【実施例】
【0062】
ここに記載されているのは、ESP方法を使用する膜の形成と、そのような膜を製造するためのシステムである。ここに開示された方法、膜、及びシステムの、さらなる詳細、変化、及び実施形態もまた記載されている。この出願にはさらに、本明細書において開示されたある種の方法及び膜についての特性解析及び性能も含まれている。
【0063】
実施例1:脱塩用のTMC膜のための電気流体力学的スプレー
図1に略図を示す。30kVを発生することが可能な高電圧DC電源(Gamma High Voltage Research(Ormond Beach,FL))を、2本のステンレス鋼製ニードル(26ゲージ)に接続した。それらのニードルを、ステージに取り付けたL字形のアームからぶら下げた(
図1参照)。それら2本のニードルの間の間隔は、約6cmに維持し、そしてそれらのニードルの尖端と回転ドラムとの距離は、約3cmに維持した(ただし、これらの距離は調整可能である)。そのステージは、ステッピングモーター及びモーターコントローラー(Velmex(Bloomfield,NY))を使用して、水平方向に移動可能とした、スライダーの上に据えた。UF膜(
図2)を、約4インチの直径を有するアルミニウム製の円柱状回転ドラムに、テープを用いて貼り付けた。ドラムは接地して、極性及びニードルの尖端とドラムとの間の電位差を確保した。
【0064】
図1には、ある一定のエレクトロスプレー法システムが描かれてはいるが、このシステムでは、本発明の精神から逸脱することなく、多くの変化が可能である。たとえば、ニードルからのスプレーは、スライダーを使用せずに、上から下向き、横向き、或いは下から上向きに向けることも可能であるし、可動ニードルを有する動かないプレート、ニードルのバンクを備えたベルト、又はそれらのある種の組合せを使用してもよい。
【0065】
さらに、複数の材料を、順に析出させていくこともできる。たとえば、3本の異なったニードルからの3種の溶液を(MPD、ナノ材料、及びTMCの)順にスプレーすることによって、ポリアミドフィルムの間にナノ材料を「挟み込む(sandwiched)」ことも可能である。同様にして、ナノ材料の層の間にポリアミドの層をスプレーして、多層構造を形成させることも可能である。
【0066】
次の表に見られるように、MPDとTMC両方の、いくつか異なったモノマー濃度を検討した。MPD:TMCのモル比が約4:1で維持できるように、MPD及びTMCの濃度を選択した。TMC溶液の中で20μLのIL(
図3F)を使用して、その導電率を上げた。
【0067】
【表1】
【0068】
次いで、MPD及びTMCの2種のモノマー溶液を、流量5mL/hrのシリンジポンプ及びフレキシブルチューブを使用して、二つの別々のニードルの中にフィードした。それぞれのシリンジには、約10mLの溶液を含んでいた。次いで、円柱状のドラムを、1分あたり20回転(RPM)で回転するようにセットした。高電圧DC電源を4kV〜6kVにセットし、その都度調整して、安定したエレクトロスプレー条件が確保できるようにした。安定したエレクトロスプレー条件とは、コーンジェットモードを指しているが、そこでは、液体が引き伸ばされて、長い、微細なジェットとなり、それがコレクターに向けてまっすぐ噴出される。これが起きると、MPD及びTMC両方のニードルスプレーからの溶液が、UF膜の上に噴出される。ドラムを時計方向に回転させ(
図1A参照)そして両方のニードルを水平方向に移動させる(
図1B参照)と、約300ミリ秒前にスプレーされたMPD溶液の上に、TMC溶液が直接スプレーされる。スプレーが安定したら、2本のニードルを保持しているステージを、Velmexコントローラーを使用して、350μm/秒の速度で水平に移動するようにプログラムした。そのステージが、膜の長さ分を水平に完全に移動したら、それを、一回の「スキャン(scan)」と見なした。ESPを用いた3−Dプリントアプローチ方法を実演するために、スキャン回数を、4、5、及び10スキャンと変化させた。ESPを必要とされるスキャン回数実施したら、TFC膜を取り外し、保存して、さらなる特性解析にかけた。
【0069】
ESPを用いて形成させたポリアミドは、従来からの界面重合(IP)方法で作製したものとは全く異なることが見出されたが、そのことは、PAN50、PAN450、及びPS20のTFC膜の表面モルホロジーを示すSEM画像からも見ることができる(
図3)。右側に示したDow SW30XLE膜から見られるような、山あり谷ありのモルホロジー(ridge and valley like morphology)とは対照的に、より平滑な表面が観察される。
【0070】
ESP法TFC膜の表面粗さを、
図4に示す。MPD及びTMCの最低の濃度で分子レベルの平滑なTFC膜が製造されたが、それに対して、試験した各種の基材すべてで、MPD及びTMCの担持量と共に膜の粗さが増大した。粗さはさらに、スキャン回数と共にも増大したが、MPD及びTMCの濃度が低いほど、表面粗さの増大速度が低下した。Dow SW30XLE膜と比較すると、ESP法TFC膜の粗さは、顕著に低い。
【0071】
ポリアミドフィルムの厚みも、全体的な膜の性能決定に重要な役割を果たしている。ここで示されているのは、AFM及びTEMで実証された、フィルム厚みの調節である。
図5から、MPD及びTMCの濃度が上がるにつれて、ポリアミドの厚みも増えることが見られる。最低の濃度のMPD及びTMCでは、4nm/スキャンの速度が達成されたが、それに対して、0.5:0.3のMPD:TMC濃度では、15nm/スキャンの速度が観察された。それと同時に評価したのが、スキャン回数に関連した厚みにおける変化であったが、スキャン回数の増大と共に、厚みが直線的に変化するということが見出された。
【0072】
厚みを確認するために、実際の膜のポリアミドについてTEMを実施した(
図6参照)。0.5:0.3のMPD:TMC担持量では、PAN50のTFC膜及びPS20のTFC膜では同様の厚みが観察された。そのようなフィルムの一つでは、検討の結果、それぞれの層が15.1±1.4nmの厚みを有する、5層のポリアミドフィルムが認められたが、このことは、AFMからの見解を裏付け、そして、アルミニウムフォイルの上でも同様の厚みを有するフィルムが見出されたので、ESPでの、支持体とは無関係なフィルム形成の様相を示している。
【0073】
ESP法TFC膜の脱塩性能を、
図7及び
図8に示す。
図7から、MPD及びTMCの濃度が高くなるほど、純水透過速度が低下し、脱塩率が上昇することがわかる。このことは、使用した各種の基材すべてで観察されるが、中でも、PAN450のTFCが最高の性能を示している。これらの結果を、Dow SW30XLEの場合の結果と比較すると、これらの膜のいくつかは、市販の膜の性能を凌駕することが可能であったと見ることができる。
図8からは、スキャン回数の増大に関連させた脱塩性能を見ることができる。特定のMPD:TMC濃度でスキャン回数を増やしていくと、透過速度が下がり、それに対して阻止率は上がる。このことは、TFC膜を作製するために使用したすべての濃度であてはまる。理論により制限されることを望むものではないが、透過速度及び阻止率における劇的な変化は、スキャン回数に伴う厚みの増大、並びに表面被覆及び阻止欠陥の改良が原因であった。これらの結果をDow SW30XLEの場合と比較すると、10スキャンを用いれば極めて良好な阻止率となるが、それに対してMPD及びTMCの最低の濃度で、より良好な透過速度が達成できたことがわかる。
【0074】
上述の実験が示しているのは、ポリアミドの厚み及び粗さを調節することによって、一連の脱塩性能を達成することができるということである。0.083:0.05のMPD:TMC濃度で形成された、分子レベルの平滑性を有する、厚み25nmのポリアミドは、業界を先導する脱塩膜のDow SW30XLEの脱塩性能に匹敵することができる。
【0075】
ここに開示された、0.5%のMPD及び0.3%のTMCを用いた方法は、この実施例で試験した全部の濃度の組合せの中でも、最低の透過速度で、最高の阻止率を示した。
【0076】
本明細書において開示されたような膜の製造は、従来からのIPプロセスで必要とされるモノマー溶液の、わずか数分の一の容積のモノマー溶液を使用することで達成された。前記の削減率は、95%にまで上げることができる。したがって、ここに開示されたESP法は、従来からのプロセスに対して、グリーン(green)な代替法を提供する。
【0077】
実施例2:脱塩のための、3Dプリントしたポリアミド膜
さらに別の例においては、ポリマー(たとえば、ポリアミド)の厚み及び粗さを、逆浸透のための薄膜複合膜性能に大きな影響を与える重要な性質として確認した。従来からの形成方法では、これらの性質を独立して、高い分離能又は精度で調節することができない。モノマーを基材の上に直接析出させ、それらを反応させてポリマー(たとえば、ポリアミド)を形成させる、エレクトロスプレー法を採用する、追加のアプローチ方法が提供された。理論により制限されることを望むものではないが、低いモノマー濃度と組み合わせた小さな液滴サイズ(たとえば、
図12参照)では、従来からのポリアミドよりも平滑で且つより薄いポリアミドフィルムが得られ、しかも、そのアプローチ方法の追加の性質によって、厚みと粗さを調節することが可能となる。わずか4nm刻みまでに調節可能な厚みと、2nmもの低さの粗さを有し、それでもなお、市販されているベンチマーク評価のための膜と比較して、良好な選択透過性を示すポリアミドフィルムが形成される。
【0078】
TFC膜は、30年以上にわたって、脱塩産業での標準膜として使用されてきた。その期間の間、この膜には変化がほとんど無かった。その複合構造体に含まれているのは、機械的に支持するためのポリエステルのバッキング層、多孔質を支持するための、転相反応によって注型されたポリスルホン中間層、並びに超薄で、高度に架橋されたポリアミドフィルム(このものは、水から塩のイオンを分離するのに十分な厚さではあるが、水を輸送するための低い抵抗性を有するのに十分な薄さを有している)である。このポリアミド層は、多孔質の中間層の上に、界面重合を介して、インシトウで形成されたものである。このアプローチ方法は、水相の中のアミン(たとえば、MPD)と、有機相の中の酸塩化物(たとえば、TMC)との間の反応に依存している。この二つの相が非混和性であるために、その反応が、相の境界でのみ起きることができる。フィルム成長はその境界に限定され、そして次いで、反応物質が、成長しつつあるフィルムによって阻止されるので、その反応が自己限定される。その結果が、自己停止であるが、約100nm〜約200nmの間の厚みと、粗い、山あり谷ありの表面モルホロジーを有する、制御不能なフィルム成長である。それらの膜は、市販の他のいかなる脱塩膜よりも良好な選択透過性を示すものの、そのフィルムの性質及びその組立手順の、ある種の特徴が原因で、本質的に限度がある。それらのフィルムの固有の粗さが、逆浸透及びナノ濾過プロセスでの高いファウリング傾向の原因とされてきた。さらに、膜の厚み(これは、その透過速度に比例する)も実質的に制御不能であるが、その理由は、そのプロセスでは単純に、フィルムが形成していくにつれて、自己停止するからである。最後に、その支持体層の表面の性質(孔径、細孔間隔、表面の多孔度、及び表面の科学反応性など)が、その二つの相の間の界面に影響し、そのため、その膜の性能が、予測不能となる。
【0079】
より良好なポリマー(たとえば、ポリアミド)の脱塩膜は、既存の膜と同等の選択透過性を有しながらも、それら他の性質のそれぞれが調整可能であるべきである。その厚みは、透過速度を最大化できるように薄くするべきであるが、その一方で、そのフィルムが、必要とされる水圧に耐えるのに十分な堅牢性を確保しなければならない。その粗さを最小限にして、その膜がファウリングを起こす可能性を抑え、さらにはクリーニング効率を改良できるようにするべきである。最後に、そのフィルムの性質を、その基材の性質とは切り離して、これら選択性のフィルムが、いかなるタイプの基材にも適用できるようにするべきである。
【0080】
厚み及び粗さをより良く調節する目的で、他の研究者が多くの方法を提案してきたが、それらは、複雑であり、そして商業生産のために容易にスケールアップできるものではない。
【0081】
本明細書において開示されているように、エレクトロスプレー法を使用すれば、モノマーをナノスケールの液滴として析出させ、基材の上にポリマー(たとえば、ポリアミド)を形成させることが可能となる。エレクトロスプレーの際には、強い電場の存在下に、液体がニードルから飛び出す。その吐出された液滴にクーロン斥力が働いて、1μmよりもはるかに小さい直径で分散される(
図9A及び9B)。本明細書において開示されているように、個々のモノマーが基材の上に析出することが可能で、次いでそこで、それらがその位置で重合することができる。
【0082】
このアプローチ方法を、
図9A及び9Bで説明する。ドラムは接地されていて、最高30kVまで発生することが可能な高電圧DC電源を介して、2本のニードルと繋がっている。ニードルの先端とドラムとの間の距離は、約2cm〜約3cmに維持されている。それぞれのニードルが、溶液中のモノマーの一方を吐出する。MPD(水中)及びTMC(ヘキサン中)は、広い濃度範囲で、4:1のモル比に維持した(以下の表参照)。親油性のILを有機相に添加して、導電率を高めた(
図13A)。異なった孔径(
図13B)、純水透過速度(
図13C)、及び親水性を有する各種のUF膜基材について検討した(
図13D、以下の表参照)。それぞれの場合において、最初に、その基材を回転ドラムに貼り付けた(
図9A)。モノマー溶液がニードルの先端から飛び出すと、それらがスプレーされて、コレクターの表面の上に析出し、相互に接触して反応する。基材全体にわたる被覆を確保するために、ニードルステージを、コレクター表面に沿って横移動させる(
図9B)。コレクターの表面を1回通過させると、「1スキャン」と呼ぶ。
【0083】
【表2】
【0084】
【表3】
【0085】
ポリアミドフィルムの特性解析をし、架橋密度、厚み、機械的性質などの性質を見出すために、アルミニウム(Al)フォイルの上で、フィルムをプリントさせた。プリントの後で、そのフィルムを、アルミニウムフォイルから何か他の基材に移行させるか(
図14A)、又は自立したフィルムとして保持した(
図9C)。手で扱うことが可能なほどの厚みを有するフィルムでは、フィルムの性質を、より容易に特性解析することが可能となる。従来からのポリアミドフィルムでは、このタイプの操作が困難であるが、その理由は、それらが薄く、脆く、そして典型的なTFC膜の支持構造体の中に一体化されているからである。たとえば、ポリアミドフィルムの架橋密度の測定は、典型的には、X線光電子分光法(XPS)を使用して実施される。しかしながら、このXPS法は、表面粗さ、不十分なサンプルサイズ、及び深さ方向での組成の不均質性が理由で、不正確となる可能性がある。それに代えて、1μmの厚みのポリアミドを、より厚い、しわくちゃにした形(crumpled form)(
図15)にする操作をすると、EDX法で使用することが可能となるが、その方法は、サンプルの奥深くまで貫通して、それにより、バルクのポリアミド組成物のより良好な測定値をあたえる。その架橋密度が、83%であることが見出されたが、これは、MPD及びTMCモノマーから作製したフィルムとしては順当なものである(
図15)。
【0086】
理論により制限されることを望むものではないが、架橋密度は、多くのナノ−スケール液滴を使用することによって上げることが可能であるが、その理由は、より小さな液滴では、異なった溶液からスプレーされたモノマーの間での表面積を高めることができるからである。このようにすることによって、架橋密度を、83%より高くにまで改良することができるであろう。
【0087】
さらに、AFMを使用した厚み測定のために、Alフォイルの上に各種のMPD及びTMCの濃度で(上の表を参照)フィルムをプリントしてから、シリコンウェハーに移行させた(
図14B)。フィルムの端部での断面(
図16)から、下地の平坦な基材に対する、フィルムのプロファイルを明らかにした。モノマー濃度が低いほど、より薄いポリアミドフィルムが得られるだけでなく、エレクトロスプレー法の1スキャンあたりのフィルムの厚みをより良好に調節できるようになった。5スキャンをベースにして、20nmの厚みしかないポリアミドフィルムが作製されたが、このことは、1スキャンあたり、平均してちょうど4nmの厚みであることを示唆している(
図9D)。1スキャンあたりの厚みの調節は、とりわけ一定であって、
図9Eに示されているように、スキャン回数を増やしていくと、フィルムの成長も直線的に増える。濃度が低くすると、厚みの調節をさらにより良好とすることができる。
【0088】
さらに、多孔質ポリマー基材の上に、同一の組成のフィルムをプリントさせて、それらの厚み、表面モルホロジー、粗さ、脱塩性能、及び基材から受ける影響を評価した。断面のTEM画像を、
図1F〜1I及び17に示す。3種のUF膜基材の上にプリントしたポリアミド層は、Alフォイルの上にプリントしたもの(
図9D)と、同程度の厚みを示している(
図1F〜1H)。
図9Iから、厚みに反復性が存在し、それぞれ15±3nmと測定された5層のポリアミドフィルムが見られる。この、1スキャンあたりの厚みは、AFMによる、
図9Dにおいてアルミニウムフォイル上で取得した、1スキャンあたりの厚みのデータとよく一致している。
図17に示したTEM画像から、厚みにおける直線性も確認された。
【0089】
ポリマー基材の上に形成させたポリアミドフィルムの表面モルホロジーを、SEMを使用して調べた(
図10A、18、及び19)。従来からのポリアミドフィルム、たとえば業界標準のDow SW30XLEのRO膜の典型的な山あり谷ありのモルホロジー(
図10A)に比較すると、すべての基材、すべてのモノマー濃度で、顕著に平滑性の高いポリアミドフィルムが形成されている。これらの結果は、AFM分析で定量化される(
図10B参照)。モノマー濃度が高いほど(
図10C)、そしてスキャン回数が多いほど(
図10D)、RMS粗さが粗くなる。それぞれのモノマー濃度では、フィルムの粗さは、評価したすべての基材で同等であった(
図20及び下記の表参照)。PAN450のUF基材の上で形成させた場合、MPD:TMC濃度が最大0.5:0.3のところで最大の粗さ(40±4nm)が観察された(
図10C)。しかしながら、これら最も粗いフィルムであってさえも、Dow SW30XLE膜の粗さ(オレンジ色の点線で重ね書き)のわずか半分しか示していない。試験した内で最も低いモノマー濃度では、約2nm未満の粗さ値のフィルムが得られ、基材そのものの粗さと区別がつかない。
【0090】
【表4】
【0091】
【表5】
【0092】
試験した全部の膜の脱塩性能を
図11Aに示すが、この場合、より高い脱塩率と水透過速度が望ましい。SW30XLEを対照として、そしてベンチマーク評価の目的のために使用すると、試験した膜の内の6個は、阻止率と水透過速度の両方が高く(灰色の長方形の重ね書きの中)、そして30個が、どちらか一方の測定基準で高い(higher in one metric or the other)。これらの膜が、厚みの調節が意のままになり、実質的には低い粗さを有することが可能でありながら、さらに、水透過速度及び脱塩率についての従来からの測定基準で、業界標準の膜と同等又はより高い性能を示しているということに注目すべきである。
【0093】
水透過速度(
図11B)及び脱塩率(
図11C)が、モノマー濃度に強い依存性を有していることが示された。モノマー濃度が高いと、より厚く(
図11A)そしてより低い透過性(
図11B)のフィルムが形成されたが、脱塩率が改良された(
図11C)。TMC膜の有効性は、そのようなデータを選択透過性の観点(
図21参照)から再定義することによって考えることも可能であるが、その場合でもまた、これらの膜は同様に、従来からの膜よりは優れている。
【0094】
基材の選択は、透過速度には著しい影響を与える。このことは、基材の上の細孔の孔径と間隔のためだと考えられる。最も透過性の高い基材(PAN 450、
図13C)は、細孔が最も大きく、さらに、それらが互いに最も近接していることを示している。このことは、そのフィルムの中を拡散通過する水が、開いている細孔を通過して多孔質の支持体の中へ脱着されるのに、移行する距離が短く、その結果、透過速度がより高くなるということを意味している。このように透過速度の値が高いことによって、選択性−透過率のトレードオフの関係の上限に匹敵する、ベストの性能を発揮する膜が可能となった(
図22参照)。さらに、阻止率におよぼす基材の影響はまったくなかったが(
図11C)、その理由は、阻止率が、原理的には、選択性フィルムの化学組成及び構造の関数だからである。これらのフィルムの特徴により、3種の異なった基材の上に析出させても、何の区別もできなかった。
【0095】
脱塩性能のさらなる調整は、スキャン回数、したがったポリアミドの厚みを変化させることによって、達成された(
図23参照)。最も薄い膜のいくつかは、極めて高い透過速度を示したが、これらの最高のものは、低い脱塩率(約10%)に対応していた。PAN 450のUF膜の上で、5スキャン、及び0.083:0.05のMPD:TMC比で作製したTFC膜は、透過速度が約14.7LMH/barで、94%の順当な脱塩率を示した。この膜はさらに、基材のRMS粗さ11.7nmよりも、わずか2.3nm高いだけのRMS粗さも示した。これは、SW30XLE膜の1/6未満である。95%もの高い阻止率が、0.125:0.075のMPD:TMC比での同一の基材で達成されたが、それのRMS粗さは、基材よりもわずか約4.3nm高いだけ、そして水透過速度は3.68LMH/barであった。スキャン回数を10まで上げると、97.5%の脱塩率が得られたが、それでもなお、2.87LMH/barの水透過速度及び20nm未満のRMS粗さが維持されていた。
【0096】
TFC膜を作製するためのこの追加のアプローチ方法は、逆浸透膜で期待される選択率を維持しながらも、調整可能な厚み及び粗さを有する膜を与えた。これらの膜は、既存のTFC膜では見られない固有の平滑性を有し、厚み調節における約4nmの小さな分離能で、意のままに約15nmもの薄さの厚みとすることができ、そして基材の上に前準備なしで形成させることができる。さらには、ポリアミドの形成が、基材の性質から切り離されていることで、従来では使用されなかった基材の上にでもTFCを形成させることが可能であり、そして、従来からの界面重合法ではポリアミドフィルム形成が不可能であったであろう特性のフィルムも使用可能となった。他のモノマーや、さらには溶媒中に溶解させた単一のポリマーに対して、このアプローチ方法を採用することで、また別の分離で使用するための、また別のTFC膜を開発することも可能であろう。
【0097】
PS 20(ポリスルホンベースのUF膜、20kDaのMWCO)、PAN 50(ポリアクリロニトリルベースのUF膜、75kDaのMWCO)、及びPAN 450(ポリアクリロニトリルベースのUF膜、250kDaのMWCO)も含めて、数種のUF膜を、Sepro(現、Nanostone Water)から購入し、入手したままで使用した。Dowから市販されているSW30XLEのフラットシートのRO TFC膜を、試験した膜に対するベンチマーク性能に用いた。市販グレードのアルミニウムフォイル(Reynolds Wrap)及びシリコンウェハー(University Wafer)を、手を加えずに使用した。m−フェニレンジアミン(MPD、>99%)、トリへキシルテトラデシルホスホニウムビス−(トリフルオロメチルスルホニル)アミド(IL、>95%)、1,3,5−ベンゼントリカルボニルトリクロリド(TMC、98%)、及び水酸化ナトリウム(NaOH、>97%)は、Sigama−Aldrichから購入した。ヘキサン(HPLCグレード、>99%)、塩化ナトリウム(NaCl、結晶、ACS認証品)、及びイソプロパノール(IPA、>99.5%)は、Fischer Scientificから購入した。脱イオン水(DI)は、Millipore Integral 10 水システムを使用して、作製した。
【0098】
開示されたエレクトロスプレー法システムの例示的実施形態を、
図9A及び9Bに示す。最高30kVを発生することが可能な高電圧DC電源(Gamma High Voltage Research)を、2本のステンレス鋼製ニードル(26ゲージ)に接続した。それらのニードルを、ステージに取り付けたL字形のアーム(
図9A)からぶら下げた(
図9B)。2本のニードルの間の間隔は6cmであり、そしてニードルの先端と回転ドラムとの間の間隔は、2cm〜3cmの間であった。ニードルとドラムとの間の間隔は、エレクトロスプレー法のための実験モデルからのシミュレーション結果に基づき決定した(
図12参照)。2本のニードルは、
図9Bに示したようにして、X軸方向に配列した。そのステージを、Y軸方向(ドラムの軸の方向)に移動する、モーターコントローラー(Velmex)によって調節されるステッピングモーターを使用した、スクリュースライダーに搭載した。ドラムを接地して、ニードルの先端とドラムとの間に電位差を生じさせた。
【0099】
アルミニウムフォイルを使用して、ドラム全体を被覆した。次いで、UF膜を、フォイルで包んだドラムの回りに取り付け、巻き付けたが、ドラムの端のフォイルの部分は、さらした状態で残した。アルミニウムフォイルの上でエレクトロスプレー法を開始して、スプレーを安定化させた(理由は、析出した物質を容易に観察することができたから)。フォイルの上で、ポリアミドの均質な生成を示す、ぼんやりとした析出(hazy deposition)が見えるようにしなければならない。液滴や線が見えるようでは、まだ安定なスプレーには達していない。フォイルの上での析出領域の幅が、両方のスプレーで約1cm〜約2cmとなるようにするべきである。このことは、一般には、ニードルの先端からドラムまでの距離を約2.5cm〜約5cmの間、そして印加電圧を約4kV〜約7kVの間に設定することにより、達成される。目視により、析出が均質になったことが観察されたら、ドラムを回転させながら、Y方向に16cmの距離でのニードルステージの移動(
図9B参照)を開始させるようにプログラムされたVelmexコントローラーを起動した。ニードルが基材全体に、1回横移動したら、それを「1スキャン」とみなした。より多くのスキャンを望むのなら、ステージを4cm/秒の速度で元の位置に戻し(出発点に戻るのに約5秒)、次のスキャンを開始する。脱塩試験を目的とした膜を作製するためには、ポリマー基材を使用した場合、スキャン回数を、1〜10回で変化させた。厚み測定及びその他の特性を解析するためには、5〜60スキャンの間で、フォイルの上にフィルムを作製した(
図9C、9D、及び9E)。ドラムを20RPMで回転させ、そしてY方向のステージの速度が約350μm/秒〜約500μm/秒の場合、その前の回転との析出領域の重複が約95%あった。これは、ポリアミドの良好な被覆を確保するために実施された。
【0100】
MPD及びTMCの数段階のモノマー濃度を考慮した(前の表を参照)。MPD:TMCのモル比が約4:1一定で保持できるように、MPD及びTMCの濃度を選択した。従来からの界面重合で実施されていたように、MPDを過剰なままにして、高い架橋密度を確保した。MPDは、DI水の中に溶解させ、その一方でTMCは、ヘキサンの中に溶解させた。非極性のヘキサン溶液の中に親油性のILを添加することにより、導電率を改良した。過去の質量分析の検討に基づいて、ヘキサン1mLあたり1μLのILの比率で添加した。導電率を改良するために、親油性のILに加えて、たとえば塩化リチウム又はその他の塩のような、他のスプレー助剤を使用することも可能であったが、全部の塩が、有機溶媒のなかに適切に溶解するという訳ではなかった。
【0101】
次いで、MPD及びTMCのモノマー溶液を、シリンジポンプを使用して5mL/hrの流量で、2本の別々のニードルにフィードしたが、その供給ラインとしては、フレキシブルチューブ(McMaster−Carr#1883T1)を使用した。最初に、システムを開始させる前に、約2mL〜約3mLの溶液を用いて、ラインをフラッシュさせた。次いで、20RPMで回転するようにドラムを設定し、そして電圧を4kV〜6kVの間に設定し、それぞれの試験で、安定したスプレー条件が得られるように調節した。安定したエレクトロスプレー条件とは、コーンジェットモードを指しているが、そこでは、その液体が引き伸ばされて、長い、微細な液滴のジェットとなり、それが基材の表面に析出される。ドラムが回転し(
図9A参照)、そして両方のニードルが回転の方向に配列されると(
図9B参照)、TMC溶液が、それよりも約300ミリ秒前に析出されたMPD溶液の上に、析出される。
【0102】
安定したスプレーが形成され、アルミニウムフォイルの上で試験した後で、先に述べたようにして、Velmexコントローラーによって、ステージの移動を開始させた。所望のスキャン回数に達したら、サンプルを取り出し、さらなる特性解析のために保存した。それぞれの膜を作製した後では、DI水を用いてその供給ラインを完全に洗浄し、空気を用いて乾燥させ、そして典型的に使用される溶媒(たとえば、MPDには水、TMCにはヘキサン)を用いて洗い流し、そして一貫性を確保するためにニードルを更新した。それぞれの試験の前に、その試験で使用される液体を用いて、ラインをフラッシュした。
【0103】
表面の親水性:
CAM 101シリーズの接触角ゴニオメーター(KSV Company)を使用し、液滴法(sessile drop method)を用いて接触角を測定した。それぞれの試験で、TFC膜の3個の独立した板状試験片のランダムな6箇所の位置、並びに基材で、DI水の10±1μLの液滴容積を使用した。接触角は、表面上に液滴を落としてから1秒以内に測定した。その試験は、室温、相対湿度60%で実施した。
【0104】
走査型電子顕微鏡:
走査型電子顕微鏡(SEM)を使用して、ポリアミド層の上側表面及び膜の支持基材層の画像を撮影した。FEI TeneoLoVac SEMを使用した。表面モルホロジーの画像撮影には、膜サンプルを乾燥させ、SEMステージに取り付け、そして真空下(0.6torr)で、金(Au)及び白金(Pt)の薄層を用いて、スパッタコーティングをした。20mAの電流で、30秒のコーティング時間を選択したが、それにより、約10nm〜約20nmのコーティングが加わった。コーティングの後、10kV〜15kVの加速電圧、5mm〜10mmの作動距離、及びSEモードを使用したETD検出器を使用して、SEMで膜の画像撮影をした。
【0105】
元素分析:
EDXを実施するために、厚いフィルム(60スキャン)をアルミニウムフォイルの上で形成させ、そのフォイルを1.5MのNaOH溶液の中に浸漬させて、取り外した。フォイルから剥離されたフィルムが水面上に浮かび上がったので、それを捕集することができた。そのポリアミドの厚いフィルムを、
図9Cに示し、
図14にその手順を示している。そのポリアミドに、NaOHが確実に一切残存しないようにするために、DI水を用いてそれを数回洗浄した。次いで、それを新しいフォイル片に移し、しわくちゃにして、図示したような約100μmの層厚とした(
図15参照)。導電テープを用いて、そのAlフォイルをSEMのスタブに取り付け、導電コーティング層は使用せずに顕微鏡の中に挿入した。
【0106】
厚み1μmのポリアミドを、より厚いしわくちゃの形にすることで(
図15)、EDXで使用することが可能となったが、EDXは、従来からの方法で形成したポリアミドフィルムで使用するには、浸透が深すぎた(約1μm〜約2μm)。EDXを、基材にまだ貼り付けたままのポリアミドフィルムについて使用すると、ポリアミドではなく、基材についての測定をしてしまうであろう。EDXでは、作動距離14mmで、加速電圧15kV、プローブ電流6.4nAを使用した。ポイントスキャンのために、6個の異なった位置を選択した。それぞれのポイントスキャンをしてから、準備しておいたEDX分析ソフトウェアによって、C、N、及びOだけの元素組成を含む表を作成させた。次いで、O/N比を用いて架橋密度を計算した。ポリマーの完全に架橋された部分(mと呼ぶ)では、この比が1である。ポリマーの完全に直鎖状の部分(nと呼ぶ)では、この比が2である。次いで、次の連立方程式を解いて、m及びnを計算した。
【数1】
m+n=1
【0107】
架橋度は、次式に従って計算した。
【数2】
【0108】
粗さの測定:
ポリアミドフィルム及び基材物質の表面粗さのいくつかの測定を、シリコンAFMチップ(Pointprobe、Nanoworld Innovative Technologies)を備えた、AFM(Asylum Research MFP−3D)を使用して、測定した。ベンチマークとしては、Dow SW30XLE TFC膜を、入手したままで使用した。サンプルを乾燥させ、両面テープ及び接着グルーを用いてガラススライドに貼り付けて、ガラススライドとサンプルとの間で、完全な物理的接触を確保した。最初に、1Hzで、20μm×20μmの画像測定をして、プローブチップを傷める可能性がある、異常な妨害物が存在しないことを確認した。次いで、表面トラッキングを最適化するための典型的なフィードバックゲイン設定を用いた間欠接触(ACとも呼ばれる)モードを使用して、3Hzのラインレートで、3μm×3μmの画像を撮影した。 それと同じ領域を、1Hzのラインレートで再度画像撮影したが、その差は、大きくはなかった。特性解析を迅速化するために、最終速度として、3Hzを選択した。それらの結果は、二乗平均平方根粗さ(Rq)、平均粗さ(Ra)、及び表面積差(SAD)として表し、先に表とし、また
図10C、10D、及び21でグラフを示した。標準偏差には、N=15が含まれている。これは、それぞれの膜のタイプからの3サンプルで、それぞれのサンプルについて5箇所の領域を分析した画像に基づいている。
【0109】
フィルムの厚み:
Siウェハーの上に貼り付けたポリアミドフィルムの厚みを、AFM画像の横断面から求めた。凹凸のある端部を横切るときのプローブの破損を防止し、真の表面トポグラフィーを最もうまく引き出すために、低い0.5Hzのラインレートで実施した。ポリアミドフィルムを転写する方法を、
図14に模式的に示す。最初に、アルミニウムフォイルの上にポリアミドフィルムをプリントし、次いで先に述べたようにして、1.5MのNaOH水溶液を使用して、エッチング除去した。次いでそのフィルムを、約2cm×2cmのサイズのSiウェハーの上に移し、3つの異なったDI水浴を使用して洗浄した。最後に、そのSiウェハー上のポリアミドフィルム(PA−Siと呼ぶ)を、室温で風乾させ、AFMによる特性解析のために保存した。厚みの測定のためには、サンプルの端部が見えるようにセットし、AFMのカンチレバーチップを、間欠接触(AC)モードで使用して、画像撮影した。
図14に描写したように、カンチレバーチップでステップエッジを追尾させると、下地のSiウェハーの平面とポリアミドフィルムの上面との差(
図14参照)から、ポリアミドフィルムの厚みをナノスケールで定量化することができる(
図17)。表示された標準偏差は、示した画像一つあたり、3個の異なった部分に基づいたものである。
【0110】
透過型電子顕微鏡:
膜のサンプルを、1mm×2mmの小片に切断し、1%の四酸化オスミウム溶液中に、1時間浸漬させた。この工程の際には、アルミニウムフォイルを用いてシェルバイアルを覆って、オスミウムの光分解を防止した。サンプルを、それぞれ10分間一連の品質のエタノール(30%、50%、70%、90%、及び100%×4回)に通して、脱水させた。ERL 4221(3,4−エポキシシクロヘキシルカルボン酸3,4−エポキシシクロヘキサンメチル)、DER 736エポキシ樹脂、NSA(変性ノネニル無水コハク酸)、及びDMAE(2−(ジメチルアミノ)エタノール)を含むSpurr樹脂を新規に調製した。それらの膜を、樹脂:エタノールの1:2混合物に2時間、そして樹脂:エタノールの2:1混合物に一夜含浸させた。その翌日に、サンプルを100%Spurr樹脂の中に4時間浸漬させたが、2時間後に樹脂を1回交換した。サンプルを、ダブルエンド金型(Cat #10590、Ted Pella,Inc.)の中に平らに埋込み、適切なラベルを付け、そしてオーブン(Lab−Line Instruments,Inc.)中、真空下60℃で一夜かけて重合させた。半薄の(semi−thin)断片(約1μm)を、Leica Ultracut UCTミクロトーム上で、ヒスト45度Diatomeダイヤモンドナイフを用いて切り出し、Superfrost Plus顕微鏡スライドガラス(Fischer Scientific)上の蒸留水の液滴の上で集めた。それらの断片を、1:1のメチレンブルー:アズールブルーIIの作業溶液の中で染色し、30−8010ABスライドウォーマー(Buehler Ltd)の上に、70℃で15秒間置いた。断片を、Olympus顕微鏡の中で光学顕微鏡レベルで調べて、電子顕微鏡に適した材料であることを確認した。超薄の(約70nm〜約100nm)断片を、Leica Ultracut UCT ミクロトームの上で、ウルトラ45度Diatomeダイヤモンドナイフを用いて切り出し、そして150メッシュの銅/パラジウムグリッド(Ted Pella,INC.)の上で捕集した。それらの断片を、2%の酢酸ウラニル水溶液を用いて8分間対比染色し、蒸留水ですすぎ、2.5%の佐藤クエン酸鉛を用いて3分間染色し、そしてもう一度蒸留水を用いてすすいだ。加速電圧80kVの操作条件で、AMT 2k(4メガピクセル)XR40 CCDカメラを備えた、明視野FEI Tecnai Biotwin G2 Spirit透過型電子顕微鏡を使用して、画像を得た。すべての工程は、Pelco R2 ロータリーミキサー(Ted Pella,INC.)(設定値20)上の蓋付きの2ドラムのガラスシェルバイアル(Fischer Scientific)の中、室温で実施して、化学薬品の貫入を促進させた。サンプルを加工するために使用したすべての化学薬品は、Electron Microscopy Sciences(EMS)から購入したEMグレードであった。
【0111】
膜の脱塩試験:
膜の純水透過速度及び溶質阻止率は、以下に記述する二つの独立した方法(デッドエンド濾過及びクロスフロー濾過)を使用して、特性解析した。
【0112】
デッドエンド濾過試験の操作には、それぞれ直径3インチの円盤状の膜試験片を収納するように設計された、3個の撹拌セルが含まれていた。透過液の流れのための空隙を与えるために、微細なメッシュが、透過液側のそれぞれの膜の下のスペーサーとして使用された。フィードとしてDI水を使用し、その系を300rpmで撹拌しながら、圧力を75psiから115psiへと変化させた。その試験は、室温で実施した。透過液を捕集し、経時的に秤量して、それぞれの圧力での流束を求めた。脱塩率及び塩の透過率を評価するために、2000ppmのNaClフィード溶液を使用した。これらの撹拌セル試験では、次式を使用してレイノルズ数を計算した。
【数3】
式中、Dは、インペラーの直径であり、Nは、インペラーの回転(単位、秒)であり、ρは、溶液の密度であり、そしてμは溶液の粘度である。そのデッドエンド系のための物質移動係数(K
mt)は、次式のデッドエンドセルと層流との相関を使用して計算した。
Sh=0.285Re
0.567・Sc
0.33(8×10
3<Re≦3.2×10
4の場合)
【0113】
ここで、Shは、シャーウッド数(Sh=K
mtL/D
AB)であり、ここで、Lは、代表長さであり、D
ABは、拡散係数であり、そしてScは、シュミット数である(Sc=μ/(ρ×D
AB))。溶質の観察された阻止率(%R)及び溶質の透過率(B)は、次の二つの式を使用して計算した。
【数4】
【0114】
ここで、C
permeateは、透過液中の溶質の濃度であり、C
Feedは、フィード溶液中の溶質の濃度であり、そしてJ
wは、水の流束である。物質移動係数は、約1.44×10
-5m・sec
-1であると計算された。
【0115】
デッドエンド操作で安定且つ再現性のある結果が得られたら、次いで、クロスフローのベンチスケールの逆浸透操作を使用して、クロスフロー条件下での膜の試験を行って、堅牢性を証明した。この操作では、8×3cm
2の板状膜試験片を収納したクロスフロー試験セルを使用した。フィードとしてDI水を使用し、チャンネル速度を0.24m・sec
-1一定に維持しながら、系の圧力を75psiから〜225psiと変化させた。その系を、24時間動かして、膜を平衡に達しさせ、流束を安定させた。試験セルからの透過流束を捕集し、経時的に秤量して、純水の流束を求めた。水の流束対加えた圧力のグラフの勾配から、純水の透過速度、Aが求まる。脱塩率及び透過率を測定するために、クロスフローセル中の膜を交換することなく、NaCl塩を含む2000ppmのフィード溶液を、フィード液として使用した。脱塩率の値が安定してから、225psiで透過液を捕集した。225psiで24時間安定化させてから、純水透過速度試験を約2日間で完了させた。5日間かけて脱塩率を測定したところ、膜が損なわれることなく残っていることが確認できた。したがって、その膜は、クロスフローで加圧下、約7日間かけて試験したことになった。
【0116】
塩の透過率を計算するために、層流についての次式を使用して、物質移動係数を計算した。
【数5】
【0117】
このクロスフロー系について計算して得られた物質移動係数が、1.85×10
-5m・sec
-1であることがわかった。
【0118】
さらに、いくつかの膜で、ポリアミドのフィルムの厚みが入手可能であったので、水に対する膜の透過率(P
H2O)、及び理想的な水/塩の選択率(α
W/S)を求めることが可能であった。これを、
図22で、理論的な上限に対してプロットしている。これらの膜は、水の脱塩膜の上限の性能に近いか、又はいくつかの場合においては等しい性能を示している。
【0119】
液滴サイズのモデル化:
エレクトロスプレー法で作製されるフィルムの厚みを予測し、そして調節するためには、液滴サイズ及び動きを予測する、十分に確立されたモデルが多数存在している。これらのモデルの多くは、たとえば質量分析法などの高精度の分析手段において、エレクトロスプレー法の使用の一部として開発されたものである。
【0120】
エレクトロスプレーの際には、溶液がニードル/キャピラリーから出て、ニードルの先端でテーラーコーンを形成し、そこから、液滴の形成が始まり、そして、逆の電荷を有するか又は接地された基材の方へと移動する。エレクトロスプレーの際の、電流、電荷密度、及び液滴サイズについてのスケーリング則は、すでに開発され、次の文献に記載されている:C.Mundo,M.Sommerfeld,C.Tropea,Int.J.Multiph.Flow,21,151−173(1995)(参照することにより、そのすべてを本明細書に取り入れたものとする)。そのモデル化では、液滴のサイズ及び電荷密度におよぼす、導電率(K
w)、液体の流量(Q)、誘電率(ε
0)、液体の密度(ρ
w)、粘度(μ
w)、及び液−ガスの界面の表面張力(γ
w)の影響が考慮されている。単純な一例として、液滴のサイズは、溶液の性質並びにニードルとコレクターとの間で液滴が移動する距離に基づいて変化する可能性がある(参照、たとえば
図12)。
【0121】
この解析法を使用すると、基材表面にぶつかるときの、液滴のスプラッシュ径(D
Splash)を計算することができる。D
Splashがわかれば、それぞれの液滴が、どの程度の領域をカバーすることが可能であるかを計算することができる。一例を挙げれば、2%MPD水溶液の5mLを10mL/hrの速度でエレクトロスプレーすると、それは、約1.6μmのサイズ(D
p)の液滴を形成することができる。その液滴が接地された表面に到達すると、そのサイズが約1μmのD
p,alに低下し、それが、約200nmのフィルムの厚みで、約1.8μmのD
Splashを作ることになるであろう。このことは、理論的には、5mL溶液で、約23m
2の面積を被覆することができるということを意味している。しかしながら、円状のスプラッシュパターンを仮定しているので、フィルムの欠陥を防止するためには、スプラッシュを重ね合わせることが必要となるであろう。
【0122】
本明細書において開示されているのは、とりわけ、脱塩膜において優れた性能を有する、薄膜の粗さ及び厚みを調節する効率的な方法である。そのようなフィルムの合成では、粗さ及び厚みに関しては、支持体とは無関係である。ここに開示された方法には、容易にスケールアップが可能な単純なプロセスが含まれている。
【0123】
好ましい実施形態を参照しながら本発明を説明してきたが、本発明の範囲から外れることなく、各種の変更が可能であり、そして同等物によりその要素を置き換えることができることは、当業者には理解できるであろう。それに加えて、本発明の本質的な範囲及び精神から外れることなく、本発明の教示に適用するための、特定の使用、用途、製造条件、使用条件、組成、媒体、サイズ、及び/又は材料の多くの修正も可能である。したがって、本発明が、本明細書において記述された本発明を実施するために考えられた特定の実施形態及びベストモードに限定されるものではない、と考えられたい。
【0124】
完璧を期して、以下の項目を記述する。
【0125】
第1項
ポリマー膜を作製する方法であって、
前記方法が、
(a)第1の溶媒を含む第1のモノマー溶液、第2の溶媒を含む第2のモノマー溶液、及び基材を備える工程;並びに
(b)前記基材の表面の上に前記第1のモノマー溶液をエレクトロスプレーし、そして前記基材表面の上に前記第2のモノマー溶液をエレクトロスプレーし、それにより、前記基材表面の少なくとも一部の上にポリマー膜を形成させる工程、
を含み、
前記ポリマー膜が、特定の厚み及び/又は特定の平滑性を有する、方法。
【0126】
第2項
工程(b)を少なくとも1回繰り返し、それにより、前記ポリマー膜に対して、1層又は複数の追加ポリマーの層を加える、第1項に記載の方法。
【0127】
第3項
工程(b)を3〜9回繰り返して、前記ポリマー膜が、前記ポリマーの4〜10層から形成される、第1項又は第2項に記載の方法。
【0128】
第4項
前記第1のモノマー溶液及び/又は前記第2のモノマー溶液が、ジアミン、m−フェニレンジアミン(MPD)、ピペラジン、芳香族アミン、脂肪族アミン、酸塩化物、トリメシン酸クロリド(TMC)、ポリビニルアルコール、グルタルアルデヒド、又はそれらの各種組合せを含む、第1〜3項のいずれか1項に記載の方法。
【0129】
第5項
前記第1のモノマー溶液がMPDを含み、前記第2のモノマー溶液がTMCを含み、前記MPDの濃度が、約0.0625〜約0.5重量/第1の溶媒の容量の範囲であり、そして前記TMCの濃度が、約0.0375〜約0.3重量/第2の溶媒の容量の範囲である、第1〜4項のいずれか1項に記載の方法。
【0130】
第6項
前記第1のモノマー溶液がMPDを含み、前記第2のモノマー溶液がTMCを含み、MPD:TMCのモル比が、1:1から4:1までの範囲である、第1〜5項のいずれか1項に記載の方法。
【0131】
第7項
前記第1のモノマー溶液及び/又は前記第2のモノマー溶液が、導電性スプレー助剤をさらに含む、第1〜6項のいずれか1項に記載の方法。
【0132】
第8項
RMS粗さによって表される前記ポリマー膜の平滑性が、工程(b)の繰り返し回数によるか、及び/又は前記第1のモノマー溶液の濃度及び/又は前記第2のモノマー溶液の濃度によって調節される、第1〜7項のいずれか1項に記載の方法。
【0133】
第9項
RMS粗さで表される前記ポリマー膜の平滑性が、約35nm未満の範囲内で調節可能である、第1〜8項のいずれか1項に記載の方法。
【0134】
第10項
前記ポリマー膜の厚みが、工程(b)の繰り返し回数によるか、及び/又は前記第1のモノマー溶液の濃度及び/又は前記第2のモノマー溶液の濃度によって調節される、第1〜9項のいずれか1項に記載の方法。
【0135】
第11項
前記膜の厚みが、追加される層の数と共に、ほぼ直線的に大きくなる、第1〜10項のいずれか1項に記載の方法。
【0136】
第12項
前記膜の厚みが、約4nm以下の範囲内で調節可能である、第1〜11項のいずれか1項に記載の方法。
【0137】
第13項
前記基材が、ポリフッ化ビニリデン、ナイロン、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリカーボネート、ポリベンズイミダゾール、セルロース、シリカ、シロキサン、セラミック、ガラス、金属、繊維質膜、又はそれらの各種組合せを含む、第1〜12項のいずれか1項に記載の方法。
【0138】
第14項
前記ポリマー膜の厚み及び/又は平滑性が、前記基材の化学的な素性の影響を受けない、第1〜13項のいずれか1項に記載の方法。
【0139】
第15項
前記方法が、前記第1のモノマー溶液のエレクトロスプレー工程と、前記第2のモノマー溶液のエレクトロスプレーと工程との間に、ナノ粒子溶液をエレクトロスプレーする工程をさらに含む、第1〜14項のいずれか1項に記載の方法。
【0140】
第16項
第1〜15項のいずれか1項に記載の方法により作製される、1μm以上の厚みを有する、ポリアミドフィルム。
【0141】
第17項
ポリマーを含む薄膜複合膜であって、前記薄膜複合膜が、RMS粗さ値で表して、約45nm以下の平滑性を有する、薄膜複合膜。
【0142】
第18項
前記膜が、実質的に5層のポリマーからなり、前記ポリマーが、ポリアミドポリマーであり、前記膜が、RMS粗さで表してほぼ分子レベルの平滑性であり、前記膜が、多孔質基材に付着されている、第17項に記載の薄膜複合膜。
【0143】
第19項
多孔質基材に付着させた薄膜複合膜を含む脱塩システムであって、前記薄膜複合膜が、ポリマーを含み、前記薄膜複合膜が、RMS粗さ値で表して、約45nm以下の平滑性を有する、脱塩システム。
【0144】
第20項
前記システムが、約0.1LMH/bar〜約16LMH/barの範囲の純水透過速度を示す、第19項に記載の脱塩システム。
【0145】
本発明の各種の特徴及び利点を、以下の請求項に示す。