口撮像デバイス。
【請求項27】
前記第1の位置において、前記アレイ(14)の第1の補助側(314)に隣接する前記ダイアフラム構造(22、22')は、それと機械的に接触し、前記第2の位置において、前記アレイ(14)の対向する第2の補助側(313)に隣接して機械的に接触し、前記ビーム偏向手段(18)は、前記第1の回転位置と前記第2の回転位置との間で回転可能に配置構成される第3の回転位置を備え、前記ダイアフラム構造(22、22')は、前記アレイ(14)の前記第1の補助側(313)および前記第2の補助側(314)から相隔てて並ぶ、請求項23から26のいずれか一項に記載の多開口撮像デバイス。
【請求項28】
前記切り替え移動時に前記アレイ(14)と前記ビーム偏向手段(18)との間で並進移動を行い、前記アレイ(14)と前記ビーム偏向手段(18)との間の距離を一時的に広げ、それにより、前記ダイアフラム構造(22、22')が一時的に前記アレイ(14)または前記ビーム偏向手段(18)と接触しないように構成される、請求項27に記載の多開口撮像デバイス。
【請求項29】
前記ダイアフラム構造は、一方では、前記アレイ(14)または前記ビーム偏向手段(18)の方へ向かう粒子の進入を少なくとも部分的に低減するように構成されている前記透明構造(42a、42b)と機械的に接触し、他方では、前記光路(26a〜26h)が偏向された場合に、前記ビーム偏向手段(18)と機械的に接触するように構成され、前記ダイアフラム構造(22、22')は、前記光学的像安定化のための前記アレイ(14)と前記ビーム偏向手段(18)との間の相対的移動の後に、最大相対的移動の少なくとも30%を復元するように構成されている復元力を発生する機械的剛性を備える、請求項23から26のいずれか一項に記載の多開口撮像デバイス。
【請求項30】
前記ダイアフラム構造(22')は、磁性材料を含み、磁場供給要素(44a、44b)は、前記ダイアフラム構造(22')に隣接するように配置構成され、前記ダイアフラム構造(22')を引き付けるように構成される、請求項23から29のいずれか一項に記載の多開口撮像デバイス。
【請求項31】
前記透明構造(42a、42b)は、前記光路が偏向される方向に沿って配置構成され、前記ビーム偏向手段(18)の方へ粒子が進入するのを少なくとも部分的に低減するように構成され、前記ダイアフラム構造(22、22')の表面粗さは、前記透明構造(42a、42b)の表面粗さより大きい、請求項23から30のいずれか一項に記載の多開口撮像デバイス。
【請求項32】
前記ビーム偏向手段(18)は、並べて配置構成されているファセット(172a〜172d)のアレイとして形成され、各光チャネル(16a〜16d)は、前記ファセット(172a〜172d)のうちの1つに割り当てられ、前記ダイアフラム構造(22、22')は、ファセット(172a〜172d)のアレイにわたって延在する、請求項23から31のいずれか一項に記載の多開口撮像デバイス。
【請求項33】
前記ダイアフラム構造(22、22')は、弾性的であるように形成される、請求項23から32のいずれか一項に記載の多開口撮像デバイス。
【請求項34】
前記ダイアフラム構造(22、22')は、部分的にまたは完全に不透明であるように形成される請求項23から33のいずれか一項に記載の多開口撮像デバイス。
【請求項35】
前記アレイ(14)は、前記光チャネル(16a〜16h)が貫通し、前記光学系(64a〜64h)が固定される透明キャリア(47)を備える、請求項1から34のいずれか一項に記載の多開口撮像デバイス。
【請求項36】
前記アレイ(14)と前記ビーム偏向手段(18)との間の距離を変化させることによって前記多開口撮像デバイスの焦点を設定するための焦点調整手段を備える請求項1から35のいずれか一項に記載の多開口撮像デバイス。
【請求項37】
前記焦点調整手段は、前記光チャネルのうちの1つ、多数、またはすべてに関して前記焦点を一緒に設定するように構成される請求項36に記載の多開口撮像デバイス。
【請求項38】
前記画像センサ(12)と前記アレイ(14)と前記ビーム偏向手段(18)との間で並進相対的移動(34)を発生させることによって第1の像軸に沿って像安定化を行い、前記ビーム偏向手段(18)の回転移動を発生させることによって第2の像軸(39)に沿って像安定化を行うための光学的イメージスタビライザを備える請求項1から37のいずれか一項に記載の多開口撮像デバイス。
【請求項39】
ハウジング(23)内に配置構成され、前記ビーム偏向手段(18)は、前記ハウジング(23)内の第1の位置と前記ハウジング(23)の外側の第2の位置との間で前記ビーム偏向手段(18)を移動するために並進移動方向(x)に沿って移動可能である行程キャリッジに機械的に接続される、請求項1から38のいずれか一項に記載の多開口撮像デバイス。
【請求項40】
前記行程キャリッジは、第1の透明領域(37a)と第2の透明領域(37b)とを備え、前記ビーム偏向手段(18)はそれらの間に配置構成され、それにより、前記第1の回転位置において、前記光路(26a〜26h)は、前記第1の透明領域(37a)を通して誘導され、前記第2の回転位置において、前記第2の透明領域(37b)を通して誘導され、前記行程キャリッジの前記第1の領域(37a)と前記第2の領域(37b)との間の距離(E1、E2)は可変であり、前記距離(E1、E2)は、前記ビーム偏向手段(18)の前記第2の位置よりも前記ビーム偏向手段(18)の前記第1の位置において小さい、請求項39に記載の多開口撮像デバイス。
【請求項41】
撮像システム(120)であって、請求項1から40のいずれか一項に記載の多開口撮像デバイス(10a)を備える第1のモジュールと、請求項1から40のいずれか一項に記載の多開口撮像デバイス(10b)を備える第2のモジュールとを具備し、前記第1のモジュールおよび前記第2のモジュールは、全視野(71)を少なくとも立体的にキャプチャするように構成される、撮像システム(120)。
【請求項42】
前記第1のモジュール(10a)および前記第2のモジュール(10b)は、少なくとも、相互アレイ(14)、相互ビーム偏向手段(18)、および相互画像センサ(12)のうちの1つを備える、請求項41に記載の撮像システム。
【請求項43】
対象領域をキャプチャするための方法(1500)であって、
光チャネル(16a〜16h)のアレイ(14)により第1の対象領域を撮像するステップ(1510)であって、各光チャネル(16a〜16h)は全視野(71)のうちの部分的視野(72a〜72d)を画像センサ(12)の画像センサ領域(24a〜24h)上に結像するための光学系(64a〜64h)を備え、これを、ビーム偏向手段を第1の回転位置に置いて前記光チャネル(16a〜16h)の光路を第1の視方向(271)に偏向することによって行う、ステップ(1510)と、
前記ビーム偏向手段の切り替え移動を実行するステップ(1520)であって、それにより、それを前記第1の回転位置と第2の回転位置との間で切り替えて、前記光チャネルが第2の視方向(272)に偏向されるようにする、ステップ(1520)と、
前記切り替え移動に基づき前記アレイの調整移動を実行し、それにより、前記ビーム偏向手段に関する前記アレイの配向を調整するステップ(1530)とを含む方法(1500)。
【請求項44】
多開口撮像デバイスを提供するための方法(1400)であって、
画像センサ(12)を提供するステップ(1410)と、
各光チャネル(16a〜16h)が全視野(71)のうちの部分的視野(72a〜72d)を前記画像センサ(12)の画像センサ領域(24a〜24h)上に結像するための光学系(64a〜64h)を備えるように光チャネル(16a〜16h)のアレイ(14)を配置構成するステップ(1420)と、
切り替え移動を実行することによって第1の回転位置と第2の回転位置との間で切り替え可能であり、前記第1の回転位置において、前記光チャネル(16a〜16h)の光路(26a〜26h)を第1の視方向(271)に偏向し、前記第2の回転位置において、前記光チャネル(16a〜16h)の前記光路(26a〜26h)を第2の視方向(272)に偏向するように構成されるようにビーム偏向手段(18)を配置構成するステップ(1430)とを含み、
それにより、前記アレイは、前記切り替え移動に基づき、前記ビーム偏向手段に関する前記アレイの配向を調整するための調整移動を実行するように構成される、方法(1400)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多開口撮像デバイス(multi-aperture imaging device)、撮像システム、および多開口撮像デバイスを提供するための方法に関する。本発明は、多開口撮像デバイスおよび移動可能アレイ(array)配置構成を有する多開口撮像システムにさらに関する。
【背景技術】
【0002】
従来のカメラは、対象視野(object field)全体を撮像する撮像チャネルを有する。カメラは、光学的像安定化機能を実現するために対物レンズと画像センサとの間の相対的横方向二次元変位を可能にする適応型コンポーネントを有する。
【0003】
線形チャネル配置構成を有する多開口撮像システムはいくつかの撮像チャネルからなり、各々物体の一部をキャプチャし、偏向ミラー(mirror)を含む。偏向ミラーは、回転可能に支持され、他にもあるがとりわけ、同じカメラで異なる視方向(viewing direction)、たとえば、180°の角度を成す視方向が見えるように視方向を切り替えることを可能にし得る。ミラーの設置高さは、カメラの全高に影響を及ぼすが、撮像に必要なレンズは低い全高を備える、すなわち、ミラーの高さはレンズより高い。ミラーを回転させて別の偏向位置にした結果として2つの視方向でカメラを使用することによって、必要な設置高さは、不利な仕方でさらに増す。
【0004】
高品質画像キャプチャを可能にするマルチチャネル方式で対象領域または視野(fields of view)をキャプチャすることに関する概念があることが望ましい。
【発明の概要】
【発明が解決しようとする課題】
【0005】
そこで、本発明の目的は、多開口撮像デバイスと、撮像システムと、特に厚さ方向に沿って多開口撮像デバイスの低設置高さを可能にする多開口撮像デバイスを提供するための方法を提供することである。
【課題を解決するための手段】
【0006】
この目的は、独立特許請求項の主題によって解決される。
【0007】
本発明の1つの研究成果は、多開口撮像デバイスのビーム偏向手段(beam-deflecting means)の移動と、アレイレンズの移動との組合せにより、結果として全体的に低い設置高さがビーム偏向手段の異なる偏向位置に対して得られ、それにより、光学系に関してビーム偏向手段のオーバーハングのサイズが小さくなることを認識したことである。
【0008】
一実施形態により、多開口撮像デバイスは、画像センサと、光チャネル(optical channel)のアレイであって、各光チャネルは全視野のうちの部分的視野を画像センサの画像センサ領域上に結像するための光学系を備える、光チャネルのアレイと、切り替え移動を実行することによって第1の回転位置と第2の回転位置との間で切り替え可能であり、第1の回転位置で、光チャネルの光路を第1の視方向に偏向し、第2の回転位置で、光チャネルの光路を第2の視方向に偏向するように構成されている、ビーム偏向手段とを備える。アレイは、切り替え移動に基づき、ビーム偏向手段に関するアレイの配向を調整するための調整移動を実行するように構成される。
【0009】
さらなる実施形態は、撮像システム、多開口撮像デバイスを提供するための方法、対象領域をキャプチャするための方法に関する。
【0010】
さらなる有利な実施形態は、従属請求項の主題である。
【0011】
次に、本発明の好ましい実施形態が、添付図面を参照しつつ説明される。
【図面の簡単な説明】
【0012】
図1a】一実施形態による多開口撮像デバイスの概略斜視図である。
図1b】ビーム偏向手段が第1の回転位置にある図1aの多開口撮像デバイスの概略側断面図である。
図1c】理論的状態にあり、ビーム偏向手段が第2の回転位置にある、図1aの多開口撮像デバイスの概略側断面図である。
図1d】発明の状態にあり、ビーム偏向手段が第2の回転位置にあり、光チャネルのアレイが並進調整移動を実行した、図1aの多開口撮像デバイスの概略側断面図である。
図1e】一実施形態による第1の視方向でシングルライン(single-line)アレイに対する修正された多開口撮像デバイスの概略側断面図である。
図1f】一実施形態による第2の視方向での図1eの多開口撮像デバイスの概略側断面図である。
図2a】一実施形態によるビーム偏向手段の第1の回転状態における多開口撮像デバイスの概略側断面図である。
図2b】一実施形態によるビーム偏向手段の第2の回転状態における、光チャネルのアレイが回転調整移動を実行した、図2aの多開口撮像デバイスの概略側断面図である。
図2c】一実施形態によるビーム偏向手段の第3の回転状態における図2aの多開口撮像デバイスの概略側断面図である。
図3a】一実施形態によるデバイスの概略側断面図であり、ビーム偏向手段はデバイスのハウジングから外へ移動可能である。
図3b】一実施形態によるデバイスの概略側断面図であり、ビーム偏向手段はデバイスのハウジングから外へ移動可能である。
図3c】一実施形態によるデバイスの概略側断面図であり、ビーム偏向手段はデバイスのハウジングから外へ移動可能である。
図3d】一実施形態によるデバイスの概略側断面図であり、ビーム偏向手段はデバイスのハウジングから外へ移動可能である。
図3e】実施形態による図3a図3dにおける多開口撮像デバイスの実装形態の概略上面図である。
図3f】実施形態による図3a図3dにおける多開口撮像デバイスの実装形態の概略上面図である。
図4】一実施形態による多開口撮像デバイスの概略側断面図であり、光チャネルのアレイはシングルライン方式で形成される。
図5】一実施形態による多開口撮像デバイスの概略側断面図であり、ビーム偏向手段は、回転軸の周りの回転移動を実行するように構成される。
図6a】一実施形態によるビーム偏向手段の有利な実装形態を示す図である。
図6b】一実施形態によるビーム偏向手段の有利な実装形態を示す図である。
図6c】一実施形態によるビーム偏向手段の有利な実装形態を示す図である。
図6d】一実施形態によるビーム偏向手段の有利な実装形態を示す図である。
図6e】一実施形態によるビーム偏向手段の有利な実装形態を示す図である。
図6f】一実施形態によるビーム偏向手段の有利な実装形態を示す図である。
図7a】ビーム偏向手段の第1の回転位置における一実施形態による多開口撮像デバイスの概略図であり、ダイアフラム構造がスリットを閉じる。
図7b】ビーム偏向手段の第2の位置における図5aの多開口撮像デバイスの概略図であり、ダイアフラム構造は異なるスポットにおいてスリットを閉じる。
図7c】第1の位置と第2の位置との間の任意選択の中間位置における図5aの多開口撮像デバイスの概略図である。
図8】光学的イメージスタビライザを備える、一実施形態による多開口撮像デバイスの概略側断面図である。
図9】ビーム偏向手段から始まる多開口撮像デバイスの視方向に沿って配置構成されている透明構造を備える、一実施形態による多開口撮像デバイスの概略斜視図である。
図10】任意選択で透明構造を備えるが、それなしでも容易に実装され得る、一実施形態による多開口撮像デバイスの概略側断面図である。
図11】たとえば上で説明されている多開口撮像デバイスでキャプチャされ得るような、一実施形態による全視野の概略図である。
図12】ハウジングと、少なくとも1つの第1および1つの第2の多開口撮像デバイスとを備える撮像システムの概略斜視図である。
図13】一実施形態による、たとえば図12の撮像システム内に配置構成され得るような、第1の多開口撮像デバイスおよび第2の多開口撮像デバイスを含む概略設計図である。
図14】一実施形態による多開口撮像デバイスを提供するための方法の概略流れ図である。
図15】一実施形態による対象領域をキャプチャするための方法の概略流れ図である。
【発明を実施するための形態】
【0013】
本発明の実施形態が、その後図面を参照しつつ詳しく説明される前に、同一の、機能的に同一の、および動作的に同一の、要素、物体、および/または構造体は、異なる実施形態におけるこれらの要素の説明が交換可能でありおよび/または相互に適用可能であるように同一の参照番号を付けて異なる図に提示されることは指摘されるものとする。
【0014】
その後の実施形態は、多開口撮像デバイスを指す。多開口撮像デバイスは、互いに部分的に、不完全な形で重なり合ういくつかの部分的視野(部分的対象領域)をキャプチャすることによって、複数のもしくは多数の開口を用いて、全視野(全対象領域)をキャプチャするように構成され得る。このために、多開口撮像デバイスは、画像センサと、光チャネルのアレイと、ビーム偏向手段とを備え得る。
【0015】
画像センサはいくつかの画像センサ領域を備えるものとしてよく、それらの領域の各々上に部分的視野が結像される。画像センサは、キャプチャされた部分的視野に基づきアナログまたはデジタル画像センサ信号を出力するように構成され得る。画像センサ領域は、一体型画像センサの一部であってよく、および/または少なくとも部分的に、他の画像センサ領域(マルチピース画像センサ)から機械的に減結合されてよく、それにより、たとえば、1つの、いくつかの、またはすべての画像センサ領域に対して画像センサ領域の個別の移動が可能になるものとしてよい。
【0016】
光チャネルのアレイは、光チャネルのシングルラインまたはマルチライン(multi-line)シーケンスとして実装され得る。各光チャネルは、部分的視野のうちの1つを画像センサの画像センサ領域上に結像するための光学系を備える。これらの光学系の各々は、レンズ、回折要素、屈折要素、ダイアフラム要素、または同様のものなどの1つまたは複数の光学要素を含み得る。たとえば、いくつかの光学要素は、一緒になって、光チャネルの光学系の少なくとも一部を形成する光学積層体を形成し得る。光学積層体の光学要素は、相互積層体キャリアもしくはレンズキャリアによって互いに関して、および/または任意選択のキャリアもしくは基板に関して支持され得る。積層体キャリアまたはレンズキャリアは、光学要素の間で、力要素(アクチュエータ)を用いて距離を一定または可変にすることを可能にし、たとえば、光学系の結像機能および/または焦点を設定し得る。
【0017】
光チャネルのアレイの光チャネルは、シングルラインまたはマルチライン方式で配置構成されてよく、アレイのラインは、ラインの光チャネルがラインの外側光チャネルによって決定される直線に沿って本質的に配置構成されるように形成され得る。この場合、本質的には、せいぜい15%、せいぜい10%、またはせいぜい5%のラインのコースからの逸脱が許容できるように理解され得る。
【0018】
異なる光チャネルの光学系は、多少の、いくつかの、またはすべての光チャネルに関して同一であるか、またはチャネル固有である結像機能を得るために同一であるように、または異なるように形成され得る。光チャネルの光学系は、光チャネルのグループ毎に少なくとも1つ、いくつか、またはすべての光学系を有する、グループ単位で、基板と接続され、それにより光学系のグループの支持および/または移動を得られる。光チャネルのグループのいくつかの光学系は基板に個別に接続され得るか、または光チャネルのグループの光学系のうちの少なくとも1つ、いくつか、またはすべての光学系を有するサブグループにおいて光学系のサブグループの光学系が配置構成され、基板に関して光学系の配置構成を可能にする、相互キャリアを備え得る。少なくとも多開口撮像デバイスによってキャプチャされるべき波長帯について、キャリアは、通過帯域において少なくとも50%、少なくとも70%、少なくとも90%、またはさらには少なくとも98%の範囲で透明となるように形成され得る。通過帯域において、光チャネルの光路は、透明キャリアを通過し得る。通過帯域以外でも、キャリアは、透明になるように形成されてもよいが、代替的に、フィルタリングまたはダイアフラム機能をもたらす、たとえば、迷光を抑制するために波長帯の少なくとも一部についてあまり透明でないか、さらには不透明となるようにも形成されてよい。そのようなキャリアは、移動が高い精度で可能である、および/または保持することがより少ない数の要素で可能であるように基板に関して光チャネルのグループの光学系を一緒に保持しおよび/または移動することを可能にする。
【0019】
キャリアは、基板に直接接続されてよい。代替的に、またはそれに加えて、キャリアは別のコンポーネント、たとえば、画像センサならびに/または光学系および/もしくは画像センサおよび/もしくはビーム偏向手段を受け入れるためのハウジングに、接続されてよい。これは、光学系および/またはキャリアが基板に懸吊され得ることを意味する。たとえば、光学系および/またはキャリアは、移動可能な方式でまたは移動不可能な方式で基板において直接支持され得るか、またはたとえば、アクチュエータを介して間接的に支持され得る。また、1つ、いくつかの、またはすべての光チャネルの光学系および関連する画像センサ領域は、コンポーネントを相互に移動するために、互いに、たとえば、行程キャリッジ(travel carriage)において、その上で、またはその中で、機械的に結合され得る。行程キャリッジは、ハウジング23とビーム偏向手段18との間の機械的接続をもたらすものとしてよく、任意選択で、画像センサ12および/またはアレイ14への機械的接続ももたらすものとしてよく、これは、前記コンポーネントを含むことを意味する。行程キャリッジは、ハウジングを備え得る。
【0020】
ビーム偏向手段は、画像センサと光学系との間の方向から全視野の方へ光チャネルの光路を誘導するように構成され得る。たとえば、ビーム偏向手段は、時間的に交互する方式で光路を、第1の位置において第1の全視野に向かう第1の方向に、および第2の位置において第2の全視野に向かう第2の方向に誘導するように構成され得る。代替的に、第1および第2の全視野の並列キャプチャは、たとえば、多数の光チャネルを用意して第1の全視野の部分的視野および第2の全視野の部分的視野を同時にキャプチャし、さらには第1の数の光チャネルを第1の全視野の方へ、第2の数の光チャネルを第2の全視野の方へ偏向することによって、実行され得る。
【0021】
光チャネルの光路を偏向することは、ビーム偏向領域において行われ得る。ビーム偏向手段はミラーとして形成されてよく、ミラーは、いくつかのまたはすべてのビーム偏向領域にわたって平面状に構成され得る。たとえば、光チャネルの光路は、画像センサから視方向の二次元発散もしくは偏向を有するビーム偏向手段へのコース内に設けられるものとしてよく、それにより、光チャネルは、同一の偏向によって二次元的に全視野内に分布する部分的視野に偏向される。代替的に、ビーム偏向手段は、ビーム偏向手段の少なくとも2つの部分が、少なくとも1つの方向に沿って互いの方へ傾斜し、全視野において少なくとも1つの方向への光チャネルの偏向もしくは発散を完全にもしくは部分的に実装し、それにより、光チャネルが、対応する方向に沿って画像センサとビーム偏向手段との間の領域内でより低い程度の方向発散を与えられ得るか、または平行に延在もし得るように形成され得る。
【0022】
これらの部分は、1つまたはいくつかの光チャネルに対するビーム偏向領域を備えるものとしてよく、ファセット(facet)と称され得る。たとえば、1つのファセットが、光チャネル毎に設けられ得るが、いくつかの光チャネルのファセットも使用されてよい。各光チャネルは、ファセットに割り当てられ得る。ビーム偏向手段が1つのファセットしか含まない場合を考えたときに、これは平面鏡として実装され得る。
【0023】
ビーム偏向手段は、第1の位置において、ビーム偏向手段の第1のメイン側もしくはミラー側を備える光路を第1の方向に誘導し、第2の位置において、第1のメイン側もしくはミラー側を備える光路を第2の方向に誘導するように構成され得る。代替的に、ビーム偏向手段は、第2の位置において、第2のメイン側またはミラー側を備える光路を第2の方向に誘導するように構成され得る。第1の位置と第2の位置とを切り替える操作は、ビーム偏向手段の並進移動および/または回転移動によって実行され得る。並進移動では、ビーム偏向手段は、第1の方向への光路の偏向を可能にする第1の軸部分を備え、第2の方向への光路の偏向を可能にする第2の軸部分を備え得る。第1の位置と第2の位置とを切り替えるために、ビーム偏向手段は、軸方向に沿って並進移動により移動されてよく、この方向に沿って、軸部分は、たとえば、アレイのライン延長(line-extension)方向に平行に配置構成される。
【0024】
回転移動を使用するために、ビーム偏向手段は、第1の方向において、光路を第1の方向に偏向するためにアレイに対する反射平面または小平面が形成されたメイン側の第1の傾斜角を備えるものとしてよく、第2の位置において、光路を第2の方向に偏向するために、第2の傾斜角、たとえば、第1の傾斜角に関して90°回転させた角度を備え得る。これにより、ビーム偏向手段のメイン側の表面法線がアレイの光学系とビーム偏向手段との間の方向に平行な方向を指す状況に至る可能性がある。この配向において、この方向に垂直、およびアレイのライン延長方向に垂直に、ビーム偏向手段の設置空間要件は、高いか、または最大となり得る。ビーム偏向手段は、2つの反射するメイン側を備えるものとしてよく、両側で反射するように、たとえば、両側で反射するように形成された平面鏡またはファセットミラーとして形成され得る。ビーム偏向手段は、第1の位置において、メイン側のうちの第1の側を備える光路を第1の方向に偏向し、第2の位置において、メイン側のうちの第2の側を備える光路を第2の方向に偏向するように構成され得る。これは、第1の位置と第2の位置とを、低回転切り替え角度、すなわち、低アクチュエータ行程で切り替えることを可能にし、高速でエネルギー効率の高い切り替えを可能にする。さらに、表面法線がアレイとビーム偏向手段との間の方向に平行である位置は、より小さい設置高さが得られるように回避され得る。メイン側は平行であるか、または互いの方へ傾斜しているものとしてよい。
【0025】
ビーム偏向手段は基板に懸吊され、並進可能におよび/または回転可能に支持され得る。たとえば、ビーム偏向手段は、基板のところで、たとえば、アクチュエータを介して直接的にまたは間接的に支持され得る。
【0026】
本明細書において説明されている実施形態のうちのいくつかは、光チャネルのアレイ、ビーム偏向手段、光学系、または画像センサなどのコンポーネントの移動を指す。制御可能なアクチュエータは、そのような移動を得るために使用され得る。これは、断りのない限り、空気圧、油圧、圧電アクチュエータ、DCモータ、ステッパーモータ、熱アクチュエータ、静電気アクチュエータ、電歪および/もしくは磁歪アクチュエータまたは駆動装置を使用して行われ得る。
【0027】
図1aは、一実施形態による多開口撮像デバイス10の概略斜視図を示している。多開口撮像デバイス10は、画像センサと、光チャネル16a〜16hのアレイと、ビーム偏向手段18とを備える。各光チャネル16a〜16hは、全視野のうちの部分的視野を画像センサ12の画像センサ領域24a〜24h上に結像するための光学系64a〜64hを備える。光チャネル16a〜16hは、光路26a〜26hのコースであると理解されてよい。光路26a〜26hは、全光路の中心ビームを概略として指し、これは各中心ビームがエッジビームを有するビームの束を割り当てられることを意味する。光路26a〜26hは、たとえば、散乱または集中を通して、アレイ14内に配置構成されているそれぞれの光学系64a〜64hの影響を受け得る。個別の光チャネル16a〜16hは、各々、完全な結像光学系を形成するか、または備えるものとしてよく、少なくとも1つの光学コンポーネントまたは光学系、たとえば、屈折、回折、もしくはハブリッドレンズを備えてよく、多開口撮像デバイスでキャプチャされた対象全体のセクションを結像し得る。これは、光学系64a〜64hのうちの1つ、いくつか、またはすべても、光学素子の組合せであり得ることを意味する。光チャネル16a〜16hのうちの1つ、いくつか、またはすべてに関して絞りが配置構成され得る。
【0028】
光学系64a〜64hは、キャリア47のところに、個別に、グループ単位でもしくは一緒に、直接的な方式で、またはレンズホルダーを用いて配置構成され得る。キャリアは、透明な手段、たとえばガラスキャリア内の光路の一領域内に少なくとも局所的に形成される要素であってよい。代替的に、またはそれに加えて、アレイ14は、光学系64a〜64hが配置構成されるハウジングも備えるものとしてよく、任意選択で、画像センサ12もハウジング内に配置構成されてよい。代替的に、キャリア47の配置構成も、たとえば、光学系64a〜64hが基板に懸吊されている場合に省かれてよい。そのような基板は移動不可能なものであってよいが、移動可能であるように基板を実装すること、たとえば、像安定化および/または焦点調整のために光学系64a〜64hの移動をできるようにすることも可能である。
【0029】
たとえば、画像センサ領域24a〜24hは各々、対応するピクセルアレイを含むチップから形成されてよく、画像センサ領域24a〜24hは、相互回路基板または相互屈曲基板などの、相互基板、または相互回路キャリア上に装着され得る。代替的に、画像センサ領域24a〜24hにわたって連続的に延在する、相互ピクセルアレイのそれぞれの部分の画像センサ領域24a〜24hの各々を形成することも明らかに可能になり、相互ピクセルアレイは、たとえば、個別のチップ上に形成される。この場合、たとえば、相互ピクセルアレイのピクセル値のみが、画像センサ領域24a〜24hで読み出される。これらの代替的形態の異なる混合も明らかに可能であり、たとえば、2つまたはそれ以上の光チャネルに対するチップおよび他の光チャネルに対するさらなるチップの存在、または同様のものである。画像センサ12のいくつかのチップの場合、これらは、たとえば、1つもしくはいくつかの基板または回路キャリア上に、たとえば、一緒に、またはグループ単位でまたは同様の仕方で装着され得る。
【0030】
ビーム偏向手段18は、光チャネル16a〜16hの光路26a〜26hを偏向するように構成される。このために、たとえば、ビーム偏向手段18は、光学系64a〜64h、またはアレイ14に面し、それに対して傾斜する、すなわち、回転位置を備える、反射するメイン側を具備し得る。傾斜により、光路26a〜26hは、視方向271に偏向されるものとしてよく、視方向271は、多開口撮像デバイス10に関する相対的方向を記述しするものとしてよく、それに沿ってキャプチャされるべき対象領域は配置構成される。その後詳しく説明されているように、ビーム偏向手段18は、例示されている第1の回転位置と第2の回転位置との間で、たとえば、切り替え移動を実行することによって切り替え可能であるものとしてよい。切り替え移動は、ビーム偏向手段18の回転軸44の周りの回転移動38を含むものとしてよい。したがって、回転移動38に基づき、ビーム偏向手段18の少なくとも第1の回転位置または位置と第2の回転位置または位置が取得され得る。異なる回転位置において、光チャネル16a〜16hの光路26a〜26hは、それぞれ、異なる視方向271および272に偏向され得る。このために、多開口撮像デバイス10は、回転移動、または切り替え移動をもたらし得るアクチュエータ(図示せず)を備え得る。
【0031】
アレイ14は、切り替え移動38に基づき、ビーム偏向手段18に関するアレイ14の配向を調整するための調整移動11を実行するように構成される。このために、多開口撮像デバイス10は、光学系64a〜64hの並進調整移動111および/または回転調整移動112をもたらすように構成されているアクチュエータ13を備え得る。このことは、アクチュエータ13が調整移動11をもたらすものとしてよく、これは、たとえば、キャリア47および/またはハウジングを移動することによって、アレイ14の光学系64a〜64hのすべてを相互に移動することを含み得ることを意味する。代替的に、光学系64a〜64hは、また、たとえば、これらが基板に個別に配置構成されるか、または支持される場合に、個別に移動され得る。調整移動は、画像センサ12と一緒に実行されてよく、これは、一実施形態により、画像センサ12が調整移動11の文脈においてアレイ14の光学系64a〜64hと一緒に移動され得ることを意味する。任意選択で、オートフォーカスを実現するための焦点調整手段のアクチュエータは、光路および/または光学的イメージスタビライザのアクチュエータのコースの軸方向に沿ってアレイ14と画像センサ12との間の相対的移動を発生させることによって一緒に移動され得る。
【0032】
調整移動11は、y方向に沿った多開口撮像デバイスの厚さ(寸法)がアレイ14の移動不可能な配置構成より小さいような仕方で空間内に、画像センサ12とアレイ14との間の軸方向xに垂直であり、アレイ14のライン延長方向zに垂直である、厚さ方向yに沿ったアレイ14に関して、基本的幾何学的条件により必要とされる、ビーム偏向手段18のオーバーハングを配置構成することを可能にする。
【0033】
この場合、調整移動11は、他の移動、たとえば、焦点調整のための、たとえば、アレイ14と画像センサ12との間の距離を変化させる移動から区別され得る。このことは、画像センサ12とアレイ14との間の光チャネルの延長に平行な方向に沿って、すなわち、方向xに沿って、アレイ14と画像センサ12との間で並進距離変化がない場合に調整移動が生じることを意味する。しかしながら、これは、調整移動が、実施形態において意図されている、焦点調整のための移動と組み合わされ得ないか、または重なり合わされ得ないような仕方で制限として理解されるべきでない。しかしながら、これは、2つまたはいくつかの移動の重なりであり、調整移動はそれらのうちの1つである。次いで、距離を維持しながら、調整移動それ自体は排他的に実行されてよい。
【0034】
全視野の複数のまたは多数の部分的視野は、光チャネルによってキャプチャされてよく、各部分的視野は、少なくとも1つの光チャネル16a〜16hによってキャプチャされ得る。したがって、各光チャネルは、その光チャネルによってキャプチャされ得る部分的視野を割り当てられ得る。たとえば、各部分的視野は、多開口撮像デバイス10および/またはビーム偏向手段18から始まるが、光チャネル16a〜16hのそれぞれの光路26a〜26hがビーム偏向手段18により偏向される方向を割り当てられ得る。
【0035】
図1bは、多開口撮像デバイス10の概略側断面図を示しており、画像センサ領域24aおよび24eならびに光学系64aおよび64eを通る断面平面は、例示的に図示されている。偏向させるため光路26aおよび26eに関してビーム偏向手段18を傾斜させると、ビーム偏向手段18が、x方向に沿って、ならびに厚さ方向yに沿って光学系64aおよび64eに関して、可変、すなわち、増加または減少する、距離を伴うという事実に至る可能性がある。光チャネルの光路の発散ビームは、好ましくは、少なくとも90%、少なくとも95%、または少なくとも99.5%、理想的には100%の範囲でビーム偏向手段18に当たる。アレイ14の光チャネルの各々、および、したがって、いくつかのラインにわたるいくつかの光チャネルの組合せは、たとえば、アレイ14のエッジビーム15によって示されるような、光路の発散を含み得る。ビーム偏向手段18の傾斜と組み合わせてx方向に沿って発散またはビーム拡大すると、画像センサ12およびアレイ14に起因する多開口撮像デバイス10の寸法Aに加えて、光学系64aから64eに関するビーム偏向手段18、および/または画像センサ12のオーバーハングBまたはB1は、光チャネルの光路を完全に偏向させるために必要であるという事実に至る。不完全な偏向だと、画質が低下する可能性がある。
【0036】
ビーム偏向手段18の例示されている配向について、この結果、光路26aおよび26eを視方向271に偏向させるためにA、およびそれに加えてB(A+B)の多開口撮像デバイス10に対する全設置空間要件が生じる。
【0037】
図1cは、ビーム偏向手段18は、多開口撮像デバイス10の視方向271と視方向272との間の切り替えを行うために回転移動38を実行する理論的状態における多開口撮像デバイス10の概略側断面図を示しており、これはビーム偏向手段18がたとえば回転軸44の周りを回転させられることを意味する。視方向271および272は、±30°、±15°、または±5°の許容範囲内で互いの方へ反転されるか、または反平行であるように配置構成される。厚さ方向yに沿って、多開口撮像デバイス10のオーバーハングは、現在、他の方向、または視方向272に沿って必要である。アレイ14の移動されていない状態において、第1の視方向271に沿った第1のオーバーハングB1および第2の視方向272に沿った第2のオーバーハングB2は、両方の視方向271および272をもたらすために必要であり、B1=B2は対称的な場合において適用され得る。
【0038】
図1dは、一実施形態による多開口撮像デバイス10の概略側断面図を示しており、アレイ14は、y方向に沿って調整移動111を実行した。たとえば、画像センサ領域24aおよび24eは、画像センサ12へのアレイ14の相対的位置を一定に維持するようにも移動され得る。このことは、画像センサ、アレイ光学系、およびしたがって、光軸の垂直位置は可変であってよいことを意味する。代替的に、アレイ14と画像センサ12との間の追加のビーム偏向および/またはサイズに関する画像センサ12の冗長実装などの他の対策を使用することによって、画像センサ12の移動が省かれ得る。
【0039】
横方向調整移動111と組み合わせることで、ビーム偏向手段18は、y方向に横方向平行にも移動されてよい。調整移動111に関連するビーム偏向手段18の移動17の程度は、20%、10%、または5%の許容範囲内の調整移動111の程度に等しいものとしてよい。視方向271と視方向272とを切り替えるためのビーム偏向手段18の間の切り替え移動は、したがって、回転移動38、およびそれに加えて、移動方向yに沿ったビーム偏向手段18の並進移動17を含み得る。調整移動111は、アレイ14に関係するさらなる並進移動を含み得る。アレイ14は、ビーム偏向手段18と同じ移動方向に沿って移動し得る。たとえば、第2の視方向272に切り替えるための切り替え移動時に、調整移動111および並進移動17は、他の視方向271に沿って実行されてよい。画像センサ領域24''aおよび24''eさらには光学系64''aおよび64''eさらにはビーム偏向手段18''によって例示されているように、これは図1cによるコンポーネントの変化していない位置を示しており、多開口撮像デバイス10の設置空間要件は、図1cの理論的状態と比較して厚さ方向yに沿ってオーバーハングB1またはB2の程度まで節約され得る。
【0040】
アレイ14の光路が各々、たとえば、視方向271および272が互いに関して180°の角度を含み、アレイ14が視方向271および272に関して90°の角度に配置構成されている場合のように、ビーム偏向手段18上に当たる前に視方向に関して対称的に偏向される場合、厚さ方向yに沿ったビーム偏向手段18の位置または横寸法は、光路を視方向271および272に偏向するために回転位置において同一であるか、または少なくとも20%、少なくとも80%、または少なくとも90%の程度で少なくとも同一であるものとしてよい。このことは、ライン延長方向に平行な、たとえば、画像センサ12とアレイ14との間の光路のコースに平行な、または画像センサ12のメイン側に平行な平面内へのビーム偏向手段の投影は、この程度で両方の回転位置において同一であり(重なり合い)、100%同一のときに合同であることを意味する。
【0041】
並進調整移動111の例示されている場合において、設置空間要件の低減は、並進移動17を通じてのビーム偏向手段18のシフトによって記述されるものとしてよく、これにより、切り替え移動により必要となるビーム偏向手段の移動範囲の一部が図1cによる移動可能でないアレイと比較して縮小されることが可能になるが、これは、設置空間が数回使用されるからであるが、図1cの理論的状態では、各重なり合いB1およびB2は、このために用意されるべき個別の設置空間内に配置構成される。調整移動は、この横方向移動17に合わせて調整されるアレイ14の移動であると理解され得る。したがって、アレイ14は、アレイ14とビーム偏向手段18との間の相対的位置を調整するために移動され得る。同じことが、以下で説明されているように、アレイ14の回転移動を生じさせることによっても実現され得る。
【0042】
したがって、ハウジング内の多開口撮像デバイス10の必要な設置高さおよび/または寸法は、厚さDが画像センサ12およびアレイ14の配置構成の高さより小さく、オーバーハングBの2倍であるという条件を満たすものとしてよい、すなわち、次の式が適用され得る。
D < A + 2 B
【0043】
図1eおよび図1fは、第1の回転位置および第2の回転位置における多開口撮像デバイス10'の概略斜視図を示している。図2aから図2cに関連して説明されている多開口撮像デバイス10に関する他の修正の他に、アレイ14はシングルライン方式で形成され、これはアレイ14の光学系64がシングルラインで配置されることを意味する。光学系64は、アレイ14内の光学系64の相互移動がアレイ14の移動/作動によって可能であるようにキャリアおよび/またはレンズホルダーを介して互いに機械的に接続され得る。代替的に、各光学系64またはそのレンズ19a〜19cは、個別に支持され、および/または移動され得る。組合せ解も可能であり、たとえば、相互キャリアおよび/または接続されたレンズホルダーは、光学系64の相互移動が得られるように実装される。たとえば、これは行程キャリッジまたは同様のもので行われ得る。それに加えて、さらなるアクチュエータが提供されてよく、たとえば、チャネル固有の焦点調整をもたらすための、レンズのチャネル固有の移動を可能にする。チャネル大域的な焦点調整も、修正することなくすべてのレンズの相互移動を通じて行われ得ることは理解される。
【0044】
一実施形態により、ビーム偏向手段18は、切り替え移動時に、回転軸44の周りの回転移動38のみを実行するように構成され得る。この場合、回転軸または回転軸44は、ファセット、またはビーム偏向手段のy拡大の中心、すなわち、(A+B)/2における、厚さ方向yに配置構成されてよく、たとえば、A+Bは厚さ方向yに沿ったビーム偏向手段18の全拡大を指す。アレイ14の非傾斜法線位置において、厚さ方向yは、アレイ14のライン延長方向に垂直に、および画像センサ12とアレイ14との間の光路のコースに垂直に配置構成され得る。中心上に回転軸44を合わせることは、可能な限り正確に行われるものとしてよいが、それでも、20%、10%、または5%の許容範囲内で有利である。このことは、切り替え移動は、たとえば、回転移動38によって排他的に実行され、多開口撮像デバイスの厚さ方向に沿って回転移動38の回転軸は、厚さ方向yに沿ってビーム偏向手段18の最大拡大に関して20%の許容範囲内で中心に合わされるものとしてよいことを意味する。
【0045】
図1fは、調整移動111を実行した後の多開口撮像デバイス10'を例示している。ビーム偏向手段18は、図1dに関連して説明されているように、それに応じて移動されている。オーバーハングB2も、第2の視方向272に沿って配置構成され得る。B1=B2=Bは、たとえば、多開口撮像デバイス10'の対称的実装形態において適用され得る。全設置空間要件A+Bは、単一オーバーハングが十分であり、図1aによる二重の準備と比較して小さくてよいので低いものとしてよい。このことは、切り替え移動がビーム偏向手段18の回転移動38を含むことを意味し、調整移動11は、ライン延長方向zに垂直であり、多開口撮像デバイスの厚さ方向yに平行である移動方向/厚さ方向yに沿ったアレイ14の並進移動111を含む。
【0046】
図2aは、多開口撮像デバイス10'の概略側断面図を示しており、これは、再び、説明されており、多開口撮像デバイス10と比較していくつかの変更点を含み、各々任意選択で、個別に、独立して実装され得る。アレイ14は、シングルラインアレイとして形成されるものとしてよく、これは、図1aを見ると、光学系64aから64dまたはたとえば個別のおよび単一のラインで並ぶ他の任意の数の光学系だけの配置構成として考えられ得る。さらに、光学系64は、ビーム形成に対して一緒に使用される複数の光学要素19a、19b、および/または19cを備え得る。アレイ14および画像センサ12は、相互ハウジング内に配置構成されてよく、これにより、アレイ14および画像センサ12の相互移動を可能にする。さらに、ビーム偏向手段18は、互いの方へ傾斜しているメイン側174aおよび174bを含む個別のまたは複数のファセットとして形成され得る。
【0047】
多開口撮像デバイス10'は、見やすいように選択されているだけである。代替的に、多開口撮像デバイス10も、調整移動112に関連して説明するために、制限する効果なく、使用され得る。図2aにおいて、ビーム偏向手段18の配向を通して、多開口撮像デバイス10'は、視方向271に沿ったキャプチャが可能であるように実装される。
【0048】
図2bにおいて、ビーム偏向手段18は、回転軸44の周りの回転移動38とともに回転される。たとえば、これは、時計回りの方向に行われ得る。調整移動112は、たとえば、ハウジング21を移動することによる、アレイ14の回転移動も含む。図2aおよび図2bにおいて、調整移動112により、たとえば、図1b図1c、および図1dにおいて例示されているように、ビーム偏向手段18上に当たる前のアレイ14の対称的視方向に関して、光路26の事前傾斜が、これらが参照方向に関して角度y1および/またはy2で、たとえば、x方向に平行に当たり、ビーム偏向手段18を用いた光路26の偏向がx方向に平行な光路26の中心ビームのコースと比較して小さくなり得るように取得されるという事実に至る可能性がある。
【0049】
たとえば、アレイ14および画像センサ12は、ハウジング21を介して互いに機械的に結合されてよく、調整移動11を相互に実行するように構成され得る。ハウジング21は、行程キャリッジまたは同様のものとして参照され得る。これは、ビーム偏向手段18を用いた視方向の全影響の代わりに、視方向271および272を切り替える動作の一部は、アレイ14の移動によって取得され得るようにも理解され得る。たとえば、視方向271および272が互いに対向するように配置構成され、180°の角度を含む場合、およびビーム偏向手段18が、図1bに例示されているように、互いの方へ平行に配置構成されているメイン側とともに両側で反射するミラーを用いて配置構成される場合、約90°の回転は、切り替え移動を行わせるために図1bによる構成において必要である。たとえば、これの結果として、x方向に関して±45°の配向になる。アレイ14の対応する回転移動を使用して調整移動112を適用することによって、この配向または傾斜は、45°-y1または45°-y2に低減されるものとしてよく、したがって回転移動38全体は90°-(y1+y2)に低減されるものとしてよい。
【0050】
互いの方へ傾斜している、メイン表面174aおよび174bを使用することによって、さらなる低減が可能である。角度y1およびy2の周りの光路26の事前傾斜を用いることで、視方向271と272とを切り替えるためにビーム偏向手段18の回転に対する要件を引き下げることが必要になることがある。このように回転範囲が小さいほど、Cで示されている、アレイ14に関するビーム偏向手段18のオーバーハングは小さくなる。図1aから図1dによるビーム偏向手段18を使用したときであっても、B>Cが適用され得る。このことは、設置空間要件のより小さいサイズが、調整移動112を用いてビーム偏向手段18の回転範囲を縮小することによってy方向に沿って取得され得ることを意味する。このことは、第1の回転位置から第2の回転位置への切り替え移動は、ビーム偏向手段18の回転移動38を含み得ること、および調整移動112がさらなる回転移動を含み得ることを意味する。これら2つの回転移動は、好ましくは、同じ方向に、たとえば、両方とも時計回りの方向に、または両方とも反時計回りの方向に行われ得る。ビーム偏向手段18が回転移動38を通して回転され、アレイ14が調整移動112を通して回転される角度値の総和の結果、90°の角度合計は20%、10%、もしくは5%の許容範囲内にあり得る。
【0051】
重なりC1およびC2は、正のy方向に沿って、および負のy方向に沿って、それぞれ、必要であるが、これらは重なりB、B1、またはB2と比較して小さく、そのため有利な実装となる。たとえば、次の式が適用され得る。
C=C1=C2>B=B1=B2
【0052】
したがって、A+C1+C2およびA+2Cの必要な寸法は、それぞれ、次の条件も満たし得る。
D<A+2B
【0053】
図1aから図1d図2aおよび図2bに基づき、調整移動11が並進移動111または回転移動112を含む実装形態が例示的に説明された。実施形態により、並進移動111および回転移動112が実行されるように調整移動11を実行することも可能である。たとえば、アレイ14の回転は、図1bおよび図1dにおいて、たとえば、アクチュエータ13によって実装され得る。代替的に、またはそれに加えて、図2aおよび図2bによるアレイ14および/またはハウジング21は、さらに、調整移動111とともに、たとえば、視方向271と視方向272との間で切り替えるときに正のy方向に移動され得る。これにより、残りの重なり合う領域の縮小が、2つの重なり合う空間B1またはB2およびC1またはC2のうちの1つをそれぞれ回避するためにさらに取得され得る。
【0054】
このことは、第1の回転位置から第2の回転位置への切り替え移動は、ビーム偏向手段の第1の回転移動および第1の移動方向に沿ったビーム偏向手段の並進移動、すなわち、回転移動38および並進移動17を含むことを意味する。調整移動は、移動方向に沿ったアレイの並進移動、すなわち、調整移動111を含むものとしてよく、それに加えて、回転移動、調整移動112を含み得る。
【0055】
言い換えると、ビーム偏向手段の回転移動に加えて、画像センサおよびアレイ光学系からなるユニットは、多開口カメラの異なる視方向を達成するために移動されてよい。これまで、後者は、少なくとも厚さ方向で固定されていた。ミラーファセットまたはミラーの必要な位置が傾斜している結果として、アレイ光学系から遠ざかる方に面しているミラーファセットのエッジは、厚さ方向にレンズアレイを越えて突出し、したがって、設置高さを本質的に決定する。アレイ光学系に面するエッジは、設置高さを越えてわずかに突出するか、または設置高さを全く越えることなく、これはアレイ光学系のレンズによって予め決定されている。アレイの固定光軸に関して、レンズは、厚さ方向に距離1/2A+Bを形成する。ビーム偏向手段を回転させることによって視方向を切り替えたときに結果として類似の像が得られる。構造全体に関して、2つの視方向の望ましい実現に対してA+2Bの設置高さが結果として得られる。一実施形態により、ビーム偏向手段の回転に加えて、画像センサおよびアレイ光学系からなるユニットは移動されるが、これは調整移動11が実行されることを意味する。一方では、これは、厚さ方向に沿った並進移動111、回転軸がライン延長方向に平行である回転移動、たとえば、調整移動112、またはこれらの組合せを含み得る。結果として、必要な設置高さはA+Bまでの値に下げられ得る。オートフォーカスおよび/または光学的像安定化を実装する追加の移動を実現するために、さらなる駆動装置が、画像センサおよびアレイ光学系からなるユニットを移動するように配置構成され得る。一実施形態による多開口撮像デバイスは、オートフォーカスおよび/または像安定化なしで実装されてよい。代替的に、またはそれに加えて、アクチュエータ13は、焦点調整および/または像安定化のための対応する移動を行うように構成され得る。
【0056】
図2は、たとえば、切り替え移動時に取得され得る、および/またはたとえばスタンバイのときに多開口撮像デバイス10の非アクティブ状態において取得され得る第3の回転位置における多開口撮像デバイス10'の概略側断面図を示している。例示されている回転位置では、厚さ方向yに沿ったビーム偏向手段18の寸法は、ハウジング21および/または画像センサ12および/またはアレイ14の寸法より小さいか、または等しいものとしてよい。このことは、多開口撮像デバイス10'の厚さが好ましくはこの状態においてビーム偏向手段18によって決定されないことを意味する。これは、多開口撮像デバイスをシン方式で記憶することを可能にする。このことは、画像センサ、アレイ光学系、およびしたがって、光軸の回転位置、およびしたがって垂直位置は可変であってよいことを意味する。
【0057】
図3aは、一実施形態によるデバイス30の概略側断面図を示している。デバイス30は、多開口撮像デバイス10が側面23a、23b、および23cを有するハウジング23内に配置構成される第1の動作状態を備え、たとえば、側面23aおよび23bはメイン側、たとえば、正面および背面である。たとえば、デバイス30は、スマートフォンなどの携帯電話またはタブレットコンピュータであり、したがって、メイン側の少なくとも1つはディスプレイを備え得る。側面23cは、補助側であってよく、カバーと称され得る。カバー23cを跳ね上げて開くか、または移動することによって、多開口撮像デバイス10および/またはビーム偏向手段18は、ハウジング容積部25から外へ完全にまたは部分的に移動され、ハウジング容積部25の外側のビーム偏向を可能にし、多開口撮像デバイス10がたとえば視野の像をキャプチャする第2の動作状態を取得するものとしてよい。第1の動作状態において、ビーム偏向位置は、図2cに関連して説明されているように、第1の回転位置と第2の回転位置との間の中心位置を含むものとしてよい。ビーム偏向手段18は、ハウジング内の第1の位置を含む。
【0058】
デバイス30は、カバー23cに接続され得る少なくとも部分的に透明なカバー37aおよび37bを備える。したがって、カバー37aおよび37bは、ビーム偏向手段18がハウジング23から外へ部分的にまたは完全に移動されるように並進移動方向28に沿ってビーム偏向手段18と一緒に移動可能であるものとしてよい。少なくとも部分的に透明なカバー37aおよび37bは、ビーム偏向手段18とハウジング23との間のビーム偏向手段18の異なる側における例示されている第1の位置において配置構成され得る。このことは、ビーム偏向手段18がカバー37aと37bとの間に配置構成され得ることを意味する。
【0059】
第1の動作状態において、カバー37aおよび37bは、ハウジング容積部25内に部分的にまたは完全に配置構成され得る。たとえば、カバー37aおよび37bは、行程キャリッジのところに配置構成され得るか、または行程キャリッジの透明領域であってよい。ビーム偏向手段の、ハウジング23から外への、またはハウジング23内への移動時に、アレイ14および/または画像センサ12は固定されたままであるか、または横方向移動方向28に沿って移動されてよく、それにより、たとえば、画像センサ12とアレイ14とビーム偏向手段18との間の距離は変化しないままである。この場合、行程キャリッジは、画像センサ12および/またはアレイ14も備え得る。
【0060】
図3bは、デバイス30の概略側断面図を示しており、ビーム偏向手段18は、第1の位置と第2の位置との間の中間位置を備える。たとえば、ビーム偏向手段の中間位置は、ビーム偏向手段18をハウジング容積部25内に引っ込めるか、またはハウジング容積部25から外へ延ばすときに取得され得る。ビーム偏向手段18は、ハウジング容積部25から外へ部分的に移動される。
【0061】
図3cは、デバイス30の概略側断面図を示しており、ビーム偏向手段18は第2の位置を含む、すなわち、ビーム偏向手段18は、たとえば、ハウジング容積部25から完全に延びる。少なくとも部分的に透明なカバー37aおよび37bは、ハウジングの側面23aと23bとの間の比較可能な距離より小さい互いの方への距離E1を含む。
【0062】
図3dはデバイス30の概略側断面図を示しており、少なくとも部分的に透明なカバー37aおよび37bの距離は、図3a図3cと比較して拡大されている。少なくとも部分的に透明なカバー37aおよび/または37bは、それぞれ、他の少なくとも部分的に透明なカバー37aおよび37bから遠ざかる方に面する並進移動方向に沿って、たとえば、厚さ方向yに平行に、すなわち、正または負のy方向に移動可能であるものとしてよい。図3a図3cに例示されている少なくとも部分的に透明なカバー37aおよび37bの状態は、引っ込められるか、または折り畳まれた状態として理解され得る。図3dに例示されている状態は、延ばされるか、または折り畳まれていない状態として理解されてよく、少なくとも部分的に透明なカバー37aおよび37bの間の距離E2は、距離E1と比較して変更される、たとえば、増大される、すなわち、E2>E1が適用される。たとえば、距離E2は、ハウジング23の比較可能な側の間の距離以上であるものとしてよい。ビーム偏向手段18は、少なくとも部分的に透明なカバー37aおよび/または37bを通過するように光チャネルの光路を偏向するように構成される。
【0063】
図3aの第1の動作状態または図3bもしくは図3cの状態と比較して、ビーム偏向手段18の角度配向は、多開口撮像デバイスの光路で使用されるビーム偏向ユニットの面積が第1の動作状態と比較して増大するように変更されるものとしてよく、第1の回転位置または第2の回転位置が得られる。代替的に、またはそれに加えて、増加した距離E2は、回転移動38の範囲を広げることを可能にし得る。回転移動38により、ビーム偏向手段18は、少なくとも第1の回転位置とさらなる回転位置との間で切り替え可能であるものとしてよく、各位置は、多開口撮像デバイスの視方向に割り当てられ得る。ビーム偏向手段18の回転は、同様に、または双安定方式もしくは多重安定方式で行われ得る。多開口撮像デバイスの視方向を変更するための回転移動38は、光学的像安定化のためにビーム偏向手段18の回転移動と組み合わされてよい。カバー37aおよび/または37bは、多開口撮像デバイスの他のコンポーネントをカプセル封入し得る。
【0064】
多開口撮像デバイスは、切り替え移動および調整移動を距離E2の範囲内で実行し得る。したがって、たとえば、カバー37aおよび37bを延ばすことで、厚さ方向に沿ってデバイス30のわずかな拡大も可能にする、調整移動に基づき、図1a図1dおよび図2a図2cの説明により、小さくてもよいアレイ14および/または画像センサ12に対する移動空間を設け得る。
【0065】
対向するように配置構成されるカバー37aおよび/もしくは37b、またはその透明領域は、切り替え可能ダイアフラム33a〜33bが、たとえば、ビーム偏向手段の他の任意の方向の上および/または下またはそれに沿って導入されるように切り替え可能ダイアフラム33aおよび/または33bを備え得る。ダイアフラム33a〜33bは、カメラの動作状態または視方向に従って切り替えられ得る。たとえば、使用されていない多開口撮像デバイスのそれぞれの視方向は、迷光が入るのを低減するためにダイアフラム33a〜33bによって少なくとも部分的に閉じられ得る。たとえば、ダイアフラム33a〜33bは、機械的に移動されるか、またはエレクトロクロミックであってよい。ダイアフラム33a〜33bの影響を受ける領域は、それに加えて、それが使用されない場合に光学的構造を覆う切り替え可能ダイアフラム33a〜33bを設けられ得る。ダイアフラム33a〜33bは電気的に制御可能であり、エレクトロクロミック層(シーケンス)を備え得る。代替的に、またはそれに加えて、ダイアフラム33a〜33bは、機械的に移動される部分を備え得る。移動は、空気圧、油圧、圧電アクチュエータ、DCモータ、ステッパーモータ、熱アクチュエータ、静電気アクチュエータ、電歪および/もしくは磁歪アクチュエータまたは駆動装置を使用して実行され得る。視方向がダイアフラムを貫通する多開口撮像デバイスの状態において、ダイアフラム33a〜33bは、光チャネルの光路が通過することを可能にするように切り替えられ得る。このことは、多開口撮像デバイスが第1の動作状態と第2の動作状態とを備え得ることを意味する。ビーム偏向手段は、第2の動作状態および第1の回転位置で光チャネルの光路を、それがカバー37aの第1の透明領域を貫通するように偏向し得る。第2の動作状態の第2の回転位置において、光チャネルの光路は、それがカバー37bの第2の透明領域を貫通するように偏向され得る。第1のダイアフラム33aは、光学的方式で第2の動作状態における第1の透明領域を少なくとも部分的に光学的に閉じるように構成され得る。第2のダイアフラム33bは、一時的光学的方式で第1の動作状態における第2の透明領域を少なくとも部分的に閉じるように構成され得る。これにより、多開口撮像デバイスの実際の視方向でない方向から迷光
が入るのを低減するものとしてよく、これは画質に関して有利である。第1および/または第2のダイアフラム33a〜33bは、少なくとも1つの光チャネル、少なくとも2つの光チャネル、またはすべての光チャネルについて動作可能であり得る。たとえば、多開口撮像デバイスの少なくとも1つの光チャネル、少なくとも2つの光チャネル、またはすべての光チャネルは、光チャネルの光路が第1の透明領域を通して誘導される場合に第1のダイアフラムを貫通し、光チャネルの光路が第2の透明領域を通して誘導される場合に第2のダイアフラムを貫通し得る。
【0066】
折り畳まれているビーム偏向手段を広げるためのメカニズムを並進移動するためのメカニズムと組み合わせることが可能であることは理解されるべきである、すなわち、混合された形態が存在し得る。折り畳まれているハウジングを広げ、および/またはビーム偏向手段を延ばすことは、該当する場合に、キャプチャモジュール、すなわち、光チャネル、その光学系、および/または画像センサがハウジング容積部から外へ移動されるように実行され得る。ビーム偏向手段の角度の変化は、厚さ方向の多開口撮像デバイスの拡大が大きいことおよび/またはビーム偏向手段が「前」および「後」の方へ妨げられないようにして光路を偏向させ得ることを可能にし得る。カバー37などのカバリングガラスは、また、広げられるか、または延ばされている要素に関して固定され得る。カバリングガラスは、任意の平面状または非平面状の表面領域を備え得る。
【0067】
言い換えると、多開口撮像デバイスは、移動キャリッジ/行程キャリッジ上に少なくとも部分的に取り付けられてよく、スマートフォンなどの平坦なハウジングから外へ延在し得る。この場合、ビーム偏向手段、および画像センサとアレイ光学系とからなるユニットは、両方の視方向でキャプチャされる像の場合と異なる位置をとり得る。この位置決めは、最小の設置高さが結果として得られ、ビーム偏向手段の両方向鏡面ファセットの先端部またはビーム偏向ユニットの細いエッジがこの位置でアレイ光学系の方へ向けられるように実行され得る。
【0068】
図3eは、多開口撮像デバイス30の概略上面図を示しており、例示的な行程キャリッジ43の機能がハウジング23内に移動可能に配置構成され得る。行程キャリッジ43はフレームまたは別の固定構造45を備えるものとしてよく、これにより、ビーム偏向手段18、画像センサ12、およびアレイ14は直接的にまたは間接的に、すなわち、それに対して移動可能に、配置構成されるか、または支持される。たとえば、ビーム偏向手段18は、チャネル固有のファセット部、すなわち、チャネル毎に1つのビーム偏向領域を備え、ファセットは、互いに関して傾斜し、光路のチャネル固有の偏向が得られるものとしてよい。ビーム偏向手段18は、フレーム45に関して回転可能に支持されるものとしてよく、フレーム45の移動に基づき、またフレーム45に関する回転移動38に基づき移動され得る。コンポーネントのうちのいくつか、たとえば、画像センサ12およびアレイ14は行程ユニット49を用いて互いに機械的に結合されるものとしてよく、それにより、行程ユニット49の移動はそれに結合されているコンポーネントの移動を引き起こす。たとえば、行程キャリッジ43内で、行程ユニット49は調整移動を実行し、この点に関連して、フレーム45に関する相対的移動を実行するように構成され得る。代替的に、またはそれに加えて、たとえば焦点調整手段または光学的イメージスタビライザの、任意選択の駆動装置またはアクチュエータ51aおよび/もしくは51bは、同時に移動され得る。対応する駆動装置51aおよび/または51b、たとえば、空気圧、油圧、熱、圧電、静電気、電気力、磁歪または電歪アクチュエータが、ハウジング21内に、および/または行程ユニット49内に、または例示されているように、ハウジング21の外側に配置構成され得る。このようにして、焦点調整および/または像安定化は、アクチュエータ51aおよび/または51bによってもたらされるか、または設定されるものとしてよいが、このせいで移動される、行程ユニット49は、それに加えて移動されて調整移動を行う。
【0069】
図3fは、多開口撮像デバイス30の概略上面図を示しており、行程キャリッジ43、または行程ユニット49は修正されている。特に、たとえば、アクチュエータ51aおよび51bは行程ユニット49の一部であり、たとえば、ハウジング21内に配置構成され、それにより、アクチュエータ51aおよび/または51bは、調整移動を実行しているときに一緒に移動される。行程ユニット49は、アレイ14と、画像センサ12と、オートフォーカスおよび光学的像安定化のためのアクチュエータ51a/51bとを備え得る。このことは、アレイ14、画像センサ12、および光学的像安定化のための焦点調整を行うアクチュエータ51a/51bが、互いに機械的に結合され、調整移動11を相互に実行するように構成されていることを意味する。
【0070】
行程キャリッジ43は、ハウジング23から外へ多開口カメラ全体を横向きに延ばすために使用され得る。たとえば、画像センサ12、アレイ14、ビーム偏向ユニット18、オートフォーカスおよび光学的像安定化のためのアクチュエータ、ならびに、該当する場合に、カバリングガラスは、x方向に一緒に移動する、この行程キャリッジのところに配置構成される。調整移動11について、画像センサと、アレイと、該当する場合に、オートフォーカスおよび/または光学的像安定化機能とからなるユニットは、それに加えて、別の仕方で、yに沿って、たとえば、行程ユニット49を用いて、移動され得る。
【0071】
図4は、一実施形態による多開口撮像デバイス40の概略側断面図を示しており、アレイ14はシングルライン方式で形成され、これは、図1のダブルライン(double-line)アレイとは反対に、一ラインの光学系64だけが配置構成され得ることを意味する。これに関係なく、多開口撮像デバイス40は、ダイアフラム構造22を備え得る。
【0072】
スリット29、すなわち、距離が、アレイ14とビーム偏向手段18との間に配置構成される。この場合、多開口撮像デバイス10は、ダイアフラム構造22が少なくとも部分的にスリット29を閉じるように実装される。これに関連して、ダイアフラム構造22は、例示されているように、アレイ14、またはキャリア47、および/またはビーム偏向手段18と重なり合うものとしてよい。このことは、ダイアフラム構造22が、アレイ14および/またはビーム偏向手段18と機械的に接触してよく、ビーム偏向手段18とアレイ14との間に空間的に配置構成される領域または容積部の外側に配置構成されてよいことを意味する。アレイ14との機械的接触の代わりに、ダイアフラム構造22は、透明構造、たとえば、図7に関連して説明されているような透明構造42と機械的に接触し得る。代替的に、ダイアフラム構造22は、ダイアフラム構造がアレイ14とビーム偏向手段18との間に空間的に配置されるようにアレイ14および/またはビーム偏向手段18のところに配置構成され得る。両方の場合において、アレイ14とビーム偏向手段18との間のスリット29は、少なくとも部分的に、すなわち、少なくとも50%、少なくとも70%、少なくとも90%、または好ましくは完全に閉じられる。
【0073】
ダイアフラム構造22は、光が、特に、現在設定されている視方向の部分的視野に割り当てられている方向と異なる方向から入って来るのを防ぐか、または少なくとも部分的に防ぐように構成され得る。ダイアフラム構造22をキャリア47および/または視方向27と反対側に配置または配置構成されているビーム偏向手段18の端部に配置構成することによって、視方向27とは反対の方向から迷光が入るのを、少なくとも部分的に低減し得る。スリット29が完全に閉じられる場合、およびダイアフラム構造22が完全に不透明であるように構成されている場合、たとえば、視方向とは反対の方向からの、またはさらなる方向からのも、迷光の量はさらに完全に低減可能であるものとしてよい。迷光の低減の量を増やすことによって、増大の程度に合わせて画質の増大が得られ得る。
【0074】
ダイアフラム構造22は、固定方式で、アレイ14および/またはビーム偏向手段18のうちの少なくとも1つに機械的に接続され、そのような仕方でこの要素によって支持され得る。他の要素のところで、スリット29を閉じるために緩い、または固定された機械的接触がなされてよい。
【0075】
図5は、さらなる実施形態による多開口撮像デバイス50の概略側断面図を示しており、ビーム偏向手段18は、回転軸44の周りの回転移動38を実行するように構成され、ビーム偏向手段18の第1の位置および第2の位置は、回転移動38に基づき得られるものとしてよい。ビーム偏向手段18は、第1の位置において、光路26を第1の視方向271に誘導するように構成される。ビーム偏向手段18は、点線で例示されている、第2の位置で、光路26を第2の視方向272に偏向するようにさらに構成される。たとえば、ビーム偏向手段18は、反射するように形成されている2つの対向するメイン側174aおよび174bを備えるものとしてよく、反射する異なるメイン側174aまたは174bは異なる位置で光学系64に面している。このことは、ビーム偏向手段18が異なるメイン側を異なる位置において光路26を偏向することを意味する。
【0076】
回転移動38を用いて切り替えられ得る位置に基づき、第1のスリット291は、たとえば、多開口撮像デバイス40に関連して説明されているように、ダイアフラム構造221を用いて第1の位置で少なくとも部分的に閉じられ得る。回転移動38に基づき、スリット291は、画像センサ12から始まりビーム偏向手段18まで続く方向に平行に、またアレイ14のライン延長方向に平行に延在する方向xにおいて寸法が変化し得る。第2の位置において、スリット292は、未使用の視方向271から迷光が入るのを防ぐためにダイアフラム構造222を用いて閉じられ得る。
【0077】
多開口撮像デバイスのいくつかある要件によれば、x方向に垂直で、ライン延長方向に垂直である方向に沿って多開口撮像デバイスの低い、またはさらには最小の高さが、たとえば、厚さ方向とも称され得る、y方向に沿って、望ましい場合がある。画像センサ12および/またはアレイ14に関するビーム偏向手段18を対角線上に配置構成することで、ビーム偏向手段18の表面寸法が、画像センサ12の表面に比べて比較的大きくなり、完全に撮像しおよび/または光路26を偏向させることが可能になるものとしてよい。このことは、ビーム偏向手段18が、メイン側174aおよび/または174bがy方向に平行に配置構成されるように傾斜していたとすれば、ビーム偏向手段18は、アレイ14および/または画像センサ12を越え、最小の設置高さとする目的を妨げることになることを意味する。
【0078】
2つの例示されている位置を切り替えるために、第1の位置と第2の位置との間の方向で、メイン側174aおよび/または174bがx方向に平行に延びるようにビーム偏向手段18の制御を実行することも可能である。この場合、ビーム偏向手段18の補助部位は、スリット291および/または292の寸法が可変となるように移動時にアレイ14に近づきおよび/または離れることも可能である。しかしながら、対応する移動を可能にするためにビーム偏向手段18とアレイ14との間の有限な距離が、同時に必要になる。この距離から、説明されているダイアフラム構造221および/または222によって閉じられるものとしてよい、スリット291および/または292が得られ、対応するスリットを通して迷光が入るのを少なくとも部分的に防ぐ。
【0079】
言い換えると、偏向ミラーが回転し得るようにミラー(ビーム偏向手段)の前エッジと結像光学系のその後のアレイとの間の距離を設定することが必要になり得る。このスリットは、透明であり、したがって光透過性を有する。これにより、光がカメラの意図された視方向に対応しない方向から構造を貫通し、したがって画質を劣化させる可能性があり都合がよくない。この効果は、ダイアフラム構造221および/または222によって弱められ得る。
【0080】
ビーム偏向手段の拡大全体にわたって、したがってアレイ対物レンズの幅全体にわたって、延在する不透明なおよび/または可撓性の材料から作られたダイアフラムは、多開口撮像デバイスのビーム偏向手段の側部/エッジに配置構成されてよい。たとえば、それは封止リップ部に類似するものであってよい。
【0081】
調整移動の実装形態に基づき、ダイアフラム構造は、並進調整移動111のときに一緒に移動され、および/またはビームダイアフラム構造22のオーバーハングおよび/または可撓性実装形態に基づき回転調整移動112を補償し得る。
【0082】
本明細書で説明されている多開口撮像デバイスに関するさらなる詳細がその後説明される前に、ビーム偏向手段18の好ましい一実施形態が説明されるべきである。それは平面鏡または両面ミラーとしても形成され得るが、空間節約の実現は、楔形状に基づき達成され得る。さらに、いくつかの楔がビーム偏向手段18内に配置構成されるものとしてよく、各々、それのファセットを形成するものとしてよく、多開口撮像デバイスの各光チャネルがファセットに割り当てられる。ビーム偏向手段の参照位置に関するファセットの異なる傾斜を通して、光路は異なる方向に偏向されるものとしてよく、それにより、全対象領域のうちの異なる部分的領域がキャプチャされ得るように、方向偏向の発散、すなわち、異なる方向偏向、または2つの方向偏向の間の差を可能にする。
【0083】
ビーム偏向手段18の有利な実装形態は、図6a図6fに基づき説明されている。これらの説明は、個別に、または任意の組合せで実行され得る多くの利点を示しているが、しかしながら、このことは制限することを意図していない。例示されているダイアフラム構造22は任意選択であり、したがって実施形態はそれなしでも実装され得る。
【0084】
図6aは、本明細書において説明されているビーム偏向手段においてビーム偏向領域46のうちの1つとして使用され得るビーム偏向要素172の概略側断面図を示している。ビーム偏向要素172は、光チャネル16a〜16dのうちの1つ、複数、またはすべてに対して動作可能であるものとしてよく、横断タイプの断面を備え得る。三角形の断面が図示されているが、他の任意の多角形も可能である。代替的に、またはそれに加えて、断面は、少なくとも1つの曲面も備えるものとしてよく、特に反射面に関して、少なくともいくつかの領域内で平面状である一実装形態は、結像収差を防ぐために有利であり得る。2つのメイン側174aおよび174bは、角度σで互いの方へ傾斜するものとしてよい。角度σは、1°から89°の間の値をとるものとしてよく、好ましくは5°から60°の間の値をとり、特に好ましくは10°から30°の間の値をとる。好ましくは、メイン側174aおよび174bは、せいぜい60°の角度で互いの方へ傾斜している。
【0085】
たとえば、ビーム偏向要素172は、第1の側174a、第2の側174b、および第3の側174cを備える。少なくとも2つの側、たとえば、側部174aおよび174bは、ビーム偏向要素172が両側で反射するように構成されるように反射するように構成される。側部174aおよび174bは、ビーム偏向要素172のメイン側であってよく、すなわち、それらの側部は側部174cの表面より広い表面を有する。
【0086】
言い換えると、ビーム偏向要素172は、楔形になるように、または両面で反射するように形成されてよい。表面174cに対向して、すなわち、表面174aと174bとの間に、さらなる表面が配置構成されてよいが、しかしながら、これは表面174cより実質的に小さい。言い換えると、表面174a、174b、および174cによって形成される楔は任意にテーパーを付けないが、その尖った側に表面を備え、したがって先が尖っていない。
【0087】
図6bは、ビーム偏向要素172の概略側断面図を示しており、ビーム偏向要素172のサスペンションまたは変位軸176が説明されている。たとえば、変位軸176は回転軸44であってよい。ビーム偏向手段18においてビーム偏向要素172が回転可能にまたは並進可能に移動可能である変位軸176は、断面の重心178に関して偏心的に変位され得る。重心は、代替的に、厚さ方向182に沿って、またそれに垂直な方向184に沿ってビーム偏向要素172の寸法の半分を示す点であってもよい。
【0088】
メイン側174aは、表面法線175aを含んでいてもよいが、メイン側174bは、表面法線175bを含んでいてもよい。図5と組み合わせて説明されているように、変位軸176の周りの回転移動がビーム偏向手段の第1の位置と第2の位置との間で切り替えるために使用される場合、ビーム偏向手段の回転移動は、2つの位置の間の配向を回避するように実行されてよく、メイン側174aまたは174bのうちの一方は、アレイ14に完全に面している。これは、回転移動を用いて第1の動作状態または位置と第2の動作状態または位置とを切り替えるときに、第2のメイン側の表面法線175aおよび表面法線175bは画像センサに向かい、該当する場合に、画像センサの表面法線に平行な方向に関して少なくとも10°の角度を各時点において備えるようにも理解され得る。このようして、厚さ方向に沿ってビーム偏向手段の大きいまたはほぼ最大の拡大を示す可能性のある、角度のうちの1つが0°または180°であることが回避されるものとしてよい。
【0089】
たとえば、変位軸176は、厚さ方向182に沿って無変化であってよく、それに垂直な方向で任意のオフセットを備え得る。代替的に、厚さ方向182に沿ったオフセットも企図し得る。たとえば、変位は、ビーム偏向要素172が変位軸176の周りを回転した後に、重心178の周りを回転したときのようにより大きいアクチュエータ行程が得られるように実行され得る。したがって、変位軸176の変位を用いて、側部174aと174bとの間のエッジが回転後に移動される距離は、重心178の周りの回転と比較して同じ回転角度で増加し得る。好ましくは、ビーム偏向要素172は、側部174aと174bとの間のエッジ、すなわち、楔形断面の尖っている側が画像センサに面するように配置構成される。小さな回転移動を用いることで、それぞれ他の側部174aまたは174bは、光チャネルの光路を偏向するものとしてよい。回転は、メイン側が画像センサに垂直になるような仕方でのビーム偏向要素172の移動は不要なので、厚さ方向182に沿ったビーム偏向手段の空間要件が低いように実行されてよいことは明らかである。
【0090】
側部174cは、補助側または背面と称されてもよい。いくつかのビーム偏向要素は、接続要素が側部174cに配置構成されるか、またはビーム偏向要素の断面を貫通するように互いに接続され得る、すなわち、たとえば、変位軸176の領域内の、ビーム偏向要素上に配置構成される。特に、保持要素は、これが方向182に沿ってビーム偏向要素172を越えて突き出ない、または少し、すなわち、せいぜい50°、せいぜい30°、またはせいぜい10°となるように配置構成されるものとしてよく、したがって、保持要素は、方向182に沿って構造全体の拡大を大きくするまたは決定することをしない。代替的に、厚さ方向182の拡大は、光チャネルのレンズによって決定されるものとしてよく、すなわち、これらは最小の厚さを画成する寸法を含む。
【0091】
ビーム偏向要素172は、ガラス、セラミック、ガラスセラミック、プラスチック、金属、またはこれらの材料および/もしくはさらなる材料の任意の組合せから形成され得る。
【0092】
言い換えると、ビーム偏向要素172は、先端部、すなわち、メイン側174aと174bとの間のエッジが画像センサの方に向けられるように配置構成され得る。ビーム偏向要素を保持することは、背面にまたはビーム偏向要素の内部だけでなされるように実行されてよい、すなわち、メイン側は覆われない。相互に保持するまたは接続する要素は、背面174c上に延在し得る。ビーム偏向要素172の回転軸は偏心的に配置構成され得る。
【0093】
図6cは、画像センサ12と、並べて配置構成されている光チャネル16a〜16dのシングルラインアレイ14とを備える多開口撮像デバイス60の概略斜視図を示している。ビーム偏向手段18は、光チャネルの数に対応し得る個数のビーム偏向要素172a〜172dを備える。代替的に、たとえば、少なくとも1つのビーム偏向要素が2つの光チャネルによって使用される場合に、より少数のビーム偏向要素が配置構成され得る。代替的に、たとえば、ビーム偏向手段18の偏向方向を切り替えることが並進移動によって実行される場合に、また、さらに多くの数の要素が配置構成され得る。各ビーム偏向要素172a〜172dは、光チャネル16a〜16dに割り当てられ得る。ビーム偏向要素172a〜172dは、多数の要素172として形成されてよい。代替的に、少なくとも2つの、いくつかの、またはすべてのビーム偏向要素172a〜172dが、互いに一体として形成され得る。
【0094】
図6dは、ビーム偏向要素172の概略側断面図を示しており、その断面はフリーフォーム表面として形成され、これは、必ずしも単純な三角形または正方形に対応するわけではないことを意味している。したがって、側部174cは、保持要素を固定することを可能にする陥凹部186を備えるものとしてよく、陥凹部186は、突出要素、たとえば、さねはぎシステムの溝として形成されてもよい。断面は、メイン側174aおよび174bより小さい表面拡大を有し、それを互いに接続する第4の側174dをさらに備える。
【0095】
図6eは、第1のビーム偏向要素172aおよび例示されている方向で前者の背後に配置構成されている第2のビーム偏向要素172bの概略側断面図を示している。この場合、陥凹部186aおよび186bは、それらが実質的に合同になり、陥凹部内の接続要素の配置構成が可能なように配置構成され得る。
【0096】
図6fは、たとえば、接続要素188と接続されている4つのビーム偏向要素172a〜172dを備える、ビーム偏向手段18の概略斜視図を示している。接続要素は、アクチュエータ方式によって並進可能および/または回転可能に移動されるように使用可能であるものとしてよい。接続要素188は、一体となるように構成されてよく、延長方向、たとえば、y方向にわたって、ビーム偏向要素172a〜172dのところで、またはその中で延在し得る。代替的に、接続要素188は、また、たとえば、ビーム偏向要素172a〜172dが一体として形成される場合に、ビーム偏向手段18の少なくとも一方の側とのみ接続されてよい。代替的に、アクチュエータとの接続および/またはビーム偏向要素172a〜172dの接続は、任意の他の仕方で、たとえば、糊付け、接着剤による接着、またはハンダ付けを用いて、実行されてもよい。ビーム偏向要素172a〜172dは、ビーム偏向要素172a〜172dの間にギャップが全く実装されないか、または実装されるギャップが可能な限り少ないように、小さい距離で、またはさらには互いに接触して直接的に形成され得る。
【0097】
このことは、ビーム偏向手段18が隣接して配置構成されているファセットのアレイとして形成されるものとしてよく、各光チャネルはファセットのうちの1つに割り当てられることを意味する。ダイアフラム構造は、ファセットのアレイ上に延在するものとしてよい。
【0098】
ビーム偏向手段は、第1の反射するメイン側174aと第2の反射するメイン側174bとを備えるものとしてよく、メイン側は、60°以下の角度δで互いの方へ傾斜し得る。
【0099】
図7a図7cに基づき、図6a図4fによる楔形ファセットを備える回転可能に移動可能であるビーム偏向手段18を具備する多開口撮像デバイス70がその後説明される。アレイ14の光学系64は、多分割レンズ組合せとして実験的に形成されている。多開口撮像デバイス70は、たとえばメイン側174aと174bとの間の接続エッジに、または補助側174dに機械的に固定され得るダイアフラム構造22を備える。光学系64は、ハウジング21内に配置構成され得る。任意選択で、画像センサ12もハウジング21内に配置構成されてよい。その後の説明は、光学系64が配置構成されるハウジングに関するが、キャリア47について説明されているように、たとえば、キャリアを備える、光チャネルのアレイに制限することなく、また、同じ説明が当てはまる。光学系64は、場合によっては透明になるように形成される、キャリア47に保持構造を介して直接的にまたは間接的に配置構成され得る。たとえば、ハウジング21は、メイン側211および212を備えるものとしてよく、メイン側211は、ビーム偏向手段18に面するように配置構成され、ビーム偏向手段18に隣接したハウジング21の側部を設けることを特徴とする。たとえば、図1を考えたときに、キャリア47は、また、ビーム偏向手段18に面するように配置構成されているメイン側と、画像センサ12に面するように配置構成されているメイン側とを備え得る。補助側213および214は、2つのメイン側211および212を互いに接続し得る。ハウジング21の少なくともメイン側211も、アレイのメイン側と理解され得る。
【0100】
次に、図7aは、ビーム偏向手段18が第1の位置にある多開口撮像デバイス70を例示しており、ダイアフラム構造22はスリット291を閉じている。
【0101】
図7bは、ビーム偏向手段18の第2の位置にある多開口撮像デバイス70を例示しており、ダイアフラム構造22はスリット292を閉じている。図7aに例示されている第1の位置において、ダイアフラム構造は、外側の可能な限り遠くで機械的に接触するものとしてよく、これは補助側214に隣接していることを意味し、このことは、メイン側211が補助側214に、または図1に例示的に示されているように、補助側214に隣接していることを意味している。図7bは、ダイアフラム構造22がハウジング21に、またはアレイに、補助側213に隣接して、機械的に接触する状況を例示している。
【0102】
図7cは、第1の位置と第2の位置との間の任意選択の中間位置における多開口撮像デバイス70を例示している。この第3の位置において、ダイアフラム構造22は、補助側213と214との間の領域の方へ向けられている。図7aおよび図7bによる例示に基づき、ダイアフラム構造22は、弾性的にまたは可撓性を有するように形成されるものとしてよく、たとえば、可撓性ダイアフラムまたは封止リップ部を提供し得る。このために、ダイアフラム構造22は、シリコン、ポリウレタン、または他のエラストマーなどの弾性材料を含み得る。第1の位置と第2の位置とを切り替えるときに、ダイアフラム構造22はメイン側211を軽くかすめるものとしてよい。しかしながら、図7cに例示されているように、ビーム偏向手段18とアレイ14、またはハウジング21との間の可変距離に基づき、ダイアフラム構造22とアレイ14またはハウジング21との接触がない状況が得られるものとしてよい。このために、多開口撮像デバイス70は、たとえば、ビーム偏向手段18および/またはアレイ14を並進可能に移動し、アレイとビーム偏向手段18との間の距離を一時的に広げるように構成されている、アクチュエータを備えるものとしてよい。このことは、多開口撮像デバイス70が、アレイとダイアフラム構造との間の距離を一時的に広げるためにビーム偏向手段の回転移動時にアレイ14とダイアフラム構造22との間の並進移動を行うように構成され得ることを意味する。
【0103】
言い換えると、ミラーのすべてのファセットにわたって、したがってアレイ対物レンズの幅全体にわたって延びる、可撓性材料から好ましくは作られる、ダイアフラムは、線形チャネル配置構成を有する多開口撮像デバイスのビーム偏向手段の側部/エッジのところに配置構成される。それは、封止リップ部に類似している。2つの使用状態、すなわち、第1の位置および第2の位置において、可撓性ダイアフラムは、アレイ対物レンズの上または下のいずれかに配置構成され、迷光がカメラ内に入射することができないか、または限られた程度でしか入射し得ないようにアレイ対物レンズとビーム偏向手段との間のギャップを閉じる。カメラが使用されず、ビーム偏向手段が中間位置に待機する、第3の状態において、可撓性ダイアフラムは、アレイ対物レンズの上にも下にも配置され得ない。
【0104】
図8は、一実施形態による多開口撮像デバイス80の概略側断面図を示している。多開口撮像デバイス70と比較すると、多開口撮像デバイス80は、力をアレイ14、またはハウジング21、および/またはビーム偏向手段18に印加するように構成されている光学的イメージスタビライザ34を備える。発生する力により、画像センサ12とアレイ14とビーム偏向手段18との間の相対的移動は、たとえば、画像センサ12によってもたらされる像の像軸の一方または両方に沿ったアレイ14の並進変位によって得られるものとしてよい。たとえば、これに対してもたらされるのは、ライン延長方向に平行なz方向に沿った、または像軸36および/もしくは39に平行に配置構成され得る、またはこの方向に少なくとも部分的に延び得るy方向に沿った移動であってよく、このことはこれらが対応する方向成分を含むことを意味する。代替的に、またはそれに加えて、ビーム偏向手段18の、たとえば、y方向に沿った、並進相対的移動、および/または軸176の周りの回転移動は、たとえば、y方向に平行に配置構成されている、像方向36または39に沿って光学的像安定化を得るために生成され得る。これは、この場合に、アレイ14は一方向、たとえばz方向に沿ってのみ移動され、像安定化は、ビーム偏向手段の移動と一緒に2つの方向に沿って得られ、方向を切り替えるための移動自由度はすでにもたらされている可能性があるので、低い複雑度を可能にする。アレイ14の移動について代替的に、またはそれに加えて、光学的像安定化を完全にまたは部分的に実装するために画像センサ12の移動ももたらされ得る。光学的像安定化は、部分的視野または全視野がキャプチャされているキャプチャプロセスにおいて、多開口撮像デバイス60が視野がキャプチャされている対象領域に関して移動される場合に有利であり得る。像安定化のための回転移動は回転移動38と重なり合い、たとえば、同じアクチュエータによってもたらされ得る。
【0105】
光学的イメージスタビライザ34は、この移動を少なくとも部分的に妨げて像の震えを低減するか、または防ぐように構成され得る。たとえば、ライン延長方向zに平行に配置構成され得る、第1の像軸36に沿った光学的像安定化では、光学的イメージスタビライザ34は、画像センサ12とアレイ14とビーム偏向手段18との間に第1の相対的移動を発生させるように構成され得る。垂直に配置構成されている第2の像軸39に沿った光学的像安定化では、光学的イメージスタビライザ34は、画像センサ12とアレイ14とビーム偏向手段18との間に第2の相対的移動を発生させるように構成され得る。第1の相対的移動について、光学的イメージスタビライザ34は、アレイ14、または画像センサ12を、像軸36に沿って並進可能にシフトさせるように構成され得る。代替的に、またはそれに加えて、光学的イメージスタビライザ34は、像軸36に沿ってビーム偏向手段18の並進移動を発生させるように構成され得る。この場合、光学的イメージスタビライザ34は、画像センサ12とアレイ14とビーム偏向手段18との間に対応する相対的移動が生じるようにコンポーネントの移動を実行するように構成される。相対的移動は、ライン延長方向zに平行に、また光路に垂直に実行され得る。しかしながら、画像センサ12に関してアレイ14を並進移動させて、たとえば、さらなるコンポーネントに関して画像センサ12の電子回路に可能な限り小さい機械的応力を加えるか、または全く加えないことは有利な場合がある。
【0106】
第2の相対的移動を発生させるために、光学的イメージスタビライザ34は、ビーム偏向手段18の回転移動を発生させるか、またはそれを可能にするように構成され得る。それは、ビーム偏向手段18を回転可能に切り替えるための移動と重ね合わされ得る。個別のアクチュエータまたは組み合わされたアクチュエータ手段が、両方の回転移動のために用意されるものとしてよい。代替的に、またはそれに加えて、光学的イメージスタビライザは、像軸39に沿った画像センサ12とアレイ14との間の並進相対的移動および/またはアレイ14とビーム偏向手段18との間の並進相対的移動をもたらすように構成されるものとしてよく、対応するアクチュエータはこれに合わせて配置構成され得る。たとえば、回転移動38に平行に、またはその一部として、回転移動を発生させるために、光学的イメージスタビライザ34は、たとえば、回転移動38を発生させるように構成されているアクチュエータを備え得る。像安定化を得ることで第1の相対的移動および第2の相対的移動を並進相対的移動として制御するように光学的イメージスタビライザ34を実装することが可能であるが、回転移動38としての第2の相対的移動の実装は、第2の像軸39に沿ったコンポーネントの並進移動がこの場合に回避され得るので有利であり得る。この方向は、多開口撮像デバイス60の厚さ方向に平行であるものとしてよく、これはいくつかの実施形態により、可能な限り低く保たれるべきである。そのような目的は、回転移動によって達成され得る。
【0107】
光学的イメージスタビライザ34によってトリガーされ得る、図8およびz方向に沿ったアレイ14の回転移動38および/または並進移動を考えると、ダイアフラム構造22の変形が相対的移動に基づき生じるので、それぞれの相対的移動が光学的イメージスタビライザ34によって引き起こされる場合、ダイアフラム構造22の弾性、またはダイアフラム構造の剛性、さらにはダイアフラム構造22とアレイ14、またはビーム偏向手段18との間の機械的接触に基づき復元力が得られるものとしてよい。代替的に、またはそれに加えて、そのような復元力は、少なくとも部分的に、別々のバネ構造、たとえば、弾性的接続要素によって得られ得る。復元力は、光学的イメージスタビライザ34の力が戻された場合に光学的イメージスタビライザ34を用いて相対的移動と関連して最大相対的移動、すなわち、最大偏向の少なくとも30%、少なくとも20%、または少なくとも10%を復元するように構成され得る。
【0108】
言い換えると、可撓性ダイアフラム22それ自体、または導入されるか、または取り付けられる追加の要素は、ビーム偏向手段のためのバネ要素として働くものとしてよく、したがって、たとえば、光学的像安定化のために後者を使用したときに復元効果を有し得る。
【0109】
光学的イメージスタビライザが、可撓性ダイアフラムと組み合わせて説明されているが、光学的イメージスタビライザは、また、それが存在しない場合に、たとえば、多開口撮像デバイス10において配置構成され得る。
【0110】
図9は、ビーム偏向手段18から始まる視方向271および272に沿って配置構成されている透明構造37aおよび37bを備える、一実施形態による多開口撮像デバイス90の概略斜視図を示している。透明構造37aおよび37bは、ハウジング21、ビーム偏向手段18、またはさらなるコンポーネントの方向で汚れまたは粒子が進入するのを防ぐように構成され得る。代替的に、またはそれに加えて、ビーム偏向手段18に、たとえば、使用者の指または同様のものを用いて触れることは、防止されるか、またはより困難にされ得る。たとえば、多開口撮像デバイス90は、2つの視方向および2つの透明構造37aおよび37bを備え、透明構造37aおよび37bの各々は、それぞれ、視方向271および272のうちの一方に関連付けられ得る。たとえば、1つの視方向のみを備えるように形成され得る、多開口撮像デバイス10を考えたときに、多開口撮像デバイスは、また、1つの透明構造37だけで実装され得る。
【0111】
たとえば、透明構造37aは、ガラス材料および/またはポリマー材料を含むものとしてよく、多開口撮像デバイス90によってキャプチャされるべき電磁放射線に対して本質的に透明であるように形成されるものとしてよく、フィルタが透明構造の中に導入されることも企図できる。透明構造37aおよび/または37bは、低い表面粗さを備えるものとしてよく、これは、透明構造37aおよび/または37bが滑らかになるように実装され得ることを意味する。
【0112】
しかしながら、透明構造37aおよび/または37bに対する粗さRaの例示的な値は、制限するものとして解釈されるべきでなく、たとえば、せいぜい0.03μm、せいぜい0.005μm、またはせいぜい0.0005μmであってよい。ダイアフラム構造22は、粗さの値が透明構造37aおよび/または37bの粗さより比較的大きい粗さを備え得る。これは、透明構造37aおよび/または37bのところのダイアフラム構造22の接着を、その2つの間の機械的接触の後に、より困難にするかまたはそれを回避することを可能にする。これは、アレイ14との機械的接触の代わりに、ダイアフラム構造22が、たとえば、一時的に交互する仕方で、透明構造37aおよび/または37bとの機械的接触を行い得ることを意味する。第1の位置および第2の位置において、ダイアフラム構造は、一方ではアレイ14、または透明構造37aおよび37bの一方との、他方ではビーム偏向手段18との機械的接触をし得る。
【0113】
言い換えると、可撓性ダイアフラム22は、ダイアフラムがカバーガラス37aおよび/または37bなどの滑らかな表面に接着し得ないように粗い表面を備えてよく、および/またはわずかな力がビーム偏向手段によって印加された後に表面から解放され得る。このことは、接着が存在していても、ダイアフラム構造22は、回転移動により透明構造37aおよび/または37bから容易に解放され得ることを意味する。
【0114】
図10は、任意選択で透明構造37aおよび/または37bを備え得るが、それなしでも容易に実装可能である、多開口撮像デバイス100の概略側断面図を示している。多開口撮像デバイス80は、ダイアフラム構造22と類似の方式で形成され得るダイアフラム構造22'を備えるが、しかしながら、これは、それに加えて、磁気または磁化可能材料、たとえば、強磁性または常磁性材料を含み得る。たとえば、これらの材料は、粒子、チップ、鋸屑、または研磨屑としてダイアフラム構造22の材料中に持ち込まれ得る。このことは、ダイアフラム構造22'が磁性材料を含み得ることを意味する。磁場供給要素44aおよび/または44b、すなわち、磁場源は、ハウジング21ならびに/または透明構造37aおよび/もしくは37bに隣接して、したがってダイアフラム構造22に隣接して配置構成され得る。磁場供給要素44aおよび/または44bは、好ましくは、時間的に交互する、好ましくは強いまたは好ましくは弱い磁場を供給するか、または全く供給しない要素であってよい。たとえば、磁場源44aおよび44bは電磁石であってよい。代替的に、またはそれに加えて、磁場源は、たとえば、永久磁石を含み、ダイアフラム構造22'への距離が可変であり、小さい距離では比較的大きい磁場を供給し、大きい距離では比較的小さい磁場を供給するように配置構成され得ることも企図可能である。
【0115】
磁場源44aおよび44bの磁場は、磁場に基づき引力がダイアフラム構造22'に印加され、引力がビーム偏向手段18の回転移動を実行するか、または少なくともそれを支持するように構成され得る。代替的に、またはそれに加えて、ビーム偏向手段18の回転移動の後に、アレイ14の視野内に場合によってはとどまるダイアフラム構造22'の一部がこの視野から外に移動される、すなわち、引力によって引き出されることも企図され得る。
【0116】
言い換えると、ビーム偏向手段18の回転移動に加えて可撓性ダイアフラムを引き付ける電磁石は、ダイアフラムがなおいっそう改善された遮光効果を有するようにコイル、および該当する場合に追加の磁気コアからアレイ対物レンズの上および下に形成され得る。
【0117】
ダイアフラム構造の上で説明されている配置構成は、多開口撮像デバイスにおける迷光抑制の改善を可能にする。そのような多開口撮像デバイスおよび/または多開口撮像システムは、線形チャネル配置構成および最小の設置サイズを有するコンセプトにおいて使用され得る。
【0118】
一実施形態により、2つのまたはいくつかのまたは場合によってはすべての光チャネルに対してチャネル固有の方式で、多開口撮像デバイス100または本明細書において説明されている多開口撮像デバイスのうちの別のデバイス、たとえば、多開口撮像デバイス10、10'、40、50、60、70、80、または90の焦点を変化させるように構成されている焦点調整手段が提供され得る。このために、アクチュエータが、たとえば、アレイ14、またはアレイ14全体の少なくとも1つの光学系と、画像センサ12との間の距離を変化させるために使用され得る。この結果、たとえば、光チャネルの光学系、すなわち、対物レンズが軸方向に移動された場合に、光学系または、アレイ14と、ビーム偏向手段18との間の距離が変化し得る。可撓性または弾性ダイアフラムを用いることで、アレイ14とビーム偏向手段18との間のスリットは、たとえば、x方向に沿ったダイアフラム構造22'の軸方向拡大がアレイ14とビーム偏向手段18との間の最大距離以上である場合に、閉じたままであるものとしてよい。距離を小さくし、および/またはその後それを大きくすると、ダイアフラム構造22'の線形圧縮/延長または変形によりスリットが閉じたままに保たれ得る。
【0119】
光学的像安定化のための手段、すなわち光学的イメージスタビライザ、および焦点調整手段が可撓性ダイアフラムに関連して説明されているが、手段は両方とも、個別に、または組み合わせて、さらにはそのようなダイアフラムがない場合にも、提供され得る。たとえば、アレイ14および画像センサ12は、たとえば、移動可能行程キャリッジ内で、移動可能行程キャリッジのところで、または移動可能行程キャリッジ上で配置構成し、移動することによって光学的スタビライザのアクチュエータによって相互ユニットとして移動され得る。このユニット内に、アレイの1つの、いくつかの、またはすべての光学系とビーム偏向手段18および/または画像センサ12との間の移動を行わせるための1つまたはいくつかのアクチュエータが設けられるものとしてよい。そのような移動は、光学系および/またはそれらの光学系に接続されているあり得るキャリアを移動することによって行われ得る。
【0120】
調整移動において、光学的像安定化のための手段および/または焦点調整手段は、それに応じて一緒に移動されてよい。代替的に、またはそれに加えて、同じアクチュエータまたは作動手段も、移動を生じさせるために使用されてよい。
【0121】
図11は、たとえば、上で説明されている多開口撮像デバイス、たとえば、多開口撮像デバイス10、10'、40、50、60、70、80、90、または100とともに、検出され得るような、全視野71の概略図を示している。上で説明されている多開口撮像デバイスは、全視野のうちの4つの部分的視野72a〜72dをキャプチャするための4つの光チャネルを例示的に備えるように説明されているが、本明細書において説明されている多開口撮像デバイスは、また、異なる数の光チャネルとともに、たとえば、少なくとも2つ、少なくとも3つ、少なくとも4つ、少なくとも10個、少なくとも20個、またはそれ以上の個数の光チャネルとともに形成されてもよいことに留意されたい。さらに、部分的視野72a〜72dのうちのいくつかは、複数の光チャネルによりキャプチャされ得ることが企図可能であることに留意されたい。多開口撮像デバイスの光チャネルの光路は、異なる部分的視野72a〜72dに誘導されるものとしてよく、各光チャネルは、部分的視野72〜dを割り当てられ得る。たとえば、部分的視野72a〜72dは互いに重なり合い、個別の部分的視野を全視野に結合することを可能にする。多開口撮像デバイスが4とは異なる個数の光チャネルを備える場合、全視野71は、4とは異なる個数の部分的視野を備え得る。代替的に、またはそれに加えて、ステレオカメラ、3眼カメラ、4眼カメラ、またはそれ以上の多眼カメラを形成するために、少なくとも1つの部分的視野72a〜72dは、第2の光チャネルによって、またはより多くのモジュール(多開口撮像デバイス)を有するより多くの光チャネルによってキャプチャされ得る。個別のモジュールは、ピクセルの分数単位でシフトされてよく、超解像度の方法を実装するように構成され得る。たとえば、光チャネルの数および/または多開口撮像デバイスの数および/または部分的視野の数は任意である。
【0122】
図12は、ハウジング73と第1の多開口撮像デバイス10aとハウジング73内に配置構成されている第2の多開口撮像デバイス10bとを備える撮像システム120の概略斜視図を示している。撮像システム120は、多開口撮像デバイス10aおよび10bによる立体視方式で、全視野71を少なくとも部分的に、たとえば、多開口撮像デバイス10aおよび10bのキャプチャ領域のうちの重なり合う領域内でキャプチャするように構成される。重なり合う領域は、全視野71の一部を形成し得るが、全視野71をほとんど全体にわたって、または全体にわたって、すなわち、少なくとも95%、少なくとも97%、または少なくとも99%の比で覆うものとしてよい。たとえば、全視野71は、メイン側74aから遠ざかる方に面するハウジング73のメイン側74bに配置構成される。たとえば、多開口撮像デバイス10aおよび10bは、それぞれ、透明領域68aおよび68を通して全視野71をキャプチャするものとしてよく、メイン側74b内に配置構成されるダイアフラム78aおよび78cは、少なくとも部分的に透明であってよい。メイン側74aに配置構成されているダイアフラム78bおよび78dは、それぞれ、メイン側74aに面する側からの、多開口撮像デバイス10aおよび/または10bの記録を誤らせるおそれのある、一定量の迷光が少なくとも低減されるように透明領域68bおよび68dを少なくとも部分的に光学的に閉じる透明領域78bおよび78dを備えるものとしてよい。メイン側74aは、装置30のハウジング側23aに相当するものであってよい。同様に、メイン側74bは、ハウジング側23bに相当するものであってよい。ダイアフラム68a〜68dを設ける代わりに、一方または両方の多開口撮像デバイス10aおよび/もしくは10bのビーム偏向手段または相互ビーム偏向手段は、ハウジング73から外に移動され得る。
【0123】
多開口撮像デバイス10aおよび10bは、互いから相隔てて並ぶ配置構成をとるように例示されているが、多開口撮像デバイス10aおよび10bは、空間的に隣接するか、または組み合わせた方式で配置構成されてもよい。たとえば、撮像デバイス10aおよび10bのアレイは、互いに隣り合って、または互いに平行に配置構成されてよい。アレイは、マルチライン方式またはシングルライン方式で形成されてよく、互いの方へ配置構成されているラインを形成するものとしてよく、各多開口撮像デバイス10aおよび10bは、たとえば、シングルラインアレイを備える。多開口撮像デバイス10aおよび10bは、相互ビーム偏向手段および/または相互キャリア47および/または相互画像センサ12を備え得る。このことは、多開口撮像デバイス10aおよび10bおよび/またはさらなる多開口撮像デバイスは、相互画像センサ、多開口撮像デバイスを制御しおよび/もしくは値を読み出すための相互電子キャリア、ならびに/または相互ビーム偏向ユニットを備え得ることを意味する。多開口撮像デバイス10aおよび/または10bの代わりに、またはそれに加えて、少なくとも多開口撮像デバイス10'、40、50、60、70、80、90、および/もしくは100ならびに/またはさらなる多開口撮像デバイス10が配置構成され得る。上で説明されている相互要素、たとえば、ビーム偏向手段18またはアレイ14は、ビーム偏向手段の移動がいくつかのモジュールの光チャネルに対して相互に作用し得り、たとえば、相互光学的像安定化を可能にするので、相互光学的イメージスタビライザによって使用され得る。したがって、光学的イメージスタビライザは、また、いくつかのモジュールに対して相互に実装されるものとしてよく、および/または相互参照チャネルがいくつかのモジュールに対して使用され得る。
【0124】
透明領域68a〜68dは、それに加えて、使用されていない場合に光学的構造を覆う切り替え可能なダイアフラム78a〜78dを装備するものとしてよい。ダイアフラム78a〜78dは、機械的に移動される部分を備え得る。機械的に移動される部分の移動は、アクチュエータを使用して実行され得る、たとえば、他の移動に対してもたらされ得る。ダイアフラム78a〜78dは、代替的にまたはそれに加えて、電気的に制御可能であり、エレクトロクロミック層またはエレクトロクロミック層シーケンスを含む、すなわち、エレクトロクロミックダイアフラムとして形成され得る。
【0125】
図13は、たとえば、撮像システム120内に配置構成され得るような、第1の多開口撮像デバイス10aおよび第2の多開口撮像デバイス10bを含む概略構造を示している。アレイ14aおよび14bは、シングルライン方式で形成されてよく、相互ラインを形成し得る。画像センサ12aおよび12bは、相互回路基板または相互屈曲基板などの、相互基板、または相互回路キャリア上でマークされ得る。代替的に、画像センサ12aおよび12bは、異なる基板も含み得る。これらの代替的形態の異なる混合も明らかに可能であり、たとえば、多開口撮像デバイスは相互画像センサ、相互アレイおよび/または相互ビーム偏向手段18を備え、さらにはさらなる多開口撮像デバイスは別々のコンポーネントを備える。相互画像センサ、相互アレイ、および/または相互ビーム偏向手段の利点は、それぞれのコンポーネントの移動が、少ない数のアクチュエータを制御することによってより高い精度で得られ、アクチュエータ間の同期が使用されるか、または回避され得る。さらに、高い熱安定性も得られるものとしてよい。代替的に、またはそれに加えて、他のおよび/または異なる多開口撮像デバイスは、相互アレイ、相互画像センサ、および/または相互ビーム偏向手段を備え得る。
【0126】
図14は、多開口撮像デバイス、たとえば、多開口撮像デバイス10を提供する方法1400の概略流れ図を示している。
【0127】
方法1400は、画像センサを提供するステップ1410を含む。ステップ1420は、各光チャネルが全視野の部分的視野を画像センサの画像センサ領域上に結像するための光学系を備えるように光チャネルのアレイを配置構成することを含む。ステップ1430は、切り替え移動を実行することによって第1の回転位置と第2の回転位置との間で切り替え可能であり、第1の回転位置において、光チャネルの光路を第1の視方向に偏向し、第2の回転位置において、光チャネルの光路を第2の視方向に偏向するように構成されるようにビーム偏向手段を配置構成することを含む。この方法は、アレイが、切り替え移動に基づき、ビーム偏向手段に関するアレイの配向を調整するための調整移動を実行するように構成されるように実行される。
【0128】
図15は、像領域をキャプチャするための方法1500の概略流れ図を示している。
【0129】
方法1500は、光チャネルのアレイにより第1の対象領域を撮像するステップ1510を含み、各光チャネルは、全視野のうちの部分的視野を画像センサの画像センサ領域上に結像するための光学系を備え、これは第1のビーム偏向手段を第1の回転位置に置いて光チャネルの光路を第1の視方向に偏向することによって行う。ステップ1520は、ビーム偏向手段の切り替え移動を実行することを含み、それにより、それを第1の回転位置と第2の回転位置との間で切り替えて、光チャネルが第2の視方向に偏向されるようにする。ステップ1530は、切り替え移動に基づきアレイの調整移動を実行し、それにより、ビーム偏向手段に関するアレイの配向を調整することを含む。
【0130】
いくつかの態様はデバイスの文脈の範囲内で説明されているとしても、前記態様は対応する方法の説明にもなっていると理解され、したがって、デバイスのブロックまたは構造コンポーネントも対応する方法ステップとして、または方法ステップの特徴として理解されるべきである。それと同様に、方法ステップの文脈の範囲内において、または方法ステップとして説明されている態様は、対応するデバイスの対応するブロックまたは詳細または特徴の説明ともなっている。
【0131】
上で説明されている実施形態は、単に、本発明の原理の例示を表しているだけである。他の当業者が本明細書において説明されている配置構成および詳細の修正形態および変更形態を正しく認識するであろうであろうことは理解される。これは、本発明が実施形態の記述および説明を用いて本明細書において提示された具体的詳細によって制限されるのではなく次の請求項の範囲によってのみ制限されることが意図されているからである。
【符号の説明】
【0132】
10 多開口撮像デバイス
10a 第1の多開口撮像デバイス
10b 第2の多開口撮像デバイス
10' 多開口撮像デバイス
11 調整移動
111 並進調整移動、調整移動、横方向調整移動、並進移動
112 回転調整移動、調整移動、回転移動
12 画像センサ
12a、12b 画像センサ
13 アクチュエータ
14 アレイ
14a、14b アレイ
15 エッジビーム
16a〜16h 光チャネル
17 並進移動、横方向移動
18 ビーム偏向手段
18'' ビーム偏向手段
19a〜19c レンズ、光学要素
21 ハウジング
211、212 メイン側
213、214 補助側
22 ダイアフラム構造、ビームダイアフラム構造、可撓性ダイアフラム
22' ダイアフラム構造
221 ダイアフラム構造
222 ダイアフラム構造
23 ハウジング
23a 側面、ハウジング側
23b 側面、ハウジング側
23c 側面、カバー
24a〜24h 画像センサ領域
24''a、24''e 画像センサ領域
25 ハウジング容積部
26 光路
26a〜26h 光路
271 視方向、第1の視方向
272 視方向、第2の視方向
28 並進移動方向、横方向移動方向
29 スリット
291 第1のスリット、スリット
292 スリット
30 デバイス、多開口撮像デバイス
33a 切り替え可能ダイアフラム、ダイアフラム、第1のダイアフラム
33b 切り替え可能ダイアフラム、ダイアフラム、第2のダイアフラム
34 光学的イメージスタビライザ
36 像軸、像方向、第1の像軸
37 カバー、透明構造
37a、37b 透明なカバー、カバー、透明構造、カバーガラス
38 回転移動
39 像軸、像方向、第2の像軸
40 多開口撮像デバイス
42 透明構造
43 行程キャリッジ
44 回転軸
44a、44b 磁場供給要素、磁場源
45 フレーム、固定構造
46 ビーム偏向領域
47 キャリア
49 行程ユニット
50 多開口撮像デバイス
51a、51b 駆動装置、アクチュエータ
60 多開口撮像デバイス
64 光学系
64a〜64h 光学系
64''a、64''e 光学系
68a〜68d 透明領域、ダイアフラム
70 多開口撮像デバイス
71 全視野
72a〜72d 部分的視野
73 ハウジング
74a、74b メイン側
78a、78b、78c、78d ダイアフラム、(78b、78dのみ)透明領域
80 多開口撮像デバイス
90 多開口撮像デバイス
100 多開口撮像デバイス
120 撮像システム
172 ビーム偏向要素
172a ビーム偏向要素、第1のビーム偏向要素
172b ビーム偏向要素、第2のビーム偏向要素
172c ビーム偏向要素
172d ビーム偏向要素
174a メイン側、メイン表面、側部、第1の側、表面
174b メイン側、メイン表面、側部、第2の側、表面
174c 第3の側、側部、表面、背面
174d 第4の側、補助側
175a 表面法線
175b 表面法線
176 サスペンションまたは変位軸
178 重心
182 厚さ方向
184 方向
186 陥凹部
186a、186b 陥凹部
188 接続要素
1400 方法
1500 方法
図1a
図1b
図1c
図1d
図1e
図1f
図2a
図2b
図2c
図3a
図3b
図3c
図3d
図3e
図3f
図4
図5
図6a
図6b
図6c
図6d
図6e
図6f
図7a
図7b
図7c
図8
図9
図10
図11
図12
図13
図14
図15
【手続補正書】
【提出日】2019年10月8日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
多開口撮像デバイスであって、
画像センサ(12)と、
光チャネル(16a〜16h)のアレイ(14)であって、各光チャネル(16a〜16h)は全視野(71)のうちの部分的視野(72a〜72d)を前記画像センサ(12)の画像センサ領域(24a〜24h)上に結像するための光学系(64a〜64h)を備える、アレイ(14)と、
切り替え移動を実行することによって第1の回転位置と第2の回転位置との間で切り替え可能であり、前記第1の回転位置において、前記光チャネル(16a〜16h)の光路(26a〜26h)を第1の視方向(271)に偏向し、前記第2の回転位置において、前記光チャネル(16a〜16h)の前記光路(26a〜26h)を第2の視方向(272)に偏向するように構成されているビーム偏向手段(18)とを備え、
前記アレイ(14)は、前記切り替え移動に基づき、前記ビーム偏向手段(18)に関する前記アレイ(14)の配向を調整するための調整移動(11)を実行するように構成される、多開口撮像デバイス。
【請求項2】
前記部分的視野(72a〜72d)は互いに重なり合い、個別の部分的視野を全視野に結合することを可能にする、請求項1に記載の多開口撮像デバイス。
【請求項3】
前記視方向は、互いの方へ許容範囲内で反転されるように配置構成される、請求項1から2のいずれか一項に記載の多開口撮像デバイス。
【請求項4】
前記ビーム偏向手段(18)は、前記第1の位置において、前記ビーム偏向手段の第1のメイン側とともに前記光路を前記第1の視方向(271)に誘導し、前記第2の位置において、第2のメイン側とともに前記光路を前記第2の視方向(272)に誘導するように構成される、請求項1から3のいずれか一項に記載の多開口撮像デバイス。
【請求項5】
前記ビーム偏向手段は、前記アレイ(14)のすべての光チャネル(16a〜16h)を偏向するように構成される、請求項1から4のいずれか一項に記載の多開口撮像デバイス。
【請求項6】
前記調整移動(11)は、それ自体を焦点調整および光学的像安定化のための移動と区別し、前記画像センサ(12)と前記アレイ(14)との間の前記光チャネル(16a〜16h)の延長に平行な方向に沿って前記アレイ(14)と前記画像センサ(12)との間で並進距離変化がない場合に前記調整移動が生じる、請求項1から5のいずれか一項に記載の多開口撮像デバイス。
【請求項7】
前記調整移動(11)は、前記画像センサ(12)と前記アレイ(14)との間の前記光チャネルの延長に平行に配置構成されている方向に沿って前記アレイ(14)と前記画像センサ(12)との間の並進距離を維持しながら行われる、請求項1から6のいずれか一項に記載の多開口撮像デバイス。
【請求項8】
前記アレイ(14)と前記ビーム偏向手段(18)との間の相対的位置を調整するために前記調整移動(11)時に前記アレイ(14)を移動するように構成される、請求項1から7のいずれか一項に記載の多開口撮像デバイス。
【請求項9】
前記調整移動(11)に基づき、前記切り替え移動によって必要とされる前記ビーム偏向手段(18)の移動範囲の少なくとも一部は、移動可能でないアレイと比較して縮小される請求項1から8のいずれか一項に記載の多開口撮像デバイス。
【請求項10】
前記第1の回転位置および前記第2の回転位置において、前記画像センサと前記アレイとの間の軸方向(x)に垂直に、光チャネルが本質的に直線に沿って配置構成される前記アレイのラインのライン延長方向(z)に垂直に、配置構成されている、前記多開口撮像デバイスの厚さ方向(y)に沿った前記ビーム偏向手段の横方向位置は、少なくとも20%の程度に等しい、請求項1から9のいずれか一項に記載の多開口撮像デバイス。
【請求項11】
前記切り替え移動は、前記ビーム偏向手段(18)の回転移動(38)を含み、前記調整移動(11)は、光チャネルが本質的に直線に沿って配置構成される前記アレイのラインのライン延長方向(z)に垂直であり、前記多開口撮像デバイスの厚さ方向に平行である移動方向(y)に沿った前記アレイ(14)の並進移動(111)を含む、請求項1から10のいずれか一項に記載の多開口撮像デバイス。
【請求項12】
前記切り替え移動は、前記ビーム偏向手段(18)の前記回転移動(38)と、第1の移動方向(y)に沿った前記ビーム偏向手段(18)の第1の並進移動(17)とを含み、前記調整移動(11)は、前記移動方向に沿った前記アレイ(14)の第2の並進移動(111)を含む、請求項1から11のいずれか一項に記載の多開口撮像デバイス。
【請求項13】
前記第1の移動方向(y)は、前記第1の視方向(271)に沿って配置構成される、請求項12に記載の多開口撮像デバイス。
【請求項14】
前記第1の並進移動(17)および第2の並進移動(111)は、その大きさに関して20%の許容範囲内で等しい、請求項12または13に記載の多開口撮像デバイス。
【請求項15】
前記第1の回転位置から前記第2の回転位置への前記切り替え移動は、前記ビーム偏向手段(18)の第1の回転移動(38)を含み、前記調整移動(11)は、第2の回転移動(112)を含む、請求項1から14のいずれか一項に記載の多開口撮像デバイス。
【請求項16】
前記第1の回転移動(38)および前記第2の回転移動(112)は、同じ方向に生じる、請求項15に記載の多開口撮像デバイス。
【請求項17】
前記第1の回転移動(38)の角度のサイズと前記第2の回転移動(112)の角度(δ1、δ2)のサイズとを足すと結果として20%の許容範囲内で90°になる、請求項15または16に記載の多開口撮像デバイス。
【請求項18】
前記切り替え移動は、前記回転移動(38)によって排他的に実行され、多開口撮像デバイスの厚さ方向に沿った前記回転移動(38)の回転軸は、前記厚さ方向(y)に沿って前記ビーム偏向手段(18)の最大拡大に関して20%の許容範囲内で中心に合わされる、請求項15から18のいずれか一項に記載の多開口撮像デバイス。
【請求項19】
前記第1の回転位置から前記第2の回転位置への前記切り替え移動は、前記ビーム偏向手段(18)の第1の回転移動(38)と、第1の移動方向(y)に沿った前記ビーム偏向手段(18)の並進移動(17)とを含み、
前記調整移動(11)は、前記第1の移動方向(y)に沿った前記アレイ(14)の並進移動(111)を含み、第2の回転移動(112)を含む、請求項1から10のいずれか一項に記載の多開口撮像デバイス。
【請求項20】
前記調整移動(11)は、前記多開口撮像デバイスの、光チャネルが本質的に直線に沿って配置構成される前記アレイのラインのライン延長方向に垂直な厚さ方向(y)に沿った並進移動(111)を含む、請求項1から19のいずれか一項に記載の多開口撮像デバイス。
【請求項21】
前記アレイ(14)は、前記調整移動(11)を実行して前記光チャネル(16a〜16h)の前記光路(26a〜26h)の発散ビームが少なくとも90%の程度で前記ビーム偏向手段(18)に当たるように構成される、請求項1から20のいずれか一項に記載の多開口撮像デバイス。
【請求項22】
前記第1の視方向(271)および前記第2の視方向(272)は、±30°の許容範囲内で対向方向に配置構成される、請求項1から21のいずれか一項に記載の多開口撮像デバイス。
【請求項23】
光チャネルが本質的に直線に沿って配置構成される前記アレイのラインのライン延長方向に垂直であり、前記画像センサ(12)と前記アレイ(14)との間の前記光路のコースに垂直である方向に沿った前記多開口撮像デバイスの必要な寸法Dは、前記調整移動により、条件
D<A+2*B
を満たし、
Aは、前記第1の視方向(271)または前記第2の視方向(272)に平行な厚さ方向(y)に沿った前記アレイおよび前記画像センサの最大寸法の値を記述し、Bは、前記厚さ方向(y)に沿った前記第1の回転位置および前記第2の回転位置における前記アレイ(14)に関する前記ビーム偏向手段(18)のオーバーハングを記述する、請求項1から22のいずれか一項に記載の多開口撮像デバイス。
【請求項24】
前記アレイ(14)および前記画像センサ(12)は互いに機械的に結合され、前記調整移動(11)を相互に実行するように構成される、請求項1から23のいずれか一項に記載の多開口撮像デバイス。
【請求項25】
前記アレイ(14)、前記画像センサ(12)、および焦点調整を行うためのアクチュエータ、および/または光学的像安定化のためのアクチュエータは、互いに機械的に結合され、前記調整移動(11)を相互に実行するように構成される、請求項1から24のいずれか一項に記載の多開口撮像デバイス。
【請求項26】
前記ビーム偏向手段(18)は、第1の反射するメイン側(174a)と第2の反射するメイン側(174b)とを備え、前記第1の反射するメイン側(174a)および前記第2の反射するメイン側(174b)はせいぜい60°の角度(δ)で互いの方へ傾斜している、請求項1から25のいずれか一項に記載の多開口撮像デバイス。
【請求項27】
前記アレイ(14)と前記ビーム偏向手段(18)との間のスリット(291、292)を少なくとも部分的に閉じるように配置構成されているダイアフラム構造(22、22')を備える、請求項1から26のいずれか一項に記載の多開口撮像デバイス。
【請求項28】
各部分的視野(72〜d)は、前記光チャネル(16a〜16h)の前記光路(26a〜26h)が前記ビーム偏向手段(18)により偏向される方向を割り当てられ、前記ダイアフラム構造(22、22')は、前記部分的視野に割り当てられている前記方向と異なる前記視方向(271、272)に沿った方向から光が入るのを少なくとも部分的に低減するように構成される、請求項27に記載の多開口撮像デバイス。
【請求項29】
前記ダイアフラム構造(22、22')は、前記ビーム偏向手段(18)に機械的に接続され、前記ビーム偏向手段(18)と一緒に移動可能である、請求項27または28に記載の多開口撮像デバイス。
【請求項30】
前記第1の位置および前記第2の位置において、前記ダイアフラム構造(22、22')は、一方では、前記アレイ(14)または前記ビーム偏向手段(18)の方へ向かう粒子の進入を少なくとも部分的に低減するように構成されている透明構造(42a、42b)と機械的に接触し、他方では、前記ビーム偏向手段(18)と機械的に接触している、請求項27から29のいずれか一項に記載の多開口撮像デバイス。
【請求項31】
前記第1の位置において、前記アレイ(14)の第1の補助側(314)に隣接する前記ダイアフラム構造(22、22')は、それと機械的に接触し、前記第2の位置において、前記アレイ(14)の対向する第2の補助側(313)に隣接して機械的に接触し、前記ビーム偏向手段(18)は、前記第1の回転位置と前記第2の回転位置との間で回転可能に配置構成される第3の回転位置を備え、前記ダイアフラム構造(22、22')は、前記アレイ(14)の前記第1の補助側(313)および前記第2の補助側(314)から相隔てて並ぶ、請求項27から30のいずれか一項に記載の多開口撮像デバイス。
【請求項32】
前記切り替え移動時に前記アレイ(14)と前記ビーム偏向手段(18)との間で並進移動を行い、前記アレイ(14)と前記ビーム偏向手段(18)との間の距離を一時的に広げ、それにより、前記ダイアフラム構造(22、22')が一時的に前記アレイ(14)または前記ビーム偏向手段(18)と接触しないように構成される、請求項31に記載の多開口撮像デバイス。
【請求項33】
前記ダイアフラム構造は、一方では、前記アレイ(14)または前記ビーム偏向手段(18)の方へ向かう粒子の進入を少なくとも部分的に低減するように構成されている前記透明構造(42a、42b)と機械的に接触し、他方では、前記光路(26a〜26h)が偏向された場合に、前記ビーム偏向手段(18)と機械的に接触するように構成され、前記ダイアフラム構造(22、22')は、前記光学的像安定化のための前記アレイ(14)と前記ビーム偏向手段(18)との間の相対的移動の後に、最大相対的移動の少なくとも30%を復元するように構成されている復元力を発生する機械的剛性を備える、請求項27から30のいずれか一項に記載の多開口撮像デバイス。
【請求項34】
前記ダイアフラム構造(22')は、磁性材料を含み、磁場供給要素(44a、44b)は、前記ダイアフラム構造(22')に隣接するように配置構成され、前記ダイアフラム構造(22')を引き付けるように構成される、請求項27から33のいずれか一項に記載の多開口撮像デバイス。
【請求項35】
前記透明構造(42a、42b)は、前記光路が偏向される方向に沿って配置構成され、前記ビーム偏向手段(18)の方へ粒子が進入するのを少なくとも部分的に低減するように構成され、前記ダイアフラム構造(22、22')の表面粗さは、前記透明構造(42a、42b)の表面粗さより大きい、請求項27から34のいずれか一項に記載の多開口撮像デバイス。
【請求項36】
前記ビーム偏向手段(18)は、並べて配置構成されているファセット(172a〜172d)のアレイとして形成され、各光チャネル(16a〜16d)は、前記ファセット(172a〜172d)のうちの1つに割り当てられ、前記ダイアフラム構造(22、22')は、ファセット(172a〜172d)のアレイにわたって延在する、請求項27から35のいずれか一項に記載の多開口撮像デバイス。
【請求項37】
前記ダイアフラム構造(22、22')は、弾性的であるように形成される、請求項27から36のいずれか一項に記載の多開口撮像デバイス。
【請求項38】
前記ダイアフラム構造(22、22')は、部分的にまたは完全に不透明であるように形成される請求項27から37のいずれか一項に記載の多開口撮像デバイス。
【請求項39】
前記アレイ(14)は、前記光チャネル(16a〜16h)が貫通し、前記光学系(64a〜64h)が固定される透明キャリア(47)を備える、請求項1から38のいずれか一項に記載の多開口撮像デバイス。
【請求項40】
前記アレイ(14)と前記ビーム偏向手段(18)との間の距離を変化させることによって前記多開口撮像デバイスの焦点を設定するための焦点調整手段を備える請求項1から39のいずれか一項に記載の多開口撮像デバイス。
【請求項41】
前記焦点調整手段は、前記光チャネルのうちの1つ、多数、またはすべてに関して前記焦点を一緒に設定するように構成される請求項40に記載の多開口撮像デバイス。
【請求項42】
前記画像センサ(12)と前記アレイ(14)と前記ビーム偏向手段(18)との間で並進相対的移動(34)を発生させることによって第1の像軸に沿って像安定化を行い、前記ビーム偏向手段(18)の回転移動を発生させることによって第2の像軸(39)に沿って像安定化を行うための光学的イメージスタビライザを備える請求項1から41のいずれか一項に記載の多開口撮像デバイス。
【請求項43】
ハウジング(23)内に配置構成され、前記ビーム偏向手段(18)は、前記ハウジング(23)内の第1の位置と前記ハウジング(23)の外側の第2の位置との間で前記ビーム偏向手段(18)を移動するために並進移動方向(x)に沿って移動可能である行程キャリッジに機械的に接続される、請求項1から42のいずれか一項に記載の多開口撮像デバイス。
【請求項44】
前記行程キャリッジは、第1の透明領域(37a)と第2の透明領域(37b)とを備え、前記ビーム偏向手段(18)はそれらの間に配置構成され、それにより、前記第1の回転位置において、前記光路(26a〜26h)は、前記第1の透明領域(37a)を通して誘導され、前記第2の回転位置において、前記第2の透明領域(37b)を通して誘導され、前記行程キャリッジの前記第1の領域(37a)と前記第2の領域(37b)との間の距離(E1、E2)は可変であり、前記距離(E1、E2)は、前記ビーム偏向手段(18)の前記第2の位置よりも前記ビーム偏向手段(18)の前記第1の位置において小さい、請求項43に記載の多開口撮像デバイス。
【請求項45】
撮像システム(120)であって、請求項1から44のいずれか一項に記載の多開口撮像デバイス(10a)を備える第1のモジュールと、請求項1から40のいずれか一項に記載の多開口撮像デバイス(10b)を備える第2のモジュールとを具備し、前記第1のモジュールおよび前記第2のモジュールは、全視野(71)を少なくとも立体的にキャプチャするように構成される、撮像システム(120)。
【請求項46】
前記第1のモジュール(10a)および前記第2のモジュール(10b)は、少なくとも、相互アレイ(14)、相互ビーム偏向手段(18)、および相互画像センサ(12)のうちの1つを備える、請求項45に記載の撮像システム。
【請求項47】
対象領域をキャプチャするための方法(1500)であって、
光チャネル(16a〜16h)のアレイ(14)により第1の対象領域を撮像するステップ(1510)であって、各光チャネル(16a〜16h)は全視野(71)のうちの部分的視野(72a〜72d)を画像センサ(12)の画像センサ領域(24a〜24h)上に結像するための光学系(64a〜64h)を備え、これを、ビーム偏向手段を第1の回転位置に置いて前記光チャネル(16a〜16h)の光路を第1の視方向(271)に偏向することによって行う、ステップ(1510)と、
前記ビーム偏向手段の切り替え移動を実行するステップ(1520)であって、それにより、それを前記第1の回転位置と第2の回転位置との間で切り替えて、前記光チャネルが第2の視方向(272)に偏向されるようにする、ステップ(1520)と、
前記切り替え移動に基づき前記アレイの調整移動を実行し、それにより、前記ビーム偏向手段に関する前記アレイの配向を調整するステップ(1530)とを含む方法(1500)。
【請求項48】
多開口撮像デバイスを提供するための方法(1400)であって、
画像センサ(12)を提供するステップ(1410)と、
各光チャネル(16a〜16h)が全視野(71)のうちの部分的視野(72a〜72d)を前記画像センサ(12)の画像センサ領域(24a〜24h)上に結像するための光学系(64a〜64h)を備えるように光チャネル(16a〜16h)のアレイ(14)を配置構成するステップ(1420)と、
切り替え移動を実行することによって第1の回転位置と第2の回転位置との間で切り替え可能であり、前記第1の回転位置において、前記光チャネル(16a〜16h)の光路(26a〜26h)を第1の視方向(271)に偏向し、前記第2の回転位置において、前記光チャネル(16a〜16h)の前記光路(26a〜26h)を第2の視方向(272)に偏向するように構成されるようにビーム偏向手段(18)を配置構成するステップ(1430)とを含み、
それにより、前記アレイは、前記切り替え移動に基づき、前記ビーム偏向手段に関する前記アレイの配向を調整するための調整移動を実行するように構成される、方法(1400)。
【国際調査報告】