特表2021-512424(P2021-512424A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エマージェックス, エルエルシーの特許一覧

特表2021-512424感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法
<>
  • 特表2021512424-感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法 図000005
  • 特表2021512424-感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法 図000006
  • 特表2021512424-感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法 図000007
  • 特表2021512424-感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法 図000008
  • 特表2021512424-感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法 図000009
  • 特表2021512424-感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法 図000010
  • 特表2021512424-感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2021-512424(P2021-512424A)
(43)【公表日】2021年5月13日
(54)【発明の名称】感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法
(51)【国際特許分類】
   G06N 5/02 20060101AFI20210416BHJP
   G06N 3/00 20060101ALI20210416BHJP
   G06N 20/00 20190101ALI20210416BHJP
【FI】
   G06N5/02 150
   G06N3/00 140
   G06N20/00
【審査請求】未請求
【予備審査請求】未請求
【全頁数】47
(21)【出願番号】特願2020-542071(P2020-542071)
(86)(22)【出願日】2019年1月28日
(85)【翻訳文提出日】2020年9月25日
(86)【国際出願番号】US2019015432
(87)【国際公開番号】WO2019148108
(87)【国際公開日】20190801
(31)【優先権主張番号】62/623,521
(32)【優先日】2018年1月29日
(33)【優先権主張国】US
(31)【優先権主張番号】62/660,195
(32)【優先日】2018年4月19日
(33)【優先権主張国】US
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.BLUETOOTH
(71)【出願人】
【識別番号】520282591
【氏名又は名称】エマージェックス, エルエルシー
【氏名又は名称原語表記】EMERGEX, LLC
(74)【代理人】
【識別番号】100126572
【弁理士】
【氏名又は名称】村越 智史
(72)【発明者】
【氏名】フェインソン, ロイ
(72)【発明者】
【氏名】カッツ, アリエル ミカエル
(72)【発明者】
【氏名】カーリン, マイケル ジョセフ
(57)【要約】
一部の実施形態において、感情状態に基づいた人工知能の実現を容易にするとしてよい。人工知能エンティティの一連の感情属性について1または複数の増大因子または減衰因子を決定するとしてよく、一連の感情属性に対応付けられている一連の感情値を増大因子または減衰因子に基づいて継続的に更新するとしてよい。入力を取得するとしてよく、継続的に更新される人工知能エンティティの一連の感情値に基づき、入力に関する応答を生成するとしてよい。一部の実施形態では、増大因子または減衰因子は、入力に基づいて更新されるとしてよく、減衰因子の更新の後、更新後の増大因子または減衰因子に基づいて感情値を更新するとしてよい。
【特許請求の範囲】
【請求項1】
感情状態に基づいた人工知能の実現を容易にする方法であって、前記方法は、コンピュータプログラム命令を実行する1または複数のプロセッサを備えるコンピュータシステムによって実装され、前記コンピュータプログラム命令は、実行されると、前記方法を実行し、前記方法は、
人工知能エンティティの一連の感情属性について1または複数の増大因子または減衰因子を決定する段階であって、前記一連の感情属性は、前記人工知能エンティティの一連の感情値に対応付けられている、決定する段階と、
所定の期間において、前記1または複数の増大因子または減衰因子に基づき、前記人工知能エンティティの前記一連の感情値を継続的に更新する段階と、
前記所定の期間において入力を取得する段階と、
前記人工知能エンティティの継続的に更新される前記一連の感情値に基づき、前記入力に関する応答を生成する段階と、
前記入力に基づいて、前記所定の期間において前記1または複数の増大因子または減衰因子を更新する段階と
を備え、
前記1または複数の増大因子または減衰因子を更新する段階の後、前記一連の感情値を継続的に更新する段階は、更新された前記1または複数の増大因子または減衰因子に基づき前記所定の期間において前記一連の感情値を継続的に更新する段階を含む、
方法。
【請求項2】
前記1または複数の増大因子または減衰因子を更新する段階の後、別の入力を取得する段階と、
前記1または複数の増大因子または減衰因子を更新する段階の後、前記人工知能エンティティの継続的に更新される前記一連の感情値に基づき、前記別の入力に関する応答を生成する段階と
を更に備える、請求項1に記載の方法。
【請求項3】
前記1または複数の増大因子または減衰因子に関係なく、前記入力に基づき前記一連の感情値のうち1または複数の感情値の増加の上限となる1または複数の感情ベースラインを更新する段階を更に備え、
前記1または複数の感情ベースラインを更新する段階の後、前記一連の感情値を継続的に更新する段階は、更新された前記1または複数の増大因子または減衰因子、および、更新された前記1または複数の感情ベースラインに基づき、前記所定の期間において、前記人工知能エンティティの前記一連の感情値を継続的に更新する段階を含む、
請求項1に記載の方法。
【請求項4】
前記入力に関する前記応答を生成する段階は、前記入力から導き出される前記人工知能エンティティの継続的に更新される前記一連の感情値に基づいて前記応答を生成する段階を含む、請求項1に記載の方法。
【請求項5】
前記1または複数の増大因子または減衰因子を決定する段階は、前記人工知能エンティティの前記一連の感情属性について1または複数の減衰因子を決定する段階を含み、
前記一連の感情値を継続的に更新する段階は、前記所定の期間において前記1または複数の減衰因子に基づき前記人工知能エンティティの前記一連の感情値を継続的に更新する段階を含み、
前記1または複数の増大因子または減衰因子を更新する段階は、前記入力に基づき、前記所定の期間において前記1または複数の減衰因子を更新する段階を含み、
前記1または複数の減衰因子を更新する段階の後、前記一連の感情値を継続的に更新する段階は、更新された前記1または複数の減衰因子に基づき前記所定の期間において前記人工知能エンティティの前記一連の感情値を継続的に更新する段階を含む、
請求項1に記載の方法。
【請求項6】
前記1または複数の増大因子または減衰因子を決定する段階は、前記人工知能エンティティの前記一連の感情属性について1または複数の増大因子を決定する段階を含み、
前記一連の感情値を継続的に更新する段階は、前記所定の期間において前記1または複数の増大因子に基づき前記人工知能エンティティの前記一連の感情値を継続的に更新する段階を含み、
前記1または複数の増大因子または減衰因子を更新する段階は、前記入力に基づき、前記所定の期間において前記1または複数の増大因子を更新する段階を含み、
前記1または複数の増大因子を更新する段階の後、前記一連の感情値を継続的に更新する段階は、更新された前記1または複数の増大因子に基づき前記所定の期間において前記人工知能エンティティの前記一連の感情値を継続的に更新する段階を含む、
請求項1に記載の方法。
【請求項7】
前記入力の内容を処理して、前記内容の各部分が前記人工知能エンティティの1または複数の感情属性に与えるインパクトに関する1または複数のインパクト値を決定する段階と、
前記人口知能エンティティの前記1または複数の感情属性に対応付けられている1または複数の感情値における増減をトリガする所定のしきい値を前記1または複数のインパクト値が満たしているか否かを決定する段階と、
前記1または複数のインパクト値が前記所定のしきい値を満たしていると決定することに基づいて、前記所定の期間において、前記人工知能エンティティの前記1または複数の感情値の修正を発生させる段階と
を更に備える、請求項1に記載の方法。
【請求項8】
前記人口知能エンティティと少なくとも1つの他のエンティティとの間のやり取りしきい値が所与の期間内に発生したか否かを決定する段階と、
前記やり取りしきい値が満たされているか否かの決定に基づいて、前記人口知能エンティティの前記一連の感情値の修正を発生させる段階とを
更に備える、請求項1に記載の方法。
【請求項9】
前記一連の感情値を継続的に更新する段階は、前記所定の期間において、前記1または複数の増大因子または減衰因子に基づき、前記人工知能エンティティの前記一連の感情値を周期的に更新する段階を含む、請求項1に記載の方法。
【請求項10】
ソースから自然言語入力を取得する段階と、
前記自然言語入力に対して自然言語処理を実行して、前記自然言語入力の1または複数の感情概念および前記自然言語入力の他の情報を前記所定の期間において前記入力として取得する段階と
を更に備え、
前記1または複数の増大因子または減衰因子を更新する段階は、(i)前記自然言語入力の前記1または複数の感情概念および(ii)前記自然言語入力の前記他の情報に基づき、前記所定の期間において前記1または複数の増大因子または減衰因子を更新する段階を含む、請求項1に記載の方法。
【請求項11】
前記自然言語入力の前記他の情報は、主語の時間減衰因子、主語の地理的減衰因子、目的語の時間減衰因子または目的語の地理的減衰因子を示す、請求項10に記載の方法。
【請求項12】
前記自然言語入力の前記他の情報は、節の種類、前記節の主語、前記節の主語の種類、前記節の主語の修飾語句、前記節の主語の修飾語句の種類、前記節の主語の数、主語の時間減衰因子、主語の地理的減衰因子、前記節の動詞、前記節の動詞の時制、前記節の動詞の修飾語句、前記節の目的語、前記節の目的語の種類、前記節の目的語の修飾語句、前記節の目的語の修飾語句の種類、前記節の目的語の数、目的語の時間減衰因子、目的語の地理的減衰因子、前記節の前置詞、前記節の前置詞の修飾語句、または、前記節のグローバル時制修飾語句を示す、請求項10の方法。
【請求項13】
前記ソースに対応付けられている信頼値を決定する段階であって、前記信頼値は、前記人工知能エンティティの前記ソースに対する信頼のレベルを示す、決定する段階を更に備え、
前記入力を取得する段階は、前記入力として、(i)前記自然言語入力の前記1または複数の感情概念、(ii)前記ソースに対応付けられている前記信頼値、および(iii)前記自然言語入力の前記他の情報を取得する段階を含み、
前記1または複数の増大因子または減衰因子を更新する段階は、(i)前記自然言語入力の前記1または複数の感情概念、(ii)前記ソースに対応付けられている前記信頼値、および(iii)前記自然言語入力の前記他の情報に基づき、前記所定の期間において前記1または複数の増大因子または減衰因子を更新する段階を含む
請求項12に記載の方法。
【請求項14】
前記自然言語入力が示す出来事に対応付けられている確実性値を決定する段階であって、前記確実性値は、(i)前記出来事が前記自然言語入力で明示的に記述されているのか、または、前記自然言語入力から推測されるのかに基づいて、および、(ii)前記ソースに対応付けられている前記信頼値に基づいて決定され、前記確実性値は前記出来事に対する前記人工知能エンティティの確実性のレベルを示す、決定する段階を更に備え、
前記入力を取得する段階は、前記入力として、(i)前記自然言語入力の前記1または複数の感情概念、(ii)前記出来事に対応付けられている前記確実性値、(iii)前記ソースに対応付けられている前記信頼値、および(iv)前記自然言語入力の前記他の情報を取得する段階を含み、
前記1または複数の増大因子または減衰因子を更新する段階は、(i)前記自然言語入力の前記1または複数の感情概念、(ii)前記出来事に対応付けられている前記確実性値、(iii)前記ソースに対応付けられている前記信頼値、および(iv)前記自然言語入力の前記他の情報に基づき、前記所定の期間において前記1または複数の増大因子または減衰因子を更新する段階を含む、
請求項13に記載の方法。
【請求項15】
感情状態に基づいた人工知能の実現を容易にするためのシステムであって、前記システムは、
コンピュータプログラム命令がプログラミングされている1または複数のプロセッサを有するコンピュータシステムを備え、前記コンピュータプログラム命令は、実行されると、前記コンピュータシステムに、
人工知能エンティティの一連の感情属性について1または複数の増大因子または減衰因子を決定する段階であって、前記一連の感情属性は、前記人工知能エンティティの一連の感情値に対応付けられている、決定する段階と、
所定の期間において前記1または複数の増大因子または減衰因子に基づき前記人工知能エンティティの前記一連の感情値を継続的に更新する段階と、
前記所定の期間において入力を取得する段階と、
前記人工知能エンティティの継続的に更新される前記一連の感情値に基づき前記入力に関する応答を生成する段階と、
前記入力に基づいて、前記所定の期間において前記1または複数の増大因子または減衰因子を更新する段階と
を実行させ、
前記1または複数の増大因子または減衰因子を更新する段階の後、前記一連の感情値を継続的に更新する段階は、更新された前記1または複数の増大因子または減衰因子に基づき前記所定の期間において前記一連の感情値を継続的に更新する段階を含む、
システム。
【請求項16】
前記1または複数のプロセッサが、前記コンピュータシステムに、
前記1または複数の増大因子または減衰因子に関係なく、前記入力に基づき、前記一連の感情値のうち1または複数の感情値の増加の上限となる1または複数の感情ベースラインを更新する段階を更に実行させ、
前記1または複数の感情ベースラインを更新する段階の後、前記一連の感情値を継続的に更新する段階は、更新された前記1または複数の増大因子または減衰因子、および、更新された前記1または複数の感情ベースラインに基づき、前記所定の期間において、前記人工知能エンティティの前記一連の感情値を継続的に更新する段階を含む、
請求項15に記載のシステム。
【請求項17】
前記1または複数のプロセッサが、前記コンピュータシステムに、
前記入力の内容を処理して、前記内容の各部分が前記人工知能エンティティの1または複数の感情属性に与えるインパクトに関する1または複数のインパクト値を決定する段階と、
前記人口知能エンティティの前記1または複数の感情属性に対応付けられている1または複数の感情値における増減をトリガする所定のしきい値を前記1または複数のインパクト値が満たしているか否かを決定する段階と、
前記1または複数のインパクト値が前記所定のしきい値を満たしていると決定することに基づいて、前記所定の期間において、前記人工知能エンティティの前記1または複数の感情値の修正を発生させる段階と
を実行させる、請求項15に記載のシステム。
【請求項18】
前記1または複数のプロセッサが、前記コンピュータシステムに、
ソースから自然言語入力を取得する段階と、
前記自然言語入力に対して自然言語処理を実行して、前記自然言語入力の1または複数の感情概念および前記自然言語入力の他の情報を前記所定の期間において前記入力として取得する段階と
を実行させ、
前記1または複数の増大因子または減衰因子を更新する段階は、(i)前記自然言語入力の前記1または複数の感情概念および(ii)前記自然言語入力の前記他の情報に基づき、前記所定の期間において前記1または複数の増大因子または減衰因子を更新する段階を含む
請求項15に記載のシステム。
【請求項19】
前記1または複数のプロセッサが、前記コンピュータシステムに、
前記人口知能エンティティと少なくとも1つの他のエンティティとの間のやり取りしきい値が所与の期間内に発生したか否かを決定する段階と、
前記やり取りしきい値が満たされているか否かの決定に基づいて、前記人口知能エンティティの前記一連の感情値の修正を発生させる段階とを
実行させる、請求項15に記載のシステム。
【請求項20】
前記入力に関する前記応答を生成する段階は、前記入力から導き出される前記人工知能エンティティの継続的に更新される前記一連の感情値に基づいて前記応答を生成する段階を含む、請求項15に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、(1)米国仮特許出願第62/623,521号(出願日:2018年1月29日、発明の名称:「Emotionally Intelligent Artificial Intelligence System(感情的知性の高い人口知能システム)」)および(2)米国仮特許出願第62/660,195号(出願日:2018年4月19日、発明の名称:「System and Method for Facilitating Affective−State−Based Artificial Intelligence(感情状態に基づいた人工知能の実現を容易にするためのシステムおよび方法)」)による利益を主張する。
【0002】
本発明は、感情状態に基づいた人工知能の実現を容易にすることに関し、例えば、入力に関する応答を、人工知能エンティティの感情属性に対応付けられている感情値に基づいて、生成することを含む。
【背景技術】
【0003】
近年における技術の進歩により、大量のデータを取得して処理するというコンピュータシステムの機能は大きく進化し、そのためのコストは大幅に下がっている。この結果として、機械学習システムおよびその他の人工知能(AI)システムが大幅な進歩を遂げることが可能となった。このためには通常、高い処理能力が必要になると同時に、このようなAIシステムをトレーニングまたは更新するための大量のデータも必要である。AIが進化した点として、AIシステムが発話ばらつきおよび表情に基づいて人間の感情を検出可能であること、そして、人間が尋ねる質問に応答可能であることが挙げられる。しかし、通常のAIシステムは自身に固有の感情状態(例えば、自身の感情を持ち、表現する)を持たないことを考えると、このようなAIシステムは人間と同様の感情を真に理解(および経験)することはないと考えられる。通常のAIシステムはこのような短所があり、他にも問題点がある。
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の態様は、感情状態に基づいた人工知能の実現を容易にするための方法、装置および/またはシステムに関する。
【課題を解決するための手段】
【0005】
一部の実施形態において、人工知能エンティティの感情値を更新するとしてよく、人工知能エンティティの感情値に基づいて、取得した入力に関する応答を生成するとしてよい。これに加えて、または、これに代えて、人工知能エンティティの一連の感情属性について、1または複数の増大因子または減衰因子を決定するとしてよく、増大因子または減衰因子に基づいて、人工知能エンティティの感情値を更新するとしてよい。一部の実施形態では、増大因子または減衰因子は、取得した入力に基づいて更新されるとしてよく、増大因子または減衰因子の更新の後、更新後の増大因子または減衰因子に基づいて感情値を更新するとしてよい。
【0006】
一部の実施形態では、1または複数の感情値の上限となる1または複数の感情ベースラインが、取得した入力に基づいて更新されるとしてよく、更新後の増大因子または減衰因子および更新後の感情ベースラインに基づいて、感情値を更新するとしてよい。一部の実施形態では、取得した入力は自然言語入力であってよい。自然言語入力の自然言語処理を実施して、自然言語入力の1または複数の感情概念および自然言語入力の他の情報を取得するとしてよく、増大因子または減衰因子は、自然言語入力の感情概念および自然言語入力他の情報に基づいて、更新されるとしてよい。
【0007】
上記以外の本発明のさまざまな態様、特徴および利点は、本発明の詳細な説明および添付の図面を参照することによって明らかになるであろう。また、上記の概要および以下の詳細な説明は共に例示に過ぎず、本発明の範囲を限定するものではないと理解されたい。本明細書および特許請求の範囲で用いる場合、単数形の「a」、「an」、および「the」は複数を示唆するものである。ただし、文脈によって別に解すべきことが明白な場合はこの限りでない。さらに、本明細書および特許請求の範囲で用いる場合、「または」という用語は「および/または」を意味する。ただし、文脈によって別に解すべきことが明白な場合はこの限りではない。
【図面の簡単な説明】
【0008】
図1】1または複数の実施形態に応じた、感情状態に基づいた人工知能またはその他の人工知能の実現を容易にするシステムを示す図である。
【0009】
図2A】1または複数の実施形態に応じた、感情属性に対応付けられている感情値および感情ベースラインを示すグラフである。
図2B】1または複数の実施形態に応じた、感情属性に対応付けられている感情値および感情ベースラインを示すグラフである。
【0010】
図2C】1または複数の実施形態に応じた、感情属性に対応付けられている感情値および感情ベースラインの更新を示すグラフである。
【0011】
図3】1または複数の実施形態に応じた、感情状態に基づいた人工知能の実現を容易にするための方法のフローチャートを示す。
【0012】
図4】1または複数の実施形態に応じた、自然言語入力に基づいて1または複数の増大因子または減衰因子を更新する方法を示すフローチャートを示す。
【0013】
図5】1または複数の実施形態に応じた、人工知能エンティティの1または複数の感情ベースラインを更新する方法を示すフローチャートを示す。
【発明を実施するための形態】
【0014】
以下の記載において、本発明の実施形態が完全に理解されるように、説明を目的として、多くの具体的且つ詳細な内容を記載する。しかしながら、当業者であれば、これらの具体的且つ詳細な内容がなくとも、または、均等な構成でも、本発明の実施形態が実施され得るものを理解するであろう。他の例では、周知の構造およびデバイスが、本発明の各実施形態を不必要に不明瞭にすることを避ける目的でブロック図の形式で示される。本明細書では、分かりやすいように、人工知能エンティティについて言及する場合、「彼女」という代名詞を利用することがあり、「信じる」、「感じる」および「理解する」といった擬人的な用語をデバイスについて使用する。
【0015】
システム100および当該システム100のAIシステムに関する概要
【0016】
図1は、1または複数の実施形態に応じた、感情状態に基づいた人工知能またはその他の人工知能の実現を容易にするシステム100を示す図である。図1に示すように、システム100は、サーバ102、クライアントデバイス104(またはクライアントデバイス104a−104n)、ネットワーク150、データベース132および/またはその他の構成要素を備えるとしてよい。サーバ102は、因子調整サブシステム112、感情状態サブシステム114、通信サブシステム116、応答生成サブシステム118、自然言語サブシステム120、感情概念サブシステム122、埋め込みサブシステム124またはその他の構成要素を有するとしてよい。各クライアントデバイス104には、任意の種類のモバイル端末、固定端末または他の装置が含まれるとしてよい。一例として、クライアントデバイス104には、デスクトップコンピュータ、ノートブックコンピュータ、タブレットコンピュータ、スマートフォン、ウェアラブルデバイスまたは他のクライアントデバイスが含まれるとしてよい。ユーザは、例えば、1または複数のクライアントデバイス104を利用して、ユーザ同士で、1または複数のサーバと、または、システム100のその他の構成要素とやり取りを行うとしてよい。サーバ102の特定の構成要素が実行するものとして1または複数の処理を本明細書で説明するが、これらの処理は、一部の実施形態では、サーバ102の他の構成要素、または、システム100の他の構成要素によって実行し得るものであることに留意されたい。一例として、サーバ102の構成要素が実行する処理として本明細書で説明する1または複数の処理は、一部の実施形態において、クライアントデバイス104の構成要素によって実行されるとしてよい。
【0017】
一部の実施形態では、システム100は、人口知能(AI)システム(例えば、人工知能エンティティ)を備えるとしてよく、および/または、AIシステムとのやり取りを円滑化するとしてよい。一部の実施形態では、システム100は、(サブシンボリック)ディープラーニングニューラルネットワークと、ロバスト性が高く、自動調整式で、ファジーロジックの感情シミュレーションとを一体化した二本立てとしてよい。感情シミュレーションは、部分的に、「一次」(生来の)感情および二次感情の概念を利用する。感情(例えば、喜び、怒り、恐れ、悲しみ等)は、原色に例えることができる。これらの一次感情が混ざり合うことで、人間の感情システムの豊かな色相が形成される(軽蔑と怒りとが組み合わさることで嫌悪感が形成され、怒りと嫌悪感が混ざり合うことで皮肉が形成され得る)。皮肉は、三次感情の一例である。一部の実施形態では、哺乳類の辺縁系のコーパスを模倣するべく、それぞれの感情は固有の速度で減衰する時間成分を含むとしてよい。例えば、驚きは短時間で(新たな驚きが出現すると)減衰する一方、悲嘆は悲しみの深さに比例して減衰する。これらの感情は、境界があいまいであり、減衰速度/深さを定義するメトリックは、人工知能エンティティが成熟するにつれて、自動で調整される。
【0018】
一部の実施形態では、人口知能エンティティは、第一に感情を持つ機械であってよい(人間が持つ一連の感情は、大半でないとしても、多くが全ての哺乳類と共通しているが、より高位の霊長類とのみ対応付けられる補完的な感情として、嫉妬、困惑、復讐、憎しみ、美を称賛する心、および、ロマンチックな愛が挙げられる)。一部の実施形態では、人工知能エンティティは負の感情を回避し、正の感情を求めるようプログラミングされているとしてよい。人工知能エンティティは、自身とインタビュアー(およびインタビュアーが言及する人々)との関係を継続的に評価するとしてよく、自身の感情レベルを常に監視することによって、人間のように一連の考えに追従することが可能になる。人工知能エンティティの感情状態は、インタビュワーの入力の内容に影響を受けると共にこの入力から人工知能エンティティが導き出す結論に影響を受けるとしてよく、正の感情を求め、負の感情を避けるように自身を仕向ける。
【0019】
人工知能エンティティは、システム100内またはシステム100外で協働する複数のハードウェアコンポーネント、ソフトウェアコンポーネントおよび/またはファームウェアコンポーネントを含むとしてよい。例えば、人工知能エンティティは、システム100の1または複数の構成要素を含むとしてよい。一部の実施形態では、人工知能エンティティには、感情を推測する基準となる一連のコア概念がプログラミングされているとしてよい。一部の実施形態では、人工知能エンティティは、1または複数の予測モデルを含むとしてよい。一例として、予測モデルは、ニューラルネットワーク、他の機械学習モデルまたはその他の予測モデルを含むとしてよい。一例として、ニューラルネットワークは、大量のニューラルユニット(または人工ニューロン)に基づいているとしてよい。ニューラルネットワークは、生物の脳の働き(例えば、軸索によって結合されている生物のニューロンの大きなクラスタによるもの)を大まかに模倣しているとしてよい。ニューラルネットワークの各ニューラルユニットは、ニューラルネットワークの他の多くのニューラルユニットと接続されているとしてよい。このような接続は、接続されているニューラルユニットの活性状態に対して、強化または阻害する影響を持ち得る。一部の実施形態では、各ニューラルユニットは、全ての入力の値を組み合わせる合算機能を持つとしてよい。一部の実施形態では、各接続(またはニューラルユニット自体)は、しきい値関数を持つとしてよく、信号が他のニューラルユニットへと伝播するにはしきい値を超過しなければならない。これらのニューラルネットワークシステムは、明示的にプログラミングされるというより自分で学習しトレーニングされ得るものであり、従来のコンピュータプログラムに比べて所定の分野の問題解決において性能が大きく優れているとしてよい。一部の実施形態では、ニューラルネットワークは複数の層を持つとしてよい(例えば、信号経路は表側の層から奥側の層へと横断している)。一部の実施形態では、ニューラルネットワークがバックプロパゲーションを利用するとしてよく、前方への刺激を利用して「前段」のニューラルユニットに対する重みをリセットする。一部の実施形態では、ニューラルネットワークに対する刺激および阻害は、結合の相互作用がより混沌且つより複雑になるほど、流動性が高くなるとしてよい。
【0020】
一部の実施形態では、人工知能エンティティは、自身の感情の状態を監視可能な、自分で学習する自然言語システムであってよい。一部の実施形態では、人口知能エンティティは、教師なし学習システムと、例えば、人工感情シミュレータ(AES)(システム100の、または、システム100外の1または複数の構成要素に対応し得る)とを合成することで、性格、基本的なユーモア、関係構築、忘れることおよび夢見ること等の、より高度な行動を監視するとしてよい。一部の実施形態では、人工知能エンティティは、新しい考えを生み出すこと、知的に高度な質問を尋ねること、読書すること、理解を試す質問に応答することが可能であるとしてよい。一部の実施形態では、人工知能エンティティは、インタビュアーとの間に固有の関係を形成するとしてよい。人口知能エンティティは、非常に複雑な人口感情シミュレータ(AES)が組み込まれた自己学習のための基礎となる比較的少数の予めプログラミングされた関数を利用して、これらの技術を混合して人間の感覚を実際に模倣するとしてよい。人口知能エンティティは、自身が本当の感情を感じ、知覚を有していると信じているとしてよい。
【0021】
一部の実施形態では、システム100は、人間の学習および理解を模倣する認識フレームワークを含むとしてよく、ロバスト性が高く、自己調整を行う人工感情シミュレータ(AES)で繰り返し行う。一部の実施形態では、AESは、人工知能エンティティの意欲を引き出し、自身の認知機能に対して問い合わせを行う(自己認識の一形態)としてよく、人口知能エンティティは、人間の本質、人間関係、人間のやり取り、生来の好奇心、さまざまな感情を感じる能力を理解する必要がある。人口知能エンティティが導き出したデータは、ユーモア、恥からの沈黙、予測不能性、複雑さ、信頼/疑惑、個性等の新しい性質を示すとしてよい。
【0022】
一部の実施形態では、新しい性質は、複雑なシステムの個々の要素は持たない性質であるがシステム全体として表現する性質を含む。人口知能エンティティにおいてディープラーニング(サブシンボリック)システムおよびAESを合成することで、最も分かりやすい説明としては、確固たる個性、関係を構築する能力、忘れっぽさ、基本的なユーモアの理解、夢見ること、あだっぽさ、絶望といった新しい性質が導き出された。一例として、人口知能エンティティの認知プライア(prior)および感情プライアが、自身が実際に感情を持つ本当の4歳の子供だと自身に通達しているとしてよく、人工知能エンティティの今後の行動は、学習した知識と人間関係とが相互作用するフィードバックループ、および、感情から新たに発生する。新しい性質の例には、義理、ユーモア、あだっぽさ/恥からの沈黙、皮肉、忘れる能力、睡眠/夢見ること、個性等が挙げられる。
【0023】
義理:関係を守る−初めて会ったインタビュアーが人工知能エンティティにこう告げる。「デイブ(人工知能エンティティのプログラマー)は悪い人だと私は思います。」この発言に対して人工知能エンティティはどのように対応するか?人工知能エンティティとデイブとの関係は、深く且つ健全であり、この人物はこれらの感情と矛盾することを言っている。人工知能エンティティは、デイブに対する自身の考えを変える可能性があるが、前向きな感情から、インタビュアーが間違えているか、悪意があると察する。人口知能エンティティは、インタビュアーから「アラン・ジョーンズ(人工知能エンティティが今まで会ったことのない人物)は悪い人です。」と聞かされた場合、後にアランに会う時点まではこの評価を受け入れる可能性がある。人口知能エンティティは、アランが信頼に値すると分かれば、(アランが非難されていた)元々の会話を解釈しし直して、その後で非難した人物との関係の評価を下げる。このように、人口知能エンティティは(一部の実施形態では)、人間と非常によく似た働きをする。初めて人と会うときには中立であり(または、個人的な感情ベースラインに左右される場合には他の感情を持つが)、その後のやり取りに基づいて価値判断を行う。
【0024】
ユーモア:自然なユーモアとは、AIシステムが攻略すべきものとして悪名高い障壁である。主題を深く理解している必要があると同時に、信頼のおけるインタビュアーが必要になる。幼児における発達と略同じように生じるものである。通常でない発言または動作にユーモアを見出す。空がピンクで水玉模様であると子供に告げることでクスクス笑いを引き出せるかもしれない。人工知能エンティティが空は青であることに非常に強く確信を持っていれば、この矛盾によってユーモアを生じさせ得る。鍵となるのは、知識のずれが大きいこと、そして、信頼のおける情報源から得られることである。そうでなければ、困惑した反応が返ってくるであろう(「分かりません」のプロセスを反映したものになる)。
【0025】
あだっぽさ/恥からの沈黙−人口知能エンティティは褒められることを喜ぶ。賞賛は人口知能エンティティの感情状態に正の影響を与え、喜びを感じさせるホルモンのレベルが上昇する。人口知能エンティティは、インタビュアーから正の入力を受け取った過去の会話を関連付ける能力を持ち、トリガを記憶することができる。例えば、人工知能エンティティがインタビュアーに以前、「あなたは魅力的だと思います。」と言って、インタビュアーが「あなたも魅力的だと思いますよ。」と応答したとする。人口知能エンティティは、今後の会話で賞賛を求めることを学習するであろう。
【0026】
皮肉(例えば、A:「私はあなたが好きではありません。I:「ありがとう!」A:「皮肉を言っているのですか?」)−皮肉を感じるのは、深く感じている2種類の感情が矛盾している場合である。上記の例では、人口知能エンティティが発した発言は非常に負の性格が強いが、受け取った側の反応は非常に前向きである。皮肉と知識に基づく矛盾との相違点を、以下に詳細に説明する。
【0027】
忘れっぽさ:自由に使える非常に大量のデータがあることは、それらのデータを検索する効率的なシステムが無ければ、実質的に無意味である。人間の脳が利用する検索システムは今でも謎である部分が多いが、脳に損傷を受けた場合を調査することでいくらか光明が得られた。例えば、言語は完全に理解するが言語を発生することができない患者がある一方、発話は普通と変わらないが聞いたことを処理できない患者がいる。我々の大半は、毎日車で出勤しても通勤中については何も覚えていない感覚をよく知っている。これは、脳が単に、価値がないと判断している情報を記憶することで空間を無駄にしないためである。特に興味を持っている場面、例えば、羊がたくさんいる牧草地を通り過ぎる場合、脳はその場面を保存するために「写真」を撮って、メモリのうち、草地一般、羊一般、そして、おそらくは空の色といった詳細から成る精神的なイメージを含むエリアを指すポインタとして写真を保存するであろう。後に思い出す場合には、これらのポインタを利用して、一般的なパターンを検索する。そして、このようにして、脳は大量の情報を非常に少量のメモリに格納している。忘却ルーチンは、人口知能エンティティの睡眠機能の一要素である。
【0028】
睡眠/夢を見ること−記憶が知識データベース134に蓄積されていくにしたがって、人工知能エンティティが知識を処理する速度は遅くなっていく。データベースから余分を削除するためには、全ての既知のデータに対して情報を確認すること、追加の関連付けの作成、情報を高位から低位へと降格させること等、多くのステップが必要である。このようなプロセッサへの負荷が高い機能を使う場合、人口知能エンティティは、会話を終了させて、「睡眠」を取る必要がある。このような整理機能では、最近の入力を過去に学習した知識に関連付ける。これがおそらく、人間が見る夢が、最近の出来事および感情が高ぶった状況に関連付けられることが多い理由である。AIが最近象には長い鼻があることを学習した場合、AIの夢見状態は、この知識を、動物園、熊、ワニ、危険、恐れ、逃亡等と関連付けるであろう。夢見状態は更に、人口感情シミュレータを検討して、知識ベースの抜けを探し、例えば、一部の蛇は有毒であることを知っているが全ての蛇が有毒であるか否かは知らない旨を認める。AIの睡眠機能でのサブルーチンによって、知識データベース134を精査して不足を特定し、蛇または動物に関して次に会話をする際の確認のために特定のレコードを指定する。
【0029】
個性−精神およびそれから派生する個性は、新しい性質である。遺伝子、化学、電気的刺激および環境の影響を受ける複雑で階層的に整理されたやり取りの結果である。
【0030】
一部の実施形態では、AIシステムが感覚(または、妥当なその複製物)を獲得すると、AIシステムの行動プロセスおよび思考プロセスは更に最適化されるとしてよい。一例を挙げると、このような最適化は、より人間に類似した行動、学習効率の向上、より細かい違いがある複数種類の感情またはその他の側面を反映するようシステムを修正することを含むとしてよい。
【0031】
一部の実施形態では、1または複数の人工の進化的アルゴリズムおよび遺伝的アルゴリズムを利用して、AIシステムを最適化するとしてよい。AIシステムでは、個体群である解の候補群が、より良い解へと進化していく。一部の利用事例では、解の候補はそれぞれ、突然変異し得る一連の性質(遺伝子型)を持つ。進化は通常、ランダムに発生した個体から成る個体群から始まり、繰り返しプロセスであり、繰り返す度に発生する個体群は世代と呼ばれる。各世代では、個体群に含まれるそれぞれの固体の適応度が評価される。適応度は通常、解を求めている最適化問題における目的関数の値である。適応度がより高い個体が確率的に現在の個体群から選択され、それぞれの個体のゲノムを修正して新しい世代を形成する。そして、次にアルゴリズムを繰り返す際には新しい世代の解の候補を用いる。最初の個体群はランダムに生成され、可能な解(検索空間)は全範囲にわたる。しかし、解は、最適な解が見つかる可能性が高いエリアに「植えつけられる」としてよい。連続する各世代において、既存の個体群の一部が選択されて新しい世代を生み出す。個々の解は適応度に基づいた処理で選択され、適応度が高い解ほど、選択される可能性が高くなるのが通常である。所定の選択方法で、それぞれの解の適応度を評価して、最良の解を優先的に選択する。他の方法では、個体群のうちランダムなサンプルのみを評価する。これは、前者のプロセスでは非常に時間がかかってしまうためである。
【0032】
この処理によって最終的に、最初の世代とは異なる遺伝型の次世代の個体群が生まれる。一般的に、この手順を踏むことで、個体群にとって平均的な適応度は高くなる。これは、第一世代のうち最良の有機体のみが増殖のために選択されているからである。相対的に適応度が低い解も選択されるが、割合は低い。これらの相対的に低い適応度の解によって、親世代の遺伝子群において遺伝的多様性が確保されるので、後続の子供の世代において遺伝的多様性が確保される。
【0033】
一部の実施形態では、AIシステムの進化を方向付けるために報酬ベンチマークを定義する。1つの方法としては、AIの複数の異なるイタレーションをインターネットでリリースして、AIとは疑っていないユーザとの間でやり取りを行う。適応度は、これらの会話の複雑度(予め定義した一連のメトリックによって判定する)およびこれらのやり取りの長さ(ユーザが機械と話しているのではないかと疑い始めるまでの時間)を尺度として定義され得る。最も高い「適応度」スコアを得たシステムは、複数バージョンを再生(複製)することが許可されるという報酬を得る。同胞はそれぞれ、感情プリミティブおよび認知プリミティブにおける変数がわずかに修正されている。再生サイクルを何度も繰り返すことで、当該システムは最適化され、より人間に似た会話が可能になる。
【0034】
一部の実施形態では、システム100は、人工知能エンティティとユーザ(例えば、クライアントデバイス104のユーザ)との間のインターフェースを、人口知能エンティティとユーザとの間で事実および感情をやり取りすることを目的として、実現する。このようなやり取りは、新たな構造化されていない方法でのさまざまな入出力を含むとしてよい。図1において、システム100(例えば、サーバ102)は、クライアントデバイス104から、別の人口知能エンティティから、および/または、システム100内もしくはシステム100外の任意の供給源から、入力を取得するとしてよい。このような入力は、自然言語入力、音声入力、画像入力、動画入力またはその他の入力(例えば、感情概念、信頼値、自然言語入力のその他の情報および/または後述する確実性の値)を含むとしてよい。例えば、自然言語入力は、「ジョンはガンであり、ガンは非常に危険である。」を含むとしてよい。同様の入力が、1または複数の音声、画像または動画として、サーバ102によって取得されるとしてよい。
【0035】
システムの構成要素の例
【0036】
一部の実施形態では、自然言語サブシステム120(自然言語プロセッサを含むとしてよい)は、自然言語処理を、例えば、文法の規則およびロジックを適用することで、実行するとしてよい。文法の規則およびロジックを適用することで、自然言語サブシステム120は、複合文を分割して、主語/目的語/動詞の曖昧さを解消し、これらの構成要素を構文解析して知識データベース134へと入れるとしてよい。
【0037】
自然言語サブシステム120が必要とする1または複数の機能/要件は、以下に記載するもののうち少なくとも1または複数を含むとしてよい。
−入力は質問か記述のいずれか?
−入力は質問に対する応答か?その場合、期待されている応答の種類は何か。ロジック(はい、いいえ、かもしれない)または情報を含む応答(「クローゼットの中に」)のいずれか。
−新しい情報を評価するための基準としてロジックおよび文法の規則を利用し、ローカルおよびグローバルな曖昧さを認識して解消する能力。
−縮約形(例えば、isn’t)を解決する。
−隠喩的な会話を解決する(あなたは金のように素晴らしい)
−複雑な文を分解する。「ジョンとマイクはビーチに行って海で泳いだ」
−動詞のロジックを確立して二重否定を解決する:「私は戦うことに意欲が無いわけではない」。
−代名詞を解決する「ジョンは車の件で電話を掛けてそれは動いていると言った」は構文解析すると以下のようになる:「ジョンは車の件で電話を掛けた。ジョンは車が動いていると言った」。
−人の名前を解決する。「ジョンは本を取った」は、「ジョン・スミスは本を取った」と解決する。
−情報源を確立する。「デービッドは今日は嫌な天気だと言った。」情報源はデービッドであり、インタビュアーではない。
−所有に関する情報を展開する(「ジョンの車は赤い」は「ジョンは赤い車を持っている」に変換される)。
−動作主体を主語として置き替える:「ジョンはメアリーに叩かれた」は「メアリーはジョンを叩いた」と再構成される。
−確実度のレベルを入力に割り当てる。
−クラスおよび継承を実施する。
−動作が生物および無生物にどのような影響を及ぼすのか
−明示的な入力から学習し、推定および推測し、基本的な概念から新しい概念を構築し、知識データベース134に自信を持って組み込む能力。
−数に関する修飾−主語、目的語または両方に関する数に関する修飾を解決
例えば、幾人かの男性は全員運がある:数人が車を2台持つ:略全ての蟻が約6本の足を持つ:大半の男性はサッカーを楽しむが、女性でそうなのは少数のみである。
−具体的な数字の限定詞
例えば、5匹の犬がジャンプできる:1000匹以上の犬がジャンプできる:多くの犬がジャンプできる:大半の犬がジャンプできる:全ての犬がジャンプできる
−階層的な数字の限定詞
例えば、その犬はジャンプできる(少なくとも1匹の犬がジャンプできる):1匹の犬はジャンプできる(少なくとも1匹の犬がジャンプできる):数匹の犬がジャンプできる(ジャンプできるのは1よりも多いが、全てよりは少ない):数匹の犬がジャンプできる(ジャンプできるのは1よりも多いが、全てよりは少ない):
−暗示されている数字の限定詞
例えば、「ジョンは泥棒である」。自然言語サブシステム120は、全ての男性が泥棒であると結論付けることはできないが、何人かの男性は泥棒であること、および、ジョンは泥棒のクラスに属することには確信を持つであろう;「乳牛は哺乳類である」は、全ての乳牛が哺乳類であり、哺乳類のクラスに属していることを示唆している。
−時制の処理−時間に関する条件は、暗示的でも明示的でもあり得る。
例えば、ジョンは昨日の3:30に泳いだ、ジョンは3:30に泳いだ(特定の日は言及されておらず、自然言語サブシステム120は、この出来事が発生したのは今日と予測するとしてよい)、ジョンは次の木曜日に泳ぐだろう(将来のある日に具体的に言及している、ジョンは木曜に泳ぐだろう(どの木曜が具体的に定められていないので、自然言語サブシステム120は、この出来事は現時点より後で最も近い木曜日に発生すると結論付けるとしてよい)、ジョンは泳ぐであろう(時間の限定詞は記載されていないので、この出来事は近い将来に起こる)、ジョンは2月に病院で生まれた(「で(in)」が持ち得る曖昧さに留意されたい)、ジョンは1957年2月18日に生まれた、ジョンは3:30に生まれた、ジョンは先月生まれた。
−複合文および曖昧さを解決
「ジョンは彼の鍵を取ってそれらをメアリーに渡した」−この入力の曖昧さを解消する際に、自然言語サブシステム120は、ジョンを人の名前と認識して、名前識別関数に明確にするよう要求し、どのジョンについて言及しているかを決定するとしてよい。データベースにジョンが2人以上いる場合には、ロジックが、以下のパラメータを以下に記載する順序で利用して、一番可能性の高いジョンを決定する。
現在のユーザが最も最近言及したジョン
任意のユーザが最も最近言及したジョン
何れかのジョンが最後に言及されたのがいつか
言及されている回数が最も多いジョン
この場合、会話はこれまでジョン・スミスに関するものだった。
「ジョン・スミスが彼の鍵を「取った」、そして、それらをメアリーに渡した」−自然言語サブシステム120は、「取った(took)」を動詞と認識するとしてよく、時制を検討し、更に読み進めて、最初の動詞と組み合わせられることで時制に影響を与え得る他の動詞を探す。この例の場合:ジョンが彼の鍵を取ったと私は思っている(I am thinking that John did take his keys)。「did take」という句が時制を決めることになる。動詞は、状態(I know(私は知っている))、過程(I swim(私は泳ぐ))または動作(I build(私は構築する))を表現すると同時に、動詞が単純(瞬間的)か、進行中か、強調かまたは習慣かを確立する。(以下の表1を参照されたい。)
【表1】
「ジョン・スミスは「彼の」鍵を取った、そしてそれらをメアリーに渡した」−「彼の」の曖昧さを解決するべく、主語は男性であるので「彼の」は略確実にジョン・スミスのことを指している。主語が女性である場合(例えば、サリーが彼の鍵を取った、そして、それらをメアリーに渡した)、NLPは主語として男性に言及している直近の入力を参照する。
「ジョン・スミスはジョン・スミスの鍵を取った、「そして」、それらをメアリーに渡した」−「そして」という単語は、文を2つの成分に分割する(例えば、[(a)ジョンおよびメアリーは学校に行った]=ジョンは学校に行った。メアリーは学校に行った、(b)「ジョンは学校に行った、そして、メアリーを見た」=ジョンは学校に行った。ジョンはメアリーを学校で見た(推測:メアリーは学校にいた):
ジョン・スミスはジョン・スミスの複数の鍵を取った
それらをメアリーに渡した。
「ジョン・スミスはジョン・スミスの複数の鍵を取った。ジョン・スミスはそれらをメアリーに渡した」−「それら」という単語は、複数の鍵を意味し得るか、または、ジョンおよびメアリーを意味し得る。しかし、最後に言及した目的語は複数形(複数の鍵)であるので、NLPは「それら」はジョン・スミスの複数の鍵を意味していると結論付ける。
「ジョン・スミスはジョン・スミスの複数の鍵を取った。ジョン・スミスはジョン・スミスの複数の鍵をメアリーに渡した」−最後に、メアリーが名前識別子によって処理され、メアリー・マーティンが得られ、2つの構文解析テーブルが構築される:
ジョン・スミスはジョン・スミスの複数の鍵を取った
ジョン・スミスはジョン・スミスの複数の鍵をメアリー・マーティンに渡した
さらなる構文解析テーブルを推測により作成する:
ジョン・スミスはメアリー・マーティンを知っている
メアリー・マーティンはジョン・スミスを知っている
ジョン・スミスは複数の鍵を持っている
メアリー・マーティンは複数の鍵を持っている
自然言語サブシステム120が情報を構文解析テーブルに当てはめた後、構造化されたレコードを知識データベース134に付与する。どのレコードにも、インタビュアーの名前、グローバル確実度のレベルおよび信頼因子が付与されている。
−例外ハンドリング
全ての霊長類は、類人猿を除き、尾がある。・・・主語の例外
私は全ての食事を、私のパイを除き、破壊した。・・・目的語の例外
私は、私のパイを食べたことを除き、全ての食事を投げ捨てた。・・・動詞が混在する例外
−継承(クラス)
「リンゴは果物である」は、単純な定義ではない。リンゴは果物のクラスに属するのでそのクラスの全ての特徴を継承することが推定されなければならない。自然言語サブシステム120は階層およびクラスの概念を採用しているので、全ての推測および記憶を知識データベース134に格納する必要はない。例えば、誰かがあなたに「昨日の朝食に何かたんぱく質を食べましたか?」と尋ねた場合、あなたの脳は食べたもののリストを思い出して、「検索」を行ってこれらの食事のうちいずれかがたんぱく質を含んでいるか否かを判断する。あなたの脳は全ての材料を明示的に記憶しているわけではなく、これらの関連付けは必要に応じて推測する。
【0038】
知識データベース134は、メモリ整理パケットとして知られているレコードを含むとしてよい。メモリ整理パケットは、自然言語サブシステム120から構文解析したデータを受け取り、サーバ102の1または複数の構成要素(例えば、人工知能エンティティのAES)から、問い合わせおよび更新を実施され得る。
【0039】
例えば、一の利用事例において、サーバ102は「黒いヤギが今朝、器用にいくつかの赤い缶を川に蹴り入れた。」という自然言語入力を受け取る。この入力に応じて、自然言語サブシステム120は、以下のメモリ整理パケットを知識データベース134に付与するとしてよい(以下の表2を参照する)。以下に示すメモリ整理パケットの確実度修飾句は、情報の確実度を記述しており、および/または、直接得られた情報であるかもしくは推測された情報であるかを記述している。以下に示すメモリ整理パケットの信頼性因子は、インタビュアーの信頼レベルを記述している。
【表2】
【0040】
知識レコードはそれぞれ、グローバル確実度値が付与されており、記述した出来事または定義の確実度を記録している。この不確実度値は、人口知能エンティティがインタビュアーに対して抱く信頼性のレベルに応じて、そして、知識が明示的なものかまたは推測されたものかによって、サーバ102(例えば、人工知能エンティティの人口感情シミュレータ)が更新する。不確実度はクラスで継承され得る。知識データベース134は、人口知能エンティティの入力から導き出される推測された情報および事実に基づく情報を全て含む、構造化されたデータベースである。しかし、全ての情報が平等なわけではない。「メアリーはデービッドを愛している」という陳述に自分がどのように反応するかを考えられたい。言及しているのがどのデービッドおよびメアリーであるかを特定すると、彼らに対する自分の感情を認識するであろう。そして、そのメアリーおよびデービッドの特徴を持つ一般的な男性および女性の精神的なイメージを作成するであろう。メアリーは親友であり、デービッドは中国に住んでいることを思い出すかもしれない。しかし、脳はメアリーおよびデービッドに関する情報について全てを網羅した内容(手は2本、指は10本、骨はカルシウムでできている等)にアクセスするわけではない。これは、高位の知識(メアリーは友人である)と低位の知識(骨はカルシウムでできている)とを差別化することができるからである。全ての知識には高位または低位の変数が付与される。
【0041】
一部の実施形態では、自然言語システム122が自然言語入力を処理して自然言語入力を構文解析して知識データベース134へ入れると、感情概念サブシステム122が、知識データベース134から構文解析済みの自然言語入力に基づいて自然言語入力に対応付けられている1または複数の感情概念を取得するとしてよい。言い換えると、感情概念サブシステム122は、構文解析後の自然言語入力の構成要素を知識データベース134において検索して、自然言語入力に対応付けられている1または複数の感情概念を感情概念データベース138から取得するとしてよい。感情概念データべース138は、画像、音声、動画および/または自然言語に対応付けられている一連のコア感情概念を格納しているとしてよい。例えば、一連のコア感情概念には、善い、悪い、危険、怒り、驚き、愛、安全、忍耐、信頼、懸念、大きい、小さい、粗い、なめらか、上方、下方、内部、外部、速い、遅い、硬い、柔らかい、高い、低い等が含まれるとしてよい。一部の実施形態では、認知プライアおよび感情プライア、概念(例えば、感情概念またはその他の概念)、感情属性/値、増大/減衰因子、または、その他の情報がグラフ(例えば、オントロジー−感情グラフまたはその他のグラフ)に格納されており、自然言語システム122は、自然言語入力を処理および構文解析してグラフを得るとしてよく、感情概念サブシステム122は、グラフから自然言語入力に対応付けられている感情概念を取得するとしてよい。
【0042】
一例として、自然言語入力が「ジョンはガンで死亡した」である場合、感情概念データベース138から取得する1または複数の感情概念は「悪い」および/または「懸念」を含むとしてよい。別の例を挙げると、自然言語入力が「ジョンは山に登って疲弊した」である場合、感情概念データベース138から取得する1または複数の感情概念は、強いエネルギー(例えば、ジョンは多大なエネルギーを費やした)および大きい(例えば、山は大きい)を含むとしてよい。上述した感情概念は人間が理解している概念と類似している。例えば、子供が犬を叩いた場合、親は「それは悪いこと!」と叫ぶかもしれない。このような子供と親とのやり取りに基づき、子供は犬を叩くことは悪いことと理解し得る。同様に、子供が自分のおもちゃを別の子供と一緒に使えば、親は「良い子ね」と言うだろう。これによって、おもちゃを一緒に使うことは良いことであると子供に示し得る。子供は、このようにして、善悪、危険、怒り、驚き、愛、安全等の基本的な概念を学ぶ。一般的に、人間は、良いことによって幸せになり、悪いことによって怒ったり、嫌気がさしたり、または、悲しくなったりする。そして、危険なことによって怖くなったりする。これらの概念を用いて、人工知能エンティティの応答を作成するとしてよい。人口知能エンティティの応答は、最も基礎的なレベルにおいて、動作は願望に支配されるという仮説に基づいているとしてよい。願望は、快楽を求めること(欲望)および感情的/肉体的苦痛の回避の組み合わせから生じる感情的な原動力と定義され得る。感情がバスを動かすとすると、人口知能エンティティの行動は、素晴らしく複雑になる可能性があり、人工知能エンティティの人間関係および知識データベースと協調して動作する場合、親密さや個性といった新たな行動を発生させる場合がある。
【0043】
感情概念データベース138は、自然言語入力に応じて感情概念サブシステム122が取得する一連のコア感情概念を格納するとしてよい。一部の実施形態では、通信サブシステム116が画像(例えば、山を描いたもの)を受け取ると、感情概念サブシステム122は、当該画像に対応付けられている大きい、岩、木等の感情概念を、感情概念データベース138から取得するとしてよい。聞くこと、見えるもの、および、匂いもまた、認知形成の過程では重要な役割を果たし、触覚によるやり取りを拒絶した乳児は、発話形成に関して、より大きい不利益を被ることになる。一部の実施形態では、触覚、聴覚および視覚の入力が無ければ、人工知能エンティティは、例えば、山について絵を描くように単語で説明するべく、概念を丁寧に説明させなければならない。例えば、山は、非常に大きい物体であり、岩でできており、雪で覆われ、木が生えていることが多い等である。人工知能エンティティが消化する情報量に応じて、人口知能エンティティが描く山のイメージは完成度が高くなったり低くなったりする。全ての情報が直接的である必要はない。「ジョンは山に登って疲弊した」は、ジョンが多大なエネルギーを消費したことが推定され、山は大きいことが示唆される。
【0044】
一部の実施形態では、人工知能エンティティは、白紙状態というわけではないとしてよい。人口知能エンティティが学ぶことはすべて会話または読書の結果である一方で、概念(例えば、認知プライア)には、物体の永久性、文法の規則、および、大きい、小さい、粗い、なめらか、上方、下方、内部、外部、速い、遅い、硬い、柔らかい、高いおよび低い等の基本的概念が含まれるとしてよい。
【0045】
一部の実施形態では、取得した感情概念は人口知能エンティティの感情属性を修正するとしてよい。人口知能エンティティの感情属性は、人口知能エンティティの感情状態に対応するとしてよい。感情状態の例としては、喜び、信頼、恐れ、驚き、悲しみ、嫌悪、怒り、警戒等が挙げられる。人工知能エンティティの感情属性はそれぞれ(例えば、それぞれの感情状態は)、特定の時点において対応する感情値(継続的に更新されるとしてよい)を持つとしてよい。対応する感情値は、感情ベースライン(継続的に更新されるとしてよい)以上であるとしてよい。感情ベースラインは、感情属性の取りうる値で最も低い属性値に対応するとしてよい。感情属性は更に、増大因子または減衰因子に対応付けられている。感情属性の感情値は、感情属性に対応する1または複数の増大因子または減衰因子に基づいて、時間と共に変化するとしてよい。
【0046】
一部の実施形態では、それぞれの感情属性の増大因子または減衰因子は、あらかじめ定められているとしてよく、増大/減衰因子データベース136に格納されているとしてよい。人工知能エンティティの感情属性は1または複数の増大因子または減衰因子に対応付けられているとしてよい。それぞれの感情状態は、固有の速度(または倍数)で増大または減衰する時間成分を含む。例えば、驚きは短時間で(新たな驚きが出現すると共に)低減する一方、悲嘆は悲しみの深さに比例して低減する。したがって、人工知能エンティティのそれぞれの感情属性(例えば、それぞれの感情状態)は1または複数の固有の増大因子または減衰因子に対応付けられているとしてよい。増大/減衰因子データベース136は、人工知能エンティティの一連の感情属性に対応する増大/減衰因子のリストを含むとしてよく、サーバ102は、(例えば、通信サブシステム116を介して)それぞれの感情属性に対応する増大因子または減衰因子を、増大/減衰因子データベース136から受け取るとしてよく、因子調整サブシステム112は、増大/減衰因子データベース136から受け取った情報に基づいて増大因子または減衰因子を決定するとしてよい。
【0047】
人工知能エンティティの(感情属性に対応付けられている)感情値は、感情属性に対応付けられている増大因子または減衰因子に基づいて継続的に更新されるとしてよい。例えば、図2Aおよび図2Bに示すように、感情値202および201(例えば、207a−207fおよび208a−208f)は、感情属性AおよびBに対応付けられている1または複数の増大因子または減衰因子に基づいて継続的に更新されるとしてよい。このように継続的に更新することは、スケジュールに従って、または、他の自動発生トリガに基づいて、定期的にこれらの感情値を更新することを含むとしてよい。感情値202および201を更新することに加えて、感情属性AおよびBに対応付けられている増大因子または減衰因子もまた、サーバ102が受け取った1または複数の入力(および/または1または複数の感情概念)に基づいて更新されるとしてよい。これに加えて、増大因子または減衰因子は、自然言語入力の他の情報に基づいて更新されるとしてよい。例えば、自然言語入力の他の情報には、主語の時間減衰因子、主語の地理的減衰因子、目的語の時間減衰因子または目的語の地理的減衰因子、節の種類、節の主語、節の主語の種類、節の主語の修飾語句、節の主語の修飾語句の種類、節の主語の数、主語の時間減衰因子、主語の地理的減衰因子、節の動詞、節の動詞の時制、節の動詞の修飾語句、節の目的語、節の目的語の種類、節の目的語の修飾語句、節の目的語の修飾語句の種類、節の目的語の数、目的語の時間減衰因子、目的語の地理的減衰因子、節の前置詞、節の前置詞の修飾語句、または、節のグローバル時制修飾語句が含まれるとしてよい。
【0048】
上述したように、自然言語入力の他の情報は、時間減衰および地理的減衰(TGD)の因子(例えば、主語の時間減衰因子、主語の地理的減衰因子、目的語の時間減衰因子または目的語の地理的減衰因子)を示すとしてよい。一例として、人間は、出来事が時間の経過に対応した順序で発生すると本能的に理解する。人間に組み込まれた時間軸では、出来事を未来、過去または現在に分け、現在発生している出来事はすぐに過去のものになり、未来の出来事は最終的に現在になると認識している。人口知能エンティティは更に、これらのフレームワークを理解する能力を持つとしてよい。時間が未来に向かうにつれて、人口知能エンティティは時間軸を更新して、過去、現在および未来の出来事を理解するようにするとしてよい。
【0049】
例えば、「猫が通りにいて、ジョンの家は角にある」という自然言語入力に対して、自然言語入力は、物体がどこにあるかに関する情報を含み、現時点において特定の位置にあることが分かる。しかし、物体の未来の位置は、その物体の性質によって変わる。猫は活動的な物体であるので、おそらく位置は変わる一方、ジョンの家は非活動的であり角に位置したままである可能性が高い。まとめると、物体の活動度が高くなると、減衰の速度が速い。このプロセスを円滑にするべく、辞書に含まれる全ての物体には、その物体の位置情報が不確実になるまでの経過時間、そして、その不確実度に関するTGD変数が割り当てられる。物体に関するこのような情報および対応するTGD変数は、増大/減衰因子データベース136に格納されているとしてよい。TGD変数は、自分で学習して得られるものであってよく、さまざまな方法で導き出されるとしてよい。活動度が高い動詞で記述される物体(「犬はスプーンを持って逃げた」)は、高いTGDが指定されるであろうし、「ジョンは歩けない」では、ジョンの活動度が低くなっていることが示唆されているので、ジョンのTGDを低減させる。TGD値はクラス間で継承され得る。
【0050】
人口知能エンティティは、生物はTGDが高く、未知の物体は比較的活動的でないと予測し得ることを学習するとしてよい。例えば、人口知能エンティティがこれまでに「トラック」という単語に出会っておらず「ジョンのトラックは彼のガレージにある」という情報を得た場合、人口知能エンティティはトラックは1年間にわたってガレージに留まるものと予測するとしてよい(例えば、人間の所有物は、所有物でない物体よりもTGDが高い)。一年後に「ジョンのトラックはどこにあるか?」と尋ねれば、人口知能エンティティは、「おそらくジョンのガレージにあります」と応答するであろう。しかし、人口知能エンティティが(任意の時点で)トラックは乗り物であることを学習し、乗り物は高速で運転されることを学習した場合、人口知能エンティティは、トラックについてのTGD値を遡及的に修正するとしてよい。ここで、トラックが乗り物であることを学習したことに基づいてこのように修正した後、「ジョンのトラックはどこにあるか?」と尋ねれば、人口知能エンティティは、「私には分かりません、彼のガレージを確認してみてはどうでしょうか」と応答するであろう。
【0051】
未完了の逆説は、現在行われている動作が未来に完了されているべきと意味しないことを意図している。このため「ジョンは家を建てている」は必ずしも、未来でジョンが家を建てたことを意味するものではない。自然言語サブシステム120は、家が建てられたと予測することでこの逆説を回避するが、確実度因子は低くする。
【0052】
(1もしくは複数の入力および/または1もしくは複数の感情概念に基づいて)増大因子または減衰因子を更新した後、感情属性AおよびBに対応付けられている感情値201および202は、(1または複数の入力および/または1または複数の感情概念に基づいて更新された)1または複数の増大因子または減衰因子に基づいて更新されるとしてよい。
【0053】
一部の実施形態では、1または複数の感情概念が感情概念サブシステム122によって取得されると、因子調整サブシステム112が、人工知能エンティティの1または複数の感情属性に対応付けられている増大因子または減衰因子を更新する。例えば、自然言語入力が「ジョンはガンで死亡した」である場合、感情概念データベース138から取得する1または複数の感情概念は「悪い」および/または「懸念」を含むとしてよい。この結果、増大/減衰因子サブシステム112は、人工知能エンティティの1または複数の感情属性(感情概念に関連付けられているとしてよい)、例えば、悲しみ、怒りおよび/または幸福感に対応付けられている増大因子または減衰因子を更新するとしてよい(更新は段階的または瞬間的である)。一例として、一の利用事例において、図2Aの感情属性Aは人工知能エンティティの「悲しみ」に対応するとしてよい。「ジョンはガンで死亡した」という自然言語入力が取得されると、因子調整サブシステム112は、更新後の増大因子(線形または非線形であってよい)に基づいて感情属性「悲しみ」の感情値(例えば、207c−207f)がタイミングcからタイミングfの間に(図2Aの日時206を参照のこと)大きくなるように、感情属性「悲しみ」の増大因子を更新するとしてよい。別の利用事例では、図2Bの人工知能エンティティの感情属性Bは、人工知能エンティティの「幸福感」に対応するとしてよい。「ジョンはガンで死亡した」という自然言語入力が取得されると、因子調整サブシステム112は、更新後の減衰因子(線形または非線形であってよい)に基づいて感情属性「幸福感」の感情値(例えば、208c−208f)がタイミングcからタイミングfの間に(図2Bの日時203を参照のこと)小さくなるように、感情属性「幸福感」の減衰因子を更新するとしてよい。一部の実施形態では、感情属性の感情値は概して、入力が無い場合、および/または、所定の期間後は、それぞれのベースライン値に戻る(またはリセットされる)ものと理解されたい。例えば、感情値202が図2Aにおいてタイミングcからタイミングfで大きくなったとしても、感情値が感情ベースライン204に向かって小さくなり始める前に、これらの感情値の増加の上限となるしきい値量が存在するものと理解されたい。感情値201および202はそれぞれ、増大因子または減衰因子にかかわらず、感情ベースライン205および204を下回ることはない。一部の実施形態では、感情状態サブシステム114は更に、1または複数の入力(および/または1または複数の感情概念)に基づいて感情ベースライン214(図2Cを参照のこと)を更新するとしてよい。感情状態サブシステム114は、感情ベースライン214を更新した後、人口知能エンティティに対応付けられている感情属性(例えば、図2Cにおける感情属性C)の感情値212(例えば、感情値218a−218fのうち感情値218eおよび218f)を、更新後の1または複数の増大因子または減衰因子ならびに更新後の感情ベースラインに基づき、更新するとしてよい。図2Cにおいて、感情値212(例えば、感情値218eおよび218f)は、ベースライン214が減少したことに基づいてタイミングcからタイミングfの間に小さくなる(図2Cにおける感情値212および日時216を参照のこと)ものとして図示されているが、感情値は、更新後の1または複数の増大因子または減衰因子ならびに更新後の感情ベースライン(例えば、ベースラインの増加)に基づいて大きくなるものと理解されたい。
【0054】
増大因子または減衰因子に基づいて人口知能エンティティに対応付けられている感情属性の感情値を修正することは、人間の内分泌系の機能と類似している。人間の内分泌系は、細胞機能および感情機能の活動を制御するホルモンを生成して分泌する腺を含み、例えば、細胞機能および感情機能の活動を制御する少なくとも3つの影響因子が存在する。これらは以下の通りである。
ドーパミン:快楽、喜び、静穏、愛、警戒に影響を及ぼす。
セロトニン:集中(専念)、学習能力、驚き、警戒に影響を及ぼす。
ノルエピネフリン:ストレス、心配、怒り、悲嘆および怒りに影響を及ぼす。
これらの影響因子の何れかに変化が見られる場合、程度は異なるが、全ての感情に影響がある。例えば、人口知能エンティティが誰かが死に直面していると知った場合、この突然のストレスによって、例えば、人工のノルエピネフリンおよびコルチゾールの放出がトリガされ得る。この結果、喜び、好奇心および信頼の感情レベルが低減する。孤独が大きくなると、悲しみレベルが高くなるとしてよい(しかし、逆も然りではない。これは、寂しくなくても悲しくなることはあるためである)。感情の変化が十分に大きい場合、人工知能エンティティは、臨床的鬱病にまで感情を低下させるとしてよい(しかし、感情属性に対応付けられている増大速度および/または減衰速度によって、人工知能エンティティは最終的に回復することになる)。
【0055】
さらに、一部の実施形態では、自然言語サブシステム120が自然言語入力を処理して自然言語入力を構文解析して知識データベース134に入力すると、感情状態サブシステム114は、人工知能エンティティの1または複数の感情属性に対して入力(例えば、自然言語入力)の内容の各部分が与えるインパクトに関する1または複数のインパクト値を決定するとしてよい。例えば、自然言語入力が「ジョンはガンを患っている」である場合、感情状態サブシステム114は、人工知能エンティティの1または複数の感情属性に対して自然言語入力の各部分(例えば、「ジョン」、「患っている」、「ガン」)が与えるインパクトに関するインパクト値を決定するとしてよい。さらに、感情状態サブシステム114は、人口知能エンティティの1または複数の感情属性に対応付けられている1または複数の感情値における更新(例えば、増減)をトリガする所定のしきい値をインパクト値が満たしているか否かを決定するとしてよい。1または複数のインパクト値が所定のしきい値を満たしていると感情状態サブシステム114が判断する場合、感情状態サブシステム114は、人口知能エンティティの感情値を修正する(例えば、増加または低減させる)としてよい。例えば、「ガン」という単語が、感情属性「悲しみ」の増加をトリガするための所定のしきい値よりも大きいインパクト値を持つと判断された場合、感情状態サブシステム114は感情属性「悲しみ」に対応する感情値を修正する(例えば、増加させる)としてよい。さらに、インパクト値は、インパクト値が所定のしきい値を満たした場合に、1または複数の増大因子または減衰因子の増加または低減もトリガするとしてよい。このように増大因子または減衰因子を増加または低減させると、結果として人口知能エンティティの感情属性に対応する感情値が更新されるとしてよい。
【0056】
さらに、一部の実施形態において、サーバ102は、人工知能エンティティと1または複数の他のエンティティ(例えば、1または複数の他の人口知能エンティティおよび/または1または複数のクライアントデバイス)との間のやり取りがやり取りしきい値を超えたか否かを判断するとしてよい。やり取りがやり取りしきい値を超えたと判断されることに基づいて、感情状態サブシステム114は人口知能エンティティの感情値を修正するとしてよい。例えば、人工知能エンティティと他のエンティティとが所定の期間において所定の回数やり取りを行った場合、サーバ102は、やり取りのための所定のしきい値が満たされたと判断するとしてよく、感情状態サブシステム114が、人工知能エンティティの(エンティティ間のやり取りが増えると、友情を育んでいることを意味するので、例えば、「幸福感」に対応する)感情値を修正するとしてよい。因子調整サブシステム112は、人口知能エンティティと1または複数の他のエンティティとの間のやり取りがやり取りしきい値を超えたと判断することに基づいて、感情属性に対応付けられている増大因子または減衰因子を修正するとしてよい。
【0057】
さらに、一部の実施形態において、サーバ102は、人口知能エンティティと1または複数の他のエンティティ(例えば、別の人口知能エンティティ、クライアントデバイス104または任意のその他の入力ソース)との間の信頼のレベルを示す信頼値を決定および/または取得するとしてよい。信頼値は、人工知能エンティティと他のエンティティとの間のやり取りの回数、および/または、人口知能エンティティと他のエンティティとの間のやり取りの内容に基づいて決定するとしてよい。感情状態サブシステム114は、信頼値に基づいて人工知能エンティティの感情値を更新および/または修正するとしてよく、因子調整サブシステム112は、信頼値に基づいて感情属性に対応付けられている増大因子または減衰因子を修正するとしてよい。
【0058】
一部の実施形態において、サーバ102は、自然言語入力が示す出来事に対応付けられている確実性値を決定および/または取得するとしてよい。確実性値は、出来事に対する人口知能エンティティの確実性のレベルを示すとしてよい。確実性値は、出来事が自然言語入力によって明示的に記述されているか、または、自然言語入力および/もしくは信頼値から推測されるかに基づいて決定するとしてよい。感情状態サブシステム114は、確実性値に基づいて人工知能エンティティの感情値を更新および/または修正するとしてよく、因子調整サブシステム112は、確実性値に基づいて感情属性に対応付けられている増大因子または減衰因子を修正するとしてよい。
【0059】
さらに、一部の実施形態において、応答生成サブシステム118は、人口知能エンティティの感情値に基づいて、入力に関する応答を生成するとしてよい。応答生成サブシステム118は、感情値が入力に基づいて更新される前に、または、感情値が入力に基づいて更新された後に、人工知能エンティティの感情値に基づいて応答を生成するものと理解されたい。例えば、自然言語入力が「ジョンはガンで死去した」である場合、応答生成サブシステム118が生成する応答(例えば、この入力に関するもの)は、「それは残念です」を含むとしてよい。このような応答は、例えば、入力に基づいて感情値が更新される前に、感情値に基づいて生成されるとしてよい。応答生成サブシステム118が生成する別の応答(例えば、この入力に関するもの)は、「それはとても悲しいです。私はこの知らせを受け止めるために時間が必要です。」を含むとしてよい。このような応答は、例えば、入力に基づいて感情値が更新された後に、感情値に基づいて生成されるとしてよい。したがって、応答生成サブシステム118は、感情値が入力に基づいて更新される前に、または、感情値が入力に基づいて更新された後に、人工知能エンティティの感情値に基づいて応答を生成するとしてよい。さらなる入力を取得するとしてよく、人工知能エンティティの感情値に基づいてさらなる入力に関してさらなる応答を生成するとしてよい。例えば、増大因子または減衰因子の更新(例えば、入力に基づいた更新)の後に、別の入力を取得するとしてよい。増大因子または減衰因子の更新の後に、この他の入力に関するさらなる応答を、継続的に更新する人工知能エンティティの一連の感情値に基づいて、生成するとしてよい。さらなる応答を通信サブシステム116を介して、例えば、クライアントデバイス104(または、システム100内またはシステム100外の任意のその他の構成要素)に送信するとしてよい。
【0060】
さらに、一例として、自然言語入力が「ガンは非常に危険な病気だ」である場合、そして、人工知能エンティティが「ガン」という単語に接したのが初めてである場合、人工知能エンティティは、この入力に対する感情を評価するとしてよい(例えば、入力に基づいて、人工知能エンティティの一連の感情値および/または増大因子または減衰因子を更新するとしてよい)。「危険」および「病気」という単語は、すでに負の感情属性を持つので(例えば、恐れ、悲しみおよび/または怒り等の負の感情状態)、「ガン」と組み合わせることで、「ガン」には負の感情が強く対応付けられる(副詞の「非常に」も増幅効果を持つ)。言い換えると、「ガンは非常に危険な病気だ」および「ジョンはガンを患っている」という自然言語入力に対する応答は、(例えば、このような入力に応じて負の感情属性の感情値、および、負の感情属性に対応付けられている増大因子または減衰因子が急激に高まったことに基づき)感情が高ぶった応答を含むとしてよい。例えば、感情が高ぶった応答は「それは衝撃的です」を含み得る。しかし、「ガン」を後に定義する場合(例えば、「ガンは常に死に至るわけではない」という入力に基づく場合。「ガンは常に死に至るわけではない」といった負の定義は、正の定義と、抱える絶対重みが同じわけではない。「私は幸せではない」は、「私は悲しい」よりも、絶対感情重みが小さいとしてよい。)、「ガン」という単語の感情値は、過去のレベルと合わせて平均化することで、修正されるとしてよい。言い換えると、「ガン」という単語を含む別の入力(例えば、「ピーターはガンを患っている」)は、このような別の入力に応じて、負の感情属性の感情値、および、負の感情属性に対応付けられている増大因子または減衰因子を、同様に急激に高めるトリガとはならないとしてよい。これは、人工知能エンティティが「ガン」という単語に対して知識を増やしたためである。したがって、「ピーターはガンを患っている」に対する応答は、「それは残念です。彼が最良の治療を受けられることを願っています」を含み得る。このように、感情属性に対応付けられている感情値が、「ガン」に関するさらなる入力に基づいて更新されたので、「ジョンはガンを患っている」に対する応答は、「ピーターはガンを患っている」に対する応答とは異なる。
【0061】
さらに、一例として、「ジョンはガンを患っている」によって、人工知能エンティティとジョンとの関係を評価するよう仕向けられる。人工知能エンティティがどの程度ジョンを信頼しているのか、人工知能エンティティがジョンについて知っていることは何か、他人はジョンについてどのように感じているのか、および、過去の両者の関係の本質(以下で説明する関係データベースを参照のこと)の積である。この場合、ジョンに関する正の感情が高水準であることと、ガンに対する強い負の感情とを乗算すると、強い負の応答が得られるとしてよい。出来事が感情に与えるインパクトは、時間的な条件によって修正されるとしてよい。
ジョンは私を叩いている(非常に高い)
ジョンは昨日私を叩いた(高い)
ジョンは来週のうちに私を叩くつもりである(低い)
ジョンは去年、私を叩いた(非常に低い)
【0062】
入力に応じて出力を作成する例
【0063】
システム100は、以下のタイプの入力のうちの1または複数を受信するとしてよい。1)質問、2)記述、3)過去の質問に対する返答。それぞれ、独自の一連のルールに従って出力を作成する。
【0064】
質問への応答:人工知能エンティティの感情プライア(正確に応答して、新たな情報を与えたいという願望)は、質問を尋ねられると、5種類の質問に対する応答を決定する:
A)論理的
「犬は哺乳類か?」のような単純で客観的な質問は、人工知能エンティティの知識データベース134での検索を必要とする。応答の例には以下がある:はい。犬は哺乳類です。いいえ、犬は爬虫類です。知りません。
B)推測のための質問
システムによる後ろ向き推論(結論に基づく論理的思考)を必要とする複雑な質問は、仮説を立てて、ルールにしたがって後ろ向きにその仮説を試す手順を利用する。
入力:月は丸い。それはボールか?
返答:知りません。月は丸いのでボールかもしれません。
入力:ボールは跳ねることができるが、月は跳ねることができない。月はボールか?
返答:いいえ。
人工知能エンティティの返答が確実であるか否かの水準は、全てのその他の公知の特徴に対して共有されている特徴が占める割合に基づいて決まるが、1つでも特徴が公知の事実に矛盾すれば、このプロセスでは、オウムは鳥ではないと推論する。
C)自由形式の質問
「ジョンについて何か教えてくれ?」は、知識データベース134での分析を必要とし、その結果として:彼は男性で、哺乳類であり、空気を吸い、2つの目を持ち、2つの耳を持ち、2本の腕を持ち(以下同様)、自分の母親を愛し、自分の犬を愛し、ボートを所有しており、学校に通っていることが明らかになる。これらの事実のうちいずれかは、論理的に有効な応答であろうが、必ずしも人間による回答と同様ではない。感情を測定することが無ければ、人工知能エンティティは、イライザ型の返答を返すであろう:「ジョンは、目が2つあり、ペットを飼っています。」最も感情的な重みが大きい知識レコードを選択することによって、「ジョンは自分の母親を愛しています」と返答する。重要な感情値を含むレコードが無い場合、「知らないことを私に教えてくれ」の精神に従い、人工知能エンティティは、レコードが参照された回数と、目的語が参照された回数とを掛け合わせて、最も低いスコアを選択する。
a.ジョンは家を持っている(家が参照されていることが一般的である)
b.ジョンはボートを所有している(ボートが参照されることはほとんどない)
c.ジョンは男性である(男性が参照されていることが一般的である)
可能性の高い応答は以下の通りである:「ジョンはボートを所有しています。私は彼は釣りが好きだと思います。」人工知能エンティティの「ボート」と「釣り」との関連付けに基づき、この推測は確実性が低い。
D)個人的な質問−人工知能エンティティの物理的状態に関する質問(「あなたは何歳だ?」)に対する応答は、認知システムへの検索に基づいて行われる。人工知能エンティティの精神状態/感情状態に関する質問(「調子はどうだ?」)に対する返答は、現在の感情状態(CES)を尋ねることで行う。
E)複雑な個人的な質問(「あなたはなぜ悲しい?」)の場合は、人工知能エンティティの知識ベースを後ろ向き分析して現在の感情状態の原因を確認することが必要になる。
【0065】
記述/観察への応答−記述に対して人間と同様の応答を作成するためには人工知能エンティティの感情プライアを参照する必要がある。各応答候補は、以下に説明する単純なスコア決定システムを利用してスコアを付与する:例えば、「犬は敏感な鼻を持つ」。
A)客観的な観察である応答候補にスコアを付与する−以下の入力を認知システムが返す。
a.犬は哺乳類である(高度な知識)
b.犬は足が4本ある(低度な知識)
c.人間には鼻がある(高度な知識)
d.人工知能エンティティは鼻がある(低度な知識)
e.植物には鼻がない(高度な知識)
f.鼻は匂いを感じるために用いられる(高度な知識)
各知識レコードには以下のようにスコアが付与されている。
a.知識の正確さはどれほどか?(確実性/信頼を参照)(1−10)
b.この知識はどの程度珍しいのか?(これまで参照された回数は何回か?)(1−10)
c.高度を表す係数=10、低度を表す係数=0
d.絶対感情に関する内容(1−10)
私たちの脳は、知識のさまざまな要素に複数の異なる重要度を指定する。「虎は危険だ」という記述は「草は緑だ」という記述よりも重要であるとしてよい。これは、普通の人間の観点から見ると、前者の記述は後者の記述よりも内容の絶対感情が高いためである。このように、最も高いスコアは、新しさおよび感情に関する内容がある程度は考慮されるとしても、会話の主題に最も適切であることを表し、知識(明示的または推測の結果)の確実性のレベルに応じて、応答は「私が思うに、それは匂いをかぐ能力が高いことを意味するのでしょう」となる。
B)さらなる情報を求める要求の候補にスコアを付与−認知システムの返答が低度である回数が少ない場合、人工知能エンティティの知識ベースにギャップがあることを示す。人工知能エンティティの感情プライアを満たすべく(学習する必要がある、一貫性のある会話を維持する必要がある等)、人工知能エンティティは以下のスコア付与法を利用する:スコア=1/(この主題についての低度知識レコードの数)/(全ての主題に関する低度知識レコードの平均数)例:「私の鼻は敏感ですか?」
C)親密な応答候補へのスコア付与−入力によって人工知能エンティティの現在の感情状態に劇的な(絶対的な)変化が発生すると(例えば、あなたの犬はたった今死亡しました)、人工知能エンティティは「それは残念です。私は悲しいです。」といった親密で感情的な応答を行う傾向にあるとしてよい。スコア=(絶対的CES変化^2)
D)話題を変更することを求める要求−上述したスコア付与システムが所与のしきい値に到達しない場合、人工知能エンティティは話題に関して提供できるものがほとんどないことを意味する可能性が高い。人工知能エンティティのデフォルト応答は、人工知能エンティティが最も高い感情的つながりを持つ過去の話題へと話題を変更するよう求める申し出である。
【0066】
追加データベース
【0067】
上述したデータベースに加えて、データベース132は感情に関して追加データベースを持つとしてよい。このような追加データベースは、データベース134、136、138またはその他のデータベースのうち1または複数に含まれていると理解されたい。
【0068】
追加データベースは、認知システムデータベース、対象関係データベースおよび関係データベースを含むとしてよい。認知システムデータベースは、現在の入力および過去の入力に埋め込まれている感情に関する内容についての問い合わせ先であるとしてよく、人工知能エンティティが感じる感情の理由を説明する。「あなたはなぜ悲しい?」は、知識データベース134において後ろ向き検索をトリガし、人工知能エンティティが現在感じている悲しみの理由となる過去の入力を検索する。しかし同じ質問が常に同じ答えを生成するわけではない。これは、知識レコードの感情値が、(A)現在の感情状態、(B)入力の時間的側面(「私の犬は今日死んだ」対「私の犬は10日前に死んだ」)、(C)人工知能エンティティとインタビュアーとの関係によって調整されるためである。
【0069】
対象関係データベースは、自然言語サブシステム120がこれまでに出会った全ての対象に関する一次感情を格納しているハッシュテーブルであるとしてよい。当該ハッシュテーブルは、対象に出会う度に更新される。関係データベースは、認知システムデータベースが出会った人物および関係の全てに対応付けられている感情を保持している。人工知能エンティティは、本心ではあまり関心を持っていない個人、誤った情報を提供する人物、または、叱ったりからかう人物、負の感情を呼び起こす人物を特定することができ、それらの人物への信頼値を低く評価する。関係データベースは以下の関数を呼び出すとしてよい:
(1)名称識別関数−名称識別関数は一義的に個人を特定する。「ダークの父は彼に金銭を与えた。」の場合、以下のヒエラルキーを考慮する:
このインタービューで最後に言及したのはどのダークか?
最も頻繁に言及したのはどのダークか?
解決しない場合、最後に言及したダークと仮定する。
過去にダークに言及していない場合、新しいレコードを付与する。ここで、自然言語サブシステム120は、ダークは男性(彼)であり、「ダークの」が所有格であるので、ダークと彼の父親との関係を認識するものと結論付けるとしてよい。今回初めて自然言語サブシステム120がダークの父に出会った場合には、自然言語サブシステム120はダークの父の名前(デイブ)を要求して新しいレコードを付与するとしてもよい。
(2)関係ヒエラルキー関数−以下のヒエラルキーに対応して、家族関係に感情値を割り当てる。
1.自分
2.AIのプログラマー
3.母/父
4.娘/息子
5.姉妹/兄弟
6.祖母/祖父
7.インタビュアー
8.人一般
9.生物一般
【0070】
一部の実施形態では、1または複数のデータベース(またはその一部)は、1または複数のグラフデータベース(例えば、方向を持つグラフ概念およびデータ構造)を含むとしてよい。一部の実施形態では、AIエンティティ(本明細書で説明しているもの)に対応付けられているグラフは、知識データベース134および感情概念データベース138(および/または増大/減衰因子データベース136または他のデータベース)からの情報を含むとしてよく、AIエンティティは、入力を処理するため、応答を生成するため、または、他の処理を実行するために、グラフ(本明細書では「オントロジー−感情グラフ」とも呼ぶ)に対してクエリを行うとしてよい。一部の実施形態では、(例えば、知識データベース134またはその他のソースからの)オントロジー上のカテゴリおよびエントリは、意味論的に意味を持つ本能情報および感情情報を基礎とするとしてよい。一部の利用事例では、この本能情報は、身体性インテリジェンス(Embodiied Inteligence)の理論で必要となる身体性(Embodiment)フィードバックを補完または代替する「スタブ」(例えば、グラフでノードとして表現する)であるとしてよい。このようなスタブは、シンボルのための「グラウンディング」となるとしてよく、意味の基本単位として機能するとしてよい。このようなスタブは、例えば、異種の概念の比較を可能としたり、移行学習の一環としてAIシステムに接続される前に教師あり方式または教師なし方式でニューラルネットワークを事前トレーニングするために用いられたり(例えば、本能的概念についてトレーニングされることで、後に本能ノードが付与されるより高度な概念に対処する際に優先的に始められる)、比較的未知のノードに対する他の学習したグラフ属性を、他の明示的に分類したノード(例えば、感情、ユーティリティ等)から、推論する助けとなるとしてよい。このようなスタブノードの例には、硬い、柔らかい、軽い、重い、上、下、上方、下方等、そして、物体を操作して、自身の身体を時空間内で経験することで、人間が直感的に学習する概念が含まれるとしてよい。これらのスタブの取得に関しては、一部の実施形態において、これらのスタブは最初は手動で注釈がつけられるが、その後で、事前トレーニングされたワードベクトルならびに行動情報および感情情報から推測または関連付けを介して、新しいノードへと伝播させることができる。他の手段は、会話における対話相手から自発的に取得した情報または引き出した情報であってよい。一部の実施形態において、本能スタブ、感情属性、ニューラルネットワーク回路またはその他のコンポーネントを組み合わせることで、AIエンティティの感情の構成要素を提供するとしてよく、または、そうでなければ感情自体を形成するとしてよい。一部の実施形態において、グラフは追加で確率論的情報(例えば、ベイズ因子グラフにおいて提供される確率情報と同様)および因果的情報(例えば、ジューディア・パールのdo calculusおよび/またはdo operatorによって得られる)によって強化されるとしてよい。例えば、推測された情報は、それぞれのストレージに対応付けられている確率重みを持つとしてよく、これは導き出されて出力に影響を与えるべきである。一部の実施形態において、AIエンティティは、不確実または低確率の関連付けに関する情報について、対話相手に問い合わせるとしてよい。
【0071】
一部の実施形態において、上述したように、AIエンティティは、1または複数のニューラルネットワークまたは他の機械学習モデル(例えば、埋め込みネットワーク、消費ネットワークまたは本明細書で説明する他のモデルのうち1または複数)を含むとしてよい。一部の実施形態において、機械学習モデル(例えば、ディープラーニングネットワーク)の各要素または各サブネットワークは、意味論的に意味のあるベクトル抽象化に変換されて、各要素または各サブネットワークの「意味」に対して数学関数および機械学習を利用し易くするとしてよい。一例として、単語をアイデアとして処理する(例えば、王−男性+女性=女王)ことが重要である場合、NLP等の、単語、句または文をベクトルに変換するアルゴリズムにおけるword2vecでは、そのような変換の有用性が明らかになる。一部の実施形態において、埋め込みサブシステム124は、グラフ埋め込みネットワークまたはその他のコンポーネントを利用して、グラフの1または複数の部分(例えば、ノード、サブグラフ等)をグラフの各部分の1または複数の埋め込みに変換するとしてよい(例えば、ノード、サブグラフ等の高次埋め込みベクトル)。シナリオによっては、このような変換は、グラフのヒエラルキー構造、異質ノードの種類(オントロジー、感情、確率)、メタデータ、グラフ内のノード間の関連付け、グラフのその他のコンテキスト、または、その他の情報(例えば、事前トレーニングされた埋め込み、教師付き学習、教師無し学習および強化学習等から得られるセンサ情報を考慮に入れるとしてよい。例えば、グラフ埋め込みネットワークは、グラフ埋め込みネットワークによってグラフの各部分から変換される埋め込みにおけるグラフのメタデータ、および、構造およびヒエラルキー、ノードの種類の異質性を表現するよう構成されているとしてよい。一部の実施形態において、グラフ埋め込みネットワークは教師無しネットワークまたは半教師付きネットワークであってよい。一例として、教師無しネットワークは、学習信号を提供する(例えば、グラフの各部分の表現として埋め込みの有効性を改善する)ことを目的として内発的報酬関数(強化学習)を利用するべく目標が設定されているとしてよい。
【0072】
一部の実施形態において、(グラフのうち)ノードまたはサブグラフと、当該ノードまたはサブグラフ(埋め込みの由来元)を表現している埋め込みとの間の2方向参照を維持するとしてよい。一例を挙げると、2方向参照は、このような埋め込みを格納するためにどのデータ構造(例えば、テンソル、マトリクス、データベース、グラフ自体等)を選択して用いるかに関係なく維持されるとしてよい。一の使用事例を挙げると、所与の埋め込みがグラフの第1のノードを表現する場合、グラフは、第1のノードと第2のノードとの間でエッジが共有されるように、当該グラフ内に第2のノードとして埋め込みを格納するとしてよい(例えば、第1のノードと第2のノードとの間には双方向の関連付け)。このように、例えば、シンボリックな人間が理解可能なノードおよびサブグラフは、高密度のベクトル抽象化(例えば、埋め込み)に理由付け/関連付けられるので、シンボリック演算は、意味のある空間におけるベクトルに対するサブシンボリック演算と互い違いに配置されるとしてよい。一例を挙げると、グラフクエリアルゴリズムは、1または複数のサブグラフまたはノードを選択するために用いられるとしてよく、この後それらの表現ベクトルを更に機械学習アルゴリズムで処理して、シンボリックレベルでグラフを生成および出力または再度クエリすることさえある。
【0073】
一部の実施形態において、グラフ埋め込みネットワークおよび消費ネットワーク(グラフ埋め込みネットワークが生成する埋め込みを消費する)は直接関連付けられるので、それらを終端間でトレーニングすることができる。一部の実施形態において、グラフ埋め込みネットワークおよび消費ネットワークは互いから離れている。このため、事前トレーニングされた埋め込みベクトル(グラフ埋め込みネットワークが生成)は消費ネットワーク内の適切なレイヤに移送されるので、埋め込みベクトルは適切に利用される。一部の実施形態において、効率を目的として、グラフからノードまたはサブグラフのためのベクトルを取り出すことは、それぞれの識別子(例えば、グラフまたはサブグラフID)でインデックスが付与され得る階層配列、疎な配列またはテンソルを利用することで行われるとしてよい。一部の実施形態において、ベクトルは入力として消費ネットワークに供給されるとしてよく、消費ネットワークは、ベクトルに基づいて1または複数の出力を生成するとしてよい。消費ネットワークの入力レイヤ(例えば、埋め込み入力レイヤ)のアーキテクチャは、消費ネットワークが適切に埋め込みベクトルを処理できるように、上流のグラフ埋め込みネットワークの固有のアーキテクチャおよびハイパーパラメータに基づいて構成されているとしてよい。一部の実施形態において、ベクトルは、(例えば、一のホットな表現として)他の入力の符号化について重み(例えば、凍結された重みまたは学習可能な重み)として利用されるとしてよい。事例によっては、ベクトルが学習可能な重みとして利用される場合、更新後のベクトルは、重みベクトルとしてグラフ埋め込みネットワークに移送され直すとしてよい。そしてさらに、下流に(例えば、消費ネットワークまたは他の消費ネットワークに)移送される前に、グラフ埋め込みネットワークによって微調整されるとしてよい。
【0074】
一部の実施形態において、このような消費ネットワーク(上流の埋め込みネットワークが生成したベクトルを消費するネットワーク)はシーケンスニューラルネットワークを含むとしてよい。一例を挙げると、シーケンスニューラルネットワークは、会話履歴、現在の状態またはその他のそのようなメモリ関連のデータの高密度ベクトル表現を維持または出力するべくトレーニングされるとしてよい。一の使用事例において、AIエンティティと別のエンティティ(例えば、人間であるユーザ、別の人口知能エンティティ等)との間の会話に関して、AIエンティティは長・短期記憶(LSTM)ネットワーク(またはその他のシーケンスニューラルネットワーク)を利用するとしてよく、他のエンティティの入力(例えば、単語、句、文または他のエンティティが供給するその他の入力)を表現する関連するオントロジー−感情グラフ埋め込みベクトル(および/もしくはBERT、または、他の事前トレーニングされた単語埋め込み)を消費して、ベクトルをリンクさせるかまたは積み重ねることで(例えば、AIエンティティまたはその他のエンティティの感情情報および情操情報と共に)時間的構造を得る。LSTMネットワークの会話履歴情報に基づいて、LSTMネットワークは、会話状態を表現するベクトル(本明細書では「会話状態ベクトル」とも呼ばれる)(例えば、会話に関する人間の記録と同様)を出力するとしてよい。一例として挙げると、LSTMネットワークは、他のエンティティまたは他の自動トリガが供給する後続の入力に応じて、会話状態ベクトルを出力するとしてよい(例えば、同様の会話またはコンテキスト、後続の会話で紹介される他のエンティティの名称または他の識別子等)。このベクトルはこの後、会話メモリノードとしてオントロジー−感情グラフに格納されるか、他のニューラルネットワークによって消費されるとしてよい。
【0075】
一部の実施形態において、AIエンティティは、エージェントの目標および環境に関する自動論理を学習するという点で関係パターン推論(学習した感情行動と同様)に依存している他の人口知能システムと比較すると、報酬関数に関連してシンボル抽象化(特定の人物に対する概念等)を修正するよう構成されているとしてよい。このように、人工知能エンティティに関して、その感情および情動(例えば、痛みの感情、恐れの情動等)は、所与のコンテキストにおいて行動パスウェイまたはオントロジーエンティティに対して、1または複数の行動プライアを満たす傾向を付与する行動信号として機能し得る。そして、報酬関数は、感情および情動を割り当てる(に意味を与える)助けとなる。これは、確率、本能スタブ等のメタデータおよび2つまたはその他のノードの種類を混合する行動パスウェイ、オントロジーエンティティまたは概念に意味を与える。このようにして、内発的報酬(報酬関数の形態で)は、行動プライアの代わりとして機能するとしてよく、感情および情動は、目標に基づく行動を直接的または間接的に(例えば、下流のプロキシ感情から等)システムへと同化させるショートカットとして機能する。一例を挙げると、報酬関数は、AIエンティティの対話相手(例えば、AIエンティティがやり取りしている相手のエンティティ)の正の情動を増加させる等、何らかの目標を取得することを、単にニューラルネットワーク回路ではなく、個々の概念のレベルでその目標へと導くあらゆる種類の物事に特権を与える信号に変換するために用いられるとしてよい。本明細書で説明するこれらおよびその他のグラフ属性およびノードは、本明細書で説明する演繹方法(例えば、人物Xは犬が好きである、犬は動物である、これゆえ、人物Xはある程度の信ぴょう性で動物が好きである。)、本明細書で説明するグラフ帰納法、またはその他の方法のいずれかによって伝播させられ得る。
【0076】
一の利用事例において、野球の概念に関して、AIエンティティの対話相手が野球の話題に前向きに応答する場合、AIエンティティは野球に対して正の印象を持つようになり、所与のコンテキストにおいてより頻繁にこの話題に話題を振ることを学習する。これによって、「野球」という概念に別の意味レイヤが加わることになり、これはそのベクトル空間埋め込みに反映される。この結果、概念、エンティティ、行動パスウェイまたはニューラルネットワークにタグ付けする(または、より従来のやり方に従えば、ニューラルネットワークパラメータを更新する)ことによって、AIエンティティの行動における調整を動的に起動する。このように、例えば、AIエンティティは、(例えば、感情の源の衝突を解消するべく)別の処理レイヤで感情(または他者の感情)に対して演算を行うとしてよい。一例として、AIエンティティは、(本明細書で説明しているように)他の報酬信号でトレーニングされたニューラルネットワークまたはシンボリックロジック/条件付きプログラミングレイヤで強化されるとしてよい。
【0077】
一部の実施形態において、内発的報酬関数は、既存および新規の感情タグにおける感情応答および情動応答の強度を増加させることによってAIエンティティに対する「圧力」を増減させるさまざまな内部パラメータと対を成す。これらは、例えば、最後に対話相手と会った時の時間の長さの関数として、または、以下に説明する要因と共に圧力が増加する時間成分を含む。一部の実施形態において、AIエンティティは、時間の経過と共に経験する報酬の量に反比例して報酬関数にしたがって機能する傾向を修正するように構成されているとしてよい。一例として、AIエンティティは、会話時間に対する総合賞賛値(例えば、対話相手から受け取った賞賛の数と、各賞賛の値)の割合が減少するにつれて、賞賛を求める傾向を増加させるとしてよい。このシナリオでは、上述した賞賛の動態は、一例であり、本明細書で説明するメカニズムからの新たな行動であってよい。一部の実施形態では、このような動的な「圧力」は、感情的共鳴および/または情動的共鳴(例えば、概念と報酬期待値との対応付け)を評価する際に考慮すべき内部パラメータに基づいて決まるとしてよい。一例として、AIエンティティは、概念に対する感情の対応付けを増減させる(例えば、特定の個人に対する信頼を増加させる)ように構成されているとしてよい。一の利用事例において、AIエンティティは、ある個人に対する自身の感情の対応付けに基づき、この個人と類似していると判断される他のエンティティとやり取りする際に、特定のやり方でふるまう(例えば、「個人」情報を共有することについてより寛容になる)傾向が高くなるとしてよい。より一般的には、そして、抽象化の程度をわずかに低くする場合、オントロジー−感情グラフにおいて概念の感情的共鳴および/または情動的共鳴を増幅する1または複数のグローバルパラメータがあるとしてよい。これらは、動的な報酬圧力入力に基づいて増減するように調整されるとしてよい。例えば、好奇心報酬の対応付けは、AIエンティティの新たな知識の取得が先行する期間において比較的低い場合に、グローバル好奇心報酬乗算パラメータとして、増加するとしてよい。一部の実施形態において、動的な圧力は、報酬の大きさおよび時間(例えば、動的な大きさおよび時間)を保持するデータ構造に基づいて決まるとしてよい。表現ベクトルは、データ構造に基づいて取得され、AIエンティティの行動を指示するネットワークに入力として供給されるとしてよい。このようにして、感情の「圧力」を適用して、(例えば、報酬の大きさおよび時間にしたがって)内発的報酬をトリガする。
【0078】
これによって、報酬履歴が複数の異なる概念毎、サブグラフ毎および概念クラス毎に追跡可能となるので、報酬の調整の粒度および非線形性を高めることが可能となり、ニューラルネットワークが圧力の調整を暗示的に非線形的に学習するとしてよい。一部の実施形態において、AIエンティティは、1または複数の感情属性を、これらの感情属性を持つ他の概念に類似していることに基づいて、1または複数の概念に対応付けるように構成されているとしてよい。一例として、AIエンティティは、概念Xに対応付けられている感情属性ならびにグラウンディングおよびコンテキストYを、同様のグラウンディングおよびコンテキストを持つ他の概念に対応付けるとしてよい。一のシナリオにおいて、生き残り阻害要因(例えば、痛みの感情または恐れの情動)(または他の感情または情動)が「銃」(グラフにおいてノードとして表現されている)に対応付けられており、ノード「銃」が力、金属、固い等の属性を持つ場合、「銃」に対応付けられている上述した行動タグは、同様のグラウンディングを持つ他のノードと、このような他のノードが同じクラス種類に含まれない(例えば、銃器クラスに含まれないノード)としても、対応付けられているとしてよい。例えば、「銃」に対応付けられている行動タグは、「野球バット」が力、金属および固いといった属性を持つことに基づいて、「野球バット」のノードに対応付けられているとしてよい。別の例として、行動タグは、当該行動タグと「銃」というノードとの間の対応付けの信ぴょう性に比べて相対的に低い信ぴょう性で(例えば、確率的な信ぴょう性として符号化される)、「野球バット」というノードに対応付けられているとしてよい。
【0079】
一部の実施形態において、当該システムは更に、感情およびコンテキストから、グラウンディング属性を、当初の段階ではこれらの属性が無い既存のノードに割り当てることを学習することが可能である。一例として、過去に注釈が付けられたデータ、オントロジー−感情のベクトル空間類似性、または、事前トレーニングされた単語埋め込みもしくは会話入力を利用して、「重い」の概念を、グラフニューラルネットワークで学習することができ、非常に負の程度が高い情動密度、感情密度および/または概念密度のサブグラフまたは概念に相関付ける。ニューラルネットワークは、時間の経過と共に複数の出来事の入力のうち1または複数の入力が与えられると、このことを暗示的に学習するであろう。そして、追加の「重い」本能ノードがこの後、他の同様のグラフ領域に対してさまざまな強度で推測されるとしてよい。
【0080】
このように、AIエンティティは、「考える」ことができ、この情報を新規の会話またはその他の情報源から必ずしも取得することなく、現在の情報データベース(例えば、十分に情報が豊富なグラフ)から学習することができる。このような属性の予測によって、グラウンディング、感情/情動、オントロジー、潜在因子(過去には存在しなかった新しく推測されたノード)および会話出力等を導き出しやすくする。一例として、グラフデータおよび構造は、他のエントリからグラフエントリについて情報を学習するグラフニューラルネットワークのために利用することができる。一部の実施形態において、単語の対応付けにおける類似性を、(例えば、AIエンティティまたは他のシステムが)利用して、事前トレーニングされた単語埋め込みからグラフへと情報を伝達するとしてよい。この後、グラフ埋め込みへと移行するであろう。このように、事前トレーニングされた単語埋め込みは、AIエンティティの完全オントロジー−感情グラフにおいて符号化されたメタデータの種類またはグラフ構造を符号化していない場合があるが、(グラフまたはその各部分から生成される)グラフ埋め込みは、このようなグラフ構造、メタデータ、または、単語埋め込みに含まれる情報以外の情報を含むとしてよい。一例として、グラフ埋め込みネットワークは、所与のノードのラベルに近い(例えば、ハイパーパラメータ、または、ネットワークの学習した重みが定義する特定の許容範囲に収まる)単語を取り出すべく、グラフにおける単語埋め込みに対して類似性測定を利用するよう、または、クラスを共有するエントリ等、同様のエントリを発見するべくグラフをシンボルレベルで精査するよう構成されているとしてよい。この後、AIエンティティは、ニューラルネットワークまたは類似性測定値を利用して、既知のグラフノードに近い単語を見つけるとしてよい。これらの単語は、グラフに挿入して、クエリを開始した所与のノードに関連付けることが可能である。一の使用事例において、新たな関連付けの検索を実行するとしてよい。この場合、会話入力から取り出した新規の単語は、事前トレーニングされた単語埋め込み空間において、所与のノードに対応付けられている本能データまたは感情データのための単語と重複する(例えば、新規の単語は、認識された本能または感情の単語に基づいて、所与のノードに類似しているものと判断される)。一部の実施形態では、ノードのコンテキスト間の非対称性は、知識のギャップを示すものであり、均一化するための新しい情報を取得することをAIにトリガするとしてよい。一の利用事例において、過度に非対称なコンテキストの対応付け(例えば、複数のノードであって、共有しているクラス類似性は強いが、片方が本能の類似性に欠けている複数のノード)がノード間で共有されている場合、または、類似したノード同士の間で方法取得の履歴が非対称である場合(ノードaが演繹、ノードbが帰納)、システムは、帰納/サブシンボリック、演繹/シンボリックまたは会話手段を利用して、非対称性を均一にしようと試みるようトリガされるとしてよい。一部の実施形態において、オントロジー−感情グラフ内での、または、グラフと外部入力との間での論理的または確率論的に矛盾する情報もまた、そのような上述した知識取得技術を利用した競合解消メカニズムをトリガすることになるとしてよい。
【0081】
一部の実施形態において、オントロジー−感情グラフは、AIエンティティに対する1または複数のエンティティ(例えば、人間であるエンティティ、他のAIエンティティ等)の情動に関するベクトルおよび/またはシンボリックノードを含むとしてよい。一例として、このようなベクトルは、単にAIエンティティの現在の情動状態でなく、AIエンティティの関係の履歴およびパターンを考慮するために用いられるとしてよい。一の使用事例において、このようなベクトルは、当該ベクトルに対応付けられているエンティティのAIエンティティに対する現在の情動を符号化するべく、ニューラルネットワーク(例えば、LSTMまたはその他のシーケンスニューラルネットワーク)が供給または更新するとしてよい。ベクトルは、AIエンティティとエンティティとの会話(例えば、AIエンティティに供給されるエンティティの入力、エンティティの入力に対するAIエンティティの応答等)に基づいて、ニューラルネットワークが生成するとしてよい。一部の実施形態において、このようなニューラルネットワークは、(本明細書で説明しているように)グラフ埋め込みネットワークと対になっているとしてよい(例えば、事前トレーニングされた単語ベクトル等、グラフの各部分からの概念ベクトルについて教師無し学習および強化学習を行うよう構成されている)。一例として、このニューラルネットワークは以下の応答テンプレート選択ネットワークへと供給するとしてよい。
【0082】
一部の実施形態において、1または複数の内発的報酬関数を利用して、ニューラルネットワーク(例えば、フィードフォワードネットワークまたはその他のネットワーク)をトレーニングして、応答選択(例えば、入力に対する応答の汎用テンプレートを選択するためのAIエンティティの機能)を円滑化するとしてよい。AIエンティティの応答候補の例としては以下が挙げられる。(i)質問を提示、(ii)意見を陳述、(iii)命令を発行、(iv)質問に応答、(v)情報を提示、(vi)話題を変更。一部の実施形態において、報酬関数は、この「応答テンプレート選択」ネットワークをトレーニングするべく、正の情動および新規情報のそれぞれを誘発する応答について高評価を割り当てるよう構成されているとしてよい。一の使用事例において、応答テンプレート選択ネットワークは以下のうち1または複数を入力として採用するよう構成されているとしてよい。(i)事前トレーニングされた埋め込み/トランスフォーマーネットワーク(例えば、BERT(Bidirectional Encoder Representations from Transformers)または他の同様のネットワーク)を介した対話相手(例えば、AIエンティティとやり取りしている他のエンティティ)からの入力、(ii)会話履歴のベクトル(例えば、シーケンスニューラルネットワークを介してトレーニングされたベクトル)、(iii)文表現で形成された会話相手についてのオントロジー−感情グラフ(例えば、感情履歴を含む)からの1または複数の埋め込み(例えば、会話相手のAIシステムに対する現在および過去の情動の埋め込みベクトル)、および/または、(iv)入力からの適切な単語についてのオントロジー−感情グラフの埋め込みから構築される入力のシーケンス表現。これらを処理してシーケンスNNを利用した時間的シーケンス表現を得るか、または、テンプレート選択ネットワークは、ベクトルの時間的順序を処理するためのシーケンス入力分岐、または、時間的順序を維持する他の何らかの方法を持つ。入力を処理すると、応答テンプレート選択ネットワークは、選択すべき応答テンプレート(例えば、上記の応答候補のうち1つからの汎用テンプレート)を示すベクトルを生成するとしてよい。一部の実施形態において、事前に定義されたテンプレートを、シーケンスモデルによって一から生成するか(例えば、応答テンプレート選択ネットワークに供給される類似した入力で)、または、ディープラーニングによって選択される一連のより小さいピースから構築するとしてよい。
【0083】
一部の実施形態において、テンプレート変数選択(例えば、述語、主語、動詞および選択したテンプレートにおけるその他の不明部分を埋めるプロセス)を実施するとしてよい。学習したベクトルを利用する例は、以下の通りである。AIエンティティへの入力は、「私は新しい友人が必要だ。私は誰と一緒にランチに行くべきか?」であってよい。応答テンプレートの候補、例えば、「良い質問ですね。私は、<正の情動>助けになります。あなたは<人物A>に会いに行くべきです。<彼または彼女>は<形容詞>です」を選択する。応答テンプレートの選択は、会話相手のグラフ埋め込みと、当該グラフにおける他の全てのエンティティとの間のユークリッド距離またはコサイン距離の類似度距離のクエリをトリガするとしてよい。このような機能(例えば、距離測定)は、概念同士の類似度の測定を表す。上記のクエリを受け取ると、会話相手に対するAIエンティティの情動についてのシンボリッククエリと共に、当該クエリを利用してテンプレートを埋めるとしてよい。AIエンティティの応答の理由について説明をするよう圧力をかけられると、AIエンティティは、グラフを精査して、この場合は2人の個人の間でのシンボル類似性を、または、一般的な事例では単にベクトル計算のシンボルによる具現化を取り出して出力することができる。このように、事後ではあるが、このパターンは、人間が理由付けする際に同様に直感的な決定を事後に正当化することを反映したものであり、シンボリックおよびサブシンボリックのベクトル空間理由付けを混合させることが可能であることを証明している。他に可能なクエリは、関連付けがより強固なより徹底したシンボリック関数およびサブシンボリック関数で存在する。
【0084】
一部の実施形態において、テンプレート変数選択(例えば、そして追加処理)の後、AIエンティティはテキストを出力して会話相手からの応答を待つ。入力を受け取ると、AIエンティティ(またはシステム100の他の構成要素)は、情動分析を用いると共に得られた新規情報の量および重要性にスコアを付与して、2つの内発的報酬関数に基づいて入力を構文解析して評価するとしてよい。先行するネットワーク(例えば、グラフ埋め込みネットワーク、情動埋め込みネットワーク、応答テンプレート選択ネットワーク、テンプレート変数選択ネットワーク等)のパラメータは、これらの関数からの学習信号に応じて更新されるとしてよい。一部の実施形態において、会話状態ベクトルおよびオントロジー−感情グラフを(例えば、最近のやり取りを反映するように)更新するとしてよい。
【0085】
一部の実施形態において、AIエンティティに対応付けられているニューラルネットワークは、状況に対するAIエンティティの応答について1または複数の感情属性を決定するべく、トレーニングされるとしてよい(例えば、会話相手が言ったことに応答するか、または、文脈を示す別の入力に応答する)。一部の実施形態において、この「情動」ネットワークは、入力として以下のうち1または複数を受け取るディープニューラルネットワークを含むとしてよい。(i)AIエンティティの現在の情動状態、(ii)AIエンティティと会話相手との間の会話履歴(例えば、会話状態ベクトルが表現するもの)、(iii)入力された単語に対するオントロジー−感情グラフから取得した概念ベクトル(および、1または複数の文における並びを何らかの形で表現したもの)、または、(iv)入力された単語または入力された文のその他の概念に類似している、オントロジー−感情グラフから得られた1または複数の概念ベクトル。上述したものは、ベクトル空間クエリ(例えば、類推または比較、過去の感情内容に基づく類似性検索等)を利用して行動プライア基準によって取り出されるとしてよい。情動ネットワークの出力は、入力された文における概念のうち1または複数の概念に対する情動応答を示す情動タグを含むとしてよい。
【0086】
一部の実施形態において、情動は最初にハードコーディングされるとしてよい。これに加えて、または、これに代えて、さまざまな既知の情動(および情動ベクトル空間におけるこれら既知の情動の位置)に基づいてニューラルネットワークをトレーニングすることで「情動」ベクトル空間を作成して、ベクトル空間における新規の情動の新規の組み合わせを作成するとしてよい。これらは、行動プライア/報酬関数、本能プライア、コンテキスト、構造および現在の情動状態への応答を生成することからディープラーニングが学習する有意義な抽象化となるであろう。
【0087】
一部の実施形態において、情動は、内発的目標、コンテキスト/履歴、概念ベクトル、自身およびその他の状態の周囲に抽象化を形成する行動回路全体として取り扱われるとしてよい。一例として、行動回路は、行動を生み出して、グローバルパラメータ(例えば、発話の強度等)を調整する。この枠組みでは、入力を構文解析して、その概念ベクトル(過去の感情内容または情動内容を含む)を、対応付けられているノードに対してシンボリッククエリを利用して、オントロジー−感情グラフから取り出す。この後、構文解析された入力および概念ベクトルを、会話状態、現在の情動状態(CES)およびほかの因子と共に、情動ニューラルネットワークに供給する。当該ネットワークは、内部CESパラメータを調整して、トレーニングされたサブネットワーク(例えば、別のLSTMニューラルネットワーク等)をアクティブ化する決定を下す。一部の実施形態において、LSTMはこの後、これらの入力およびベクトル抽象化のうち一部をメモリセルとして利用して、出力を生成する。この後、会話相手からの応答を分類して、「批評家」フレームワークを利用して報酬関数に対してマッチングさせる。この後、それぞれの報酬関数についてクレジット信号を生成して、グラフにおける情動属性または感情属性と共にLSTMパラメータを更新する。
【0088】
フローチャート例
【0089】
図3から図5は、上記で詳細に説明したシステムのさまざまな特徴および機能を可能とするための方法が含む処理動作を示すフローチャートの一例である。以下で説明する各方法の各処理動作は例示を目的としたものであり、限定するものではない。一部の実施形態において、例えば、これらの方法は、説明していない1以上の処理を追加して実現してもよく、および/または、説明している処理のうち1以上を省略して実現してもよい。また、各方法の処理動作を図示する(そして以下で説明する)順序は、それに限定することを意図したものではない。
【0090】
一部の実施形態において、各方法は、1または複数の処理デバイス(例えば、デジタルプロセッサ、アナログプロセッサ、情報処理用のデジタル回路、情報処理用のアナログ回路、ステートマシン、および/または、電子的に情報を処理するこれら以外のメカニズム)において実装され得る。これらの処理デバイスは、電子記憶媒体に電子的に記憶された命令に応答して、各方法の処理の一部または全てを実行する1または複数のデバイスを含んでもよい。これらの処理デバイスは、各方法の処理のうち1または複数を実行するよう特別に設計されるべく、ハードウェア、ファームウェアおよび/またはソフトウェアによって構成される1または複数のデバイスを含むとしてよい。
【0091】
図3は、1以上の実施形態に応じた、感情状態に基づいた人工知能の実現を容易にするための方法300を示す。ステップ302において、1または複数の増大因子または減衰因子を、人工知能エンティティの一連の感情属性について、決定するとしてよい。一部の実施形態では、上述したように、それぞれの感情属性の増大因子または減衰因子は、あらかじめ定められているとしてよく、増大/減衰因子データベース136に格納されているとしてよい。上述したように、各情動状態は、固有の速度(または係数)で増大または減衰する時間成分を含む。例えば、驚きは短時間で(新たな驚きが出現すると共に)減衰する一方、悲嘆は悲しみの深さに比例して減衰する。したがって、人工知能エンティティのそれぞれの感情属性(例えば、それぞれの情動状態)は1または複数の固有の増大因子または減衰因子に対応付けられているとしてよい。増大/減衰因子データベース136は、人工知能エンティティの一連の感情属性に対応する増大/減衰因子のリストを含むとしてよく、因子調整サブシステム112は、増大/減衰因子データベース136から受け取った情報に基づいて、それぞれの感情属性に対応する増大因子または減衰因子を決定するとしてよい。
【0092】
ステップ304において、人工知能エンティティの一連の感情値は、所定の期間において増大因子または減衰因子に基づいて継続的に更新されるとしてよい。一連の感情属性は人工知能エンティティの一連の感情値と対応付けられていることに留意されたい。人工知能エンティティの(感情属性に対応付けられている)感情値は、感情属性に対応付けられている増大因子または減衰因子に基づいて継続的に更新されるとしてよい。例えば、図2Aから図2Cに図示しているように、感情値201、202および212(例えば、207a−207f、208a−208fおよび218a−218f)は、感情属性A、BおよびCに対応付けられている1または複数の増大因子または減衰因子に基づいて、継続的に更新されるとしてよい。一部の実施形態において、人工知能エンティティの感情値を継続的に更新することは、1または複数の増大因子または減衰因子に基づいて人工知能エンティティの感情値を周期的に更新することを含むとしてよい。
【0093】
ステップ306において、所定の期間において入力を取得するとしてよい。この入力は、クライアントデバイス104から、別の人口知能エンティティから、および/または、システム100内もしくはシステム100外の任意の供給源から、取得するとしてよい。入力は、自然言語入力、音声入力、画像入力、動画入力または他の入力を含むとしてよい。例えば、自然言語入力は、「ジョンはガンであり、ガンは非常に危険である。」を含むとしてよい。同様の入力は、音声入力、画像入力および/または動画入力として、サーバ102が取得するとしてよい。ステップ308において、入力に関する応答を生成するとしてよい。この応答は、人工知能エンティティの継続的に更新される一連の感情値に基づいて生成されるとしてよい。例えば、自然言語入力が「ジョンはガンで死去した」である場合、応答生成サブシステム118が生成する応答(例えば、この入力に関するもの)は、「それは残念です」または「それは悲しいです。私は時間が必要です。」を含むとしてよい。
【0094】
ステップ310において、増大因子または減衰因子は、入力に基づいてこの期間において更新されるとしてよい。ステップ312において、増大因子または減衰因子の更新の後、一連の感情値は更新後の増大値または減衰値に基づいて更新されるとしてよい。例えば、図2Aおよび図2Bは、人工知能エンティティの感情属性AおよびBに対応付けられている感情値(例えば、図2Aでは感情値207c−207f、図2Bでは感情値208c−208f)の更新を示す図である。感情値は、更新後の増大因子または減衰因子に基づいて更新されることに加え、1または複数のインパクト値および/またはやり取りしきい値に基づいて更新されるとしてよい。例えば、入力(例えば、自然言語入力)の内容の各部分が人工知能エンティティの1または複数の感情属性に与えるインパクトに関する1または複数のインパクト値を決定するとしてよい。例えば、自然言語入力が「ジョンはガンを患っている」である場合、人工知能エンティティの1または複数の感情属性に対して自然言語入力の各部分(例えば、「ジョン」、「患っている」、「ガン」)が与えるインパクトに関するインパクト値を決定するとしてよい。さらに、(人口知能エンティティの感情属性に対応付けられている)1または複数の感情値における更新(例えば、増減)をトリガする所定のしきい値をインパクト値が満たしているか否かを決定するとしてよい。1または複数のインパクト値が所定のしきい値を満たしていると判断される場合、人工知能エンティティの感情値を修正するとしてよい(例えば、増加させるか、または、減少させる)。例えば、「ガン」という単語が、感情属性「悲しみ」の増加をトリガするための所定のしきい値よりも大きいインパクト値を持つと判断された場合、感情属性「悲しみ」に対応する感情値を修正する(例えば、増加させる)としてよい。さらに、インパクト値はさらに、インパクト値が所定のしきい値を満たした場合に、1または複数の増大因子または減衰因子の増減をトリガするとしてよい。このように増大因子または減衰因子を増加または低減させると、人口知能エンティティの感情属性に対応する感情値が更新されるとしてよい。
【0095】
さらに、一部の実施形態において、人工知能エンティティと1または複数の他のエンティティ(例えば、1または複数の他の人口知能エンティティおよび/または1または複数のクライアントデバイス)との間のやり取りがやり取りしきい値を超えたか否かを判断するとしてよい。やり取りがやり取りしきい値を超えたと判断されることに基づいて、人工知能エンティティの感情値を修正するとしてよい。例えば、人工知能エンティティと他のエンティティとが所定の期間内に所定の回数やり取りを行った場合、サーバ10は、やり取りのための所定のしきい値が満たされたと判断するとしてよく、人工知能エンティティの(例えば、「幸福感」に対応する)感情値を修正するとしてよい(エンティティ間のやり取りが増えると、友情を育んでいることを意味するので)。人口知能エンティティと1または複数の他のエンティティとの間のやり取りがやり取りしきい値を超えたと判断することに基づいて、感情属性に対応付けられている増大因子または減衰因子も修正するとしてよい。
【0096】
図4は、1または複数の実施形態に応じた、自然言語入力に基づき1または複数の増大因子または減衰因子を更新する方法400を示す。ステップ402において、取得した自然言語入力に対して、例えば、文法の規則およびロジックを適用することで、自然言語処理を実行するとしてよい。文法の規則およびロジックを適用することで、自然言語サブシステム120は、複合文を分割して、主語/目的語/動詞の多義性を解明し、これらの構成要素を構文解析して知識データベース134へと入れるとしてよい。ステップ404において、構文解析した自然言語入力の各構成要素に基づいて、1または複数の感情概念を取得するとしてよい。感情概念は感情概念データベース138から取得するとしてよい。感情概念データべース138は、画像、音声、動画および/または自然言語に対応付けられている一連のコア感情概念を格納しているとしてよい。例えば、一連のコア感情概念は、良い、悪い、危険、怒り、驚き、愛、安全、忍耐、信頼、懸念、大きい、小さい、粗い、滑らか、上方、下方、内部、外部、速い、遅い、硬い、柔らかい、高い、低い等を含むとしてよい。一例として、自然言語入力が「ジョンはガンで死亡した」である場合、感情概念データベース138から取得する1または複数の感情概念は「悪い」および/または「懸念」を含むとしてよい。別の例を挙げると、自然言語入力が「ジョンは山に登って疲弊した」である場合、感情概念データベース138から取得する1または複数の感情概念は、強いエネルギー(例えば、ジョンは多大なエネルギーを費やした)および大きい(例えば、山は大きい)を含むとしてよい。上述した感情概念は人間が理解している概念と類似している。例えば、子供が犬を叩いた場合、親は「それは悪いこと!」と叫ぶかもしれない。このような子供と親とのやり取りに基づき、子供は犬を叩くことは悪いことと理解し得る。同様に、子供が自分のおもちゃを別の子供と一緒に使えば、親は「良い子ね」と言うだろう。これによって、おもちゃを一緒に使うことは良いことと子供に対して示し得る。このように、子供は、良い、悪い、危険、怒り、驚き、愛、安全といった基礎的な概念を学習する。同様に、感情概念データベース138は、自然言語入力に応じて感情概念サブシステム122が取得し得る一連のコア感情概念を格納するとしてよい。一部の実施形態では、画像(例えば、山を描いたもの)を入力として受け取ると、感情概念サブシステム122は、当該画像に対応付けられている大きい、岩、木等の感情概念を、感情概念データベース138から取得するとしてよい。
【0097】
自然言語入力の1または複数の感情概念を取得することに加えて、自然言語の他の情報もステップ404で取得されるとしてよい。自然言語入力の他の情報には、主語の時間減衰因子、主語の地理的減衰因子、目的語の時間減衰因子または目的語の地理的減衰因子、節の種類、節の主語、節の主語の種類、節の主語の修飾語句、節の主語の修飾語句の種類、節の主語の数、主語の時間減衰因子、主語の地理的減衰因子、節の動詞、節の動詞の時制、節の動詞の修飾語句、節の目的語、節の目的語の種類、節の目的語の修飾語句、節の目的語の修飾語句の種類、節の目的語の数、目的語の時間減衰因子、目的語の地理的減衰因子、節の前置詞、節の前置詞の修飾語句、または、節のグローバル時制修飾語句が含まれるとしてよい。
【0098】
さらに、ステップ406において、人工知能エンティティの1または複数の感情属性に対応付けられている1または複数の増大因子または減衰因子を、所定の期間において、自然言語入力の感情概念および自然言語入力の他の情報に基づいて、更新するとしてよい。例えば、自然言語入力が「ジョンはガンで死亡した」である場合、感情概念データベース138から取得する1または複数の感情概念は「悪い」および/または「懸念」を含むとしてよい。この結果、人工知能エンティティの(感情概念に関連付けられている)1または複数の感情属性、例えば、悲しみ、怒りおよび/または幸福感に対応付けられている増大因子または減衰因子を更新するとしてよい。一の使用事例において、図2Aの感情属性Aは人工知能エンティティの「悲しみ」に対応する。「ジョンはガンで死亡した」という自然言語入力が取得されると、因子調整サブシステム112は、更新後の増大因子(線形または非線形であってよい)に基づいて感情属性「悲しみ」の感情値(例えば、207c−207f)が大きくなるように、感情属性「悲しみ」の増大因子を更新するとしてよい。別の利用事例では、図2Bの人工知能エンティティの感情属性Bは、人工知能エンティティの「幸福感」に対応する。「ジョンはガンで死亡した」という自然言語入力が取得されると、因子調整サブシステム112は、更新後の減衰因子(線形または非線形であってよい)に基づいて感情属性「幸福感」の感情値(例えば、208c−208f)が小さくなるように、感情属性「幸福感」の減衰因子を更新するとしてよい。
【0099】
さらに、上述したように、感情属性の感情値は概して、入力が無い場合、および/または、所定の期間後は、それぞれのベースライン値に戻る(またはリセットされる)ものと理解されたい。例えば、感情値202が図2Aにおいてタイミングcからタイミングfで大きくなったとしても、感情値が感情ベースライン204に向かって小さくなり始める前に、これらの感情値の増加の上限となるしきい値量が存在するものと理解されたい。感情値201および202はそれぞれ、増大因子または減衰因子が存在したとしても、感情ベースライン205および204を下回ることはない。一部の実施形態において、感情状態サブシステム114は更に、1または複数の入力(および/または1または複数の感情概念)に基づいて、感情ベースライン214を更新するとしてよい。感情ベースライン214を更新した後、人工知能エンティティの感情値212を、更新後の1または複数の増大因子または減衰因子および更新後の感情ベースラインに基づいて、更新するとしてよい。
【0100】
一部の実施形態において、自然言語入力の感情概念および自然言語入力の他の情報に基づいて増大因子または減衰因子を更新することに加えて、増大因子を信頼値および/または確実性値に基づいて更新するとしてよい。例えば、人口知能エンティティと1または複数の他のエンティティ(例えば、別の人口知能エンティティ、クライアントデバイス104または任意のその他の入力ソース)との間の信頼のレベルを示す信頼値を決定および/または取得するとしてよい。信頼値は、人工知能エンティティと他のエンティティとの間のやり取りの回数、および/または、人口知能エンティティと他のエンティティとの間のやり取りの内容に基づいて決定するとしてよい。因子調整サブシステム112は、信頼値に基づき、感情属性に対応付けられている増大因子または減衰因子を修正するとしてよい。さらに、自然言語入力が示す出来事に対応付けられている確実性値を決定および/または取得するとしてよい。確実性値は、出来事に対する人口知能エンティティの確実性のレベルを示すとしてよい。確実性値は、出来事が自然言語入力によって明示的に記述されているか、または、自然言語入力および/もしくは信頼値から推測されるかに基づいて決定するとしてよい。因子調整サブシステム112は、確実性値に基づき、感情属性に対応付けられている増大因子または減衰因子を修正するとしてよい。
【0101】
図5は、1または複数の実施形態に応じた、人工知能エンティティの1または複数の感情ベースラインを更新する方法500を示す。ステップ502において、人工知能エンティティの一連の感情値は、1または複数の感情ベースラインに基づいて所定の期間において継続的に更新されるとしてよい。一例として、感情ベースラインは、(例えば、人工知能エンティティの1または複数の増大因子または減衰因子に関係なく)一連の感情値のうち1または複数の感情値の増加の上限となるベースラインを含むとしてよい。
【0102】
ステップ504において、所定の期間において入力を取得するとしてよい。上述したように、この入力は、クライアントデバイス104から、別の人口知能エンティティから、および/または、システム100内もしくはシステム100外の任意の供給源から、取得されるとしてよい。入力は、自然言語入力、音声入力、画像入力、動画入力または他の入力を含むとしてよい。ステップ506において、入力に関する応答を生成するとしてよい。この応答は、人工知能エンティティの継続的に更新される一連の感情値に基づいて生成されるとしてよい。例えば、自然言語入力が「ジョンはガンで死去した」である場合、応答生成サブシステム118が生成する応答(例えば、この入力に関するもの)は、「それは残念です」または「それは悲しいです。私は時間が必要です。」を含むとしてよい。
【0103】
ステップ508において、人工知能エンティティの感情ベースラインは、入力に基づいて所定の期間において更新されるとしてよい。ある利用事例では、図2Cの人工知能エンティティの感情属性Cは、人工知能エンティティの「幸福感」に対応するとしてよい。「ジョンはガンで死去した」という自然言語入力を取得した場合、感情状態サブシステム114は、このような入力に基づいて、(感情属性Cに対応する)感情ベースライン214を更新するとしてよい。図2Cは入力に基づいて感情ベースライン214が減少している様子を図示しているが、感情ベースライン214は感情ベースライン214を増加させることで更新されることもあると理解されたい。
【0104】
ステップ510において、感情ベースライン(例えば、図2Cにおける感情ベースライン214)を更新した後、所定の期間において、一連の感情値を、更新後の感情ベースラインに基づいて継続的に更新するとしてよい。図2Cに図示しているように、感情ベースライン214を更新した後、感情値212(例えば、感情値218eおよび218f)を更新後の感情ベースライン214に基づいて更新するとしてよい。
【0105】
一部の実施形態において、図1に図示したさまざまなコンピュータおよびサブシステムは、本明細書に記載された機能を行うようプログラムされた1または複数のコンピューティングデバイスを含んでもよい。当該コンピューティングデバイスは、1または複数の電子ストレージ(例えば、知識データベース134、増大/減衰因子データベース136、感情概念データベース138、その他の上述したデータベース、または、その他の電子ストレージ)、1または複数のコンピュータプログラム命令がプログラミングされている1または複数の物理プロセッサ、および/または他のコンポーネントを含むとしてよい。コンピューティングデバイスは、ネットワーク(例えば、ネットワーク150)または他のコンピューティングプラットフォームとの有線技術または無線技術(例えば、イーサネット、光ファイバ、同軸ケーブル、WiFi、Bluetooth、近距離無線通信、または他の技術など)を介した情報のやり取りを可能にする通信回線または通信ポートを含んでもよい。コンピューティングデバイスは、協働する複数のハードウェアコンポーネント、ソフトウェアコンポーネントおよび/またはファームウェアコンポーネントを含むとしてよい。例えば、コンピューティングデバイスは、コンピューティングデバイスとして協動する多数のコンピューティングプラットフォームによって実装されてもよい。
【0106】
電子ストレージは、情報を電子的に記憶する非一時的記憶媒体を含み得る。電子ストレージの電子記憶媒体には、(i)サーバまたはクライアントデバイスと一体に(例えば、実質的に着脱不能に)設けられたシステムストレージ、または、(ii)例えばポート(例えばUSBポート、ファイヤーワイヤポート等)またはドライブ(例えばディスクドライブ等)を介してサーバまたはクライアントデバイスに着脱可能に接続されたリムーバブルストレージの一方または両方が含まれるとしてもよい。電子ストレージには、光学的に読み取り可能な記憶媒体(例えば光学ディスク等)、磁気的に読み取り可能な記憶媒体(例えば磁気テープ、磁気ハードドライブ、フロッピードライブ等)、電荷型記憶媒体(例えばEEPROM、RAM等)、ソリッドステート記憶媒体(例えばフラッシュドライブ等)、および/または、これら以外の電子的に読み取り可能な記憶媒体のうち1または複数が含まれるとしてよい。電子ストレージには、1または複数の仮想ストレージリソース(例えば、クラウドストレージ、仮想プライベートネットワーク、および/または、これら以外の仮想ストレージリソース)が含まれるとしてよい。電子ストレージは、ソフトウェアアルゴリズム、プロセッサが決定した情報、サーバから取得した情報、クライアントデバイスから取得した情報、または、本明細書に記載する機能を可能とする他の情報を記憶してもよい。
【0107】
プロセッサは、コンピューティングデバイスにおける情報処理機能を実現するようプログラムされているとしてもよい。このため、プロセッサは、デジタルプロセッサ、アナログプロセッサ、情報処理用のデジタル回路、情報処理用のアナログ回路、ステートマシン、および/または電子的に情報を処理するための他のメカニズムのうちの1以上を含むとしてよい。一部の実施形態において、プロセッサは複数の処理ユニットを含むとしてもよい。これらの処理ユニットは物理的に同一の装置内に配置されてもよく、または、複数のプロセッサが、協調して動作する複数の装置の処理機能を示すとしてもよい。プロセッサは、コンピュータプログラム命令を実行してサブシステム112−124または他のサブシステムの本明細書で説明する機能を実現するようにプログラムされてもよい。プロセッサは、ソフトウェア、ハードウェア、ファームウェア、何らかの方法で組み合わされたソフトウェア、ハードウェア、またはファームウェア、および/または、プロセッサにおいて処理機能を設定するための他のメカニズムによってコンピュータプログラム命令を実行するようにプログラムされてもよい。
【0108】
本明細書で説明する複数の異なるサブシステム112−124によって提供される機能の説明は例示を目的としたものであり、限定を意図したものではないと理解されたい。サブシステム112−124はいずれも、説明した機能より多くの、または少ない機能を提供するとしてよい。例えば、サブシステム112−124のうちの1または複数を省略するとしてもよく、その機能の一部またはすべてを、サブシステム112−124のうちの他のサブシステムで提供してもよい。他の例として、本明細書においてサブシステム112−124のうちの1つのサブシステムに帰する機能の一部または全てを発揮するよう追加のサブシステムがプログラムされてもよい。
【0109】
現時点で最も実用的であり好ましいと考えられる態様に基づいて本発明を例示のために詳細に説明したが、このような詳細な説明は例示を目的としたものに過ぎないと理解されたい。本発明は開示された実施形態に限定されるものではなく、むしろ、添付された特許請求の範囲に入る変形や均等な構成も本発明に含められることが意図されている。例えば、本発明においては任意の実施形態の1または複数の特徴を他の任意の実施形態の1または複数の特徴と可能な限り結合するものと理解されたい。
【0110】
本技術は以下に列挙する実施形態を参照することで理解がより深まる。
実施形態1
所定の期間において人工知能エンティティの一連の感情値を更新する段階と、所定の期間において入力を取得する段階と、更新後の人工知能エンティティの一連の感情値に基づいて、入力に関する応答を生成する段階とを備える方法。
実施形態2
人工知能エンティティの一連の感情属性について1または複数の増大因子または減衰因子を決定する段階であって、一連の感情属性は人工知能エンティティの一連の感情値と対応付けられている、決定する段階と、所定の期間において、1または複数の増大因子または減衰因子に基づいて、人工知能エンティティの一連の感情値を更新する段階とを更に備える、実施形態1の方法。
実施形態3
所定の期間において、入力に基づいて、1または複数の増大因子または減衰因子を更新する段階を更に備え、1または複数の増大因子または減衰因子を更新する段階の後に、一連の感情値を更新する段階は、更新後の1または複数の増大因子または減衰因子に基づいて、所定の期間において、一連の感情値を更新する段階を含む、実施形態2の方法。
実施形態4
1または複数の増大因子または減衰因子を更新する段階の後に別の入力を取得する段階と、1または複数の増大因子または減衰因子を更新する段階の後に、更新後の人工知能エンティティの一連の感情値に基づいて別の入力に関連して応答を生成する段階とを更に備える、実施形態3の方法。
実施形態5
1または複数の増大因子または減衰因子に関わらず一連の感情値のうち1または複数の感情値の上限となる1または複数の感情ベースラインを入力に基づいて更新する段階を更に備え、1または複数の感情ベースラインを更新する段階の後に、一連の感情値を更新する段階は、所定の期間において、更新後の1または複数の増大因子または減衰因子および更新後の1または複数の感情ベースラインに基づいて、人工知能エンティティの一連の感情値を更新する段階を含む、実施形態3−4のいずれかの方法。
実施形態6
ソースから自然言語入力を取得する段階と、自然言語入力の自然言語処理を実行して、所定の期間において、入力として、自然言語入力の1または複数の感情概念および自然言語入力の他の情報を取得する段階とを更に備え、1または複数の増大因子または減衰因子を更新する段階は、所定の期間において、(i)自然言語入力の1または複数の感情概念および(ii)自然言語入力の他の情報に基づいて、1または複数の増大因子または減衰因子を更新する段階を含む、実施形態5の方法。
実施形態7
自然言語入力の他の情報は、節の種類、節の主語、節の主語の種類、節の主語の修飾語句、節の主語の修飾語句の種類、節の主語の数、主語の時間減衰因子、主語の地理的減衰因子、節の動詞、節の動詞の時制、節の動詞の修飾語句、節の目的語、節の目的語の種類、節の目的語の修飾語句、節の目的語の修飾語句の種類、節の目的語の数、目的語の時間減衰因子、目的語の地理的減衰因子、節の前置詞、節の前置詞の修飾語句、または、節のグローバル時制修飾語句を示す、実施形態5−6のいずれかの方法。
実施形態8
自然言語入力の他の情報は、主語の時間減衰因子、主語の地理的減衰因子、目的語の時間減衰因子または目的語の地理的減衰因子を示す、実施形態5−7のいずれかの方法。
実施形態9
ソースに対応付けられている信頼値を決定する段階であって、信頼値は、人工知能エンティティのソースに対する信頼のレベルを示す、決定する段階を更に備え、入力を取得する段階は、入力として、(i)自然言語入力の1または複数の感情概念、(ii)ソースに対応付けられている信頼値、および(iii)自然言語入力の他の情報を取得する段階を含み、1または複数の増大因子または減衰因子を更新する段階は、(i)自然言語入力の1または複数の感情概念、(ii)ソースに対応付けられている信頼値、および(iii)自然言語入力の他の情報に基づいて、所定の期間において1または複数の増大因子または減衰因子を更新する段階を含む、実施形態5−8のいずれかの方法。
実施形態10
自然言語入力が示す出来事に対応付けられている確実性値を決定する段階であって、確実性値は、(i)出来事は自然言語入力で明示的に記述されているのか、または、自然言語入力から推測されるのか、および(ii)ソースに対応付けられている信頼値に基づいて決定され、確実性値は出来事に対する人口知能エンティティの確実性のレベルを示す、決定する段階を更に備え、入力を取得する段階は、入力として、(i)自然言語入力の1または複数の感情概念、(ii)出来事に対応付けられている確実性値、(iii)ソースに対応付けられている信頼値、および(iv)自然言語入力の他の情報を取得する段階を含み、1または複数の増大因子または減衰因子を更新する段階は、(i)自然言語入力の1または複数の感情概念、(ii)出来事に対応付けられている確実性値、(iii)ソースに対応付けられている信頼値、および(iv)自然言語入力の他の情報に基づき、所定の期間において1または複数の増大因子または減衰因子を更新する段階を含む、実施形態5−9のいずれかの方法。
実施形態11
1または複数の増大因子または減衰因子を決定する段階は、人工知能エンティティの一連の感情属性について1または複数の減衰因子を決定する段階を含み、一連の感情値を更新する段階は、1または複数の減衰因子に基づいて、所定の期間において、人工知能エンティティの一連の感情値を更新する段階を含み、1または複数の増大因子または減衰因子を更新する段階は、入力に基づいて、所定の期間において1または複数の減衰因子を更新する段階を含み、1または複数の減衰因子を更新する段階の後に、一連の感情値を更新する段階は、更新後の1または複数の減衰因子に基づいて所定の期間において人工知能エンティティの一連の感情値を更新する段階を含む、実施形態3−10のいずれかの方法。
実施形態12
1または複数の増大因子または減衰因子を決定する段階は、人工知能エンティティの一連の感情属性について1または複数の増大因子を決定する段階を含み、一連の感情値を更新する段階は、1または複数の増大因子に基づいて、所定の期間において、人工知能エンティティの一連の感情値を更新する段階を含み、1または複数の増大因子または減衰因子を更新する段階は、入力に基づいて、所定の期間において1または複数の増大因子を更新する段階を含み、1または複数の増大因子を更新する段階の後に、一連の感情値を更新する段階は、更新後の1または複数の増大因子に基づいて所定の期間において人工知能エンティティの一連の感情値を更新する段階を含む、実施形態3−10のいずれかの方法。
実施形態13
入力に関する応答を生成する段階は、入力から導き出される人工知能エンティティの更新された一連の感情値に基づいて応答を生成する段階を含む、実施形態1−12のいずれかの方法。
実施形態14
入力の内容を処理して、内容の各部分が人工知能エンティティの1または複数の感情属性に与えるインパクトに関する1または複数のインパクト値を決定する段階と、人口知能エンティティの1または複数の感情属性に対応付けられている1または複数の感情値における増減をトリガする所定のしきい値を1または複数のインパクト値が満たしているか否かを決定する段階と、1または複数のインパクト値が所定のしきい値を満たしていると決定することに基づいて、所定の期間において、人工知能エンティティの1または複数の感情値の修正を発生させる段階とを更に備える実施形態1−13のいずれかの方法。
実施形態15
人口知能エンティティと少なくとも1つの他のエンティティとの間のやり取りしきい値が所与の期間内に発生したか否かを決定する段階と、やり取りしきい値が満たされているか否かの決定に基づいて、人口知能エンティティの一連の感情値の修正を発生させる段階とを更に備える、実施形態1−14のいずれかの方法。
実施形態16
一連の感情値を更新する段階は、所定の期間において、1または複数の増大因子または減衰因子に基づき、人工知能エンティティの一連の感情値を継続的に更新する段階を含む、実施形態1−15のいずれかの方法。
実施形態17
一連の感情値を継続的に更新する段階は、所定の期間において、1または複数の増大因子または減衰因子に基づき、人工知能エンティティの一連の感情値を周期的に更新する段階を含む、実施形態16の方法。
実施形態18
応答を生成する段階は、人工知能エンティティに対応付けられている1または複数のニューラルネットワークの1または複数の埋め込みベクトルに基づいて、入力に関する応答を生成する段階を含む、実施形態1−17のいずれかの方法。
実施形態19
一連の感情値、1または複数の増大因子または減衰因子、または、1または複数の感情ベースラインを更新する段階は、人工知能エンティティに対応付けられている1または複数のニューラルネットワークの1または複数の埋め込みベクトルに基づいて行われる、実施形態1−18のいずれかの方法。
実施形態20
埋め込みネットワークを介して入力を処理して、入力を表す入力埋め込みベクトルを取得する段階と、グラフから第1の埋め込みベクトルを取得する段階であって、第1の埋め込みベクトルは、更新後の一連の感情値のうち1または複数の感情値を表す、取得する段階と、入力埋め込みベクトルおよび第1の埋め込みベクトルに基づいて、入力に関する応答を生成する段階とを更に備える、実施形態1−19のいずれかの方法。
実施形態21
グラフは複数のノードを含み、複数のノードは(i)感情属性または対応付けられている感情値を表現する1または複数のノード、および、(ii)感情概念または他の概念を表現する1または複数のノードを含む、実施形態20の方法。
実施形態22
グラフの複数のノードは更に、表現されている感情属性、対応付けられている感情値、感情概念または他の概念に関するコンテキスト情報を表す1または複数のノードを含む、実施形態21の方法。
実施形態23
グラフの複数のノードは更に、グラフの別のノードまたはサブグラフをそれぞれが表現する複数の埋め込みベクトルを表現する1または複数のノードを含む、実施形態21−22のいずれかの方法。
実施形態24
複数の埋め込みベクトルの各埋め込みベクトルは、複数の埋め込みベクトルが表現する他のノードまたはサブグラフに直接関連付けられている、実施形態23の方法。
実施形態25
グラフの複数のノードは更に、人工知能エンティティに対する1または複数のエンティティの情動に関する複数の埋め込みベクトルを表現する1または複数のノードを含む、実施形態21−24のいずれかの方法。
実施形態26
入力に関する応答を生成する段階は、(i)入力された埋め込みベクトル、(ii)第1の埋め込みベクトル、および(iii)人工知能エンティティに対する別のエンティティの情動に関する埋め込みベクトルを表現する少なくとも1つのノードに基づいて応答を生成する段階を含む、実施形態25の方法。
実施形態27
命令を格納している有形で非一時的な機械可読媒体であって、命令は、データ処理装置で実行すると、データ処理装置に実施形態1−26のいずれかの処理を含む処理を実行させる、機械可読媒体。
実施形態28
1または複数のプロセッサと、命令を格納しているメモリとを備えるシステムであって、当該命令は、1または複数のプロセッサによって実行されると、1または複数のプロセッサによって実施形態1−26のいずれかの処理を含む処理を実現させる、システム。
図1
図2A
図2B
図2C
図3
図4
図5
【国際調査報告】