(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2021-507578(P2021-507578A)
(43)【公表日】2021年2月22日
(54)【発明の名称】テレメトリー追跡およびコマンド・リンクの量子保護
(51)【国際特許分類】
H04L 9/08 20060101AFI20210125BHJP
H04L 9/12 20060101ALI20210125BHJP
H04B 10/70 20130101ALN20210125BHJP
【FI】
H04L9/00 601B
H04L9/00 601E
H04L9/00 631
H04B10/70
【審査請求】未請求
【予備審査請求】未請求
【全頁数】22
(21)【出願番号】特願2020-531717(P2020-531717)
(86)(22)【出願日】2018年12月13日
(85)【翻訳文提出日】2020年6月2日
(86)【国際出願番号】GB2018000155
(87)【国際公開番号】WO2019115984
(87)【国際公開日】20190620
(31)【優先権主張番号】1720763.0
(32)【優先日】2017年12月13日
(33)【優先権主張国】GB
(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】520193839
【氏名又は名称】アルクイット リミテッド
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】バーカー,トレバー
【テーマコード(参考)】
5K102
【Fターム(参考)】
5K102AB07
5K102AB11
5K102RD28
(57)【要約】
【課題】衛星のための制御装置が、前記衛星のためのTT&C命令を生成するコマンド生成器を有する。制御装置はさらに、前記衛星と共有される共通の量子暗号化鍵を使ってTT&C命令を暗号化する暗号化器と;暗号化されたTT&C命令を前記衛星に送信する送信器とを有する。衛星が、前記衛星のためのTT&C情報を生成するコマンド・テレメトリー・サブシステムを有する。前記衛星はさらに、前記制御装置と共有される共通の量子化暗号化鍵を使ってTT&C命令を暗号化する暗号化器と、暗号化されたTT&C命令を前記制御装置に送信する送信器とを有する。
【特許請求の範囲】
【請求項1】
衛星のための制御装置であって:
前記衛星のための追跡、テレメトリーおよびコマンド(TT&C)命令を生成するコマンド生成器と;
前記衛星と共有される共通の量子暗号化鍵を使ってTT&C命令を暗号化する暗号化器と;
暗号化されたTT&C命令を前記衛星に送信する送信器とを有する、
制御装置。
【請求項2】
前記衛星から光子のストリームを受信するよう適応された光受信器であって、前記光子のストリームは暗号化鍵を表わす、光受信器と;
受信された光子のストリームから暗号化鍵を決定するビーム・デコーダとをさらに有する、
請求項1記載の制御装置。
【請求項3】
当該制御装置が地上ベースの制御装置である、請求項1または2記載の制御装置。
【請求項4】
前記衛星に記憶された対応する暗号化鍵に関する情報を受信し、デコードされた暗号化鍵内のビットが前記対応する暗号化鍵内のビットに完璧には対応しないことを判別するよう適応された鍵選別器をさらに有しており、
前記鍵選別器は、前記衛星と通信して、前記対応する暗号化鍵内のビットに完璧に対応しないビットを前記デコードされた暗号化鍵から除去して、共通の暗号化鍵を生成するようさらに適応されている、
請求項1ないし3のうちいずれか一項記載の制御装置。
【請求項5】
前記共通の暗号化鍵を記憶するための鍵管理システムをさらに有する、請求項4記載の制御装置。
【請求項6】
コマンド暗号化器をさらに有しており、前記コマンド暗号化器は、衛星への送信のために意図されたコマンドを受領し、前記衛星に関連付けられた暗号化鍵を取得し、暗号化コマンドを生成するよう適応されている、請求項1ないし5のうちいずれか一項記載の制御装置。
【請求項7】
制御装置と通信するよう適応された衛星であって:
前記衛星のための追跡、テレメトリーおよびコマンドTT&C情報を生成するコマンド・テレメトリー・サブシステムと;
前記制御装置と共有される共通の量子暗号化鍵を使ってTT&C命令を暗号化する暗号化器と;
暗号化されたTT&C命令を前記制御装置に送信する送信器とを有する、
衛星。
【請求項8】
光子のストリームを生成するための光子源と;
生成された量子暗号化鍵に基づいて前記光子のストリームをエンコードするための暗号鍵生成器と;
エンコードされた光子のストリームの少なくとも一部分を制御局に送信する光送信器とをさらに有する、
請求項7記載の衛星。
【請求項9】
前記暗号鍵生成器は、前記光子のストリームを分割して、エンタングルした光子の第一のストリームおよびエンタングルした光子の第二のストリームを生成するよう適応され、エンタングルした光子の第一のストリームにおける光子は、エンタングルした光子の第二のストリームにおける対応する光子とエンタングルし、
前記光送信器は、エンタングルした光子の第二のストリームを、前記エンコードされた光子のストリームの前記少なくとも一部分として前記制御局に送信するよう適応されている、
請求項8記載の衛星。
【請求項10】
前記制御局に記憶された暗号化鍵に関する情報を受信し、生成された暗号化鍵内のビットが前記制御局に記憶されている暗号化鍵内のビットに完璧には対応しないことを判別するよう適応された鍵選別器をさらに有しており、
前記鍵選別器は、前記制御局と通信して、前記制御局に記憶されている暗号化鍵内のビットに完璧に対応しないビットを前記生成された量子暗号化鍵から除去して、前記共通の暗号化鍵を生成するようさらに適応されている、
請求項7ないし9のうちいずれか一項記載の衛星。
【請求項11】
前記共通の量子暗号化鍵を記憶するための鍵管理システムをさらに有する、請求項7ないし10のうちいずれか一項記載の衛星。
【請求項12】
制御局から暗号化されたコマンドを受信し、前記鍵管理システムから暗号化鍵を取得し、該暗号化鍵を使って前記暗号化されたコマンドを解読し、解読されたコマンドをコマンド・テレメトリー・サブシステムに転送するよう適応されたコマンド解読器をさらに有する、請求項11記載の衛星。
【請求項13】
通信クライアント量子鍵を第一の通信クライアントおよび第二の通信クライアントに配送するようさらに適応されている、請求項7ないし12のうちいずれか一項記載の衛星。
【請求項14】
衛星のための制御装置であって、量子暗号化鍵を使って追跡、テレメトリーおよびコマンド・リンクを暗号化する手段を有する、制御装置。
【請求項15】
量子暗号化鍵を使って、追跡、テレメトリーおよびコマンド・リンクを暗号化する手段を有する、衛星。
【請求項16】
光子のストリームを生成する手段と;
前記光子のストリームを、生成された量子暗号化鍵に基づいてエンコードする手段と;
エンコードされた光子のストリームを、制御局に送信する手段とを有する、
衛星。
【請求項17】
請求項1ないし6および14のうちいずれか一項記載の制御装置と;
請求項7ないし13および15ないし16のうちいずれか一項記載の衛星とを有する、
システム。
【請求項18】
第一の通信クライアントおよび第二の通信クライアントをさらに有する、請求項17記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は衛星のためのテレメトリー、追跡およびコマンド(Telemetry, Tracking and Command、TT&C)通信に関する。より詳細には、本開示は、量子鍵配送(Quantum Key Distribution、QKD)を使った衛星と地上局との間のTT&Cリンクの保護に関する。
【背景技術】
【0002】
暗号は、協働する2当事者によって共有されるプライベートなメッセージを、第三者が読むことを防ぐプロトコルを構築および解析する分野である。暗号化プロセスは一般に、メッセージの送り手(送信者)(慣例により「アリス」と称される)が秘密の共有される鍵を使ってメッセージ内のデータに暗号学的アルゴリズムを適用することに関わる。暗号化されたメッセージを受信すると、受け手(受信者;慣例により「ボブ」と称される)は、同じ共有される鍵を使って暗号学的アルゴリズムを反転させることによってメッセージを解読して、もとのメッセージを明らかにする。
【0003】
暗号化の一つの古典的な例では、アリスとボブはそれぞれ同じワンタイム鍵パッド(すなわち、一度使ったら破棄されるいくつかの鍵を有する物理的な帳面)を有する。パッド内のどの鍵がメッセージを解読するために使用されるべきかを決定する合意された方法がある。たとえば、パッド内の特定の鍵が
第一の暗号化/解読のために使用され、第一のメッセージを解読後にその鍵は破棄され、それにより、第二のメッセージを解読するためにはパッド内の次の鍵が使用されることを自動的に指示することが確立されることができる。パッド内のすべての鍵が使用されるまで、鍵はそのようにして破棄されることができる。もちろん、そのようなシステムにおいて、敵(時に「盗聴者」、または単に「イブ」として知られる)がパッドを入手できれば、傍受した任意の暗号化されたメッセージを解読するのにかかる時間は大幅に短縮される。
【0004】
暗号における最大の問題の一つは、鍵が共有されるときに秘密のままであることを保証することである。古典暗号では、敵(「イブ」)が、検知されることなくメッセージまたは鍵についての知識を得ることができうる多くの仕方がある。たとえば、当業者は、「暗号解読」のことを認識しているであろう。暗号解読は、暗号化アルゴリズムに対する直接攻撃(「力づく」攻撃とも称される)および暗号化を実装するシステムに対する攻撃(「サイドチャネル」攻撃とも称される)を含む。実際、古典的な暗号化技法は、コンピューティング・パワーが増すとともにより脆弱になり、量子コンピューティングが到来すれば古びてしまうことがありうる。
【0005】
サイドチャネル攻撃が実装されうるシステム内のいくつかの点がある。通信を暗号化する装置の解析または通信を解読する装置の解析により、通信をデコードする助けとなりうる情報が得られる。たとえば、暗号化/解読装置の電力使用をモニタリングすること、あるいはある種のプロセッサ・タスクが完了するのにどれくらいの時間がかかるかを測定することで、暗号を破る助けとなる情報が得られることがある。
【0006】
しかしながら、鍵が利用可能であれば、暗号化アルゴリズムを完全にバイパスするので、通信を読むことはずっと簡単になる。ワンタイム鍵パッドの上記の例では、パッドからの前記特定の鍵コードが知られていなくても、可能な前記いくつかの鍵はパッドにあるものに限定される。よって、鍵コードがさまざまな送信者および受信者に配送される場合には、システムは特に脆弱になりうる。
【0007】
暗号化システムのセキュリティを強化する一つの仕方は、送信者と受信者との間の通信を容易にするために量子鍵配送システムを用いることである。量子鍵配送(QKD)は、送信される情報を保護するために配送媒体の量子属性を利用する。配送媒体の観察は量子状態に影響するので、アリスとボブの間の伝送の間に盗聴者が媒体を観察したかどうかを判定することが可能になる。すると、送信が安全でないという信号がアリスおよび/またはボブに送られることができる。
【0008】
BB84プロトコルは、アリス(送信者)が光子を生成してボブ(受信者)に送信するQKDプロトコルの例である。光子は、所望されるビット値(すなわち「1」または「0」)と、二つのランダム「基底」(それぞれの基底は直交する量子状態の対)の一方とに基づいて生成される。そのような光子の列が、ランダム量子鍵を送信するために使用できる。鍵コードを取得するには、ボブは各光子についての「基底」をランダムに選択し、測定を実行する。ひとたびすべての光子が測定されたら、アリスは各光子を送るのに使用された基底を送信し、ボブは各光子を測定するのに選択された基底を送信する(これは、通常の通信チャネル上でよい)。ボブの推定が間違っていた光子は破棄され、残りの光子(情報のビット)が共有される鍵コードを生成する。有利なことに、イブがアリスからボブに送信された光子に関する何らかの情報を得たとしても、ボブの測定に誤りが存在することになる。よって、ビット数が異なる場合(すなわち、破棄される光子が多すぎる場合)、アリスとボブは、その特定の鍵コードの使用をアボートしてやり直す。
【0009】
BB84プロトコルの使用のような技法は改善された保護を与えるが、いまだ「サイド攻撃」を受けることはありうる。サイド攻撃によれば、鍵データへの不正なアクセスを許容する、鍵配送システムにおける他の弱点が利用される。たとえば、光ファイバー・ネットワークでは、光子減衰のため、量子鍵が配送されることのできるレンジは約100kmに制限されることがある。そのレンジ以遠では、何らかの形の中継器またはリピーターが必要となる。古典的な中継器を使って約100kmのレンジより遠くまで鍵コードを中継することは、古典的な暗号化技法と同じ問題を受ける。よって、光ファイバー・ネットワークを通じたQKDは一般に、都市領域に制限される。
【0010】
宇宙航行では、敵が宇宙船の状態についてのデータを得たり、または宇宙船に不正なコマンドを発したりするのを避けるために、暗号が、宇宙船から地上に送信されるテレメトリーおよび地上から宇宙船に送信される遠隔コマンドを保護するために使用される。現在のところ、第三者の傍受に対して衛星テレメトリー伝送を保護する方法は、宇宙船および安全な地上局における暗号学的処理ユニットにおいて使うための、定期的にアップロードされる乱数生成「シード」を傍受することの困難に依拠している。しかしながら、これらの方法は盗聴のおそれがあり、実証可能な安全性はない。よって、共有される鍵の交換は、地上の暗号用途で直面するのと同じ問題を受ける。
【発明の概要】
【発明が解決しようとする課題】
【0011】
よって、宇宙ビークル(または衛星)ベースの量子鍵配送システムを通じた通信の保護を高める必要性が、当該技術分野にはある。特に、宇宙ビークルとその権限付与された地上オペレーターとの間の通信のための保護を高める必要がある。
【課題を解決するための手段】
【0012】
上記で詳述した問題を克服するために、本発明者らは、新規で発明的な制御装置および衛星を考案した。本発明の個別的な諸側面についておおまかな記述が与えられる。個別的な諸側面の好ましい特徴が従属請求項において記載される。
【0013】
衛星のための制御装置が、前記衛星のための追跡、テレメトリーおよびコマンドTT&C命令を生成するコマンド生成器と;前記衛星と共有される共通の量子暗号化鍵を使ってTT&C命令を暗号化する暗号化器と;暗号化されたTT&C命令を前記衛星に送信する送信器とを有する。有利なことに、当該制御装置は、衛星コマンドのようなTT&C命令を前記衛星に安全に送信することができる。
【0014】
好ましくは、制御装置が、前記衛星から光子のストリームを受信するよう適応された光受信器であって、前記光子のストリームは暗号化鍵を表わす、光受信器と;受信された光子のストリームから暗号化鍵を決定するビーム・デコーダとを有する。より好ましくは、制御装置は地上ベースの制御装置である。
【0015】
いくつかの実施形態では、制御装置が、前記衛星上に記憶された対応する暗号化鍵に関する情報を受信し、デコードされた暗号化鍵内のビットが前記対応する暗号化鍵内のビットに完璧には対応しないことを判別するよう適応された鍵選別器(key sifter)を有する。鍵選別器は、前記衛星と通信して、前記対応する暗号化鍵内のビットに完璧に対応しないビットを前記デコードされた暗号化鍵から除去して、共通の暗号化鍵を生成するよう適応される。鍵選別器を含めることは、制御装置と衛星との間で共通の量子鍵を確立するときに、秘匿性および安全性を改善する。
【0016】
いくつかの実施形態では、前記制御装置は、前記共通の暗号化鍵を記憶するための鍵管理システムを有する。よって、前記制御装置は、通常の通信リンクが確立されることはできるが、光リンクは確立されることができない状況において、衛星と通信することができる。
【0017】
より好ましくは、前記制御装置は、コマンド暗号化器を有する。前記コマンド暗号化器は、衛星への送信のために意図されたコマンドを受領し、前記衛星に関連付けられた暗号化鍵を取得し、暗号化コマンド(encryption command)を生成するよう適応される。
【0018】
ある実施形態では、制御装置と通信するよう適応された衛星が提供される。当該衛星は、前記衛星のための追跡、テレメトリーおよびコマンドTT&C情報を生成するコマンド・テレメトリー・サブシステムと;前記制御装置と共有される共通の量子暗号化鍵を使ってTT&C命令を暗号化する暗号化器と;暗号化されたTT&C命令を前記制御装置に送信する送信器とを有する。有利なことに、当該衛星は、衛星テレメトリー・データのようなTT&C情報を前記制御局に安全に送信することができる。
【0019】
好ましくは、衛星が、光子のストリームを生成するための光子源と;生成された量子暗号化鍵に基づいて前記光子のストリームをエンコードするための暗号鍵生成器と;エンコードされた光子のストリームの少なくとも一部分を制御局に送信する光送信器とを有する。
【0020】
より好ましくは、前記暗号鍵生成器は、前記光子のストリームを分割して、エンタングルした光子の第一のストリームおよびエンタングルした光子の第二のストリームを生成するよう適応され、エンタングルした光子の第一のストリームにおける光子は、エンタングルした光子の第二のストリームにおける対応する光子とエンタングルしている。一層好ましくは、光送信器は、エンタングルした光子の第二のストリームを、前記エンコードされた光子のストリームの前記少なくとも一部分として前記制御局に送信するよう適応される。
【0021】
いくつかの実施形態では、衛星が前記制御局上に記憶された暗号化鍵に関する情報を受信し、生成された暗号化鍵内のビットが前記制御局に記憶されている暗号化鍵内のビットに完璧には対応しないことを判別するよう適応された鍵選別器(key sifter)を有する。鍵選別器は、前記制御局と通信して、前記制御局に記憶されている暗号化鍵内のビットに完璧に対応しないビットを前記生成された量子暗号化鍵から除去して、前記共通の暗号化鍵を生成するようさらに適応される。鍵選別器を含めることは、衛星と制御装置との間で共通の量子鍵を確立するときに、秘匿性および安全性を改善する。
【0022】
いくつかの実施形態では、衛星が、前記共通の量子暗号化鍵を記憶するための鍵管理システムを有する。
【0023】
いくつかの実施形態では、衛星が、制御局から暗号化されたコマンドを受信し、前記鍵管理システムから暗号化鍵を取得し、該暗号化鍵を使って前記暗号化されたコマンドを解読し、解読されたコマンドをコマンド・テレメトリー・サブシステムに転送するよう適応されたコマンド解読器を有する。
【0024】
いくつかの実施形態では、衛星が、通信クライアント量子鍵を第一の通信クライアントおよび第二の通信クライアントに配送するよう適応される。
【0025】
いくつかの実施形態では、衛星のための制御装置が、量子暗号化鍵を使って追跡、テレメトリーおよびコマンド・リンクを暗号化する手段を有する。
【0026】
いくつかの実施形態では、衛星が、量子暗号化鍵を使って、追跡、テレメトリーおよびコマンド・リンクを暗号化する手段を有する。
【0027】
いくつかの実施形態では、衛星が、光子のストリームを生成する手段と;前記光子のストリームを、生成された量子暗号化鍵に基づいてエンコードする手段と;エンコードされた光子のストリームを、制御局に送信する手段とを有する。
【0028】
本発明のある実施形態では、システムが、上記のような制御装置と、上記のような衛星とを有する。たとえば、本システムは、前記衛星のための追跡、テレメトリーおよびコマンドTT&C命令を生成するコマンド生成器と;前記衛星と共有される共通の量子暗号化鍵を使ってTT&C命令を暗号化する暗号化器と;暗号化されたTT&C命令を前記衛星に送信する送信器とを有する。本システムは、制御装置と通信するよう適応された衛星が提供される。当該衛星は、前記衛星のための追跡、テレメトリーおよびコマンドTT&C情報を生成するコマンド・テレメトリー・サブシステムと;前記制御装置と共有される共通の量子暗号化鍵を使ってTT&C命令を暗号化する暗号化器と;暗号化されたTT&C命令を前記制御装置に送信する送信器とを有する。好ましくは、システムは、第一の通信クライアントおよび第二の通信クライアントを含んでいてもよい。
【0029】
本発明のさまざまな実施形態および側面が、限定なしに下記で、付属の図面を参照して記述される。
【図面の簡単な説明】
【0030】
【
図1】衛星ベースの量子鍵配送システムを描く図である。
【0031】
【
図2】衛星ベースの量子鍵配送システムを描く図である。
【0032】
【
図3】本発明の諸側面に基づく衛星のブロック図である。
【0033】
【
図4】本発明の諸側面に基づく制御装置のブロック図である。
【発明を実施するための形態】
【0034】
下記の記述は、衛星ベースの量子鍵配送(QKD)システムに関する。衛星(または宇宙ビークル)ベースのQKDシステムは、QKDファイバー・ネットワークによって要求されるリピーターまたは「信頼されるノード」の必要性を最小にする。送信者(アリス)および送信者が通信することを望む受信者(ボブ)に量子鍵を配送するために衛星が使用される。
【0035】
本稿に記載されるシステム1は、衛星(または宇宙ビークル)200および制御局100を含む。衛星200および制御局100は、無線通信チャネルを介して通信するよう動作可能である。無線接続は、衛星200上で生成され、量子鍵配送プロトコルおよび光チャネルを使って制御局100に送達された量子鍵データを使って暗号化される。有利なことに、これは、衛星テレメトリーおよびコマンド・チャネル両方への不正なアクセスを防止する。
【0036】
〈量子鍵配送システム〉
図1および
図2を参照するに、QKDシステム1は、2通信クライアントが安全に通信することを許容する。
図1は、2通信クライアントがいずれも同時に衛星のレンジ内にある状況を示しており、
図2は、2通信クライアントが衛星の軌道の間の異なる時刻において衛星のレンジないにはいる状況を示している。
図1は、静止軌道にある衛星または地球の表面に対して衛星が動く状況に関係しうる。
図2は、衛星が地球の表面に対して動く状況に関係する。
【0037】
衛星システムにおいて、制御局100は、追跡、テレメトリーおよびコマンド(TT&C)機能を提供するために地球軌道にある衛星200と通信する。これはたとえば、衛星200が所望の経度および緯度をもち、所望の高度にあることを保証することを含んでいてもよい。TT&Cは、衛星のポインティングを時折決定し、それがどの顧客に鍵が送信されるかを制御する。制御局100と衛星200との間の、TT&C機能に関係する通信は、典型的には、通常のまたは古典的なチャネル(たとえば無線周波数チャネル)を通じて行なわれる。
【0038】
図1に示されるQKDシステムでは、衛星200は量子鍵を、それぞれ時に「アリス」300および「ボブ」400と称される第一の通信クライアント300および第二の通信クライアント400に配送することができる。
図1に示されるシステムでは、鍵が衛星上で生成され、レーザー・ビームにおいて第一の通信クライアント300および第二の通信クライアント400に向けられる光子の量子スピン状態にデータをエンコードするために使用される。それらの光子はみな、エンタングルした諸対の一部であってもよく、各対の一方が第一の通信クライアント300へのビームにおいて送信され、各対の他方が第二の通信クライアント400へのビームにおいて送信される。ひとたび受信されたら、通信クライアントは、量子情報を検出し、鍵合意プロセスを通じて、鍵を決定する。すると、その鍵は、第一の通信クライアント300と第二の通信クライアント400との間の通常の通信チャネル500(たとえば電話線、インターネット接続、無線周波数伝送、光ファイバー・ネットワークなど)を通じた伝送を暗号化するために使用できる。
【0039】
クライアント・サイト300、400において光検出器によって受信される光子の部分は、大気条件に依存して変動する(たとえば光子が回折効果を受ける)。よって、前記一つまたは複数の衛星は低地球軌道(Low Earth Orbit、LEO)に配置されることが好ましい。いくつかの配置では、一つまたは複数の衛星がLEOに配置され、少なくとも一つの他の衛星が中地球軌道(Medium Earth Orbit、MEO)または高地球軌道(High Earth Orbit、HEO)に配置される。
【0040】
衛星200から第一の通信クライアント300および第二の通信クライアント400への鍵の配送は、二つの一般的な技法のうちの一方を使って生起できる。第一に、第一の通信クライアント300および第二の通信クライアント400が
図1に示されるように同時に衛星の視野内にあるときは、鍵配送はリアルタイムで生起できる。第二に、鍵配送は、鍵データが一のユーザーに送信され、次いで、衛星200が第二のユーザーの可視の頭上通過をするときに第二のユーザーに送信されることができるまで、衛星200上に記憶される「記憶して転送」技法を用いてもよい。
【0041】
記載されるQKDシステム1では、信頼されるノード(たとえば、地上ベースのリピーターおよび中継ノード)の数が削減できる。システムにおける、より少数の信頼されるノードを有することは、システムへのサイド攻撃の可能性を低減する。
【0042】
たとえ信頼されるノードの必要性が低下しても、第一および第二の通信クライアント300、400に加えて、少なくとも前記制御局100が、いまだ地上の物理的な構成要素として存在する。たとえば、本構成に基づく衛星200は、TT&C地上局100から衛星200への遠隔コマンドの送信によって、軌道において制御され、衛星200はテレメトリー情報をTT&C地上局100にTT&Cリンク(TT&Cチャネル)を介して送信する。TT&Cリンクは典型的には、古典的な無線周波数リンクである。
【0043】
TT&Cリンクを通じた不正なアクセスは、第三者が衛星バスおよび/またはペイロードの制御をのっとることを許容し、こうしてQKDシステムの管理プロセスを危殆化する(いくつかの事例では、TT&Cリンクが危殆化される場合、衛星が軌道から除去されることがありうる)。第三者は、バスのポインティングを制御することにより、衛星上の鍵データへの不正なアクセスを得ることもできうる。
【0044】
TT&Cリンクを保護し、よってサイド攻撃の可能性を低減するために、衛星ベースのQKDシステムは、衛星200と制御局100との間のコマンドおよび関連するテレメトリーを暗号化するために、通常、古典的な暗号化プロトコル(たとえばRSA)を使用する。しかしながら、そのような暗号化を用いても、暗号化が破られる可能性が残る。実際、ひとたび量子コンピューティングが確立されたら、古典的な暗号化プロトコルによって与えられる保護のレベルは不十分になり、それにより衛星システムがサイド攻撃に脆弱になるとの説がある。
【0045】
好ましい実施形態では、TT&Cリンクは、量子暗号化技法によって保護される。より詳細には、制御局100から衛星200へのコマンドの送信は、量子暗号化によって保護される。同様に、衛星200から制御局100へのテレメトリー情報の送信は、量子暗号化によって保護される。
【0046】
好ましくは、暗号化鍵(量子鍵)は、衛星200上で生成され、TT&C地上局100に送信される。TT&C地上局100は、受信した量子鍵を使用して、衛星200およびそのペイロードを制御する遠隔コマンドを暗号化する。
【0047】
制御局100から衛星200へのコマンド送信および/または衛星200から制御局100へのテレメトリー送信に量子暗号化技法を適用することは、偽の遠隔コマンド・リンクを確立する機構によるサイド攻撃の可能性をさらに低減する。
【0048】
図3に示されるように、衛星200は、少なくとも二つのサブシステム;一般的なバス管理機能を実行する衛星プラットフォーム204、および量子暗号化サブシステム202を有する。好ましい実施形態では、量子暗号化サブシステム202は、光子源212、暗号鍵生成器(または検光子)214、メモリ(または大容量メモリ)216、鍵選別器218、鍵マネージャ(または鍵管理システム)220および暗号化器/解読器(または暗号化/解読ユニット)222を有する。好ましい実施形態に基づく衛星200はさらに、光通信端末206を有する。いくつかの側面では、光通信端末206は光トランシーバである。光通信端末206は、暗号鍵生成器214によって処理された、光子源または生成器212からの光子を、制御局100または他の地上局に送信するよう適応される。トランシーバ224は、通常の通信チャネル(たとえば無線周波数チャネル)を使って送受信することができる。
図3は、衛星200が送信器/受信器(トランシーバ)224を有することも示している。トランシーバ224は、通常の通信チャネル(たとえば無線周波数チャネル)を使って送受信することができる。いくつかの側面では、鍵選別器218および暗号化器/解読器222はトランシーバ224を使って制御局100と通信することができる。
【0049】
光子生成器212は、所望される低い平均光子数(好ましい実施形態では、パルス当たり0.1ないし1.0のオーダー)を達成するために、レーザー・ダイオードからの減衰したレーザー・パルス(たとえば、パルス継続時間は1nsまたは少なくとも1nsのオーダーであり、反復レートは約1GHz)を利用する弱コヒーレント光子源であってもよい。いくつかの構成では、暗号鍵を生成するための四つの異なる(線形)偏光状態についてエンコードするために、レーザー・ダイオードのアレイおよび半導体増幅器が使用される。偏光状態は典型的には、0°、45°、90°および135°に沿った偏光ベクトルを有する。(0°、45°、90°および135°に沿った偏光ベクトルを有する)個々のレーザー・ダイオードのビームは、組み合わされて、暗号鍵生成器214への送信のためにシングルモード光ファイバーに投入される。いくつかの側面では、光子源212は、エンタングル光子生成器および弱コヒーレント光子生成器を含むことができ、それにより、同じ光子源によっていくつかの異なるQKDプロトコルが利用されることを可能にする。
【0050】
暗号鍵生成器214は、光子生成器212から生成された光子を受信し、生成された光子の偏光を解析する。好ましくは、生成された光子は、暗号鍵生成器214においてパラメトリック下方変換プロセス〔パラメトリック・ダウンコンバージョン〕を経る。光子生成器214から受領された光子ビームは、結晶〔クリスタル〕(図示せず)を使って分割される。光子ビームの分割から帰結する光子対は、組み合わされたエネルギーおよび運動量を有し、「エンタングルしている」と言われる。
【0051】
次いで、暗号鍵生成器214は、レーザーの各パルスについて乱数のストリームを生成する。生成された乱数は、四つの偏光ベクトル(すなわち上記の0°、45°、90°および135°)のうちのどれが制御局100に送られるかを決定する。エンタングルした対の対応する光子は衛星200上で偏光解析〔検光〕される。分割された光子ビームは、乱数ストリームに基づいてフィルターされて、制御ユニット100に送信されるエンコードされた光子ビームと、衛星200上での解析のための対応する光子ビームとを生じる。このようにして、乱数は、光子ビームをエンコードするために使用される。たとえば、乱数の「0」は、直線基底(rectilinear basis)を用いて(すなわち、偏光ベクトル0°および90°を用いて)エンコードされてもよく、「1」は対角基底(diagonal basis)を用いて(すなわち、偏光ベクトル45°および135°を用いて)エンコードされてもよい。他の例では、エンコード基底は逆でもよい(すなわち、「0」が対角基底を有し、「1」が直線基底を有する)。
【0052】
「0」が直線基底を用いてエンコードされてもよく、「1」が対角基底を用いてエンコードされてもよく、乱数が11010として生成される例では、ビーム中の相続く光子の偏光ベクトルは、135°、45°、0°、45°、90°として選択(またはフィルター)されて、エンコードされたビームを形成してもよい。それらの偏光ベクトルをもつ光子が、制御局100に送信されることができる。選択された(またはフィルターされた)相続く光子のそれぞれとエンタングルした光子は、対応するベクトル(すなわち、上記で与えた例に基づけば45°、135°、90°、135°、0°)をもち、衛星200上で解析されるべき対応するビームとして留まる。
【0053】
次いで、エンコードされた光子ビームは、制御局100への送信のために、光通信端末206に渡される。対応する光子ビームは、衛星200上で、好ましくは暗号鍵生成器214において偏光解析される。次いで、解析の結果として得られる乱数は、大容量メモリ216に渡されて記憶される。ひとたびエンコードされた光子ビームがデコードされたら、結果として得られる乱数は、制御局100におけるものに対応する。したがって、たとえば伝送誤りがない限り、この時点において、衛星200および制御局100は暗号化鍵を共有する。
【0054】
実際上は、エンコードされたビームの制御局100への伝送が誤りなしである可能性は低い。したがって、好ましい実施形態では、制御局100および衛星200は、共通の暗号化鍵を決定するために、鍵選別プロセスおよび/またはプライバシー増幅プロセスを実行する。鍵選別およびプライバシー増幅プロセスは、下記でより詳細に記述する。
【0055】
共通の暗号化鍵は、鍵管理システム220に記憶のために送信される。共通の暗号化鍵は、暗号化器/解読器222によって抽出され、使用されることができる。暗号化器/解読器222は、該共通の暗号化鍵を使って、地上局100に送られる情報(たとえばテレメトリー情報)を暗号化し、地上局100から受信される情報(たとえばコマンド)を解読することができる。
図3は、情報が必要に応じて暗号化器/解読器222によって暗号化され、解読される側面を示している。他の側面では、衛星200は、別個の暗号化器および解読器を含む。
【0056】
暗号化されたコマンドは、古典的な通信チャネル(たとえば光または無線周波数チャネル)を通じて衛星200によって受信されることができる。暗号化されたコマンドは、コマンド解読器222によって受信され、コマンド解読器222はその後、鍵管理システム220から共通の暗号化鍵を取得する。ひとたび共通の暗号化鍵が取得されたら、コマンド解読器222は、暗号化されたコマンドを解読する。次いで、結果として得られるコマンドは、実施されるためにコマンド・テレメトリー・サブシステム204に渡される。
【0057】
衛星200は、制御局100に情報を送信することもできる。たとえば、衛星200は追跡およびテレメトリー情報を制御局100に送信する。コマンド・テレメトリー・サブシステム204は、送信のための情報を生成する。送信のための情報は、暗号化器/解読器222によって受信され、該暗号化器/解読器222は次いで、共通の暗号化鍵を鍵管理システム220から取得する。暗号化器/解読器222は、該共通の暗号化鍵を使って、前記情報を暗号化し、結果として得られる暗号化された情報は、制御局100に古典的な通信チャネルを介して送られることができる。
【0058】
〈制御局〉
制御局(またはTT&C局)100は、地上から一つまたは複数の衛星200に対して、その衛星または各衛星200に送信されるコマンドおよび制御命令を介して指令する。同様に、TT&C局100は、前記一つまたは複数の衛星200の状態および動作を、受信されるテレメトリー情報に基づいてモニタリングする。典型的には、これは、通例、ペイロード通信チャネルとは別個の制御プレーン(「TT&Cリンク」とも称される)を通じて行なわれ、時には、通信のための衛星のペイロードによって使用されるのとは異なる周波数で動作する。そのようなTT&C局100は、コマンドを送信し、衛星からのテレメトリーを受信する地上のサイトに位置していてもよい。そのようなサイトは、テレメトリー、追跡およびコマンド(TT&C)局として知られる。
【0059】
図4に示されるTT&C局100は、光通信端末102、ビーム・デコーダ104、鍵選別器106、鍵管理システム108、コマンド生成器110、暗号化器/解読器112、送信器/受信器(トランシーバ)114、ユーザー端末116、コマンド・プロセッサ118およびコマンド・データベース120を有する。好ましい実施形態では、制御局100は地上ベースの制御局100である。光通信端末102は、衛星200から光子を受信するよう適応される。いくつかの側面では、光通信端末102は、光送信器および光受信器を有していてもよい。いくつかの側面では、光通信端末102は光トランシーバである。
図4は、情報が必要に応じて暗号化器/解読器112によって暗号化され、解読される側面を示している。他の側面では、地上局100は別個の暗号化器および解読器を含む。
【0060】
衛星200と制御装置(TT&C局)100との間の共通の暗号化鍵を確立するとき、エンコードされた光子ビームが光通信端末102において受信され、ビーム・デコーダ104に渡される。好ましい実施形態では、受信された光子ビームは、
図3に示されるような衛星200上の光通信端末206から送信されたエンコードされたビームである。上記で論じたように、衛星200はTT&C局100によって受信された前記エンコードされた光子ビームに対応する光子ビームを保持し、解析する。
【0061】
ビーム・デコーダ104は、受信されたビームを解析(またはデコード)し、暗号化鍵を表わす関連するビットストリームを決定する。いくつかの実際的な状況では、ビーム・デコーダ104によって決定されたビットストリームは、衛星200上で(好ましくは暗号鍵生成器214によって)決定された暗号化鍵と完璧に揃ってはいない。制御局100は、
図4に示した構成では、鍵選別器106を含み、これが衛星200上の鍵選別器218と通信して、誤りのない共通の暗号化鍵を確立することができる。鍵選別器106は、ビットストリーム中の誤りの場合にセキュリティを改善するためにプライバシー増幅プロセスをも実行してもよい。鍵選別プロセスおよびプライバシー増幅に関するさらなる詳細は、下記に見出すことができる。
【0062】
ひとたび共通の暗号化鍵が制御鍵選別器106と衛星鍵選別器218との間で合意されたら、制御鍵選別器106は共通の暗号化鍵を鍵管理システム108に渡す。鍵管理システム108は、共通の暗号化鍵を、暗号化器/解読器112による抽出および使用のための準備ができた状態で記憶する。制御局100が複数の衛星200を制御する実施形態では、鍵管理システム108は、共通の暗号化鍵に関連付けられたメタデータにおいて衛星200の指示を含めることができる。
【0063】
ひとたび共通の暗号化鍵が鍵管理システム108に記憶されたら、制御局100は、衛星200とTT&C情報を通信する準備ができている。
【0064】
図4に示されるように、制御局100は、ユーザー端末116および/またはコマンド・データベース120と通信することができるコマンド・プロセッサ118を含むことができる。
【0065】
ユーザー端末116が存在する側面では、ユーザーは、ユーザー端末116に命令を入力してもよく、該命令は次いでコマンド生成器110に送信される。コマンド生成器110はユーザー端末からの入力命令を、衛星200によって処理されることのできるフォーマットをもつコマンドに変換し、該コマンドを暗号化器/解読器112に送信する。いくつかの側面では、ユーザー端末116は、ユーザー入力命令を、衛星200によって処理されることができるフォーマットをもつコマンドに変換することができ、コマンドを暗号化器/解読器112に直接渡すことができる。盗聴者が送信されるコマンドを傍受する可能性を最小にするため、ユーザー端末116が制御局100に位置することが好ましい。いくつかの側面では、ユーザー端末116は、制御局100からリモートであることができ、コマンド生成器110および/または暗号化器/解読器112と適宜、有線または無線通信リンクによって通信することができる。
【0066】
ある好ましい実施形態では、制御局100はコマンド・プロセッサ118と、いくつかのコマンド・テンプレートを含むコマンド・データベース120とを有する。コマンド・プロセッサ118は、衛星200に関する入力情報(たとえば、衛星200からの位置および/またはテレメトリー情報)を受信することができる。
図4に示されるようないくつかの側面では、衛星200に関する入力情報は、送信器/受信器114を介して受信される。いくつかの側面では、衛星200に関する入力情報は、専用の受信器を介して受信される。
【0067】
コマンド・プロセッサ118は、受信された入力情報を、コマンド・データベース120から呼び出される期待される入力情報と比較する。比較の結果として、コマンド・プロセッサ118は、アクションが要求されるかどうかを決定してもよい。その決定は、あらかじめ決定された閾値に基づくことができる。たとえば、コマンド・プロセッサ118は、衛星200の軌道があらかじめ決定された閾値高度以下である、または期待される経度および/または緯度からあらかじめ決定された許容度より大きく離れている、または仰角が送信器単独のポインティング範囲を超える通信クライアント位置を受け入れるために変更される必要があることを判別してもよい。
【0068】
アクションが要求されると判別されたら、コマンド・プロセッサ118はコマンド・データベース116から関連するコマンド・テンプレートを取得し、該コマンド・テンプレートおよび衛星200に関する受信された情報に基づいて、コマンドを生成する。衛星200が閾値高度以下であると判別される例では、コマンド・プロセッサ200は、コマンド・データベース120から、高度を調整する(または増す)ことに関係するコマンド・テンプレートを取得してもよい。ひとたび取得されたら、コマンド・プロセッサ118は、結果として得られるコマンドが衛星200が所与の量だけ高度を増すためのものとなるよう、コマンド・テンプレート内の変数を設定する。
【0069】
ひとたび生成されたら、コマンドは暗号化器/解読器112に送信される。いくつかの側面では、コマンドは、コマンドが向けられる衛星200搭載のプロセッサによって可読なフォーマットにされるべく、まずコマンド生成器110に送信される。たとえば、制御局100が複数の衛星200を制御する場合、各衛星200は異なるオペレーティング・システムを使うことがある。コマンド生成器110は、コマンドが意図される衛星200(すなわち、宛先衛星)を決定し、しかるべくコマンドをフォーマットする。
【0070】
ひとたび暗号化器/解読器112がコマンドを(ユーザー端末116、コマンド・プロセッサ118またはコマンド生成器110のいずれからであろうと)受信したら、宛先衛星が識別される。宛先衛星200が以前に決定されている場合は、宛先衛星200の指示が、コマンドと一緒に受領されてもよい。受信されるコマンドのメタデータが解析されて、宛先衛星200を識別してもよい。ひとたび暗号化器/解読器112が識別を行なったら、関連付けられた暗号鍵を鍵管理システム108から取得する。次いで、関連付けられた暗号化鍵は、コマンドを暗号化するために使用され、暗号化されたコマンドが衛星200に、送信器/受信器114を介して送信される。
【0071】
制御局100は、衛星200から暗号化された情報を受信することもできる。たとえば、衛星200はテレメトリー情報を暗号化して送信してもよい。暗号化された情報は、制御局100の通信端末114において受信され、暗号化器/解読器112に送信される。暗号化器/解読器112は、鍵管理システム108から共通の暗号化鍵を取得し、暗号化された情報を解読するためにその鍵を使う。ひとたび解読されたら、情報は関連する位置に、たとえばユーザー入力が要求されるならユーザー端末116に、自動化された応答が要求されるならコマンド・プロセッサ118に、渡されることができる。
【0072】
〈鍵選別およびプライバシー増幅〉
地上局100と衛星200との間の共通の暗号化鍵を確立するプロセスの間に、制御鍵選別器106と衛星鍵選別器218との間で、鍵選別プロセスが行なわれる。制御鍵選別器106は、衛星鍵選別器218に、ビーム・デコーダ104による受領された光子ビーム(エンコードされた光子ビーム)の処理から帰結するビットストリームを送信する。代替的または追加的に、衛星鍵選別器218は、制御鍵選別器106に、暗号鍵生成器214による光子ストリーム(対応するビーム)の処理から帰結するビットストリームを送信する。
【0073】
ビットストリームを受信する鍵選別器は、次いで、受領されたビットストリームのどのビットが当該プラットフォーム(制御装置または衛星)自身における等価なビットと完璧に相関するかを判別する。衛星上の対応する光子ビームにおける等価なビットと完璧に相関しないビットは破棄される(衛星上の対応する光子ビーム内の等価なビットも)。残りのビットが、制御局100と衛星200との間の共通の暗号化鍵をなす。たとえば、衛星鍵選別器218は、制御局100から受信されるビットストリームのどのビットが、暗号鍵生成器214によって処理される光子ストリームからの等価なビットと完璧に相関しているかを判別することができる。同様に、制御鍵選別器106は、衛星200から受信されるビットストリームのどのビットが、ビーム・デコーダ104によって処理される光子ストリームからの等価なビットと完璧に相関しているかを判別することができる。
【0074】
制御鍵選別器106と衛星鍵選別器218との間の通信は、通常の(または古典的な)通信チャネル上であることができる。いくつかの構成では、制御鍵選別器106は、送信器/受信器114を介して衛星鍵選別器218と通信する。いくつかの構成では、制御鍵選別器106は、専用の鍵選別器送信器/受信器を介して衛星鍵選別器218と通信する。
【0075】
いくつかの側面では、鍵選別器106は、好ましくは鍵選別後にプライバシー増幅を実行することもできる。プライバシー増幅においては、共通の暗号化鍵は、盗聴者(イブ)の情報を減らすために、適切な因子により圧縮される。圧縮因子は、誤り率に依存する。より高い誤り率は、鍵に関するより多くの情報が潜在的な盗聴者に利用可能であることを許容し、安全であるために、より高い圧縮因子が暗号化鍵に適用されることを要求する。
【0076】
上記のようなプライバシー増幅が機能するのは最大誤り率までである。この閾値より上では、ビットストリームに関して盗聴者がもつ情報が多すぎて、制御局100と衛星200が安全な鍵を生成できないことがありうる。よって、量子鍵配送システムの内在的な誤り率を最小化することが望ましい――これは、システム設計およびコンポーネントの選択を通じて達成できる。鍵選別およびプライバシー増幅の間には鍵情報は交換されないので、両プロセスとも、光または無線周波数リンク(すなわち古典的なチャネル)上で行なわれることができる。
【0077】
〈衛星と制御局との間のQKD〉
二つの型の通信リンクが利用される。第一は、鍵選別およびプライバシー増幅のようなペイロード動作のために使われる、TT&Cチャネルおよび古典的な通信チャネルの両方をサポートする(たとえば無線周波数を使う)無線通信リンクである。第二は、レーザー・ビーコン信号およびQKD配送リンクからなる光リンクである。いくつかの構成では、古典的な通信チャネルは、光送信器および光受信器の機能を利用する光通信チャネルによって置き換えられてもよい。
【0078】
衛星200が権限付与された制御局100の上方を通過する(すなわち、制御局100と直接通信することができる)とき、光子の形での鍵データの伝送を許容するよう、衛星200と制御局100との間のQKD配送リンクを確立しようとする試行がなされてもよい。ある好ましい実施形態では、QKD配送リンクの確立は、衛星200が権限付与された制御局100の上方を通過するたびに試みられる。したがって、新たな共有される量子鍵はできるだけ頻繁に確立され、それにより盗聴者が制御局100または衛星200のメモリにアクセスすることによって鍵を取得する可能性を減らす。好ましくは、衛星200が、QKD配送リンクを確立しようとする試みを開始する。いくつかの側面では、制御局100は、QKD配送リンクを確立しようとする試みを開始する。
【0079】
いくつかの側面では、QKD配送リンクの確立は、あらかじめ決定された時間周期で生起することができる。これは、静止通信衛星で特に有用でありうる。
【0080】
好ましい構成では、衛星200の光送信器206のねらいをつけるためのポインティング命令を計算するために、リンクは、衛星エフェメリス・データ(satellite ephemeris data)(すなわち、衛星の現在位置、予測される位置および状態もしくは健康状態)および制御局100位置情報を使って確立される。制御局100は、衛星エフェメリス情報、特に位置情報(現在位置および予測される位置の両方)を、光受信器102のためのポインティング情報を計算するためにも使用する。
【0081】
ひとたび衛星通信端末(光トランシーバ)206が制御局100に向けられたら、制御局光通信端末(光トランシーバ)102によって受領されるレーザー・ビーコン信号を放出する。そのレーザー・ビーコン信号の受信に際して、光トランシーバ102はレーザー・ビーコン信号を放出し、それが衛星200において受信され、それらの光通信端末が整列しており、光子ストリームの送信の準備ができていることを確立する。次いで、それら二つのレーザー・ビーコンは、衛星200の光通信端末206および制御局100の光通信端末102によって使用され、閉ループ追跡方式を確立する。それにより、QKD配送リンクが信頼できる仕方で確立できる。
【0082】
ひとたびQKD配送リンクが確立されたら、衛星200のQKDペイロード202は、光子源212を使って一連のQKDプロトコルの一つに従って鍵データを生成する。いくつかの側面では、たとえば衛星200が静止軌道にある場合、QKD配送リンクはあらかじめ存在していてもよい(たとえ静止軌道にある衛星でも、良好なリンクを保証するために、光通信端末の整列プロセスはやはり行なわれてもよい)。
【0083】
いくつかの側面では、鍵データは、エンタングルした光子トランシーバを刺激するためにUVポンプ・レーザーが使用されるE91プロトコルを使って生成される(これらが一緒になって光子源212をなし、リアルタイムで衛星200のテレメトリーおよび遠隔コマンド・リンクの保護のための十分な鍵データを保証するのに好適なレートでエンタングルした光子の対を生成する)。エンタングルした光子は、二つの別個の光路に向けられ、エンタングルした対の一方の光子は一つの経路をたどり、エンタングルした対の他方の光子は他方の経路をたどり、それにより、エンタングルした光子の第一のストリームおよびエンタングルした光子の第二のストリームを生じる(第一のストリームの光子が第二のストリームの光子とエンタングルしている)。たとえば、第一の生成された光子対が垂直偏光をもつとすると、0°光子は第一の光路に向けられ、180°光子は第二の光路に向けられる。同様に、第二の生成された光子対が水平偏光をもつとすると、90°光子は第一および第二の経路の一方に向けられることができ、270°光子は第一および第二の経路の他方に向けられることができる。
【0084】
好ましい構成では、第一の光路(制御局経路)は光通信端末206を通り、制御局100の光通信端末102に向かう。第二の光路(衛星経路)は衛星200搭載の偏光解析システム214を通る。これは、光子源212によって放出される光子源すべてについて繰り返される。
【0085】
衛星200および制御局100は、それぞれの光路に沿って受信された光子を解析して、鍵データの集合を確立する。衛星検光子214および制御局ビーム・デコーダ104は、受信される各光子の偏光を順に測定するために、二つの異なる基底(それらの検光子の配向)から独立してランダムに選択する。たとえば、衛星検光子214は、衛星経路における最初の5つの光子を解析するために基底として独立してランダムに0°、90°、90°、90°、0°を選択してもよく、制御局ビーム・デコーダ104は、制御局経路における最初の5つの光子を解析するために独立してランダムに0°、0°、90°、0°、90°を選択してもよい。もちろん、衛星経路における最初の5つの光子は、制御装置経路における最初の5つの光子のエンタングルした対となる。
【0086】
衛星経路における光子(エンタングルした光子の第一のストリーム)を解析するために使われる基底の選択は、衛星鍵選別器218に渡され、衛星メモリ216に記憶されてもよい。制御局経路における光子(エンタングルした光子の第二のストリーム)を解析するために使われる基底の選択は、制御局鍵選別器106に渡される。
【0087】
衛星鍵選別器218および制御局鍵選別器106は、ランダムに選択された基底のどれが対応しており、どれが対応していないかを確立するために互いと通信する。対応しないものは第一の群に割り当てられ、対応するものは第二の群に割り当てられる。ランダムに選択された基底は暗号化鍵に関する情報を含まないので、衛星鍵選別器218および制御局鍵選別器106は古典的なチャネルを通じて通信することができる。好ましくは、鍵選別器106、218はそれぞれのトランシーバ114、224を使って通信する。上記の例(衛星が基底0°、90°、90°、90°、0°を選択し、制御装置が基底0°、0°、90°、0°、90°を選択した)では、第二、第四および第五の選択が第一の群にはいり、第一および第三の選択が第二の群にはいる。
【0088】
衛星検光子214のランダムに選択された基底と同じ配向をもつ衛星経路における光子は、衛星検光子214を通過し、異なる配向をもつ光子は阻止される。衛星経路中の光子の偏光は今や解析され終わり、結果が衛星鍵選別器218に送られ、衛星メモリ216に記憶されてもよい。同様に、制御局ビーム・デコーダ104のランダムに選択された基底と同じ配向をもつ制御装置経路中の光子は、制御局ビーム・デコーダ104を通過し、異なる配向をもつ光子は阻止される。制御装置経路の偏光解析の結果は制御局鍵選別器106に送られる。
【0089】
ひとたび衛星200および制御局100の光子ビームが偏光解析されたら、衛星鍵選別器218および制御局鍵選別器106は、偏光基底の第一の群(すなわち、衛星と制御局との間で相関していなかった基底の群)から帰結する測定を交換する。次いで、衛星鍵選別器218および制御局鍵選別器106は、基底の第一の群から帰結する測定が相関しているかどうかを、相関係数を計算して相関係数が期待される値であるかどうかを判定することによって判定する(ベルの定理によれば、相関係数は−2√2であるが、測定の不正確さを考慮に入れるために計算に許容差が組み込まれてもよい)。相関係数が基底の第一の群に関係する測定についての期待される値である場合、ベルの定理は、第二の群における測定は逆相関しており、よって、衛星200と制御装置100との間の秘密鍵を生成するために使用できることを示す。相関係数が期待される値未満であれば、光子の一部に関する測定がなされており、光子ストリームの伝送が安全ではなかったと想定できる。したがって、衛星200および制御局100において共通の鍵を確立するプロセスは再び開始される。
【0090】
共通の鍵が制御局鍵選別器106および衛星鍵選別器218によって確立された後、鍵は、それぞれの鍵管理システム108、220に記憶のために渡される。制御局鍵管理システム108および衛星鍵管理システム220は今や、同じ鍵を記憶している。
【0091】
制御局鍵管理システム108および衛星鍵管理システム220内に共通の鍵が記憶されているので、暗号化プロセスが開始できる。好ましい実施形態では、制御局100におけるコマンド暗号化器112は、衛星200に送信されるコマンド・データを受領する。コマンド・データは、コマンド生成器110またはユーザー端末116から受領される。コマンド・データを受領すると、コマンド暗号化器112は鍵管理システム108に鍵を要求する。鍵暗号化器112は、該要求に応答して、コマンド・データの宛先とされる衛星200に関連付けられた鍵を受領する。コマンド暗号化器112は、受領された鍵を使って、コマンド・データを暗号化し、暗号化されたコマンド・データを制御局トランシーバ114に送信する。すると、制御局トランシーバ114は暗号化されたコマンド・データを衛星200に送信する。
【0092】
〈他の側面、実施形態および修正〉
いくつかの側面では、TT&C装置100は光子源を含む。そのような構成では、TT&C装置100は、衛星200との共有されるTT&Cリンクを確立するためのプロセスを開始する。
【0093】
他の多くの変形および実施形態が、当業者には明白であろう。そのすべては出願される請求項にカバーされているか否かによらず、本発明の範囲内にはいることが意図されている。本稿に開示されるあらゆる新規な主題およびその組み合わせに対して保護が求められる。
【国際調査報告】