特表2021-502652(P2021-502652A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ルニット・インコーポレイテッドの特許一覧

特表2021-502652アノテーション作業の管理方法、それを支援する装置およびシステム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2021-502652(P2021-502652A)
(43)【公表日】2021年1月28日
(54)【発明の名称】アノテーション作業の管理方法、それを支援する装置およびシステム
(51)【国際特許分類】
   G06T 7/00 20170101AFI20201225BHJP
   G16H 30/40 20180101ALI20201225BHJP
【FI】
   G06T7/00 630
   G16H30/40
【審査請求】有
【予備審査請求】未請求
【全頁数】37
(21)【出願番号】特願2020-528015(P2020-528015)
(86)(22)【出願日】2018年11月9日
(85)【翻訳文提出日】2020年5月8日
(86)【国際出願番号】KR2018013664
(87)【国際公開番号】WO2020096098
(87)【国際公開日】20200514
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】520159215
【氏名又は名称】ルニット・インコーポレイテッド
【氏名又は名称原語表記】LUNIT INC.
(74)【代理人】
【識別番号】110001818
【氏名又は名称】特許業務法人R&C
(72)【発明者】
【氏名】リー,キョン・ウォン
(72)【発明者】
【氏名】ペン,キュン・ヒュン
【テーマコード(参考)】
5L096
5L099
【Fターム(参考)】
5L096BA06
5L096BA13
5L096EA35
5L096GA30
5L096GA34
5L096GA51
5L096JA03
5L096JA11
5L096KA04
5L096MA07
5L099AA26
(57)【要約】
アノテーション作業を効率的に遂行できるアノテーション作業管理方法が提供される。前記アノテーション作業管理方法は、新規の病理スライド画像に対する情報を取得する段階、前記病理スライド画像のデータセットタイプおよびパネルを決定する段階、および前記病理スライド画像、前記決定されたデータセットタイプ、アノテーションタスク(annotation task)および前記病理スライド画像の一部領域であるパッチで定義されるアノテーション作業(job)をアノテータ(annotator)アカウントに割り当てる段階を含み得る。この時、前記アノテーションタスクは、前記決定されたパネルを含んで定義され、前記パネルは、細胞(cell)パネル、組織(tissue)パネルおよびストラクチュア(structure)パネルのうちいずれか一つに指定され、前記データセットタイプは、前記病理スライド画像の用途を示し、機械学習モデルの学習(training)用途または前記機械学習モデルの検証(validation)用途のうちいずれか一つに指定されるものであり得る。
【特許請求の範囲】
【請求項1】
コンピューティング装置によって行われるアノテーション作業管理方法であって、
新規の病理スライド画像に対する情報を取得する段階;
前記病理スライド画像のデータセットタイプおよびパネルを決定する段階;および
前記病理スライド画像、前記決定されたデータセットタイプ、アノテーションタスク(annotation task)および前記病理スライド画像の一部領域であるパッチで定義されるアノテーション作業(job)をアノテータ(annotator)アカウントに割り当てる段階を含み、
前記アノテーションタスクは、前記決定されたパネルを含んで定義され、
前記パネルは、細胞(cell)パネル、組織(tissue)パネルおよびストラクチャ(structure)パネルのうちいずれか一つに指定され、
前記データセットタイプは、前記病理スライド画像の用途を示し、機械学習モデルの学習(training)用途または前記機械学習モデルの検証(validation)用途のうちいずれか一つに指定される、アノテーション作業管理方法。
【請求項2】
前記アノテーションタスクは、タスククラスをさらに含んで定義され、
前記タスククラスは、前記パネルの観点で定義されるアノテーション対象を示す、請求項1に記載のアノテーション作業管理方法。
【請求項3】
前記データセットタイプは、前記機械学習モデルの学習(training)用途、前記機械学習モデルの検証(validation)用途またはOPT(Observer Performance Test)用途のうちいずれか一つに指定される、請求項1に記載のアノテーション作業管理方法。
【請求項4】
前記データセットタイプおよびパネルを決定する段階は、
前記病理スライド画像を機械学習モデルに入力し、その結果として出力された出力値に基づいて、前記病理スライド画像のデータセットタイプおよびパネルを決定する段階を含む、請求項1に記載のアノテーション作業管理方法。
【請求項5】
前記出力値は、コンフィデンススコア(confidence score)であり、
前記出力値に基づいて、前記病理スライド画像のデータセットタイプおよびパネルを決定する段階は、
前記コンフィデンススコアが基準値未満である判定に応答し、前記病理スライド画像のデータセットタイプを学習用途に決定する段階を含む、請求項4に記載のアノテーション作業管理方法。
【請求項6】
前記機械学習モデルは、前記細胞パネルに対応する第1モデル、前記組織パネルに対応する第2モデルおよび前記ストラクチャパネルに対応する第3モデルを含み、
前記出力値に基づいて、前記病理スライド画像のデータセットタイプおよびパネルを決定する段階は、
前記病理スライド画像または前記病理スライド画像の一部領域を前記第1モデルないし前記第3モデルそれぞれに入力し、その結果として出力された出力値を取得する段階;および
前記取得された出力値に基づいて前記病理スライド画像のパネルを決定する段階を含む、請求項4に記載のアノテーション作業管理方法。
【請求項7】
前記新規の病理スライド画像に対する情報を取得する段階は、
指定された位置のストレージに病理スライド画像ファイルが追加されることを、前記ストレージをモニタリングするワーカーエージェントが感知する段階;
前記ワーカーエージェントによって前記新規の病理スライド画像に対する情報がデータベースに挿入される段階;および
前記データベースから前記病理スライド画像に対する情報を取得する段階を含む、請求項1に記載のアノテーション作業管理方法。
【請求項8】
前記割り当てる段階は、
前記アノテーション作業のデータセットタイプおよびアノテーションタスクのパネルの組み合わせと関連するアノテーション遂行履歴を基準に選定されたアノテータアカウントに前記アノテーション作業を自動割り当てる段階を含む、請求項1に記載のアノテーション作業管理方法。
【請求項9】
前記アノテーションタスクは、タスククラスをさらに含んで定義され、
前記タスククラスは、前記パネルの観点で定義されるアノテーション対象を示し、
前記割り当てる段階は、
前記アノテーション作業のアノテーションタスクのパネルおよびタスククラスの組み合わせと関連するアノテーション遂行履歴を基準に選定されたアノテータアカウントに前記アノテーション作業を自動割り当てる段階を含む、請求項1に記載のアノテーション作業管理方法。
【請求項10】
前記割り当てる段階は、
前記病理スライド画像の候補パッチを取得する段階;および
それぞれの候補パッチを前記機械学習モデルに入力し、その結果として出力された各クラス別の出力値に基づいて、前記候補パッチの中から前記アノテーション作業のパッチを自動で選定する段階を含む、請求項1に記載のアノテーション作業管理方法。
【請求項11】
前記アノテーション作業のパッチを前記候補パッチの中から自動で選定する段階は、
前記それぞれの候補パッチに対する各クラス別の出力値を利用してエントロピー値を演算する段階;および
前記エントロピー値が基準値以上である候補パッチを、前記アノテーション作業のパッチとして選定する段階を含む、請求項10に記載のアノテーション作業管理方法。
【請求項12】
前記病理スライド画像の候補パッチを取得する段階は、
前記病理スライド画像の全体領域を均一に分割した前記候補パッチを取得する段階を含む、請求項10に記載のアノテーション作業管理方法。
【請求項13】
前記病理スライド画像の候補パッチを取得する段階は、
前記病理スライド画像の全体領域をランダムに分割した前記候補パッチを取得する段階を含む、請求項10に記載のアノテーション作業管理方法。
【請求項14】
前記病理スライド画像の候補パッチを取得する段階は、
前記病理スライド画像の全体領域に対してオブジェクト認識を行う段階;および
前記オブジェクト認識の結果、算出されたオブジェクトの個数が基準値を超えるように前記候補パッチを形成する段階を含む、請求項10に記載のアノテーション作業管理方法。
【請求項15】
前記病理スライド画像の候補パッチを取得する段階は、
前記病理スライド画像のメタデータに基づいて決定されたポリシーに従い分割された前記候補パッチを取得する段階を含む、請求項10に記載のアノテーション作業管理方法。
【請求項16】
前記割り当てる段階は、
前記病理スライド画像の候補パッチを取得する段階;
それぞれの候補パッチに対する前記機械学習モデルのミス予測(miss−prediction)確率を算出する段階;および
前記算出されたミス予測確率が基準値以上である候補パッチを、前記アノテーション作業のパッチとして選定する段階を含む、請求項1に記載のアノテーション作業管理方法。
【請求項17】
前記アノテーション作業の割り当てを受けたアノテータアカウントの第1アノテーション結果データを取得する段階;
前記第1アノテーション結果データと、前記アノテーション作業のパッチを前記機械学習モデルに入力した結果とを比較する段階;および
前記比較の結果、二つの結果の差が基準値を超えると、前記アノテーション作業を他のアノテータアカウントに再割り当てする段階をさらに含む、請求項1に記載のアノテーション作業管理方法。
【請求項18】
前記アノテーション作業の割り当てを受けたアノテータアカウントの第1アノテーション結果データを取得する段階;
他のアノテータアカウントの第2アノテーション結果データを取得する段階;および
前記第1アノテーション結果データと前記第2アノテーション結果データの類似度が基準値未満の場合、前記第1アノテーション結果データを未承認処理する段階をさらに含む、請求項1に記載のアノテーション作業管理方法。
【請求項19】
一つ以上のインストラクション(instructions)を含むメモリ;および
前記一つ以上のインストラクションを実行することによって、
新規の病理スライド画像に対する情報を取得し、前記病理スライド画像のデータセットタイプおよびパネルを決定し、前記病理スライド画像、前記決定されたデータセットタイプ、アノテーションタスク(annotation task)および前記病理スライド画像の一部領域であるパッチで定義されるアノテーション作業(job)をアノテータ(annotator)アカウントに割り当てるプロセッサを含み、
前記アノテーションタスクは、前記決定されたパネルを含んで定義され、
前記パネルは、細胞(cell)パネル、組織(tissue)パネルおよびストラクチャ(structure)パネルのうちいずれか一つに指定され、
前記データセットタイプは、前記病理スライド画像の用途を示し、機械学習モデルの学習(training)用途または前記機械学習モデルの検証(validation)用途のうちいずれか一つに指定される、アノテーション作業管理装置。
【請求項20】
コンピュータプログラムを含む非一時的な(non−transitory)コンピュータ読み取り可能な記録媒体であって、
前記コンピュータプログラムのコマンドがプロセッサによって実行されるとき、前記プロセッサが、
新規の病理スライド画像に対する情報を取得する段階;
前記病理スライド画像のデータセットタイプおよびパネルを決定する段階;および
前記病理スライド画像、前記決定されたデータセットタイプ、アノテーションタスク(annotation task)および前記病理スライド画像の一部領域であるパッチで定義されるアノテーション作業(job)をアノテータ(annotator)アカウントに割り当てる段階を行うようにし、
前記アノテーションタスクは、前記決定されたパネルを含んで定義され、
前記パネルは、細胞(cell)パネル、組織(tissue)パネルおよびストラクチャ(structure)パネルのうちいずれか一つに指定され、
前記データセットタイプは、前記病理スライド画像の用途を示し、機械学習モデルの学習(training)用途または前記機械学習モデルの検証(validation)用途のうちいずれか一つに指定される、非一時的なコンピュータ読み取り可能な記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、アノテーション作業の管理方法、それを支援する装置およびシステムに関する。より詳しく、アノテーション(annotation)作業をより効率的に管理すると同時にアノテーション結果の正確性を担保できる方法、その方法を支援する装置およびシステムを提供するものにある。
【背景技術】
【0002】
教師あり学習(supervised learning)とは、図1に示すようにラベル情報(すなわち、正答情報)が与えられたデータセット2を学習して目的タスクを遂行するターゲットモデル3を構築する機械学習方法である。したがって、ラベル情報(タグアイコンで表す)が与えられていないデータセット1に対して教師あり学習を行うためには、アノテーション(annotation)作業が必須的に先行しなければならない。
【0003】
アノテーション作業は、学習データセットを生成するためにデータ別にラベル情報をタギングする作業を意味する。アノテーション作業は、一般に人によって行われるので、大量の学習データセットを生成するためには相当な人的コストと時間コストが消耗する。特に、病理画像で病変の種類または位置などを診断する機械学習モデルを構築する場合は、熟練した専門医によってアノテーション作業が行われなければならないので、他のドメインに比べてはるかに多くのコストがかかる。
【0004】
従来には、体系的な作業プロセスが確立されていない状態でアノテーション作業が行われた。たとえば、従来の方式は管理者が各病理画像の特性を肉眼で確認してアノテーション遂行の可否を決定し、管理者が病理画像を分類した後、適宜のアノテータ(annotator)に病理画像を割り当てる方式であった。それだけでなく、従来には管理者がいちいち病理画像上のアノテーション領域を指定した後、アノテータに作業を割り当てた。すなわち、従来には病理画像の分類、作業割り当て、アノテーション領域の指定などの諸過程が管理者によって手動で行われた。そのため、アノテーション作業に相当な時間コストと人的コストが消耗する問題があった。
【0005】
さらに、機械学習技法自体は十分に高度化したにもかかわらず、アノテーション作業の時間的、費用的問題によって多様な分野に機械学習技法を適用するには多くの困難性があった。
【0006】
したがって、機械学習技法の活用性をさらに増大させるために、より効率的、かつ体系的にアノテーション作業を遂行できる方法が求められる。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本開示のいくつかの実施形態により解決しようとする技術的課題は、アノテーション作業の自動化によりアノテーション作業をより効率的、かつ体系的に行い、管理できる方法、その方法を支援する装置およびシステムを提供することにある。
【0008】
本開示のいくつかの実施形態により解決しようとする他の技術的課題は、アノテーション作業を体系的に管理できるデータ設計算出物またはデータモデリング算出物を提供することにある。
【0009】
本開示が解決しようとするまた他の技術的課題は、アノテーション作業を適宜のアノテータに自動で割り当てる方法、その方法を支援する装置およびシステムを提供することにある。
【0010】
本開示が解決しようとするまた他の技術的課題は、病理スライド画像でアノテーション作業が遂行されるパッチ画像を自動で抽出する方法、その方法を支援する装置およびシステムを提供することにある。
【0011】
本開示が解決しようとするまた他の技術的課題は、アノテーション結果の正確性を担保できる方法、その方法を支援する装置およびシステムを提供することにある。
【0012】
本開示の技術的課題は、以上で言及した技術的課題に制限されず、言及されていないまた他の技術的課題は、以下の記載から本開示の技術分野における通常の技術者に明確に理解されることができる。
【課題を解決するための手段】
【0013】
前記技術的課題を解決するための本開示のいくつかの実施形態によるアノテーション作業管理方法は、コンピューティング装置によって行われる方法であって、新規の病理スライド画像に対する情報を取得する段階、前記病理スライド画像のデータセットタイプおよびパネルを決定する段階および前記病理スライド画像、前記決定されたデータセットタイプ、アノテーションタスク(annotation task)および前記病理スライド画像の一部領域であるパッチで定義されるアノテーション作業(job)をアノテータ(annotator)アカウントに割り当てる段階を含み、前記アノテーションタスクは、前記決定されたパネルを含んで定義され、前記パネルは、細胞(cell)パネル、組織(tissue)パネルおよびストラクチャ(structure)パネルのうちいずれか一つに指定され、前記データセットタイプは、前記病理スライド画像の用途を示し、機械学習モデルの学習(training)用途または前記機械学習モデルの検証(validation)用途のうちいずれか一つに指定されるものであり得る。
【0014】
いくつかの実施形態において、前記アノテーションタスクは、タスククラスをさらに含んで定義され、前記タスククラスは、前記パネルの観点で定義されるアノテーション対象を示すものであり得る。
【0015】
いくつかの実施形態において、前記データセットタイプは、前記機械学習モデルの学習(training)用途、前記機械学習モデルの検証(validation)用途またはOPT(Observer Performance Test)用途のうちいずれか一つに指定されるものであり得る。
【0016】
いくつかの実施形態において、前記データセットタイプおよびパネルを決定する段階は、前記病理スライド画像を機械学習モデルに入力し、その結果として出力された出力値に基づいて、前記病理スライド画像のデータセットタイプおよびパネルを決定する段階を含み得る。
【0017】
いくつかの実施形態において、前記新規の病理スライド画像に対する情報を取得する段階は、指定された位置のストレージに病理スライド画像ファイルが追加されることを、前記ストレージをモニタリングするワーカーエージェントが感知する段階、前記ワーカーエージェントによって前記新規の病理スライド画像に対する情報がデータベースに挿入される段階および前記データベースから前記病理スライド画像に対する情報を取得する段階を含み得る。
【0018】
いくつかの実施形態において、前記割り当てる段階は、前記アノテーション作業のデータセットタイプおよびアノテーションタスクのパネルの組み合わせと関連するアノテーション遂行履歴を基準に選定されたアノテータアカウントに前記アノテーション作業を自動割り当てる段階を含み得る。
【0019】
いくつかの実施形態において、前記アノテーションタスクは、タスククラスをさらに含んで定義され、前記タスククラスは、前記パネルの観点で定義されるアノテーション対象を示し、前記割り当てる段階は、前記アノテーション作業のアノテーションタスクのパネルおよびタスククラスの組み合わせと関連するアノテーション遂行履歴を基準に選定されたアノテータアカウントに前記アノテーション作業を自動割り当てる段階を含み得る。
【0020】
いくつかの実施形態において、前記割り当てる段階は、前記病理スライド画像の候補パッチを取得する段階およびそれぞれの候補パッチを前記機械学習モデルに入力し、その結果として出力された各クラス別の出力値に基づいて、前記候補パッチの中から前記アノテーション作業のパッチを自動で選定する段階を含み得る。
【0021】
いくつかの実施形態において、前記アノテーション作業のパッチを前記候補パッチの中から自動で選定する段階は、前記それぞれの候補パッチに対する各クラス別の出力値を利用してエントロピー値を演算する段階および前記エントロピー値が基準値以上である候補パッチを、前記アノテーション作業のパッチとして選定する段階を含み得る。
【0022】
いくつかの実施形態において、前記割り当てる段階は、前記病理スライド画像の候補パッチを得る段階、それぞれの候補パッチに対する前記機械学習モデルのミス予測(miss−prediction)確率を算出する段階および前記算出されたミス予測確率が基準値以上である候補パッチを、前記アノテーション作業のパッチとして選定する段階を含み得る。
【0023】
いくつかの実施形態において、前記アノテーション作業の割り当てを受けたアノテータアカウントの第1アノテーション結果データを取得する段階、前記第1アノテーション結果データと前記アノテーション作業のパッチを前記機械学習モデルに入力した結果とを比較する段階および前記比較結果、二つの結果の差が基準値を超えると前記アノテーション作業を他のアノテータアカウントに再割り当てする段階をさらに含み得る。
【0024】
いくつかの実施形態において、前記アノテーション作業の割り当てを受けたアノテータアカウントの第1アノテーション結果データを取得する段階、他のアノテータアカウントの第2アノテーション結果データを取得する段階および前記第1アノテーション結果データと前記第2アノテーション結果データの類似度が基準値未満の場合、前記第1アノテーション結果データを未承認処理する段階をさらに含み得る。
【0025】
上述した技術的課題を解決するための本開示のいくつかの実施形態によるアノテーション作業管理装置は、一つ以上のインストラクション(instructions)を含むメモリおよび前記一つ以上のインストラクションを実行することによって、新規の病理スライド画像に対する情報を得、前記病理スライド画像のデータセットタイプおよびパネルを決定し、前記病理スライド画像、前記決定されたデータセットタイプ、アノテーションタスク(annotation task)および前記病理スライド画像の一部領域であるパッチで定義されるアノテーション作業(job)をアノテータ(annotator)アカウントに割り当てるプロセッサを含み、前記アノテーションタスクは、前記決定されたパネルを含んで定義され、前記パネルは、細胞(cell)パネル、組織(tissue)パネルおよびストラクチャ(structure)パネルのうちいずれか一つに指定され、前記データセットタイプは、前記病理スライド画像の用途を示し、機械学習モデルの学習(training)用途または前記機械学習モデルの検証(validation)用途のうちいずれか一つに指定されるものであり得る。
【0026】
上述した技術的課題を解決するための本開示のいくつかの実施形態によるコンピュータプログラムを含む非一時的な(non−transitory)コンピュータ読み取り可能な記録媒体は、前記コンピュータプログラムのコマンドがプロセッサによって実行されるとき、前記プロセッサが、新規の病理スライド画像に対する情報を得る段階、前記病理スライド画像のデータセットタイプおよびパネルを決定する段階および前記病理スライド画像、前記決定されたデータセットタイプ、アノテーションタスク(annotation task)および前記病理スライド画像の一部領域であるパッチで定義されるアノテーション作業(job)をアノテータ(annotator)アカウントに割り当てる段階を行うようにすることができる。この時、前記アノテーションタスクは、前記決定されたパネルを含んで定義され、前記パネルは、細胞(cell)パネル、組織(tissue)パネルおよびストラクチャ(structure)パネルのうちいずれか一つに指定され、前記データセットタイプは、前記病理スライド画像の用途を示し、機械学習モデルの学習(training)用途または前記機械学習モデルの検証(validation)用途のうちいずれか一つに指定されるものであり得る。
【発明の効果】
【0027】
上述した本開示の多様な実施形態によれば、アノテーション作業が全般的に自動化されることにより管理者の便宜性が増大し、全般的な作業効率性が大きく向上できる。これに伴いアノテーション作業に所要する時間コストおよび人的コストを大きく節減することができる。また、アノテーション作業の負担が減少することにより、機械学習技法の活用性はさらに増大することができる。
【0028】
また、データモデリング算出物に基づいてアノテーション作業と関連する各種データを体系的に管理することができる。これにより、データ管理コストは減少し、全般的なアノテーション作業プロセスが円滑に行われることができる。
【0029】
また、アノテーション作業を適宜のアノテータに自動で割り当てることによって、管理者の業務負担が減少し得、アノテーション結果の正確性は向上することができる。
【0030】
また、アノテーション作業結果を機械学習モデルまたは他のアノテータの結果と比較検証することによって、アノテーション結果の正確性を担保することができる。これにより、アノテーション結果を学習した機械学習モデルの性能も向上することができる。
【0031】
また、アノテーションが遂行される領域を示すパッチが自動で抽出されることができる。したがって、管理者の業務負担を最小化することができる。
【0032】
また、機械学習モデルのミス予測確率、エントロピー値などに基づいて複数の候補パッチのうち学習に効果的なパッチのみがアノテーション対象として選定される。これによりアノテーション作業量が減少し、良質の学習データセットを生成することができる。
【0033】
本開示の技術的思想による効果は、以上で言及した効果に制限されず、言及されていないまた他の効果は、以下の記載から通常の技術者に明確に理解されるであろう。
【図面の簡単な説明】
【0034】
図1】教師あり学習とアノテーション作業間との関係を説明するための例示図である。
図2】本開示の多様な実施形態によるアノテーション作業管理システムを示す例示的な構成図である。
図3】本開示の多様な実施形態によるアノテーション作業管理システムを示す例示的な構成図である。
図4】本開示のいくつかの実施形態によるアノテーション作業管理のための例示的なデータモデルの設計図である。
図5】本開示のいくつかの実施形態によるアノテーション作業管理方法を示す例示的な流れ図である。
図6】本開示のいくつかの実施形態によるアノテータの選定方法を説明するための例示図である。
図7】本開示のいくつかの実施形態で参照できるアノテーションツールを示す例示図である。
図8】本開示のいくつかの実施形態によるアノテーション作業の生成方法を示す例示的な流れ図である。
図9】本開示のいくつかの実施形態による病理スライド画像に対するデータセットタイプの決定方法を示す例示的な流れ図である。
図10】本開示のいくつかの実施形態によるパネル類型の決定方法を説明するための図である。
図11】本開示のいくつかの実施形態によるパネル類型の決定方法を説明するための図である。
図12】本開示のいくつかの実施形態によるパネル類型の決定方法を説明するための図である。
図13】本開示のいくつかの実施形態によるパネル類型の決定方法を説明するための図である。
図14】本開示の第1実施形態によるパッチの自動抽出方法を示す例示的な流れ図である。
図15】本開示の第1実施形態によるパッチの自動抽出方法を説明するための例示図である。
図16】本開示の第1実施形態によるパッチの自動抽出方法を説明するための例示図である。
図17】本開示の第1実施形態によるパッチの自動抽出方法を説明するための例示図である。
図18】本開示の第1実施形態によるパッチの自動抽出方法を説明するための例示図である。
図19】本開示の第1実施形態によるパッチの自動抽出方法を説明するための例示図である。
図20】本開示の第2実施形態によるパッチの自動抽出方法を示す例示的な流れ図である。
図21】本開示の第2実施形態によるパッチの自動抽出方法を説明するための例示図である。
図22】本開示の第2実施形態によるパッチの自動抽出方法を説明するための例示図である。
図23】本開示の第2実施形態によるパッチの自動抽出方法を説明するための例示図である。
図24】本開示の多様な実施形態による装置/システムを具現できる例示的なコンピューティング装置を示す例示的なハードウェアの構成図である。
【発明を実施するための形態】
【0035】
以下、添付する図面を参照して本開示の好ましい実施形態を詳細に説明する。本開示の利点および特徴、並びにこれらを達成する方法は、添付する図面と共に詳細に後述する実施形態を参照すれば明確になる。しかし、本開示の技術的思想は、以下の実施形態に限定されるものではなく、互いに異なる多様な形態で具現することができ、本実施形態は、単に本開示を完全にし、本開示が属する技術分野における通常の知識を有する者に本開示の範疇を完全に知らせるために提供するものであり、本開示の技術的思想は請求項の範疇によってのみ定義される。
【0036】
各図面の構成要素に参照符号を付加するにあたって、同じ構成要素に対しては他の図面上に表示される場合でも同じ符号を有するようにしたので、留意しなければならない。また、本開示を説明するにあたって、関連する公知の構成または機能に対する具体的な説明が本開示の要旨を曖昧にすると判断される場合はその詳細な説明は省略する。
【0037】
他に定義のない限り、本明細書において使われるすべての用語(技術的および科学的用語を含む)は本開示が属する技術分野における通常の知識を有する者に共通して理解される意味で使われる。また、一般に使われる辞典に定義されている用語は明白に特に定義しない限り理想的にまたは過度に解釈されない。本明細書において使われた用語は実施形態を説明するためのものであり、本開示を制限しようとするものではない。本明細書において、単数形は文面で特記しない限り、複数形も含む。
【0038】
また、本開示の構成要素を説明するにあたって、第1、第2、A、B、(a)、(b)などの用語を使う。このような用語は、その構成要素を他の構成要素と区別するためであり、その用語によって該当構成要素の本質や順序または順番などが限定されない。ある構成要素が他の構成要素に「連結」、「結合」または「接続」されると記載された場合、その構成要素はその他の構成要素に直接的に連結されたりまたは接続されるが、各構成要素の間にまた他の構成要素が「連結」、「結合」または「接続」され得ると理解しなければならない。
【0039】
明細書で使われる「含む(comprises)」および/または「含み(comprising)」は、言及された構成要素、段階、動作および/または素子は一つ以上の他の構成要素、段階、動作および/または素子の存在または追加を排除しない。
【0040】
本明細書の説明に先立ち、本明細書で使われるいくつかの用語を明確にする。
【0041】
本明細書において、ラベル情報(label information)とは、データサンプルの正答情報であり、アノテーション作業の結果として取得された情報である。前記ラベルは当該技術分野でアノテーション(annotation)、タグなどの用語と混用して使われる。
【0042】
本明細書において、アノテーション(annotation)とは、データサンプルにラベル情報をタギングする作業またはタギングされた情報(すなわち、注釈)そのものを意味する。前記アノテーションは、当該技術分野でタギング(tagging)、ラベリング(labeling)などの用語と混用して使われる。
【0043】
本明細書において、ミス予測(miss−prediction)確率とは、与えられたデータサンプルに対する特定モデルが予測を行う時、前記予測結果に誤謬が含まれる確率(すなわち、予測が間違う確率)または可能性を意味する。
【0044】
本明細書において、パネル(panel)とは、病理スライド画像で抽出されるパッチ(patch)または病理スライド画像のタイプを意味する。前記パネルは、細胞(cell)パネル、組織(tissue)パネルおよびストラクチャ(structure)パネルに区分されるが、本開示の技術的範囲はこれに限定されるものではない。各パネル類型に対応するパッチの例は図10ないし図12を参照する。
【0045】
本明細書においてインストラクション(instruction)とは、機能を基準に集まった一連のコマンドであって、コンピュータプログラムの構成要素であり、プロセッサによって実行されるものを示す。
【0046】
以下、本開示のいくつかの実施形態について添付する図面により詳細に説明する。
【0047】
図2は本開示のいくつかの実施形態によるアノテーション作業管理システムを示す例示的な構成図である。
【0048】
図2に示すように、前記アノテーション作業管理システムは、ストレージサーバ10、少なくとも一つのアノテータ端末(20−1〜20−n)およびアノテーション作業管理装置100を含み得る。ただし、これは本開示の目的を達成するための好ましい実施形態であり、必要に応じて一部の構成要素を追加または削除できることはもちろんである。たとえば、他のいくつかの実施形態では、図3に示すように、前記アノテーション作業管理システムはアノテーション作業に対するレビュー(すなわち、評価)を担当するレビュー者端末30をさらに含み得る。
【0049】
図2または図3に示すシステムのそれぞれの構成要素は、機能的に区分される機能要素を示すものであり、実際の物理的環境では複数の構成要素が互いに統合される形態で具現することもできる。または、前記それぞれの構成要素は実際の物理的環境では複数の細部機能要素に分離する形態で具現することもできる。例えば、アノテーション作業管理装置100の第1機能は、第1コンピューティング装置で具現され、第2機能は第2コンピューティング装置で具現されることもできる。以下、前記それぞれの構成要素について説明する。
【0050】
前記アノテーション作業管理システムにおいて、ストレージサーバ10は、アノテーション作業と関連する各種データを保存して管理するサーバである。データの効率的な管理のために、ストレージサーバ10は、データベースを利用して前記各種データを保存して管理できる。
【0051】
前記各種データは病理スライド画像のファイル、病理スライド画像のメタデータ(例:画像形式、関連する病名、関連する組織、関連する患者情報など)、アノテーション作業に関するデータ、アノテータに関するデータ、アノテーション作業結果物などを含み得るが、本開示の技術的範囲はこれに限定されるものではない。
【0052】
いくつかの実施形態において、ストレージサーバ10は、作業管理ウェブページを提供するウェブサーバとして動作することもできる。このような場合、管理者は前記作業管理ウェブページを介してアノテーション作業に対する割り当て、管理などを行って、アノテータは前記作業管理ウェブページを介して割り当てられた作業を確認して遂行できる。
【0053】
いくつかの実施形態において、アノテーション作業管理のためのデータモデル(例:DBスキーマ)は図4に示すように設計できる。図4でボックス型オブジェクトはエンティティー(entity)を示し、ボックス型オブジェクトを連結する線は関係(relationship)を示し、線の上の文字は関係類型を示す。図4に示すように、アノテーション作業エンティティー44は多様なエンティティー(43、45、46、47、49)と関連する。より理解の便宜のために、図4に示すデータモデルについて作業エンティティー44を中心に簡略に説明する。
【0054】
スライドエンティティー45は、病理スライド画像に関するエンティティーである。スライドエンティティー45は、病理スライド画像と関連する各種情報を属性(attribute)として有することができる。一つの病理スライド画像から多数のアノテーション作業が生成されるために、スライドエンティティー45と作業エンティティー44との間の関係は1:nである。
【0055】
データセットエンティティー49は、アノテーションが行われたデータの活用用途を示すエンティティーである。たとえば、前記活用用途は、学習(training)用途(すなわち、学習データセットとして活用される)、検証(validation)用途(すなわち、検証データセットとして活用される)、テスト用途(すなわち、テストデータセットとして活用される)またはOPT(Observer Performance Test)用途(すなわち、OPTテストとして活用される)に区分されるが、本開示の技術的範囲はこれに限定されるものではない。
【0056】
アノテータエンティティー47は、アノテータを示すエンティティーである。アノテータエンティティー47は、前記アノテータの現在の作業現況、過去の作業遂行履歴、既に行われた作業に対する評価結果、アノテータの人的情報(例:学歴、専攻など)などを属性として有することができる。一人のアノテータは多数の作業を遂行できるので、アノテータエンティティー47と作業エンティティー44との間の関係は1:nである。
【0057】
パッチエンティティー46は、病理スライド画像から派生したパッチに関するエンティティーである。前記パッチには複数のアノテーションが含まれるので、パッチエンティティー46とアノテーションエンティティー48との間の関係は1:nである。また、一つのアノテーション作業が複数のパッチに対して行われ得るので、パッチエンティティー46と作業エンティティー44との間の関係はn:1である。
【0058】
アノテーションタスクエンティティー43は、細部的なアノテーション作業類型であるアノテーションタスク(annotation task)を示すエンティティーである。例えば、前記アノテーションタスクの有糸分裂細胞(mitosis)であるか否かをタギングするタスク、有糸分裂細胞の個数をタギングするタスク、病変の種類をタギングするタスク、病変の位置をタギングするタスク、病名をタギングするタスクなどのように多様に定義されて細分化することができる。前記アノテーション作業の細部類型は、パネルに応じて異なり(すなわち、細胞パネルと組織パネルにタギングされるアノテーションは異なる)、同じパネルでも互いに異なるタスクが行われ得るために、タスクエンティティー43はパネルエンティティー41とタスククラスエンティティー42を属性として有することができる。ここで、タスククラスエンティティー42はパネルの観点で定義されるアノテーション対象(例:有糸分裂細胞、病変の位置)またはパネルの観点で定義されるタスク類型を示すエンティティーである。一つのアノテーションタスクで複数のアノテーション作業が生成され得るので(すなわち、同じタスクを遂行する複数の作業が存在し得る)、アノテーションタスクエンティティー43とアノテーション作業エンティティー44との間の関係は1:nである。プログラミング的な観点から、アノテーションタスクエンティティー43は、クラス(class)またはプログラム(program)に対応し、アノテーション作業エンティティー44は、前記クラスのインスタンス(instance)またはプログラムの実行によって生成されたプロセス(process)に対応するものと理解することができる。
【0059】
いくつかの実施形態において、ストレージサーバ10は、前述したデータモデルに基づいてデータベースを構築し、アノテーション作業と関連する各種データを体系的に管理できる。これにより、データ管理コストは減少し、全般的なアノテーション作業プロセスが円滑に行われ得る。
【0060】
以上、アノテーション作業管理のためのデータモデルについて説明した。再び図2および図3を参照してアノテーション作業管理システムの構成要素について説明を継続する。
【0061】
前記アノテーション作業管理システムにおいて、アノテーション作業管理装置100は、アノテータ端末(20−1〜20−n)にアノテーション作業を割り当てるなどの諸管理機能を遂行するコンピューティング装置である。ここで、前記コンピューティング装置は、ノートブック、デスクトップ(desktop)、ラップトップ(laptop)などであるが、これに限定されるものではなく、コンピューティング機能が備えられたすべての種類の装置を含み得る。前記コンピューティング装置の一例は図24を参照する。以下では、説明の便宜上アノテーション作業管理装置100を管理装置100と略称する。また、以下では、アノテータ端末を総称したり区分せず任意のアノテータ端末を称する場合は参照番号20を使う。
【0062】
作業管理装置100は、管理者によって利用される装置であり得る。たとえば、管理者は作業管理装置100を介して作業管理ウェブページに接続し、管理者アカウントでログインした後、全般的な作業に対する管理を遂行できる。たとえば、管理者はアノテーション作業を特定アノテータのアカウントに割り当てたり、アノテーション結果をレビュー者のアカウントに伝送してレビューを要請するなどの管理行為を遂行できる。もちろん、前記のような諸管理過程は作業管理装置100により自動で行われることもできるが、これに関する説明は図5以下の図面を参照して後述する。
【0063】
前記アノテーション作業管理システムにおいて、アノテータ端末20はアノテータによってアノテーション作業が遂行される端末である。端末20にはアノテーションツール(annotation tool)がインストールされている。もちろん、作業管理ウェブページを介してアノテーションのための各種機能が提供されることもできる。このような場合、アノテータは端末20を介して前記作業管理ウェブページに接続した後、ウェブ上でアノテーション作業を遂行できる。前記アノテーションツールの一例示は図7を参照する。
【0064】
前記アノテーション作業管理システムにおいて、レビュー者端末30はアノテーション結果に対するレビューを行うレビュー者側の端末である。レビュー者はレビュー者端末30を利用してアノテーション結果に対するレビューを行って、レビュー結果を管理装置100に提供できる。
【0065】
いくつかの実施形態において、アノテーション作業管理システムの少なくとも一部の構成要素はネットワークを介して通信できる。ここで、前記ネットワークは、ローカルエリアネットワーク(Local Area Network;LAN)、広域ネットワーク(Wide Area Network;WAN)、移動通信網(mobile radio communication network)、Wibro(Wireless Broadband Internet)などのようなべての種類の有線/無線ネットワークとして具現することができる。
【0066】
以上図2ないし図4を参照して本開示のいくつかの実施形態によるアノテーション作業管理システムについて説明した。以下では、図5ないし図23の図面を参照して本開示のいくつかの実施形態によるアノテーション作業管理方法について説明する。
【0067】
前記アノテーション作業管理方法の各段階は、コンピューティング装置によって行われ得る。すなわち、前記アノテーション作業管理方法の各段階は、コンピューティング装置のプロセッサによって実行される一つ以上のインストラクションとして具現することができる。理解の便宜のために、前記アノテーション作業管理方法が図3または図4に示す環境で行われる場合を仮定して説明を継続する。
【0068】
図5は本開示のいくつかの実施形態によるアノテーション作業管理方法を示す例示的な流れ図である。ただし、これは本開示の目的を達成するための好ましい実施形態であり、必要に応じて一部の段階が追加または削除できるのはもちろんである。
【0069】
図5に示すように、前記アノテーション作業管理方法は、新規の病理スライド画像に対する情報を得る段階S100から始まる。前記病理スライド画像に対する情報は、前記病理スライド画像のメタデータのみを含み得、病理スライド画像ファイルをさらに含むこともできる。
【0070】
いくつかの実施形態において、ワーカーエージェント(worker agent)を介して前記新規の病理スライド画像に対する情報がリアルタイムで取得され得る。具体的には、前記ワーカーエージェントによって指定された位置のストレージ(例:ストレージサーバ10または病理スライド画像を提供する医療機関のストレージ)に病理スライド画像ファイルが追加されることが感知され得る。また、前記ワーカーエージェントによって前記新規の病理スライド画像に対する情報が作業管理装置100またはストレージサーバ10のデータベースに挿入され得る。そうすると、前記データベースから前記新規の病理スライド画像に対する情報が取得され得る。
【0071】
段階S200において、管理装置100は前記病理スライド画像に対するアノテーション作業を生成する。ここで、前記アノテーション作業は、前記病理スライド画像、データセットタイプ、アノテーションタスクおよび前記病理スライド画像の一部領域(すなわち、アノテーション対象領域)のパッチなどの情報に基づいて定義される(図4参照)。本段階S200に関する詳しい説明は図8ないし図23を参照して後述する。
【0072】
段階S300において、管理装置100は前記生成されたアノテーション作業を行うアノテータを選定する。
【0073】
いくつかの実施形態において、図6に示すように、管理装置100はアノテータ(51〜53)の作業遂行履歴(例:しばしば行っていたアノテーション作業など)、既に行った作業の評価結果(または検証結果)、現在の作業現況(例:現在の割り当てられた作業進行状態)などの管理情報(54〜56)に基づいてアノテータを自動で選定できる。例えば、管理装置100は前記生成されたアノテーション作業と関連する作業をしばしば行っていた第1アノテータ、関連作業に対するアノテーション結果が優れていた第2アノテータ、現在の進行中の作業が多くない第3アノテータなどを前記生成されたアノテーション作業のアノテータとして選定できる。
【0074】
ここで、作業遂行履歴に前記生成されたアノテーション作業と関連する作業が含まれているかどうかは各作業のデータセットタイプとアノテーションタスクのパネルの組み合わせが互いに類似するか否かに基づいて判定できる。または、アノテーションタスクのパネルおよびタスククラスの組み合わせが互いに類似するか否かに基づいて判定することもできる。もちろん、前記2種類組み合わせがすべて類似するか否に基づいて判定することもできる。
【0075】
いくつかの実施形態において、前記新規の病理スライド画像が重要データ(例:奇病と関連するスライド画像、高品質のスライド画像など)の場合、複数のアノテータが選定され得る。また、アノテータの人数は前記重要度に比例して増加し得る。このような場合、前記複数のアノテータの作業結果を相互比較することによって、アノテーション結果に対する検証が行われ得る。本実施形態によれば、重要データに対してより厳格な検証が行われることによって、アノテーション結果の正確性が向上できる。
【0076】
段階S400において、管理装置100は選定されたアノテータの端末20にアノテーション作業を割り当てる。たとえば、管理装置100は前記選定されたアノテータのアカウントにアノテーション作業を割り当てることができる。
【0077】
段階S500において、アノテータ端末20でアノテーションが遂行される。アノテータは端末20にインストールされたアノテータツールまたはウェブ(例:作業管理ウェブページ)を介して提供されるアノテーションサービスを利用してアノテーションを遂行できるが、本開示の技術的範囲はこれに限定されるものではない。
【0078】
前記アノテータツールのいくつかの例示は図6に示されている。図6に示すように、アノテーションツール60は第1領域63と第2領域61を含み得る。第2領域61には実際のアノテーションが遂行されるパッチ領域68と拡大/縮小インジケータ65が含まれ得る。図6に示すように、パッチ領域68にはボックスラインなどのハイライト処理がなされる。第1領域63には作業情報67が表示され、道具領域69がさらに含まれ得る。道具領域69には各アノテーションに対応する選択可能な道具が含まれ得る。したがって、アノテータはパッチ領域68に直接アノテーションを記入せず、簡便に選定した道具を利用してパッチ領域68にアノテーションをタギングすることができる(例:クリックにより第1道具を選択し、パッチ領域68を再びクリックしてタギング実行)。道具領域63に表示されるアノテーションの種類はアノテーション作業に応じて変わるので、アノテーションツール60はアノテーション作業情報に基づいて適宜アノテーション道具をセッティングすることができる。
【0079】
図6に示すアノテーションツール60は、アノテータの便宜性のために考案されたツールの一例示を図示しているだけであることに留意しなければならない。すなわち、アノテーションツールはいかなる方式で具現されても構わない。再び図5を参照して説明を継続する。
【0080】
段階S600において、アノテータ端末20はアノテーション作業の結果を提供する。アノテーション作業の結果は該当パッチにタギングされたラベル情報になる。
【0081】
段階S700において、管理装置100は作業結果に対する検証(評価)を行う。前記検証結果は該当アノテータの評価結果として記録される。前記検証を行う具体的な方式は実施形態によって異なる。
【0082】
いくつかの実施形態において、機械学習モデルの出力結果に基づいて自動で検証が行われ得る。具体的には、作業の割り当てを受けたアノテータから第1アノテーション結果データが取得されると、前記第1アノテーション結果データと前記アノテーション作業のパッチを前記機械学習モデルに入力した結果とを比較できる。前記比較結果、二つの結果の差が基準値を超えると前記第1アノテーション結果データの承認は保留するかあるいは未承認処理することができる。
【0083】
ここで、前記基準値は既に設定した固定値または状況に応じて変動する変動値であり得る。たとえば、前記基準値は前記機械学習モデルの正確度が高いほどさらに小さい値に変動する値であり得る。
【0084】
段階S800において、管理装置100はアノテーション作業の再遂行の可否を判定する。たとえば、段階S700で検証が成功的に行われなかった場合、管理装置100は再作業が必要であると決定をする。
【0085】
段階S900において、再作業の必要決定に応答し、管理装置100は他のアノテータを選定し、前記他のアノテータにアノテーション作業を再割り当てする。この時、前記他のアノテータは段階S300で説明した方式と類似の方式で選定できる。または、前記他のアノテータはレビュー者または性能が最も優れた機械学習モデルであり得る。
【0086】
図5には示していないが、段階S900以後に、前記他のアノテータの第2アノテーション結果データに基づいて前記第1アノテーション結果データに対する検証が再び行われ得る。具体的には、前記第2アノテーション結果データが取得されると、前記第1アノテーション結果データと前記第2アノテーション結果データの類似度が算出される。また、前記類似度が基準値未満の場合、前記第1アノテーション結果データは最終的に未承認処理される。このような処理結果は、該当アノテータの作業遂行履歴に記録され得る。
【0087】
以上図4ないし図7を参照して本開示のいくつかの実施形態によるアノテーション作業管理方法について説明した。上述した方法によれば、アノテーション作業が全般的に自動化されることにより管理者の便宜性が増大し、全般的な作業効率性が大きく向上できる。これにより、アノテーション作業に所要する時間コストおよび人的コストが大きく節減することができる。また、アノテーション作業の負担が減少することにより、機械学習技法の活用性はさらに増大することができる。
【0088】
さらに、アノテーション作業結果を機械学習モデルまたは他のアノテータの結果と比較検証することによって、アノテーション結果の正確性を担保することができる。これにより、アノテーション結果を学習した機械学習モデルの性能も向上できる。
【0089】
以下では、図8ないし図22を参照してアノテーション作業の生成段階であるS200の細部過程について詳細に説明する。
【0090】
図8は本開示のいくつかの実施形態によるアノテーション作業の生成方法を示す例示的な流れ図である。ただし、これは本開示の目的を達成するための好ましい実施形態であり、必要に応じて一部の段階が追加または削除できるのはもちろんである。
【0091】
図8に示すように、前記アノテーション作業の生成方法は、新規の病理スライド画像のデータセットタイプを決定する段階S210から始まる。前述したように、前記データセットタイプは前記病理スライド画像の活用用途を示し、用途は、学習用途、検証用途、テスト用途またはOPT(Observer Performance Test)用途などに区分できる。
【0092】
いくつかの実施形態において、前記データセットタイプは管理者の選択によって決定できる。
【0093】
他のいくつかの実施形態において、前記データセットタイプは病理スライド画像に対する機械学習モデルのコンフィデンススコアに基づいて決定できる。ここで、前記機械学習モデルは、病理スライド画像に基づいて特定タスク(例:病変分類、病変位置認識など)を行うモデル(すなわち、学習対象モデル)を意味する。本実施形態に関する詳しい内容は図9に示されている。図9に示すように、管理装置100は、病理スライド画像を機械学習モデルに入力し、その結果としてコンフィデンススコアを取得し(S211)、前記コンフィデンススコアが基準値以上であるか否かを判定する(S213)。また、基準値未満である判定に応答し、管理装置100は前記病理スライド画像のデータセットタイプを学習用途に決定する(S217)。コンフィデンススコアが基準値未満であることは、機械学習モデルが前記病理スライド画像を明確に判断できないことを意味するからである(すなわち、該当病理スライド画像に対する学習が必要であることを意味するからである)。反対の場合、前記病理スライド画像のデータセットタイプは、検証用途(またはテスト用途)に決定する(S215)。
【0094】
また他のいくつかの実施形態において、前記データセットタイプは病理スライド画像に対する機械学習モデルのエントロピー(entropy)値に基づいて決定できる。前記エントロピー値は不確実性(uncertainty)を示す指標であり、コンフィデンススコアがクラス別に均等に分布するほど大きい値を有する。本実施形態で、前記エントロピー値が基準値以上である判定に応答し、前記データセットタイプは学習用途に決定できる。反対の場合は、検証用途に決定できる。
【0095】
再び図8を参照すると、段階S230において、管理装置100は病理スライド画像のパネル類型を決定する。前述したように、前記パネル類型は、細胞パネル、組織パネルおよびストラクチャパネルなどに区分できる。前記細胞パネル類型の画像の例は図10に示されており、前記組織パネルの画像の例は図11に示されており、前記ストラクチャパネルの画像の例は図12に示されている。図10ないし図12に示すように、細胞パネルは細胞レベルのアノテーションが遂行されるパッチ類型であり、組織パネルは組織レベルのアノテーションが遂行されるパッチ類型であり、ストラクチャパネルは細胞または組織などの構造と関連するアノテーションが遂行されるパッチ類型である。
【0096】
いくつかの実施形態において、前記パネル類型は管理者の選択によって決定できる。
【0097】
いくつかの実施形態において、前記パネル類型は機械学習モデルの出力値に基づいて決定できる。図13を参照して説明すると、機械学習モデルには細胞パネルに対応する第1機械学習モデル(75−1,すなわち細胞レベルのアノテーションを学習したモデル)、組織パネルに対応する第2機械学習モデル75−2およびストラクチャパネルに対応する第3機械学習モデル75−3が含まれ得る。このような場合、管理装置100は与えられた病理スライド画像71でそれぞれのパネルに対応する第1ないし第3画像(73−1ないし73−3)を抽出(またはサンプリング)し、各画像を対応するモデル(75−1〜75−3)に入力し、その結果として出力値(77−1〜77−3)を取得する。また、管理装置100は出力値(77−1〜77−3)と基準値との比較結果に応じて病理スライド画像71のパネル類型を決定できる。たとえば、第1出力値77−1が前記基準値未満の場合、病理スライド画像71のパネル類型は細胞パネルに決定できる。病理スライド画像71で抽出される細胞パッチが第1機械学習モデル75−1の学習性能を上げるのに効果的であるからである。
【0098】
いくつかの実施形態において、病理スライド画像が複数のパネル類型を有することもできる。このような場合、前記病理スライド画像から各パネルに対応するパッチが抽出され得る。
【0099】
再び図8を参照すると、段階S250において、管理装置100はアノテーションタスクを決定する。前述したように、アノテーションタスクは細部作業の類型が定義しておいたエンティティーを意味する。
【0100】
いくつかの実施形態において、前記アノテーションタスクは管理者の選択によって決定できる。
【0101】
いくつかの実施形態において、前記アノテーションタスクは前記決定されたデータセットタイプとパネル類型の組み合わせに基づいて自動で決定することもできる。たとえば、データセットタイプとパネル類型の組み合わせにマッチするアノテーションタスクがあらかじめ定義されている場合、前記組み合わせに基づいて前記マッチするアノテーションタスクが自動で決定され得る。
【0102】
段階S270において、管理装置100は病理スライド画像で実際のアノテーションが遂行されるパッチを自動で抽出する。もちろん、管理者によって指定された領域がパッチとして抽出されることもできる。前記パッチを自動で抽出する具体的な方法は実施形態によって異なるが、パッチ抽出に関連する多様な実施形態は図14ないし図23を参照して後述する。
【0103】
図8には示していないが、段階S270以後に、管理装置100は段階S210ないしS270で決定されたデータセットタイプ、パネル類型、アノテーションタスクおよびパッチに基づいてアノテーション作業を生成できる。前述したように、生成されたアノテーション作業は適宜のアノテータのアカウントに割り当てられる。
【0104】
以上図8ないし図13を参照して本開示のいくつかの実施形態によるアノテーション作業の生成方法について説明した。以下では、図14ないし図23を参照してパッチの自動抽出に関連する本開示の多様な実施形態について説明する。
【0105】
図14は本開示の第1実施形態によるパッチの自動抽出方法を示す例示的な流れ図である。ただし、これは本開示の目的を達成するための好ましい実施形態であり、必要に応じて一部の段階が追加または削除できるのはもちろんである。
【0106】
図14に示すように、前記パッチの自動抽出方法は、新規の病理スライド画像で複数の候補パッチをサンプリングする段階S271から始まる。前記複数の候補パッチをサンプリングする具体的な方式は実施形態によって異なる。
【0107】
いくつかの実施形態において、特定組織を構成する少なくとも細胞領域を候補パッチ(すなわち、細胞パネル類型のパッチ)としてサンプリングする場合、図15に示すように、病理スライド画像81で画像解析により組織領域83を抽出し、抽出された領域83内で複数の候補パッチ85がサンプリングされる。サンプリング結果のいくつかの例示は図16および図17に示されている。図16および図17に示す病理スライド画像(87、89)において、各ポイントはサンプリングポイントを意味し、四角形の図形はサンプリング領域(すなわち、候補パッチ領域)を意味する。図16および図17に示すように、複数の候補パッチは少なくとも一部が重なる形態でサンプリングされることもできる。
【0108】
いくつかの実施形態において、病理スライド画像の全体領域を均一に分割し、分割されたそれぞれの領域をサンプリングして候補パッチを生成できる。すなわち、均等分割方式でサンプリングが行われる。この時、各候補パッチの大きさは既に設定された固定値または病理スライド画像の大きさ、解像度、パネル類型などに基づいて決定される変動値であり得る。
【0109】
いくつかの実施形態において、病理スライド画像の全体領域をランダムに分割し、分割されたそれぞれの領域をサンプリングして候補パッチを生成できる。
【0110】
いくつかの実施形態において、オブジェクトの個数が基準値を超えるように候補パッチを形成できる。たとえば、前記病理スライド画像の全体領域に対してオブジェクト認識を行って、前記オブジェクト認識の結果、算出されたオブジェクトの個数が基準値を超える領域が候補パッチとしてサンプリングされ得る。このような場合、候補パッチの大きさは互いに異なってもよい。
【0111】
いくつかの実施形態において、病理スライド画像のメタデータに基づいて決定された ポリシーに従い分割された候補パッチをサンプリングできる。ここで、前記メタデータは、前記病理スライド画像と関連する病名、組織(tissue)、患者の人口統計学的情報、医療機関の位置、前記病理スライド画像の品質(例:解像度)、フォーマット形式などである。具体的に例えば、病理スライド画像が腫瘍患者の組織に関する画像である場合、有糸分裂細胞検出のための機械学習モデルの学習データに利用するために、細胞レベルで候補パッチをサンプリングできる。他の例としては、病理スライド画像と関連する病名の予後を診断する時組織内の病変の位置が重要である場合、組織レベルで候補パッチをサンプリングすることもできる。
【0112】
いくつかの実施形態において、病理スライド画像でストラクチャパネル類型の候補パッチをサンプリングする場合、画像解析により前記病理スライド画像で外郭線が抽出され、前記抽出された外郭線の中で互いに連結された外郭線が一つの候補パッチを形成するようにサンプリングが行われることもできる。
【0113】
このように、段階S271で複数の候補パッチをサンプリングする具体的な方式は実施形態によって異なる。再び図14を参照して説明を継続する。
【0114】
段階S273において、機械学習モデルの出力値に基づいてアノテーション対象パッチを選定できる。前記出力値は、例えばコンフィデンススコア(またはクラス別のコンフィデンススコア)であり得るが、前記コンフィデンススコアに基づいてパッチを選定する具体的な方式は実施形態によって異なる。
【0115】
いくつかの実施形態において、クラス別のコンフィデンススコアによって算出されたエントロピー値に基づいてアノテーション対象パッチを選定できる。本実施形態に関する詳しい内容は図18および図19に示されている。
【0116】
図18に示すように、病理スライド画像91でサンプリングされた候補パッチ92からエントロピー値基盤の不確実性サンプリングによりアノテーション対象パッチ93を選定できる。より具体的には、図19に示すように、機械学習モデル95から出力された各候補パッチ(94−1〜94−n)のクラス別のコンフィデンススコア(96−1〜96−n)に基づいてエントロピー値(97−1〜97−n)が算出される。前述したように、エントロピー値はコンフィデンススコアがクラス別に均等に分布するほど大きい値を有する。たとえば、図19に示す場合は、エントロピーA97−1は最も大きい値で演算され、エントロピーC97−nは最も小さい値で演算される。また、エントロピー値が基準値以上である候補パッチがアノテーション対象として自動で選定され得る。エントロピー値が高いことは、機械学習モデルの予測結果が不正確であることを意味し、これはすなわち学習により効果的なデータであることを意味するからである。
【0117】
いくつかの実施形態において、前記コンフィデンススコア自体に基づいてアノテーション対象パッチを選定することもできる。たとえば、複数の候補パッチのうち、コンフィデンススコアが基準値未満の候補パッチが前記アノテーション対象パッチとして選定され得る。
【0118】
図20は本開示の第2実施形態によるパッチの自動抽出方法を示す例示的な流れ図である。ただし、これは本開示の目的を達成するための好ましい実施形態であり、必要に応じて一部の段階が追加または削除できるのはもちろんである。明細書を明瞭にするため、前述した実施形態と重複する説明は省略する。
【0119】
図20に示すように、前記第2実施形態も複数の候補パッチをサンプリングする段階S271から始まる。ただし、前記第2実施形態では機械学習モデルのミス予測確率に基づいてアノテーション対象パッチが選定される点で(S275参照)、前述した実施形態とは差がある。
【0120】
前記機械学習モデルのミス予測確率は、機械学習により構築されたミス予測確率算出モデル(以下、「算出モデル」と略称する)により算出されるが、理解の便宜のために、先に前記算出モデルを構築する方法について図21および図22を参照して説明する。
【0121】
図21に示すように、前記算出モデルは前記機械学習モデルの評価結果(例:検証結果、テスト結果)を学習することによって構築できる(S291ないしS295)。具体的には、評価用データで前記機械学習モデルを評価し(S291)、評価結果が前記評価用データにラベル情報としてタギングされると(S293)、前記評価用データを前記ラベル情報として学習することによって前記算出モデルを構築できる(S295)。
【0122】
評価用データにラベル情報をタギングするいくつかの例示は図22に示されている。図22は混同行列(confusion matrix)を示しているが、前記機械学習モデルが分類タスクを遂行するモデルである場合、評価結果は混同行列内の特定セルに対応できる。図22に示すように、評価結果がFP(false positive)またはFN(false negative)の画像101には第1値(例:1)がラベル値102としてタギングされ、評価結果がTP(true positive)またはTN(true negative)の画像103には第2値(例:0)がラベル値104としてタギングされ得る。すなわち、機械学習モデルの予測が正答と一致した場合には「1」がタギングされ、不一致の場合には「0」がタギングされる。
【0123】
上記のような画像(101、102)とラベル情報を学習すると、算出モデルは機械学習モデルが正確に予測した画像と類似の画像が入力される時、高いコンフィデンススコアを出力する。また、逆の場合、算出モデルは低いコンフィデンススコアを出力する。したがって、算出モデルは入力された画像に対する機械学習モデルのミス予測確率を算出できる。
【0124】
一方、図22はラベル情報をタギングするいくつかの例示を図示しているだけであることに留意しなければならない。本開示の他のいくつかの実施形態によれば、予測誤差がラベル情報としてタギングされることもできる。ここで、前記予測誤差は予測値(すなわち、コンフィデンススコア)と実際の値(すなわち、正答情報)との差を意味する。
【0125】
また、本開示のまた他のいくつかの実施形態によれば、評価用画像の予測誤差が臨界値以上の場合、第1値(例:0)がタギングされ、前記予測誤差が前記臨界値未満の場合、第2値(例:1)がラベル情報としてタギングされ得る。
【0126】
再び図20を参照して説明を継続する。
【0127】
前述した方法により算出モデルが構築されると、段階S275において、管理装置100は複数の候補パッチのそれぞれに対するミス予測確率を算出できる。たとえば、図23に示すように、管理装置100は各データサンプル(111−1〜111−n)を算出モデル113に入力して算出モデル113のコンフィデンススコア(115−1〜115−n)を取得し、取得されたコンフィデンススコア(115−1〜115−n)に基づいて前記ミス予測確率を算出できる。
【0128】
ただし、図23に示すように、候補パッチ(11−1〜111−n)が入力される時、正答および誤答クラスに対するコンフィデンススコア(115−1〜115−n)を出力するように算出モデル113が学習された場合(例:正答と一致時ラベル1で学習し、不一致時ラベル0で学習した場合)は、誤答クラスのコンフィデンススコア(下線で図示)がミス予測確率として利用されることもできる。
【0129】
各候補パッチのミス予測確率が算出されると、管理装置100は複数の候補パッチのうち前記算出されたミス予測確率が基準値以上である候補パッチをアノテーション対象として選定できる。ミス予測確率が高いことは前記機械学習モデルの予測結果が間違う可能性が高いことを意味し、これは、すなわち該当パッチが前記機械学習モデルの性能を改善するために重要なデータであることを意味するからである。このように、ミス予測確率に基づいてパッチを選定すると、学習に効果的なパッチがアノテーション対象として選定されることによって良質の学習データセットが生成できる。
【0130】
以上、図14ないし図23を参照して本開示の多様な実施形態によるパッチの自動抽出方法について説明した。上述した方法によれば、アノテーションが遂行される領域を示すパッチを自動で抽出できる。したがって、管理者の業務負担を最小化することができる。また、機械学習モデルのミス予測確率、エントロピー値などに基づいて複数の候補パッチのうち学習に効果的なパッチのみがアノテーション対象として選定される。これにより、アノテーション作業量が減少し、良質の学習データセットを生成できる。
【0131】
以下では、図24を参照して本開示の多様な実施形態による装置(例:管理装置100)/システムを具現できる例示的なコンピューティング装置200について説明する。
【0132】
図24は本開示の多様な実施形態による装置を具現できる例示的なコンピューティング装置200を示す例示的なハードウェアの構成図である。
【0133】
図24に示すように、コンピューティング装置200は一つ以上のプロセッサ210、バス250、通信インターフェース270、プロセッサ210によって行われるコンピュータプログラムをロード(load)するメモリ230とコンピュータプログラム291を保存するストレージ290を含み得る。ただし、図24には本開示の実施形態と関連する構成要素のみが図示されている。したがって、本開示が属する技術分野における通常の技術者であれば、図24に示す構成要素の他に他の汎用的な構成要素がさらに含まれ得ることがわかる。
【0134】
プロセッサ210は、コンピューティング装置200の各構成の全般的な動作を制御する。プロセッサ210は、CPU(Central Processing Unit)、MPU(Micro Processor Unit)、MCU(Micro Controller Unit)、GPU(Graphic Processing Unit)または本開示の技術分野に良く知られた任意の形態のプロセッサを含んで構成できる。また、プロセッサ210は本開示の実施形態による方法を実行するための少なくとも一つのアプリケーションまたはプログラムに対する演算を遂行できる。コンピューティング装置200は一つ以上のプロセッサを備えることができる。
【0135】
メモリ230は、各種データ、命令および/または情報を保存する。メモリ230は、本開示の多様な実施形態による方法/動作を実行するためにストレージ290から一つ以上のプログラム291をロードできる。メモリ230は、RAMのような揮発性メモリに具現できるが、本開示の技術的範囲はこれに限定されない。
【0136】
バス250は、コンピューティング装置200の構成要素間の通信機能を提供する。バス250は、住所バス(Address Bus)、データバス(Data Bus)および制御バス(Control Bus)など多様な形態のバスに具現できる。
【0137】
通信インターフェース270は、コンピューティング装置200の有無線インターネット通信をサポートする。また、通信インターフェース270はインターネット通信以外の多様な通信方式をサポートすることもできる。このために、通信インターフェース270は本開示の技術分野に良く知られた通信モジュールを含んで構成できる。
【0138】
ストレージ290は、前記一つ以上のプログラム291を非臨時的に保存できる。ストレージ290は、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、フラッシュメモリなどのような不揮発性メモリ、ハードディスク、着脱型ディスク、または本開示が属する技術分野で良く知られた任意の形態のコンピュータで読み取り可能な記録媒体を含んで構成できる。
【0139】
コンピュータプログラム291は、メモリ230にロードされる時、プロセッサ210が本開示の多様な実施形態による動作/方法を行うようにする一つ以上のインストラクション(instructions)を含み得る。すなわち、プロセッサ210は、前記一つ以上のインストラクションを実行することによって、本開示の多様な実施形態による動作/方法を遂行できる。
【0140】
例えば、コンピュータプログラム291は、新規の病理スライド画像に対する情報を得る動作、前記病理スライド画像のデータセットタイプおよびパネルを決定する動作および前記病理スライド画像、前記決定されたデータセットタイプ、アノテーションタスク(annotation task)および前記病理スライド画像の一部領域であるパッチで定義されるアノテーション作業(job)をアノテータ(annotator)アカウントに割り当てる動作を行うようにする一つ以上のインストラクションを含み得る。このような場合、コンピューティング装置200を介して本開示のいくつかの実施形態による管理装置100が具現できる。
【0141】
以上、図24を参照して本開示の多様な実施形態による装置を具現できる例示的なコンピューティング装置について説明した。
【0142】
以上、図1ないし図24を参照して説明した本開示の技術的思想は、コンピュータが読み取り可能な媒体上にコンピュータが読み取り可能なコードに具現することができる。前記コンピュータで読み取り可能な記録媒体は、例えば、移動型記録媒体(CD、DVD、ブルーレイディスク、USB記録装置、リムーバブルハードディスク)や、固定式記録媒体(ROM、RAM、コンピュータ付きハードディスク)であり得る。前記コンピュータで読み取り可能な記録媒体に記録された前記コンピュータプログラムはインターネットなどのネットワークを介して他のコンピューティング装置に転送されて前記他のコンピューティング装置にインストールでき、これにより前記他のコンピューティング装置で使うことができる。
【0143】
以上、本開示の実施形態を構成するすべての構成要素が一つに結合されたり結合されて動作することについて説明した。しかし、本開示の技術的思想は必ずしもこのような実施形態に限定されるものではない。すなわち、本開示の目的範囲内であれば、そのすべての構成要素が一つ以上に選択的に結合して動作することもできる。
【0144】
図面では動作を特定の順序により示しているが、必ずしも動作が図示した特定の順序または順次的順序により実行されなければならないか、またはすべての図示する動作が実行された場合にのみ所望する結果が得られるものとして理解されてはならない。特定の状況では、マルチタスキングおよび並列処理が有利な場合もある。さらに、上述した一実施形態で多様な構成の分離は、そのような分離が必ず必要であると理解されてはならず、説明したプログラムコンポーネントおよびシステムは一般的に単一ソフトウェア製品に共に統合されたり多数のソフトウェア製品にパッケージできるものと理解しなければならない。
【0145】
以上、添付する図面を参照して本開示の実施形態を説明したが、本開示が属する技術分野における通常の知識を有する者は、その技術的思想や必須の特徴を変更せず本開示が他の具体的な形態に実施できることを理解することができる。したがって、上記一実施形態はすべての面で例示的なものであり、限定的なものではないと理解しなければならない。本開示の保護範囲は、下記の請求範囲によって解釈されるべきであり、それと等しい範囲内にあるすべての技術思想は本開示によって定義される技術的思想の権利範囲に含まれると解釈しなければならない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
【手続補正書】
【提出日】2020年5月8日
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
少なくとも一つのコンピューティング装置によって行われるアノテーション作業管理方法であって、
アノテーション対象である病理スライド画像を取得する段階;
前記取得された病理スライド画像のデータセットタイプおよびパネル類型のうち少なくとも一つを決定する段階;および
前記決定されたデータセットタイプおよびパネル類型のうち少なくとも一つに基づいて、前記病理スライド画像に含まれる複数の候補パッチのうちから少なくとも一つのアノテーション作業対象パッチを選定する段階を含む、アノテーション作業管理方法。
【請求項2】
前記少なくとも一つのアノテーション作業対象パッチを選定する段階は、
前記病理スライド画像でサンプリングされた複数の候補パッチを選定し、
前記選定された複数の候補パッチそれぞれのコンフィデンススコアおよびエントロピー値のうち少なくとも一つを算出し、
前記複数の候補パッチそれぞれに対して算出された少なくとも一つのコンフィデンススコアおよびエントロピー値に基づいて、前記複数の候補パッチのうちから少なくとも一つのアノテーション作業対象パッチを選定する段階を含む、請求項1に記載のアノテーション作業管理方法。
【請求項3】
前記複数の候補パッチを選定する段階は、
前記病理スライド画像と関連する情報に基づいて、前記病理スライド画像の少なくとも一部を分割し、
前記分割された少なくとも一部で前記複数の候補パッチを選定する段階を含む、請求項2に記載のアノテーション作業管理方法。
【請求項4】
前記少なくとも一つのアノテーション作業対象パッチを選定する段階は、
前記病理スライド画像でサンプリングされた複数の候補パッチを選定し、
前記選定された複数の候補パッチそれぞれに対する機械学習モデルのミス予測確率(miss−prediction)を算出し、
前記算出されたミス予測確率に基づいて、前記複数の候補パッチのうちから前記少なくとも一つのアノテーション作業対象パッチを選定する段階を含む、請求項1に記載のアノテーション作業管理方法。
【請求項5】
前記選定された少なくとも一つのアノテーション作業対象パッチを少なくとも一つのアノテータアカウントに割り当てる段階をさらに含む、請求項1に記載のアノテーション作業管理方法。
【請求項6】
前記少なくとも一つのアノテータアカウントに割り当てる段階は、
前記決定されたデータセットタイプおよびパネル類型のうち少なくとも一つと、アノテータのアノテーション遂行履歴に基づいて、前記少なくとも一つのアノテーション作業対象パッチを少なくとも一つのアノテータアカウントに割り当てる段階を含む、請求項5に記載のアノテーション作業管理方法。
【請求項7】
前記割り当てられたアノテーションアカウントから、前記少なくとも一つのアノテーション作業対象パッチに対するアノテーション結果を取得する段階;
前記少なくとも一つのアノテーション作業対象パッチに対する機械学習モデルの結果と前記取得されたアノテーション結果を比較する段階;および
比較結果に基づいて、前記少なくとも一つのアノテーション作業対象パッチの再割り当ての可否を判断する段階をさらに含む、請求項5に記載のアノテーション作業管理方法。
【請求項8】
前記少なくとも一つのアノテーション作業パッチに対して割り当てられた複数のアノテーションアカウントから、前記少なくとも一つのアノテーション作業対象パッチに対するアノテーション結果を取得する段階;
前記複数のアノテーションアカウントそれぞれのアノテーション結果を比較する段階;および
比較結果に基づいて、前記少なくとも一つのアノテーション作業対象パッチの再割り当ての可否を判断する段階をさらに含む、請求項5に記載のアノテーション作業管理方法。
【請求項9】
前記パネル類型は、
細胞(cell)パネル、組織(tissue)パネルおよびストラクチャ(structure)パネルのうち一つ以上を含み、
前記データセットタイプは、
前記病理スライド画像の用途を示し、前記病理スライド画像の用途は、機械学習モデルの学習(training)用途および前記機械学習モデルの検証(validation)用途のうち一つ以上を含む、請求項1に記載のアノテーション作業管理方法。
【請求項10】
前記決定する段階は、
前記病理スライド画像を機械学習モデルに入力して出力された出力値に基づいて、前記病理スライド画像のデータセットタイプおよびパネル類型のうち少なくとも一つを決定する段階を含む、請求項1に記載のアノテーション作業管理方法。
【請求項11】
一つ以上のインストラクション(instructions)を保存するメモリ;および
前記保存された一つ以上のインストラクションを実行することによって、
アノテーション対象である病理スライド画像を取得し、前記取得された病理スライド画像のデータセットタイプおよびパネル類型のうち少なくとも一つを決定し、前記決定されたデータセットタイプおよびパネル類型のうち少なくとも一つに基づいて、前記病理スライド画像に含まれる複数の候補パッチのうちから少なくとも一つのアノテーション作業対象パッチを選定するようにするプロセッサを含む、アノテーション作業管理装置。
【請求項12】
前記プロセッサは、
前記病理スライド画像でサンプリングされた複数の候補パッチを選定し、
前記選定された複数の候補パッチそれぞれのコンフィデンススコアおよびエントロピー値のうち少なくとも一つを算出し、
前記複数の候補パッチそれぞれに対して算出された少なくとも一つのコンフィデンススコアおよびエントロピー値に基づいて、前記複数の候補パッチのうちから少なくとも一つのアノテーション作業対象パッチを選定するようにする、請求項11に記載のアノテーション作業管理装置。
【請求項13】
前記プロセッサは、
前記病理スライド画像と関連する情報に基づいて、前記病理スライド画像の少なくとも一部を分割し、
前記分割された少なくとも一部で前記複数の候補パッチを選定するようにする、請求項12に記載のアノテーション作業管理装置。
【請求項14】
前記プロセッサは、
前記病理スライド画像でサンプリングされた複数の候補パッチを選定し、
前記選定された複数の候補パッチそれぞれに対する機械学習モデルのミス予測確率(miss−prediction)を算出し、
前記算出されたミス予測確率に基づいて、前記複数の候補パッチのうちから前記少なくとも一つのアノテーション作業対象パッチを選定するようにする、請求項11に記載のアノテーション作業管理装置。
【請求項15】
前記プロセッサは、
前記選定された少なくとも一つのアノテーション作業対象パッチを少なくとも一つのアノテータアカウントに割り当てるようにする、請求項11に記載のアノテーション作業管理装置。
【請求項16】
前記プロセッサは、
前記決定されたデータセットタイプおよびパネル類型のうち少なくとも一つと、アノテータのアノテーション遂行履歴に基づいて、前記少なくとも一つのアノテーション作業対象パッチを少なくとも一つのアノテータアカウントに割り当てるようにする、請求項15に記載のアノテーション作業管理装置。
【請求項17】
前記プロセッサは、
前記割り当てられたアノテーションアカウントから、前記少なくとも一つのアノテーション作業対象パッチに対するアノテーション結果を取得し、
前記少なくとも一つのアノテーション作業対象パッチに対する機械学習モデルの結果と前記取得されたアノテーション結果を比較し、
比較結果に基づいて、前記少なくとも一つのアノテーション作業対象パッチの再割り当ての可否を判断するようにする、請求項15に記載のアノテーション作業管理装置。
【請求項18】
前記プロセッサは、
前記少なくとも一つのアノテーション作業パッチに対して割り当てられた複数のアノテーションアカウントから、前記少なくとも一つのアノテーション作業対象パッチに対するアノテーション結果を取得し、
前記複数のアノテーションアカウントそれぞれのアノテーション結果を比較し、
比較結果に基づいて、前記少なくとも一つのアノテーション作業対象パッチの再割り当ての可否を判断するようにする、請求項15に記載のアノテーション作業管理装置。
【請求項19】
前記パネル類型は、
細胞(cell)パネル、組織(tissue)パネルおよびストラクチャ(structure)パネルのうち一つ以上を含み、
前記データセットタイプは、
前記病理スライド画像の用途を示し、前記病理スライド画像の用途は、機械学習モデルの学習(training)用途および前記機械学習モデルの検証(validation)用途のうち一つ以上を含む、請求項11に記載のアノテーション作業管理装置。
【請求項20】
前記プロセッサは、
前記病理スライド画像を機械学習モデルに入力して出力された出力値に基づいて、前記病理スライド画像のデータセットタイプおよびパネル類型のうち少なくとも一つを決定するようにする、請求項11に記載のアノテーション作業管理装置。
【国際調査報告】