(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2021-515682(P2021-515682A)
(43)【公表日】2021年6月24日
(54)【発明の名称】適応放射線治療のためのファントム
(51)【国際特許分類】
A61N 5/10 20060101AFI20210528BHJP
【FI】
A61N5/10 P
【審査請求】有
【予備審査請求】未請求
【全頁数】60
(21)【出願番号】特願2020-561048(P2020-561048)
(86)(22)【出願日】2019年4月23日
(85)【翻訳文提出日】2021年1月4日
(86)【国際出願番号】US2019028724
(87)【国際公開番号】WO2019212805
(87)【国際公開日】20191107
(31)【優先権主張番号】15/966,830
(32)【優先日】2018年4月30日
(33)【優先権主張国】US
(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】517150065
【氏名又は名称】エレクタ、インク.
【氏名又は名称原語表記】ELEKTA,INC.
(74)【代理人】
【識別番号】100087479
【弁理士】
【氏名又は名称】北野 好人
(72)【発明者】
【氏名】マーグロ ニコレット パトリシア
(72)【発明者】
【氏名】ハン シャオ
【テーマコード(参考)】
4C082
【Fターム(参考)】
4C082AE01
4C082AJ07
4C082AJ08
4C082AJ14
4C082AN03
4C082AR02
(57)【要約】
変形可能な放射線治療ファントムは、患者の医用画像に基づいて、付加製造プロセスを用いて製造することができる。変形可能なファントムは、放射線量分布を測定するための線量計を含むことができる。スマート材料は、印加された刺激に応じて変形する。とりわけ、ファントムは、放射線治療の治療計画である放射線量の歪みの検証、患者の最大許容変形量の決定、放射線量の歪みの累積精度の検証、および変形可能な画像登録の検証などに使用することができる。
【選択図】
図3
【特許請求の範囲】
【請求項1】
放射線治療計画を検証する方法であって、
患者の関心領域の医用画像に基づいてファントムを作成又は製造するステップであって、前記関心領域は、放射線治療によって治療される標的領域と非標的領域とを含むステップと、
前記標的領域又は前記非標的領域の少なくとも1つの変形をモデリングするために前記ファントムを変形するステップと、
所定の放射線量に幾何学的変換を適用することにより、歪んだ放射線量を計算するステップであって、前記所定の放射線量は、前記関心領域に照射される放射線の空間的分布を定義するステップと、
前記歪んだ放射線量を提供するための放射線治療装置を構成するための放射線治療計画を生成するステップと、
前記放射線治療計画に従って前記放射線治療装置を操作することにより、放射線が前記変形されたファントムに照射されたときに前記変形されたファントムが受ける前記放射線量分布を測定するステップと、
前記測定された放射線量分布を前記所定の放射線量と比較することにより、前記放射線治療計画を検証するステップと
を有する
ことを特徴とする方法。
【請求項2】
請求項1記載の方法において、
前記方法は、
前記放射線治療計画が有効である前記標的領域又は前記非標的領域の少なくとも1つの最大変形量を決定するステップ
を更に有する
ことを特徴とする方法。
【請求項3】
請求項1又は2記載の方法において、
前記ファントムは、外部刺激にさらされたときに形状の変化を示すスマート材料からなり、
前記ファントムを変形するステップは、前記スマート材料に外部刺激を加えることを含む
ことを特徴とする方法。
【請求項4】
請求項1乃至3のいずれか1項に記載の方法において、
前記方法は、
前記ファントムを変形する前に、前記ファントムの画像を取得するステップと、
前記変形したファントムの画像を取得するステップと、
前記ファントムの画像と前記変形されたファントムの画像とに基づいて前記幾何学的変換を計算するステップと
を更に有する
ことを特徴とする方法。
【請求項5】
請求項4記載の方法において、
前記ファントムの画像と前記変形されたファントムの画像は、それぞれ複数のボクセルを有し、
前記幾何学的変換を計算するステップは、変形可能な画像登録を実行して、前記ファントムの画像内の各ボクセルを前記変形されたファントムの画像内の対応するボクセルにマッピングする変形ベクトル場を計算することを含む
ことを特徴とする方法。
【請求項6】
請求項1乃至5のいずれか1項に記載の方法において、
前記ファントムは、付加製造プロセスにより製造される
ことを特徴とする方法。
【請求項7】
請求項1乃至6のいずれか1項に記載の方法において、
前記ファントムを製造するステップは、前記ファントム内に複数の線量計を配置することを含む
ことを特徴とする方法。
【請求項8】
線量歪み又は他の線量マッピング技術を検証する方法であって、
患者の関心領域を表す第1の医用画像にアクセスするステップと、
前記第1の医用画像に第1の変形ベクトル場を適用することにより、第2の医用画像を生成するステップと、
前記第1の医用画像及び前記第2の医用画像にそれぞれ対応する第1のファントム及び第2のファントムを生成、取得、又は提供するステップと、
前記放射線治療装置を操作することにより、前記第1のファントム及び第2のファントムにそれぞれ放射線が照射されたとき、前記第1のファントム及び前記第2のファントムにより受けた対応する放射線量分布を測定するステップと、
検証されるべき線量歪み又は他の線量マッピング技術を用いて、前記第1のファントムを用いて測定された第1の放射線量分布に前記第1の変形ベクトル場を適用することにより、歪んだ放射線量を計算するステップと、
前記計算された歪んだ線量を、前記第2のファントムを用いて測定された第2の放射線量分布と比較することにより、前記線量の歪み又はマッピング技術の精度を検証するステップと
を有する
ことを特徴とする方法。
【請求項9】
請求項8記載の方法において、
前記第1のファントム及び前記第2のファントムの少なくとも1つは、付加製造プロセスにより製造される
ことを特徴とする方法。
【請求項10】
請求項8又は9記載の方法において、
前記第1のファントム及び前記第2のファントムの少なくとも1つを製造するステップは、前記第1のファントム及び前記第2のファントム内に複数の線量計を配置することを含む
ことを特徴とする方法。
【請求項11】
請求項8乃至10のいずれか1項に記載の方法において、
前記第1の医用画像内の各ボクセルを前記第2の医用画像内の対応するボクセルにマッピングする前記第1の医用画像及び前記第2の医用画像への変形可能な画像登録を行い、そして、前記第2の変形ベクトル場を適用することにより歪んだ放射線量を計算することにより、第2の変形ベクトル場が生成される
ことを特徴とする方法。
【請求項12】
請求項11記載の方法において、
前記線量歪み及び前記変形可能な画像登録の累積精度を検証するステップを有する
ことを特徴とする方法。
【請求項13】
放射線治療セッションを検証する方法であって、
患者の関心領域の医用画像に基づいてファントムを製造するステップであって、前記医用画像は、放射線治療計画に従って放射線治療装置を操作することにより、放射線が前記患者に照射される放射線治療セッションの前に取得されたものであるステップと、
前記放射線治療計画に従って前記放射線治療装置を操作することにより、放射線がファントムに照射されたときに前記ファントによる受ける前記放射線量分布を測定するステップと、
前記測定された放射線量分布を前記放射線治療セッション中に取得された線量測定値と比較することにより、前記放射線治療セッションを検証するステップと
を有する
ことを特徴とする方法。
【請求項14】
請求項13記載の方法において、
前記ファントムは、付加製造プロセスにより製造される
ことを特徴とする方法。
【請求項15】
請求項13又は14記載の方法において、
前記ファントムを製造するステップは、前記ファントム内に複数の線量計を配置することを含む
ことを特徴とする方法。
【請求項16】
放射線治療の品質保証に用いるためのファントムであって、
前記ファントムは、
患者の標的領域を表す第1の部分と、
前記患者の非標的領域を表す第2の部分と
を有し、
前記第1の部分又は前記第2の部分の少なくとも1つは、外部刺激に曝されたときに形状の変化を示すスマート材料からなる
ことを特徴とするファントム。
【請求項17】
請求項16記載のファントムにおいて、
前記ファントムは、付加製造プロセスにより製造される
ことを特徴とするファントム。
【請求項18】
請求項16記載のファントムにおいて、
前記ファントムは、前記患者の関心領域の医用画像に基づいて、付加製造プロセスにより製造され、前記関心領域は、前記標的領域及び前記非標的領域を含み、前記ファントムの前記第1の部分及び前記第2の部分は、それぞれが、前記医用画像における前記標的領域及び前記非標的領域の形状によりそれぞれ定義されるそれぞれの形状を有する
ことを特徴とするファントム。
【請求項19】
請求項16乃至18のいずれか1項に記載のファントムにおいて、
前記ファントムは、前記ファントム内に配置された複数の線量計を有する
ことを特徴とするファントム。
【発明の詳細な説明】
【技術分野】
【0001】
(優先権の主張)
[001]
本出願は、2018年4月30日に出願された米国出願第15/966,830号の優先権の利益を主張し、その全体が参照により本明細書に組み込まれる(技術分野)
[001]
本開示は、一般に放射線治療に関する。より具体的には、本開示は、放射線治療における品質保証試験のためのファントムの使用に関するが、これに限定されるものではない。
【背景技術】
【0002】
[002]
放射線治療(radiotherapy)としても知られる放射線療法(Radiation therapy)は、哺乳類(例えば、ヒトおよび動物)組織の腫瘍および他の病気を治療するために使用される。放射線治療セッションでは、高エネルギービームが外部から患者に向けて印加され、患者の標的部位に向けられたコリメート放射線ビームを生成する。標的は、放射線ビームが照射され、治療されるべき疾患器官または腫瘍を含む患者の身体の領域である。放射線ビームの配置と線量は、対象者が医師によって患者に処方された線量の放射線を確実に受けるように正確に制御されなければならない。ビームの配置は、周囲の健康な組織へのダメージを最小限に抑えるようにしなければならない。
【0003】
[003]
ビーム配置の精度を向上させるための1つの方法は、意図された治療位置にある患者の1つまたはそれ以上の医用画像を取得することである。このような画像は、計画画像と呼ばれる。計画画像は放射線治療の治療セッションに先立って取得され、治療セッションの何日も前に取得されることが多い。
【0004】
[004]
医師は計画画像を使用して、OARと同様に標的を特定し、輪郭を描くことができる。輪郭付けは、手動、半自動、または自動で行うことができる。治療輪郭は、しばしば計画目標体積(PTV)と呼ばれ、標的輪郭に加えて、顕微鏡的疾患や治療の不確実性を考慮した十分なマージンを含む治療輪郭が作成される。医師から放射線量が処方され、OARや他の正常組織への線量を最小限に抑えながら、PTVに処方された線量を最適に照射する放射線治療計画が作成される。治療計画は、医師が手動で作成することもできるし、最適化技術を用いて自動的に作成することもできる。最適化技術は、臨床的および線量的目的および制約(例えば、腫瘍およびOARに対する放射線の最大線量、最小線量、および平均線量)に基づいていてもよい。
【0005】
[005]
治療コースは、複数のフラクションにわたって所定の線量を送達するように開発されており、各フラクションは、異なる治療セッションにおいて送達される。例えば、30〜40個のフラクションが典型的であるが、5個のフラクションを使用することができ、1個のフラクションを使用することでもよい。フラクションはしばしば平日に1回、ある場合には2回送達される。ある場合には、放射線治療の計画をコース全体で変更して、より多くの線量をいくつかの領域に集中させることができる。
【0006】
[006]
各フラクションでは、患者は、放射線治療装置の患者支持アクセサリー(多くの場合「カウチ」)にセットされ、計画画像内の位置に可能な限り近い位置に再配置される。これは、患者は剛体ではなく、患者の解剖学構造は動くので、実際に正確に行うことが困難である。フラクションからフラクションへの動きは、しばしばフラクション間の動き(interfractional motion)と呼ばれ、フラクション自体の間に発生する動きは、しばしばフラクション内の動き(intrafractional motion)と呼ばれる。
【0007】
[007]
画像誘導放射線治療(IGRT)は、フラクション間の動き(interfractional motion)の問題を解決しようとするものである。IGRTでは、放射線治療の直前に患者の1枚またはそれ以上の医用画像(しばしば「日常画像」と呼ばれる)を取得し、それらの画像を使用してフラクション間の動き(interfractional motion)を識別して補正することが含まれる。任意の診断スキャナで取得できる計画画像とは対照的に、IGRT画像は、患者が治療体位にある間、治療室で直接取得される。フラクション間の動き(interfractional motion)を補正するために、IGRT画像を計画画像と比較して、計画画像が生成された後に発生した患者の解剖学的変化を定量化する。例えば、計画画像とIGRT画像とを解析して、計画画像とIGRT画像とを対応付けるグローバルシフト及び/又は回転を算出することができる。一旦、シフト及び/又は回転が計算されると、治療セッション中の患者の位置が、計画画像が取得されたときの患者の位置とより完全に一致するように、患者支持アクセサリの位置に対する対応する調整を行う。
【0008】
[008]
適応放射線治療(adaptive radiotherapy)は、フラクション間の動き(interfractional motion)の問題を解決することを目的としたもう一つの技術である。IGRTと同様に、適応放射線治療では、放射線治療セッションの直前に患者の1枚またはそれ以上の医用画像を取得し、それらの画像を使用してフラクション間の動き(interfractional motion)を特定して補正する。適応放射線治療では、計画画像および治療セッションの直前に撮影された画像を解析して変形ベクトル場(DVF)を生成することができる。DVFは、そのエレメントがベクトルである行列であり、各ベクトルは、計画画像中のボクセルを治療セッションの直前に撮影された画像中の対応するボクセルにマッピングするための幾何学的変換を定義する。DVFは、計画画像の取得後に生じた患者の解剖学的な変化を補償するために、治療計画で規定された放射線量の空間分布を変換するために使用することができる。
【0009】
[009]
このように線量分布を変形させると、対象者が所定の線量よりも少ない線量を受けることになる、および/または、OARが医師の意図よりも高いレベルの放射線を受けることになる可能性がある。したがって、変換された線量分布が臨床的に有効で安全であることを検証する必要がある。
【発明の概要】
【0010】
[010]
変形可能な放射線治療ファントムは、患者の医用画像に基づいて、付加製造プロセスを用いて製造することができる。変形可能なファントムは、放射線量分布を測定するための線量計を含むことができる。スマート材料は、印加された刺激に応じて変形することができる。とりわけ、ファントムは、放射線治療の治療計画である放射線量反りの検証、患者の最大許容変形量の決定、放射線量反りの累積精度の検証、および変形可能な画像登録の検証などに使用することができる。
【0011】
[011]
本開示のさらなる利点は、以下の詳細な説明に部分的に記載され、その一部は、本明細書から明らかになるか、または本開示の実施により学習することができる。
【0012】
[012]
前述の一般的な説明および以下の詳細な説明は、例示的で説明的なものに過ぎず、クレームに記載されたように、本発明を制限するものではないことが理解されよう。
【図面の簡単な説明】
【0013】
[013]
本明細書の一部である添付図面は、いくつかの実施形態を図示しており、説明とともに、開示された原理を説明するのに役立つ。
【0014】
[014]
【0015】
[015]
【0016】
[016]
【0017】
[017]
【
図3】
図3は、ファントムを使用することができる検証または品質保証試験方法の一例を示す図である。
【0018】
[018]
【
図4】
図4は、線量マッピングアルゴリズムを検証する方法の一例を示す図である。
【0019】
[019]
【
図5】
図5は、更なる検証方法の一例を示す図である。
【0020】
[020]
【
図6】
図6は、本明細書に記載されているような、線量歪み、変形可能な画像登録、またはその他を検証するような、本明細書に記載されている方法のうちの1つまたは複数の方法を実施することができる装置または機械の一実施形態のブロック図を示す。
【0021】
[021]
【
図7】
図7は、放射線治療システムの一例を示す図である。
【0022】
[022]
【
図8】
図8は、治療ビームを提供するように構成された放射線治療出力を含むことができる放射線治療システムの一例を示す図である。
【発明を実施するための形態】
【0023】
[023]
例示的な実施形態について添付図面を参照して説明する。図面において、参照番号の左端の桁が、参照番号が最初に表示されている図を示す。便利なのは、図面全体で同じ参照番号を使用し、同じまたは類似の部品を参照する。開示された原理の実施例および特徴が本明細書に記載されているが、開示された実施形態の精神および範囲から逸脱することなく、修正、適応、他の実施形態が可能である。また、「comprising(備える)」、「having(有する)」、「containing(含む)」、「including(含む)」、および他の類似の形態の単語は、これらの単語のいずれかに続く項目または項目が、そのような項目または項目の網羅的なリストを意味するものではなく、また、リストされた項目または項目のみに限定されることを意味するものではないという点で、意味が同等であり、オープンエンドであることが意図されている。また、本明細書および添付の特許請求の範囲で使用されるように、「a」、「an」および「the」という単数形は、文脈から明らかに指示されない限り、複数の参照を含むことにも留意すべきである。
【0024】
[024]
例示的な実施形態は、一般に、適応型放射線治療における品質保証のためのファントムの使用に関する。以下でより詳細に説明するように、ファントムは患者の医用画像を用いて作成され、その結果、放射線治療によって治療される特定の患者の解剖学的構造を忠実に反映したファントムが得られる。複数の線量計がファントム内に配置され、それにより、ファントムの内部容積内の複数の点で放射線量を測定することができ、これにより、患者が受ける線量の空間的分布を予測することができる。いくつかの実施形態では、ファントムは、線量分布に対する患者の動きの影響をモデリングできるように変形可能である。各ファントムが患者の異なる医用画像を使用して製造されるような、複数のこのようなファントムを製造することができる。各ファントムによって受信された線量分布は、例えば、適応放射線治療のための治療計画、または適応放射線治療のための変形ベクトル場を生成するために使用される変形可能な画像登録アルゴリズムを検証するために比較することができる。
【0025】
[025]
放射線治療の分野では、「ファントム」とは、患者の身体の一部、あるいは患者の身体の代用として使用される物体のことである。ファントムは通常、放射線治療の治療計画をテストするために使用される。例えば、治療計画に従って放射線のビームをファントムに印加することができ、ファントムを通過する放射線は、ビームに対向して配置された検出器によって測定することができる。ファントムが受けた放射線量は、検出器の測定値から推測することができる。治療計画の臨床的有効性および安全性は、処方された線量(すなわち、治療計画が送達することを意図した線量)と、ファントムが実際に受けた線量とを比較することによって決定することができる。このように、ファントムを使用することで、患者を放射線にさらすことなく治療計画を検査することができる。
【0026】
[026]
次に、
図1および
図2を参照して、本開示に従ったファントムを説明する。
図1A、
図1B、
図1Cは、相互に直交する3つの方向に描かれた、患者の関心領域100の概略図である。より具体的には、
図1Aは関心領域100の平面図であり、
図1Bは関心領域100の正面図であり、
図1Cは関心領域100の側面図である。関心領域100は、リスク臓器(OAR)104と標的104とを含む。
図1は、関心領域の非常に単純化された表現であり、純粋に説明の目的のために意図されていることが理解されるであろう。実際には、OAR102および標的104は、非常に不規則な形状を有し得る。さらに、実際には、関心領域100は、複数のOAR、他の非標的領域、および/または複数の標的を有し得る。
【0027】
[027]
本開示によれば、関心領域100のファントムは、患者の医用画像を用いて生成される。医用画像は、ボクセルと呼ばれる複数の要素で構成された三次元画像(ボリューメトリック画像とも呼ばれる)である。各ボクセルは、3次元空間の特定の点における画像の強度を表す。医用画像を取得するために、コンピュータ断層撮影(CT)、磁気共鳴イメージング(MRI)、陽電子放出断層撮影(PET)、超音波、または単一光子放出コンピュータ断層撮影(SPECT)のような任意の適切な撮像モダリティを使用することができる。あるいは、医用画像は、2つまたはそれ以上の異なる撮像モダリティを用いて取得された画像を融合して生成することができる。ファントムを作成するために使用される医用画像は、放射線治療そのものを目的として取得された画像でもよい。例えば、計画画像や毎日の画像を用いてファントムを生成することができる。これにより、ファントムを生成する目的のためだけに画像を取得する必要を回避することができる。
【0028】
[028]
医用画像は、標的領域と、少なくとも1つの非標的領域とにセグメンテーションされている。セグメンテーションとは、一般的に、画像内のボクセルにラベルを割り当てて、それらのボクセルが何を表しているかを示すプロセスを指す。このように、標的領域は、放射線への曝露によって治療される標的104としてラベル付けされた複数のボクセルを含む。各非標的領域は、標的104以外のものとしてラベル付けされた複数のボクセルを含む。例えば、非標的領域は、リスク臓器102としてラベル付けされたボクセルを含み得る。医用画像は、危険な状態にある1つまたはそれ以上の臓器を含み得る。別の例として、非標的領域は、バックグラウンドボクセル、すなわち患者の身体を表さないボクセルとしてラベル付けされたボクセルを含み得る。医用画像は、手動で(例えば、医師、線量測定士、または医療従事者によって)、または自動的に(例えば、スウェーデンのストックホルムにあるエレクタAB社によって製造されたアトラスベースの自動セグメンテーションソフトウェア、ABAS(登録商標)のようなプログラムを使用して)セグメンテーションすることができる。
【0029】
[029]
ファントムは、患者の関心領域の医用画像に基づくような、付加製造プロセスによって製造され得る。関心領域は、標的領域と非標的領域とを含み得る。ファントムの第1の部分および第2の部分は、それぞれ、医用画像における標的領域の形状および非標的領域の形状によって定義されるそれぞれの形状を有する。
【0030】
[030]
撮像した後、付加製造プロセスを用いて、三次元医用画像の解剖学的構造をモデリングした三次元ファントムを作成する。本明細書で使用されるように、「付加製造(additive manufacturing)」という用語は、層に層を重ねて物体を製造するプロセスを指す。米国試験材料学会(ASTM:American Society for Testing and Materials)によると、現在、7種類の付加製造プロセス、すなわち、バインダージェッティング(binder jetting)、指向性エネルギー蒸着(directed energy deposition)、材料押出(material extrusion)(融合蒸着モデリング(fused deposition modeling)としても知られている)、材料ジェッティング(material jetting)、パウダーベッドフュージョン(powder bed fusion)、シートラミネーション(sheet lamination)、蒸着光重合(vat photopolymerization)が存在しているこれらの種類の任意の好適な1種以上の付加製造プロセス、または将来的に存在する可能性のある任意の他の好適なタイプの付加製造プロセスは、ファントムを製造するために使用することができる。さらに、三次元医用画像を、医用画像内の解剖学的構造を複製するファントムを製造するために、付加製造装置が使用できる命令および/またはデータに変換するために、任意の適切なソフトウェアツールを使用することができる。
【0031】
[031]
図2Aは、
図1Aから
図1Cに示された関心領域をモデリングするためのファントム200の透視図である。
図2Aから分かるように、ファントム200は、関心領域の解剖学的構造を表す3次元物理物体である。ファントムは、OAR102を表す部分202と、標的104を表す部分204とを有する。
図2は、ファントム200の非常に単純化された表現であり、実際には、ファントムは、患者の解剖学を反映したより複雑な形状を備えていることが理解されるであろう。さらに、ファントム200は、
図2Aに示された部分よりも多くの部分を備えていてもよい。
【0032】
[032]
ファントム200は、放射線吸収特性が関心領域100の解剖学的構造物の放射線吸収特性と類似または同一である1つまたはそれ以上の材料から構成されている。例えば、ファントム200の部分202は、臓器(前立腺、膀胱、脳など)の密度に類似した密度を有する材料で構成され、ファントム200の部分204は、腫瘍の密度に類似した密度を有する材料で構成される。したがって、ファントム200は、放射線治療中に患者の対応する解剖学的構造によって吸収される放射線量を予測するために使用することができる。ファントム200の構成材料は、放射線吸収特性と、特定の付加製造プロセスでの使用への適合性との両方に基づいて選択される。複数の材料は、所望の放射線吸収特性を有し、所与の付加製造プロセスによって製造することが可能なファントム200を製造するために組み合わせられる。例えば、部分202、204は、付加製造を用いて中空ポリマーシェルを形成し、次いで、シェルを、それぞれの解剖学的構造102、104の密度に類似した材料で充填することによって製造される。
【0033】
[033]
いくつかの実施形態では、ファントム200は変形可能である。ファントム200の変形は、OAR102および/または標的104の動きをモデリングすることを可能にする。ファントム200の変形によってモデリングされるOAR102および/または標的104の動きの原因には、例えば、呼吸、膀胱および/または腸の空にすること、膀胱および/または腸の充填のような生理学的プロセス;患者の体重減少または体重増加;疾患の進行による標的104の成長;放射線治療の成功による標的104の収縮、などが含まれる。ファントム200は、1つまたはそれ以上の変形可能な材料(例えばエラストマー材料)を用いてファントムを製造し、部分202、204の動きを引き起こすようにファントムに力を加えることによって、OAR102および/または標的104の実際の動きを正確に反映するように変形させることができる。部分202、204のいずれか一方または両方が変形可能である。
【0034】
[034]
いくつかの実施形態では、ファントム200の変形は、1つまたはそれ以上のスマート材料を使用してファントムを製造することによって達成される。スマート材料とは、外部からの刺激にさらされたときに、予測可能で制御可能な形状の変化を示す材料のことである。例えば、湿度、温度、光、電場、磁場などの刺激を受けると形状が変化するスマート材料がある。さらに、付加製造プロセスで使用できるスマート材料である、いわゆる「4Dプリンティング」材料も数多く存在する。スマート材料および/またはそれに適用される刺激の特性(例えば、振幅、周波数など)は、OAR102および/または標的104の動きをモデリングする方法でファントム200を変形させるように選択することができる。部分202、204のいずれか一方または両方が、スマート材料により構成することができる。
【0035】
[035]
ファントム200は、複数の放射線量計を備える。線量計は、ファントム200内に配置する。より詳細には、複数の線量計は、ファントム200の内部容積全体に分布させる。これにより、空間内の複数の点で放射線量を測定することができ、これにより、ファントム200が受ける線量の空間分布を決定することができる。これにより、ファントム200は、放射線治療中にOAR102および標的104が受けるであろう線量を正確に予測することができる。また、線量計は、ファントム200の外面に配置してもよい。線量計は、放射線量を測定することができる任意の適切な装置により構成することができる。例えば、線量計は、金属酸化物半導体電界効果トランジスタ(MOSFET)線量計のような電子線量計を含み得る。代替的または追加的に、線量計は、熱発光線量計(TLD)、または放射線に曝露されたときに変化する性質(例えば、色)を有する化学物質を含むものでもよい。
【0036】
[036]
図2Bは、
図2Aのファントム200内の線量計206の配置を例示する概略図である。
図2Bは、線量計206の空間的分布を見ることができるように、部分202および204を断面で示す。
図2Bに示すように、複数の線量計206がファントム200の各部分202,204の内部容積全体に分布している。線量計206は、ファントム200の内部容積全体に一様に分布してもよい。例えば、
図2Bでは、線量計206は、破線で図示された3次元グリッドのノード上に配置されている。しかし、線量計206は、ファントム200の内部容積全体に一様に分布している必要はない。例えば、単位体積当たりの線量計206の数がより多い方が、より高い空間分解能で線量を測定することが望まれる領域(例えば、OAR102と標的104の境界付近)で使用され、単位体積当たりの線量計206の数がより少ない方が、他の場所で使用されてもよい。別の例として、線量計の不均一な分布により、ファントム200を変形させることとなってもよい。線量計206は、付加製造プロセス中にファントム200内に自動的に配置されてもよいし、付加製造プロセスが完了した後にファントムに追加されてもよい。
【0037】
[037]
上述したファントムは、様々な品質保証試験に使用することができる。放射線治療の分野では、品質保証(QA)とは、一般的に患者が処方された放射線量を確実に受け取るための手順を指す。
【0038】
[038]
図3は、ファントムが使用可能な品質保証試験方法300の一例を示す図である。ステップ302では、患者の関心領域(ROI)の医用画像に基づくファントムが生成または得られる。ROIは、放射線治療によって治療される標的領域と、放射線治療が回避されるべき臓器(OAR)を含む非標的領域とを含む。ファントムは、本明細書に記載されているような3D印刷技術または他の付加製造プロセスによって製造することができる。ファントムは、放射線治療を受ける患者の一部と同様の方法で変形可能であり、これは、放射線カウチ上で患者を位置決めまたは再位置決めすること、または、呼吸等を介して患者の他の動きまたは変形させることを含む。例示的な実施形態では、ファントムは、それに含まれるか、またはそれに分布される複数の放射線量計を含むことができる。
【0039】
[039]
ステップ304では、ファントムは、患者の標的領域または非標的領域の少なくとも一方または両方の変形をモデリングするように変形する。この変形は、患者の対応する領域の予想された、予測された、または測定された変形に類似するようにファントムを圧縮、伸張、捻じ曲げ、またはその他の方法で変形させるように、ファントムに物理的な力を加えることを含む。例示的な実施形態では、ファントムは、外部刺激に曝されたときに形状の変化を示す「スマート」材料を含むことができ、この場合、ファントムを変形させることは、外部刺激をスマート材料に与えることである。
【0040】
[040]
ステップ306では、所定の放射線量に幾何学的変換を適用するようにして、歪んだ放射線量を計算する。所定の放射線量は、患者のROIに送達される放射線の意図した空間的分布を定義する。所定の放射線量は、スウェーデンのエレクタAB社から入手可能なモナコ治療計画システム(TPS)のモンテカルロ線量計算技術を使用して作成されるように、患者に対する治療計画の一部として含めることができる。所定の放射線量の放射線の意図した空間分布を幾何学的に変換する。
【0041】
[041]
例示的な実施例では、幾何学的変換は、(1)ファントムを変形させる前に、ファントムの画像を取得すること;(2)変形したファントムの画像を取得すること;(3)変形していないファントムの画像と変形したファントムの画像とに基づいて幾何学的変換を計算することにより生成することができる、変形行列を適用することを任意に含む。
【0042】
[042]
例えば、変形していないファントムの画像および変形したファントムの画像はそれぞれ複数のボクセルを含み、幾何学的変換を計算することは、ファントムの画像内の各ボクセルを変形したファントムの画像内の対応するボクセルにマッピングする変形ベクトル場行列を計算するための変形可能な画像レジストレーションを実行することを含む。
【0043】
[043]
ステップ308では、歪んだ放射線量を送達するために放射線治療装置を構成するための放射線治療計画は、歪んだ放射線量を生成するために適用されるモンテカルロ線量計算技術を使用すること、例えば、スウェーデンのエレクタAB社から入手可能なモナコ治療計画システム(TPS)を使用するようにして生成する。
【0044】
[044]
ステップ310では、放射線治療計画に従って放射線治療装置を操作して放射線が変形ファントムに照射された場合のように、変形ファントムが受ける放射線量分布の測定値を獲得する。このような測定は、変形したファントム内に含まれているか、または分布している複数の線量計を用いて得ることができる。
【0045】
[045]
ステップ312では、測定された放射線量分布を所定の放射線量と比較することにより、放射線治療計画を検証する。これは、測定された放射線量分布と所定の放射線量分布との間の類似度または差のメトリックを計算し、測定された放射線量分布と所定の放射線量分布との間の類似度が所定の類似充足値を超えた場合、または測定された放射線量分布と所定の放射線量分布との間の差が所定の差充足値未満である場合に、治療計画を肯定することを含む。1つまたはそれ以上の測定基準は、追加的または代替的に、例えば、1つまたはそれ以上のリスク臓器(OAR)の集約的または他の放射線被曝が最大許容値を超えた場合に、放射線治療計画を検証するために使用することができる。
【0046】
[046]
異なる変形がステップ304で変形可能なファントムに適用される場合には、ステップ304からステップ312が、任意に繰り返される。ステップ304で適用される異なる変形を用いてステップ312で検証することにより、ステップ314では、放射線治療計画が有効である標的領域または非標的領域の少なくとも1つの最大許容変形を決定する。例えば、再帰的に増加する一連の変形をステップ304で増加させる場合、変形が所定の値を超えて増加すると、測定された放射線量と所定の放射線量との間の類似度メトリックは、最終的に所定の許容可能な類似度限界を下回ることができ、または差分メトリックは、再帰的に増加する一連の変形の中の前の(許容可能な)変形を最大許容可能な変形として宣言することができるように、最終的に所定の許容可能な差分限界を超えることができる。
【0047】
[047]
図4は、線量マッピングアルゴリズムを検証する方法400の一例を示す。ステップ402では、画像処理回路が、撮像モダリティを用いて得られたボクセルデータを含む医用画像データベースにアクセスするようにして、患者のROIを表す第1の医用画像にアクセスする。ステップ404では、第2の医用画像を生成するために第1の医用画像に第1の変形ベクトル場を適用するようにして、第1の医用画像を用いて第2の医用画像を生成する。ステップ405Aでは、第1の医用画像にしたがって、第1のファントムが得られ、提供され、または生成される(例えば、3D印刷技術または他の付加製造プロセスを使用することを含む)。ステップ405Bでは、(変形された)第2の医用画像にしたがって、(変形された)第2のファントムが得られ、提供され、または生成される(例えば、3D印刷技術または他の付加製造プロセスを使用することを含む)。ステップ406では、少なくとも1つのファントムによって受信された放射線量分布を、例えば、放射線治療装置を操作することによってファントムに送達された放射線に応答して、例えば、放射線治療計画に従って測定する。一実施例では、少なくとも1つのファントムは、第1のファントムおよび第2のファントムを含む。例示的な実施形態では、少なくとも1つのファントムは、3D印刷技術または他の付加的プロセスを使用して製造することができ、例えば、複数の線量計が含まれる、またはそれに分布されるようにして製造することができる。ステップ408では、画像処理回路は、検証されるべき線量歪みまたはマッピング技術を使用して、測定された放射線量分布に第1の変形ベクトル場を適用することにより、例えば、歪んだ放射線量を計算するために使用される。ステップ410では、検証されるべき線量歪みまたはマッピング技術の精度または他の属性は、計算された線量分布を、同じファントム上で測定された放射線量分布と比較することによって検証される。これは、ボクセルごとのまたは集合的な複合類似度または差分メトリックを計算し、類似度または差分メトリックを対応する閾値と比較して、メトリックが許容可能な範囲内に収まるかどうかを判断して、線量歪みまたはマッピング技術の精度を検証することを含む。追加的または代替的に、ボクセルごとの検証と複合体の検証の組み合わせを使用することができ、例えば、任意のボクセルの差または誤差のメトリックが対応する第1の許容範囲から外れた場合、または複合体の差または誤差のメトリックが対応する第2の許容範囲から外れた場合、線量歪みまたはマッピング技術は無効であると宣言することができる。さらに、追加的または代替的に、より複雑な検証規則のセットを適用することができ、例えば、歪んだ放射線量分布が測定または計算されている異なる密度領域に対して、統計的メトリックを異なるように計算することができる。このような濃度情報は、例えば、医用画像データから取得することができる。
【0048】
[048]
図5は、線量歪みおよび変形可能な画像登録の累積精度を任意に検証するさらなる方法500の一例を示す。ステップ402からステップ410は、
図4により上述したように実行する。
【0049】
[049]
ステップ512では、任意に、第1の医用画像および第2の医用画像上で変形可能な画像登録を実行することによって、第2の変形ベクトル場を生成する。これは、第1の医用画像内の個別のボクセル(例えば、個別のボクセルのそれぞれ)を第2の医用画像内の対応するボクセルにマッピングすることを含む。
【0050】
[050]
ステップ514では、任意に、歪んだ放射線量分布は、例えば、ステップ410で生成された第2の変形ベクトル場を適用することによって計算される。
【0051】
[051]
ステップ516では、任意に、第2の変形ベクトル場を生成するために使用される第1の医用画像および第2の医用画像の変形可能な画像登録と、ステップ414で計算された歪んだ放射線量分布の累積精度の検証を行う。この検証では、ステップ406での測定された放射線量分布を、変形可能な画像登録に基づく第2の変形ベクトル場を用いてステップ414で計算された歪んだ放射線量と比較することができる。本明細書で他の場所で説明されるように、この検証は、ボクセルごとのまたはそれらの間の集約複合類似度または差分メトリックを計算し、類似度または差分メトリックを対応する閾値と比較して、メトリックが線量歪みまたはマッピング技術の精度を検証するために許容可能な範囲内に収まるかどうかを決定することを含む。ボクセルごとの検証と複合体の検証の組み合わせは、追加的または代替的に使用することができ、例えば、任意のボクセルの差または誤差のメトリックが対応する第1の許容範囲から外れた場合、または複合体の差または誤差のメトリックが対応する第2の許容範囲から外れた場合、線量歪みまたはマッピング技術は無効であると宣言することができる。さらに、追加的または代替的に、より複雑な検証規則のセットを適用することができ、例えば、歪んだ放射線量分布が測定または計算されている異なる密度領域に対して、統計的メトリックを異なるように計算することができる。このような濃度情報は、例えば、医用画像データから取得することができる。
【0052】
[052]
図6は、本明細書で説明される方法の1つまたはそれ以上を実施することができる装置またはマシン1000の実施形態のブロック図を一実施例として示す。本明細書に記載された画像処理回路の1つまたはそれ以上のアイテムは、マシン1000によって実装される。マシン1000は、スタンドアロンデバイスとして動作することができ、または他のマシンに接続されても(例えば、ネットワーク化されても)よい。1つまたはそれ以上の実施形態において、画像処理回路は、マシン1000の1つまたはそれ以上のアイテムを含むことができる。ネットワーク化された配置では、マシン1000は、サーバー、またはサーバークライアントネットワーク環境のサーバーのクライアントマシンの容量で、またはピアツーピア(または分散)ネットワーク環境のピアマシンとして動作する。マシンは、パーソナルコンピュータ(PC)、タブレットPC、セットトップボックス(STB)、携帯情報端末(PDA)、携帯電話、ウェブアプライアンス、ネットワークルーター、スイッチまたはブリッジ、またはそのマシンが実行するアクションを指定する命令(シーケンシャルまたはそれ以外)を実行できるマシンであることができる。さらに、単一のマシンのみが示されているが、「マシン」という用語は、本明細書で説明する方法論の1つまたは複数を実行する命令のセット(または複数のセット)を個別または共同で実行するマシンの集合も含むものとする。
【0053】
[053]
例示的なマシン1000は、バス1008を介して互いに接続されているプロセッシング回路1002(例えば、中央処理装置(CPU)、グラフィック処理装置(GPU)、特定用途向け集積回路、1つまたはそれ以上のトランジスタ、抵抗器、コンデンサ、インダクタ、ダイオード、論理ゲート、マルチプレクサ、バッファ、変調器、復調器、無線装置(例えば、送信または受信無線装置またはトランシーバのような回路)、センサ1021(例えば、エネルギー(光、熱、電気、機械、またはその他のエネルギー)のあるフォームを他のフォームに変換するトランスデューサーなど、またはそれらの組み合わせ)、メインメモリ1004、およびスタティックメモリを含み得る。記載された方法に関連するまたはデータム(datum)又はデータ(data)は、そのようなメモリに格納され、またはそのようなメモリから取り出され、本明細書に記載された方法を実行するために必要に応じて初期化又は更新され得る。マシン1000(例えば、コンピュータシステム)は、ビデオディスプレイユニット1010(例えば、液晶ディスプレイ(LCD)または陰極線管(CRT))をさらに含み得る。マシン1000は、英数字入力装置1012(例えば、キーボード)、ユーザインターフェース(UI)ナビゲーション装置1014(例えば、マウス)、ディスクドライブまたは大容量記憶装置1016、信号生成装置1018(例えば、スピーカー)およびネットワークインターフェース装置1020も含み得る。
【0054】
[054]
ディスクドライブユニット1016は、本明細書で説明される方法または機能のうちのいずれか1つまたはそれ以上によって具現化または利用される命令およびデータ構造(例えば、ソフトウェア)1024の1つまたはそれ以上のセットが記憶される機械可読媒体1022を含み得る。命令1024は、また、マシン1000、メインメモリ1004およびプロセッサ1002による実行中に、完全にまたは少なくとも部分的に、メインメモリ1004および/またはプロセッサ1002内に常駐し、機械可読媒体を構成することができる。
【0055】
[055]
図示されたマシン1000は、出力コントローラ1028を含み得る。出力コントローラ1028は、マシン1000への、またはマシン1000からのデータフローを管理する。出力コントローラ1028はデバイスコントローラと呼ばれ、出力コントローラ1028と直接相互に作用するソフトウェアはデバイスドライバと呼ばれる。
【0056】
[056]
機械可読媒体1022は、例示的な実施形態では単一の媒体であるように示されているが、用語「機械可読媒体」は、1つまたはそれ以上の命令またはデータ構造を格納する、単一の媒体または複数の媒体(例えば、集中型または分散型データベース、および/または関連するキャッシュおよびサーバー)を含み得る。「機械可読媒体」という用語は、機械による実行のための命令を格納、符号化、または搬送することができ、機械に本発明の方法論の1つまたはそれ以上を実行させることができ、またはそのような命令によって利用される、または関連するデータ構造を保存、エンコード、または実行することができる、いかなる有形媒体も含むものとする。したがって、「機械可読媒体」という用語は、ソリッドステートメモリ、光学および磁気媒体を含むと解されるが、これらに限定されない。機械可読媒体の特定の例は、半導体メモリデバイスを含む不揮発性メモリ、たとえば、消去可能プログラマブル読み取り専用メモリ(EPROM)、電気的消去可能プログラマブル読み取り専用メモリ(EEPROM)、およびフラッシュメモリデバイス、内蔵ハードディスクやリムーバブルディスクなどの磁気ディスク。光磁気ディスク、およびCD−ROMおよびDVD−ROMディスクを含む。
【0057】
[057]
命令1024は、さらに、伝送媒体を使用して通信ネットワーク1026を介して送信または受信され得る。命令1024は、ネットワークインターフェース装置1020や、いくつかの周知の転送プロトコル(例えば、HTTP)のうちのいずれか1つを使用して送信され得る。通信ネットワークの例には、ローカルエリアネットワーク(「LAN」)、ワイドエリアネットワーク(「WAN」)、インターネット、携帯電話ネットワーク、プレインオールドテレフォン(POTS)ネットワーク、および無線データネットワーク(例えば、WiFi、WiMaxネットワークなど)が含まれる。「伝送媒体」という用語は、機械による実行のための命令を保存、エンコード、または実行できる無形媒体を含み、そのようなソフトウェアの通信を促進するためのデジタルまたはアナログ通信信号または他の無形媒体を含むものとする。
【0058】
[058]
図7は、患者、患者の一部、または、患者または患者の一部を表す標的物体を含む「ファントム」に放射線療法を提供するための例示的な放射線治療システム7100を示す。放射線治療システム7100は、画像処理装置7112を含む。画像処理装置7112は、ネットワーク7120に接続され得る。ネットワーク7120は、インターネット7122に接続され得る。ネットワーク7120は、画像処理装置7112を、データベース7124、病院データベース7126、腫瘍学情報システム(OIS)7128、放射線治療装置7130、画像取得装置7132、表示装置7134、ユーザインターフェース7136のうちの1つまたはそれ以上のものに接続することができる。画像処理装置7112は、放射線治療装置7130によって使用される放射線療法治療計画7142を生成するように構成することができる。
【0059】
[059]
画像処理装置7112は、メモリ装置7116、プロセッサ7114、および通信インターフェース7118を含むことができる。メモリ装置7116は、オペレーティングシステム7143、放射線療法治療計画7142(例えば、オリジナルの治療計画、適合された治療計画など)、ソフトウェアプログラム7144(例えば、人工知能、ディープラーニング、ニューラルネットワーク、放射線治療計画ソフトウェア)、およびプロセッサ7114によって実行される他の任意のコンピュータ実行可能命令のような、コンピュータ実行可能命令を格納することができる。一実施形態では、ソフトウェアプログラム7144は、疑似CT画像のような合成画像を生成することによって、1つのフォーマット(例えば、MRI)の医用画像を別のフォーマット(例えば、CT)に変換することができる。例えば、ソフトウェアプログラム7144は、あるモダリティ(例えば、MRI画像)の医用画像7146を異なるモダリティの合成画像(例えば、疑似CT画像)に変換するための予測モデルを訓練する画像処理プログラムを含むことができ、あるいは、訓練された予測モデルは、CT画像をMRI画像に変換することができる。別の実施形態では、ソフトウェアプログラム7144は、対応する画像ボクセルおよび線量ボクセルがネットワークによって適切に関連付けられるように、患者画像(例えば、CT画像またはMR画像)をその患者の線量分布(画像としても表される)に登録することができる。さらに別の実施形態では、ソフトウェアプログラム7144は、画像情報のいくつかの態様を強調する画像の署名付き距離関数または処理されたバージョンのような患者画像の関数を代替してもよい。そのような関数は、ボクセルテクスチャのエッジや違い、またはニューラルネットワークの学習に役立つその他の構造的側面を強調する。別の実施形態では、ソフトウェアプログラム7144は、線量情報のいくつかの側面を強調する線量分布の関数を代替してもよい。そのような関数は、標的の周りの急勾配、またはニューラルネットワークの学習に役立つその他の構造的側面を強調する。メモリ装置7116は、医用画像7146、患者データ7145、および放射線療法治療計画7142を作成および実施するために必要な他のデータを含むデータを格納することができる。
【0060】
[060]
ソフトウェアプログラム7144を格納するメモリ7116に加えて、ソフトウェアプログラム7144は、ハードドライブ、コンピュータディスク、CD−ROM、DVD、HD、ブルーレイDVD、USBフラッシュドライブ、SDカード、メモリスティック、またはその他の適切なメディアのようなリムーバブルコンピュータ媒体に格納することができ、画像処理装置7112にダウンロードされたときソフトウェアプログラム7144は、画像プロセッサ71714によって実行することができる。
【0061】
[061]
プロセッサ7114は、メモリ装置7116に通信可能に結合されることができ、プロセッサ7114は、そこに格納されたコンピュータ実行可能命令を実行するように構成することができる。プロセッサ7114は、医用画像7146をメモリ7116に送信または受信することができる。例えば、プロセッサ7114は、通信インターフェース7118およびネットワーク7120を介して画像取得装置7132から医用画像7146を受信して、メモリ7116に格納することができる。プロセッサ7114は、また、メモリ7116に格納された医用画像7146を、通信インターフェース7118を介して、ネットワーク7120に送信し、データベース7124または病院データベース7126のいずれかに格納される。
【0062】
[062]
さらに、プロセッサ7114は、医用画像7146および患者データ7145と共にソフトウェアプログラム7144(例えば、治療計画ソフトウェア)を利用して、放射線療法治療計画42を作成することができる。医用画像7146は、患者の解剖学的領域、器官、または関心セグメンテーションデータのボリュームに関連する画像データのような情報を含むことができる。患者データ7145は、(1)機能臓器モデリングデータ(例えば、直列対並列臓器、適切な用量反応モデルなど)、(2)放射線量データ(例えば、線量−体積ヒストグラム(DVH)情報)、または(3)患者および治療コースに関する他の臨床情報(例えば、他の手術、化学療法、以前の放射線療法など)のような情報を含むことができる。
【0063】
[063]
さらに、プロセッサ7114は、ソフトウェアプログラムを利用して、例えば、ニューラルネットワークモデルによって使用される更新されたパラメータなどの中間データを生成することができ、または、中間の2Dまたは3D画像を生成することができ、その後、それらはメモリ7116に記憶される。その後、プロセッサ7114は、実行可能な放射線療法治療計画7142を、通信インターフェース7118とネットワーク7120を介して、放射線治療装置30に送信することができ、そこで放射線療法計画は、放射線で患者を治療するために使用される。さらに、プロセッサ7114は、ソフトウェアプログラム7144を実行して、画像変換、画像セグメンテーション、ディープラーニング、ニューラルネットワーク、および人工知能のような機能を実装することができる。例えば、プロセッサ7114は、医用画像を訓練または輪郭化するソフトウェアプログラム7144を実行することができ、そのようなソフトウェア7144は、実行されると、境界検出器を訓練し、形状辞書を利用することができる。
【0064】
[064]
プロセッサ7114は、例えば、マイクロプロセッサ、中央処理装置(CPU)、グラフィックス・プロセッシング・ユニット(GPU:Graphics Processing Unit)、および/またはアクセラレーテッド・プロセッシング・ユニット(APU:Accelerated Processing Unit)のような1つまたはそれ以上の汎用処理装置を含む処理装置であってもよい。詳細には、いくつかの実施形態では、プロセッサ7114は、複合命令セットコンピューティング(CISC:complex instruction set computing)マイクロプロセッサ、縮小命令セットコンピューティング(RISC:reduced instruction set computing)マイクロプロセッサ、超長命令ワード(VLIW:very long instruction Word)マイクロプロセッサ、他の命令セットを実装するプロセッサ、または命令セットの組み合わせを実装するプロセッサであってもよい。プロセッサ7114は、特定用途向け集積回路(ASIC:application specific integrated circuit)、フィールドプログラマブルゲートアレイ(FPGA:field programmable gate array)、デジタルシグナルプロセッサ(DSP:digital signal processor)、システムオンチップ(SoC:System on a Chip)、またはその他の適切なプロセッサのような1つまたはそれ以上の専用処理装置によって実装されることができる。当業者に理解されるように、いくつかの実施形態では、プロセッサ7114は、汎用プロセッサではなく、専用プロセッサであってもよい。プロセッサ7114は、Intel(登録商標)によって製造されたPentium(登録商標)、Core(登録商標)、Xeon(登録商標)、またはItanium(登録商標)ファミリー、AMD(登録商標)によって製造されたTurion(登録商標)、Athlon(登録商標)、Sempron(登録商標)、Opteron(登録商標)、FX(登録商標)、Phenon(登録商標)ファミリー、Sun Microsystemsによって製造された様々なプロセッサのいずれか、または他の適切なプロセッサのような、1つまたはそれ以上の既知の処理装置を含み得る。プロセッサ7114は、また、Nvidia(登録商標)によって製造されたGeForce(登録商標)、Quadro(登録商標)、Tesla(登録商標)ファミリー、Intel(登録商標)によって製造されたGMA、Iris(登録商標)ファミリー、またはAMD(登録商標)によって製造されたRadeon(登録商標)ファミリーのような、グラフィック処理ユニットを含み得る。プロセッサ7114は、また、Intel(登録商標)によって製造されたXeon Phi(登録商標)ファミリーのような、加速処理装置を含み得る。開示された実施形態は、いかなるタイプのプロセッサに限定されるものではなく、大量の撮像データを識別、分析、維持、生成、および/または提供するというコンピューティング命令を満たすように構成されている。さらに、「プロセッサ」という用語は、複数のプロセッサ、例えばマルチコア設計またはそれぞれがマルチコア設計を有する複数のプロセッサを含むことができる。プロセッサ7114は、本開示の例示的な実施形態による様々な動作、プロセス、および方法を実行するために、例えば、メモリ7116に格納されたコンピュータプログラム命令のシーケンスを実行するように構成され得る。
【0065】
[065]
メモリ装置7116は、医用画像7146を格納することができる。いくつかの実施形態では、医用画像7146は、1つまたはそれ以上のMRI画像(例えば、2DMRI、3DMRI、2DストリーミングMRI、4DMRI、4D容積測定MRI、4DシネMRI、など)、機能的MRI画像(例えば、fMRI、DCE−MRI、拡散MRI)、コンピュータ断層撮影(CT)画像(例えば、2DCT、コーンビームCT、3DCT、4DCT)、超音波画像(例えば、2D超音波、3D超音波、4D超音波)、陽電子放射断層撮影(PET)画像、X線画像、X線透視画像、放射線治療ポータル画像、単一光放出コンピュータ断層撮影(SPECT)画像、コンピュータ生成合成画像(例えば、疑似CT画像)など、を含み得る。さらに、医用画像7146は、また、医用画像データ、例えば、トレーニング画像、およびグラウンドトゥルース画像、等高線画像、および線量画像を含み得る。一実施形態では、医用画像7146は、画像取得装置7132から受け取ることができる。したがって、画像取得装置7132は、MRI撮像装置、CT撮像装置、PET撮像装置、超音波撮像装置、蛍光透視装置、SPECT撮像装置、統合線形加速器およびMRI撮像装置、または、患者の医用画像を取得するための他の医療撮像装置を含み得る。医用画像7146は、画像処理装置7112が、開示された実施形態による動作を実行するために使用することができる任意のタイプのデータまたは任意のタイプのフォーマットで受け取られ、格納され得る。メモリ装置7116は、読み取り専用メモリ(ROM)、相変化ランダムアクセスメモリ(PRAM)、スタティックランダムアクセスメモリ(SRAM)、フラッシュメモリ、ランダムアクセスメモリ(RAM)、シンクロナスDRAM(SDRAM)のようなダイナミックランダムアクセスメモリ(DRAM)、電気的に消去可能なプログラム可能な読み取り専用メモリ(EEPROM)、スタティックメモリ(例えば、フラッシュメモリ、フラッシュディスク、スタティックランダムアクセスメモリ)、および、キャッシュ、レジスタ、コンパクトディスク読み取り専用メモリ(CD−ROM)、デジタル多用途ディスク(DVD)、またはその他の光学式ストレージ、カセットテープ、その他の磁気記憶装置のようなその他のタイプのランダムアクセスメモリ、のような非一時的なコンピュータ可読媒体、または、画像、データ、または、プロセッサ7114、または任意の他のタイプのコンピュータ装置によりアクセスすることができる(例えば、任意のフォーマットで格納される)コンピュータ実行可能命令を含む情報を格納するために使用できる他の任意の非一時的媒体であり得る。コンピュータプログラム命令は、プロセッサ7114によってアクセスされ、ROMまたは他の任意の適切なメモリ位置から読み取られ、プロセッサ7114による実行のためにRAMにロードされ得る。例えば、メモリ7116は、1つまたはそれ以上のソフトウェアアプリケーションを格納することができる。メモリ7116に格納されたソフトウェアアプリケーションは、例えば、一般的なコンピュータシステムのためのオペレーティングシステム7143およびソフトウェア制御装置を含み得る。さらに、メモリ7116は、プロセッサ7114によって実行可能なソフトウェアアプリケーション全体またはソフトウェアアプリケーションの一部のみを格納することができる。例えば、メモリ装置7116は、1つまたはそれ以上の放射線療法治療計画7142を格納することができる。
【0066】
[066]
画像処理装置7112は、プロセッサ7114およびメモリ7116に通信可能に結合された通信インターフェース7118を介してネットワーク7120と通信することができる。通信インターフェース7118は、画像処理装置7112と放射線治療システム7100の構成要素との間の通信接続を提供する(例えば、外部装置とのデータの交換を可能にする)ことができる。例えば、通信インターフェース7118は、いくつかの実施形態では、ユーザインターフェース7136に接続するための適切なインターフェース回路を有することができ、それは、ユーザが放射線治療システム7100に情報を入力することができる、ハードウェアキーボード、キーパッド、またはタッチスクリーンとすることができる。
【0067】
[067]
通信インターフェース7118は、例えば、ネットワークアダプタ、ケーブルコネクタ、シリアルコネクタ、USBコネクタ、パラレルコネクタ、高速データ伝送アダプタ(例えば、ファイバ、USB3.0、サンダーボルト、など)、無線ネットワークアダプタ(例えば、WiFiアダプタのような)、電気通信アダプタ(例えば、3G、4G/LTE、など)などを含み得る。通信インターフェース7118は、画像処理装置7112が、ネットワーク7120を介して遠隔配置された構成要素のような、他の機械および装置と通信することを可能にする1つまたはそれ以上のデジタルおよび/またはアナログ通信装置を含み得る。
【0068】
[068]
ネットワーク7120は、ローカルエリアネットワーク(LAN)、無線ネットワーク、クラウドコンピューティング環境(例えば、サービスとしてのソフトウェア、サービスとしてのプラットフォーム、サービスとしてのインフラストラクチャ、など)、クライアントサーバー、広域ネットワーク(WAN)など機能を提供することができる。例えば、ネットワーク7120は、他のシステムS1(7138)、S2(7140)、およびS3(7141)を含むLANまたはWANとすることができる。システムS1、S2、およびS3は、画像処理装置7112と同一であってもよく、または異なるシステムであってもよい。いくつかの実施形態では、ネットワーク7120内の1つまたはそれ以上のシステムは、本明細書で説明される実施形態を協調的に実行する分散コンピューティング/シミュレーション環境を形成することができる。いくつかの実施形態では、1つまたはそれ以上のシステムS1、S2、およびS3は、CT画像(例えば、医用画像46)を取得するCTスキャナを含むことができる。さらに、ネットワーク20をインターネット22に接続して、インターネット上で遠隔地にあるサーバーおよびクライアントと通信することができる。
【0069】
[069]
したがって、ネットワーク7120は、画像処理装置7112と、OIS7128、放射線治療装置7130、および画像取得装置7132のような多くの他の様々なシステムおよび装置との間のデータ伝送を可能にすることができる。さらに、OIS7128および/または画像取得装置7132によって生成されたデータは、メモリ7116、データベース7124、および/または病院データベース7126に格納され得る。データは、必要に応じて、プロセッサ7114によりアクセスされるために、ネットワーク7120を介して通信インターフェース7118を介して送信/受信することができる。
【0070】
[070]
画像処理装置7112は、ネットワーク7120を介してデータベース7124と通信して、データベース7124に格納された複数の様々なタイプのデータを送受信することができる。例えば、データベース7124は、放射線治療装置7130、画像取得装置7132、または放射線療法に関連する他の機械に関連する情報である機械データを含み得る。マシンデータ情報は、放射線ビームサイズ、アーク配置、ビームオン/オフ時間、マシンパラメータ、セグメント、マルチリーフコリメータ(MLC)構成、ガントリ速度、MRIパルスシーケンスなどが含まれ得る。データベース7124は、記憶装置であり得、適切なデータベース管理ソフトウェアプログラムを備え得る。当業者は、データベース7124が、中央にまたは分散して配置された複数の装置を含み得ることを理解するであろう。
【0071】
[071]
いくつかの実施形態では、データベース24は、プロセッサ可読記憶媒体(図示せず)を含み得る。一実施形態におけるプロセッサ可読記憶媒体は単一の媒体であり得るが、用語「プロセッサ可読記憶媒体」は、1つまたはそれ以上のコンピュータ実行可能命令またはデータのセットを格納する単一の媒体または複数の媒体(例えば、集中型または分散型データベース、および/または関連するキャッシュおよびサーバー)と解釈されるべきである。用語「プロセッサ可読記憶媒体」は、プロセッサによる実行のための命令のセットを格納または符号化することができ、かつ、プロセッサに本開示の1つまたはそれ以上の方法論のいずれかを実行させる任意の媒体を含むと解釈されるものとする。したがって、用語「プロセッサ可読記憶媒体」は、固体メモリ、光学および磁気媒体を含むがこれらに限定されないものと解釈されるべきである。例えば、プロセッサ可読記憶媒体は、1つまたはそれ以上の揮発性、非一時的、または不揮発性の有形のコンピュータ可読媒体とすることができる。
【0072】
[072]
画像プロセッサ7114は、データベース7124と通信して、画像をメモリ7116に読み込むか、または画像をメモリ7116からデータベース7124に格納することができる。例えば、データベース7124は、データベース7124が画像取得装置7132から受信した複数の画像(例えば、3DMRI、4DMRI、2DMRIスライス画像、CT画像、2D透視画像、X線画像、MRスキャンまたはCTスキャンからの生データ、医学におけるデジタル画像および通信(DIMCOM)データ等)を格納するように構成されている。データベース7124は、ソフトウェアプログラム44を実行するとき、または放射線療法治療計画42を作成するときに、画像プロセッサ7114によって使用されるデータを格納することができる。データベース7124は、ネットワークによって学習されたモデルを構成するネットワークパラメータおよび結果として生じる予測データを含む、訓練されたニューラルネットワークによって生成されたデータを格納することができる。画像処理装置7112は、データベース7124、放射線治療装置7130(例えば、MRI−リニアック)、および/または画像取得装置7132のいずれかからの画像データ7146(例えば、2DMRIスライス画像、CT画像、2D蛍光透視画像、X線画像、3DMRI画像、4DMRI画像、など)を受け取り、治療計画7142を生成することができる。
【0073】
[073]
一実施形態では、放射線治療システム7100は、患者の医用画像(例えば、磁気共鳴画像法(MRI)画像、3DMRI、2DストリーミングMRI、4D容積測定MRI、コンピュータ断層撮影(CT)画像、コーンビームCT、陽電子放射断層撮影(PET)画像、機能的MRI画像(例えば、fMRI、DCE−MRIおよび拡散MRI)、X線画像、透視画像、超音波画像、放射線治療ポータル画像、シングルフォトエミッションコンピュータ断層撮影(SPECT)画像など)を取得できる画像取得装置7132を含むことができる。画像取得装置7132は、例えば、MRI撮像装置、CT撮像装置、PET撮像装置、超音波装置、蛍光透視装置、SPECT撮像装置、または、患者の1つまたはそれ以上の医用画像を取得するための他の任意の適切な医療撮像装置であり得る。画像取得装置7132によって取得された画像は、撮像データおよび/または試験データのいいずれかとしてデータベース7124内に格納することができる。例として、画像取得装置7132によって取得された画像は、また、画像処理装置7112によって、医用画像データ7146としてメモリ7116に格納することができる。
【0074】
[074]
一実施形態では、例えば、画像取得装置7132は、単一装置として放射線治療装置7130と一体化してもよい(例えば、「MRI−Linac」とも呼ばれる線形加速器と組み合わせたMRI装置)。このようなMRI−Linacを使用して、例えば、放射線療法治療計画7142に従って放射線治療を正確に所定の標的に向けるように、患者の標的器官または標的腫瘍の位置を決定することができる。
【0075】
[075]
画像取得装置7132は、関心領域(例えば、標的臓器、標的腫瘍、またはその両方)についての患者の解剖学的構造の1つまたはそれ以上の画像を取得するように構成されている。各画像、典型的には2D画像またはスライスは、1つまたはそれ以上のパラメータ(例えば、2Dスライスの厚さ、向き、および場所、など)を含むことができる。一実施形態では、画像取得装置7132は、任意の向きで2Dスライスを取得することができる。例えば、2Dスライスの方向には、矢状方向、冠状方向、または軸方向が含まれる。プロセッサ7114は、2Dスライスの厚さおよび/または向きなどの1つまたはそれ以上のパラメータを調整して、標的器官および/または標的腫瘍を含めることができる。一実施形態では、2Dスライスは、3DMRIボリュームなどの情報から決定することができる。そのような2Dスライスは、例えば、放射線治療装置7130を使用するとき、患者が放射線治療を受けているあいだ、「ほぼリアルタイム」で画像取得装置7132によって取得することができる。「ほぼリアルタイム」とは、少なくとも数ミリ秒以内にデータを取得することを意味する。
【0076】
[076]
画像処理装置7112は、1人またはそれ以上の患者のための放射線療法治療計画7142を生成および保存することができる。放射線療法治療計画7142は、各患者に適用される特定の放射線量に関する情報を提供することができる。放射線療法治療計画7142は、また、ビーム角、線量ヒストグラム、ボリューム情報、治療中に使用される放射線ビームの数、ビーム当たりの線量のような他の放射線療法情報を含み得る。
【0077】
[077]
画像プロセッサ7114は、スウェーデンのストックホルムにあるエレクタAB社によって製造されたMonaco(登録商標)のような治療計画ソフトウェアのようなソフトウェアプログラム44を使用することにより、放射線療法治療計画7142を生成することができる。放射線療法治療計画7142を生成するために、画像プロセッサ7114は、画像取得装置7132(例えば、CT装置、MRI装置、PET装置、X線装置、超音波装置、など)と通信して、患者の画像にアクセスし、かつ、腫瘍のような標的の輪郭を描くことができる。いくつかの実施形態において、腫瘍の周囲にある、または腫瘍のすぐ近くにある健康な組織のような1つまたはそれ以上のリスク臓器(OAR)の描写が必要になる場合がある。したがって、OARが標的腫瘍に近いときに、OARのセグメンテーションが行われる。さらに、標的腫瘍がOAR(例えば、膀胱および直腸に近い前立腺)に近い場合には、OARを腫瘍からセグメンテーションすることにより、放射線治療システム7100は、標的内だけでなくOAR内の線量分布を調べることができる。
【0078】
[078]
OARと区別して標的臓器または標的腫瘍の輪郭を描くためには、放射線治療を受けている患者のMRI画像、CT画像、PET画像、fMRI画像、X線画像、超音波画像、放射線治療ポータル画像、SPECT画像のような医用画像が、画像取得装置7132によって非侵襲的に取得され、身体の部分の内部構造を明らかにすることができる。医用画像からの情報に基づいて、関連する解剖学的部分の3D構造を取得することができる。さらに、治療計画プロセス中に、標的腫瘍の効率的な治療(例えば、標的腫瘍が効果的な治療のために十分な放射線量を受けるという)とOARへの低線量(例えば、OARが可能な限り低い放射線量を受けるという)との間のバランスを達成するために、多くのパラメータが考慮される。考慮され得る他のパラメータには、標的臓器および標的腫瘍の位置、OARの位置、OARに対する標的の動きが含まれる。例えば、三次元構造は、MRI又はCT画像の各二次元レイヤまたはスライス内の標的の輪郭を描くまたはOARの輪郭を描くこと、および各二次元レイヤまたはスライスの輪郭を結合することにより取得することができる。輪郭は、手動で(例えば、スウェーデンのストックホルムのエレクタAB社によって製造されたMONACO(登録商標)のようなプログラムを用いて医師、線量測定士、または医療従事者によって)または自動で(例えば、スウェーデンのストックホルムのエレクタAB社によって製造されたアトラスベースの自動セグメンテーションソフトウェアであるABAS(登録商標)を用いて)生成することができる。特定の実施形態では、標的腫瘍またはOARの3D構造は、治療計画ソフトウェアによって自動的に生成される。
【0079】
[079]
標的腫瘍とOARの位置を特定して輪郭を描いた後、線量測定士、医師、または医療従事者は、標的腫瘍に照射される放射線の線量と共に、腫瘍に近接したOAR(例えば、左右の耳下腺、視神経、目、水晶体、内耳、脊髄、脳幹、または他の解剖学的構造)が受ける可能性のある最大線量とを決定することができる。関連する解剖学的構造(例、標的腫瘍、OAR)の放射線量を決定した後、逆計画法(inverse planning)として知られるプロセスを実行して、望ましい放射線量分布を達成する1つまたはそれ以上の治療計画パラメータを決定することができる。治療計画パラメータの例には、(例えば、標的ボリュームの輪郭を定める、機密構造の輪郭を描く、などの)ボリューム描写パラメータ、標的腫瘍およびOARの周囲のマージン、ビーム角選択、コリメータ設定、および/またはビームオン時間が含まれる。逆計画プロセス中、医師は、OARが受ける可能性のある放射線量の境界を設定する線量制約パラメータを定めること(例えば、腫瘍標的への全線量と任意のOARへのゼロ線量を定めること;脊髄、脳幹、および視覚構造が、それぞれ、45Gy以下の線量、55Gy以下の線量、および54Gyより低い線量を受けると定めること)ができる。逆計画の結果は、メモリ7116またはデータベース7124に保存される放射線療法治療計画7142を構成することができる。これらの治療パラメータのいくつかは相関している可能性がある。例えば、治療計画を変更しようとして1つのパラメータ(例えば、標的腫瘍への線量を増やすなどのさまざまな目的の重み)を調整すると、少なくとも1つの他のパラメータに影響を与え、その結果、異なる治療計画が開発される可能性がある。したがって、画像処理装置7112は、放射線治療装置7130が患者に放射線療法治療を提供するために、これらのパラメータを有する調整された放射線療法治療計画42を生成する。
【0080】
[080]
さらに、放射線治療システム7100は、表示装置7134およびユーザインターフェース7136を含むことができる。表示装置7134は、医用画像、インターフェース情報、治療計画パラメータ(例えば、輪郭、線量、ビーム角、など)、治療計画、標的、標的の位置特定、および/または標的の追跡、または、ユーザへの適切な情報、を表示するように構成された1つまたはそれ以上の表示画面を含むことができる。ユーザインターフェース7136は、キーボード、キーパッド、タッチスクリーン、または、ユーザが放射線治療システム7100に情報を入力することができる任意のタイプのデバイスであり得る。または、表示装置7134およびユーザインターフェース7136は、タブレットコンピュータ、例えば、アップル社製のiPad(登録商標)、Lenovo社製のThinkpad(登録商標)、サムソン社製のGalaxy(登録商標)のようなデバイスに組み込むことができる。
【0081】
[081]
さらに、放射線治療システム7100のありとあらゆる構成要素は、仮想マシン(例えば、VMWare、Hyper−Vなど)として実装されてもよい。例えば、仮想マシンはハードウェアとして機能するソフトウェアであってもよい。したがって、仮想マシンは、ハードウェアとして一緒に機能する少なくとも1つまたはそれ以上の仮想プロセッサ、1つまたはそれ以上の仮想メモリ、および/または1つまたはそれ以上の仮想通信インターフェースを含むことができる。例えば、画像処理装置7112、OIS7128、画像取得装置7132は、仮想マシンとして実装されてもよい。利用可能な処理能力、メモリ、および計算能力が与えられるならば、放射線治療システム7100全体を仮想マシンとして実装することができる。
【0082】
[082]
図8は、X線源または線形加速器のような放射線源、カウチ8216、撮像検出器8214、および放射線治療出力8204を含む、例示的な放射線治療装置150を示す。放射線治療装置8202は、放射線ビーム8208を出射して患者に治療を提供するように構成されている。放射線治療出力8204は、マルチリーフコリメータ(MLC)のような1つまたはそれ以上の減衰器またはコリメータを含むことができる。
【0083】
[083]
図8において、患者は、治療カウチ8216により支持されて領域8212に配置され、放射線療法治療計画に従って放射線療法線量を受け取ることができる。放射線治療出力8204は、ガントリ8206または他の機械的支持体に載せられまたは取り付けられることができる。1つまたはそれ以上のシャーシモーター(図示せず)は、カウチ8216が治療領域に挿入されるとき、ガントリ8206と放射線治療出力8204をカウチ8216の周りで回転させることができる。一実施形態では、ガントリ8206は、カウチ8216が治療領域に挿入されるとき、カウチ8216の周りで連続的に回転されてもよい。別の実施形態では、カウチ8216が治療領域に挿入されるとき、ガントリ8206は所定の位置まで回転されてもよい。例えば、ガントリ8206は、軸(「A」)を中心に治療出力8204を回転させるように構成することができる。カウチ8216と放射線治療出力8204の両方は、横方向(「T」)に移動可能、横方向(「L」)に移動可能、または、横軸(「R」と表示)を中心とした回転のように1つまたは複数の周りの回転のように、患者の周りの他の位置に独立して移動可能である。1つまたは複数のアクチュエータ(図示せず)に通信可能に接続されたコントローラは、放射線療法治療計画に従って患者を放射線ビーム8208の位置に、または外に適切に配置するために、カウチ8216の動きまたは回転を制御することができる。カウチ8216とガントリ8206の両方が複数の自由度で互いに独立して移動可能であるので、放射線ビーム8208が腫瘍を正確に標的とすることができるように患者を配置することができる。
【0084】
[084]
図8に示す座標系(軸A、T、Lを含む)は、アイソセンタ8210に位置する原点を有する。アイソセンタは、放射線治療ビーム8208が、処方された放射線量を患者の上または内部の場所に送達するような、座標軸の原点と交差する場所として定義することができる。または、アイソセンタ8210は、ガントリ8206によって軸Aの周りに位置決めされた放射線治療出力8204の様々な回転位置について、放射線治療ビーム8208が患者と交差する場所として定義することができる。
【0085】
[085]
ガントリ8206は、また、取り付けられた撮像検出器8214を有し得る。撮像検出器8214は、好ましくは放射線源8204の反対側に配置され、一実施例では、撮像検出器8214は、治療ビーム8208のフィールド内に配置することができる。
【0086】
[086]
撮像検出器8214は、ガントリ8206上に、好ましくは、治療ビーム8208との位置合わせを維持するような、放射線治療出力8204の反対側に取り付けることができる。ガントリ8206が回転すると、撮像検出器8214が回転軸の周りを回転する。一実施形態では、撮像検出器8214は、フラットパネル検出器(例えば、直接検出器またはシンチレータ検出器)とすることができる。このようにして、撮像検出器8214を使用して、治療ビーム8208を監視することができ、または、撮像検出器8214を使用して、ポータルイメージングなどの患者の解剖学的構造を撮像することができる。放射線治療装置8202の制御回路は、システム8100内に統合されてもよいし、システムとは別個であってもよい。
【0087】
[087]
図示された実施形態では、カウチ8216、治療出力8204、またはガントリ8206のうちの1つまたは複数を自動的に配置することができ、治療出力8204は、特定の治療送出インスタンスの指定線量に従って治療ビーム8208を確立することができる。ガントリ8206、カウチ8216、または治療出力8204の1つまたはそれ以上の異なる向きまたは場所を使用するような放射線治療処置計画に従って、一連の治療送達を指定することができる。治療の提供は連続して行うことができるが、アイソセンタ8210のような患者の上または患者の内部の所望の治療軌跡で交差することができる。それにより、処方された累積線量の放射線療法を、治療部位の近くの組織への損傷が低減または回避しながら、治療部位に送達することができる。
【0088】
[088]
図8は、放射線治療出力を中心軸(例えば、軸「A」)の周りに回転させることができる構成を含む、患者に放射線治療を提供するように構成された放射線治療装置の一実施形態の概略を示す。他の放射線療法の出力構成を使用することができる。例えば、放射線治療出力は、複数の自由度を持つロボットアームまたはマニピュレータに取り付けることができる。更に別の実施形態では、治療出力を、患者から横方向に離れた領域に位置するように固定することができ、患者を支持するプラットフォームを使用して、放射線治療アイソセンタを患者内の指定された標的位置に整列させることができる。
【0089】
[089]
別の実施形態では、放射線治療装置を、線形加速器と画像取得装置との組み合わせとすることができる。いくつかの実施形態では、画像取得装置は、当業者によって認識されるように、MRI、X線、CT、CBCT、スパイラルCT、PET、SPECT、光断層撮影、蛍光イメージング、超音波イメージング、または放射線治療ポータルイメージング装置等、のような装置とすることができる。
【0090】
[090]
本明細書で使用されるように「その間が通信的に結合されている」とは、いずれかの結合上の実在物(entity)が、その間のアイテム(item)を介して通信しなければならず、それらの実在物(entity)は、アイテム(item)を介して通信しなければ相互に通信できないことを意味する。
【0091】
[091]
上記の詳細な説明は、詳細な説明の一部を形成する添付の図面への参照を含む。図面は、本発明を実施することができる特定の実施形態を、例示として示すものである。これらの実施形態は、本明細書では一般に「実施例」とも呼ばれる。そのような実施例は、図示または記載されたものに追加した要素を含むことができる。しかし、本願発明者らは、また、図示または記載されている要素のみが提供されている実施例を考慮している。さらに、本願発明者らは、また、特定の実施例(またはその1つまたは複数の態様)に関して、あるいは他の実施例(またはその1つまたは複数の態様)に関して示された、または説明された要素の任意の組合せまたは置換を用いる実施例を考慮している。
【0092】
[092]
本明細書と、参照により組み込まれた文書との間に一貫性のない用法がある場合、本明細書の用法が支配する。
【0093】
[093]
本明細書では、用語「a」または「an」は、特許文書で一般的であるように、本発明の態様の要素を導入するときに使用され、「少なくとも1つの」または「1つまたはそれ以上の」のいかなる他の例または使用法とは無関係に、1つまたはそれ以上の要素よりも1つまたはそれ以上を含む。本明細書では、用語「または(or)」は、「AまたはB(A or B」が、そうでないと示されない限り、「Aを含むがBを含まない(A but not B)」、「Bを含むがAを含まない(B but not A)」、「AおよびB(A and B)」を含むように、非排他的であることを指すために使用される。本文書において、用語「including(含む)」および「in which(その中で)」は、それぞれの用語「comprising(含む)」および「wherein(ここで)」の平易な英語の等価物として使用される。また、以下の請求項において、用語「including(含む)」および「comprising(含む)」は、オープンエンドであり、すなわち、請求項中のこのような用語の後に記載された要素に加えた要素を含むシステム、装置、成形品、組成物、製剤、またはプロセスは、依然としてその請求項の範囲内に含まれるものとみなされる。さらに、以下の請求項では、「第1の」、「第2の」、「第3の」などの用語は、単なるラベルとして使用されており、それらの対象に数値要件を課すことを意図していない。
【0094】
[094]
本明細書に記載された方法の実施例は、少なくとも部分的に機械的またはコンピュータ的に実施することができる。いくつかの実施例は、上記の実施例に記載されているような方法を実行するように電子デバイスを構成するために操作可能な命令をコード化したコンピュータ読み取り可能な媒体または機械読み取り可能な媒体を含むことができる。このような方法の実装は、マイクロコード、アセンブリ言語コード、より上位の言語コードなどのコードを含むことができる。このようなコードは、様々な方法を実行するためのコンピュータ読み取り可能な命令を含むことができる。コードは、コンピュータプログラム製品の一部を形成することができる。さらに、例示的な実施形態では、コードは、実行中または他の時間帯に、1つまたはそれ以上の揮発性、非一過性、または非揮発性の有形コンピュータ可読媒体に目に見える方法で記憶することができる。これらの有形のコンピュータ可読媒体の例としては、ハードディスク、取り外し可能な磁気ディスク、取り外し可能な光ディスク(例えば、コンパクトディスクおよびデジタルビデオディスク)、磁気カセット、メモリカードまたはスティック、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)などが挙げられるが、これらに限定されるものではない。上記の説明は例示的なものであり、制限的なものではない。例えば、上述した実施例(またはその1つまたはそれ以上の態様)は、互いに組み合わせて使用することができる。他の実施形態は、上記の説明を検討する際に当業者によるように使用されてもよい。要約書は、読者が技術的開示の性質を迅速に確認できるようにするため、アメリカ合衆国特許規則第1.72(b)(37 C.F.R. §1.72(b))に準拠して提供されている。それは、請求項の範囲や意味を解釈したり制限したりするものではないと理解した上で提出されている。また、上記の詳細な説明では、開示を簡素化するために、さまざまな機能をグループ化することがある。これは、クレームされていない開示された機能がクレームに不可欠であることを意図するものとして解釈されるべきではない。むしろ、発明の主題は、特定の開示された実施形態のすべての特徴より少ない場合がある。したがって、以下の請求項は、例示または実施形態としてここに詳細な説明に組み込まれ、各請求項は、それ自体が別個の実施形態として成立しており、そのような実施形態は、様々な組み合わせまたは変形で互いに結合されてもよいことが企図されている。本発明の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲が権利を与えられる均等物の全範囲とともに決定されるべきである。
【0095】
[095]
本開示はまた、本明細書に記載された操作を実行するためのシステムに関する。このシステムは、必要な目的のために特別に構成されていてもよいし、コンピュータに記憶されたコンピュータプログラムによって選択的に起動または再構成される汎用コンピュータから構成されていてもよい。このようなコンピュータプログラムは、これらに限定されるものではないが、フロッピーディスク、光ディスク、CD−ROM、磁気−光ディスクを含む任意のタイプのディスク、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、EPROM、EEEPROM、磁気カードまたは光カード、または電子命令を格納するのに適した任意のタイプの媒体などのコンピュータ読み取り可能な記憶媒体に格納することができる。
【0096】
[096]
本明細書に図示され説明された実施形態における操作の執行または実行の順序は、特に指定されない限り、必須ではない。すなわち、操作は、特に指定されない限り、任意の順序で実行されてもよく、本発明の実施形態は、本明細書に開示されている操作よりも追加的または少ない操作を含んでもよい。例えば、特定の操作を別の操作の前、同時または後に執行または実行することは、特許請求の範囲の範囲内であることが意図されている。
【0097】
[097]
本開示は、コンピュータ実行可能な命令で実施することができる。コンピュータ実行可能な命令は、1つまたはそれ以上のコンピュータ実行可能なコンポーネントまたはモジュールに編成されていてもよい。本発明の側面は、そのような構成要素またはモジュールの任意の数および組織で実施することができる。例えば、本発明の態様は、特定のコンピュータ実行可能な命令、または図示され、本明細書に記載された特定の構成要素またはモジュールに限定されない。本発明の他の実施形態では、本明細書に図示および記載されたものとは異なるコンピュータ実行可能な命令または機能性を有する構成要素を含んでもよい。
【0098】
[098]
添付の特許請求の範囲から逸脱することなく、修正および変形が可能であることは明らかであろう。特許請求の範囲から逸脱することなく、上記の構造、製品、方法において様々な変更が可能であるため、上記の説明に含まれ、添付の図面に示されているすべての事項は、例示的なものとして解釈され、限定的な意味で解釈されるものではないことが意図されている。
【手続補正書】
【提出日】2021年4月26日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【発明の詳細な説明】
【技術分野】
【0001】
(優先権の主張)
[001]
本出願は、2018年4月30日に出願された米国出願第15/966,830号の優先権の利益を主張し、その全体が参照により本明細書に組み込まれる
。
(技術分野)
[001]
本開示は、一般に放射線治療に関する。より具体的には、本開示は、放射線治療における品質保証試験のためのファントムの使用に関するが、これに限定されるものではない。
【背景技術】
【0002】
[002]
放射線治療(radiotherapy)としても知られる放射線療法(Radiation therapy)は、哺乳類(例えば、ヒトおよび動物)組織の腫瘍および他の病気を治療するために使用される。放射線治療セッションでは、高エネルギービームが外部から患者に向けて印加され、患者の標的部位に向けられたコリメート放射線ビームを生成する。標的は、放射線ビームが照射され、治療されるべき疾患器官または腫瘍を含む患者の身体の領域である。放射線ビームの配置と線量は、対象者が医師によって患者に処方された線量の放射線を確実に受けるように正確に制御されなければならない。ビームの配置は、周囲の健康な組織へのダメージを最小限に抑えるようにしなければならない。
【0003】
[003]
ビーム配置の精度を向上させるための1つの方法は、意図された治療位置にある患者の1つまたはそれ以上の医用画像を取得することである。このような画像は、計画画像と呼ばれる。計画画像は放射線治療の治療セッションに先立って取得され、治療セッションの何日も前に取得されることが多い。
【0004】
[004]
医師は計画画像を使用して、OARと同様に標的を特定し、輪郭を描くことができる。輪郭付けは、手動、半自動、または自動で行うことができる。治療輪郭は、しばしば計画目標体積(PTV)と呼ばれ、標的輪郭に加えて、顕微鏡的疾患や治療の不確実性を考慮した十分なマージンを含む治療輪郭が作成される。医師から放射線量が処方され、OARや他の正常組織への線量を最小限に抑えながら、PTVに処方された線量を最適に照射する放射線治療計画が作成される。治療計画は、医師が手動で作成することもできるし、最適化技術を用いて自動的に作成することもできる。最適化技術は、臨床的および線量的目的および制約(例えば、腫瘍およびOARに対する放射線の最大線量、最小線量、および平均線量)に基づいていてもよい。
【0005】
[005]
治療コースは、複数のフラクションにわたって所定の線量を送達するように開発されており、各フラクションは、異なる治療セッションにおいて送達される。例えば、30〜40個のフラクションが典型的であるが、5個のフラクションを使用することができ、1個のフラクションを使用することでもよい。フラクションはしばしば平日に1回、ある場合には2回送達される。ある場合には、放射線治療の計画をコース全体で変更して、より多くの線量をいくつかの領域に集中させることができる。
【0006】
[006]
各フラクションでは、患者は、放射線治療装置の患者支持アクセサリー(多くの場合「カウチ」)にセットされ、計画画像内の位置に可能な限り近い位置に再配置される。これは、患者は剛体ではなく、患者の解剖学構造は動くので、実際に正確に行うことが困難である。フラクションからフラクションへの動きは、しばしばフラクション間の動き(interfractional motion)と呼ばれ、フラクション自体の間に発生する動きは、しばしばフラクション内の動き(intrafractional motion)と呼ばれる。
【0007】
[007]
画像誘導放射線治療(IGRT)は、フラクション間の動き(interfractional motion)の問題を解決しようとするものである。IGRTでは、放射線治療の直前に患者の1枚またはそれ以上の医用画像(しばしば「日常画像」と呼ばれる)を取得し、それらの画像を使用してフラクション間の動き(interfractional motion)を識別して補正することが含まれる。任意の診断スキャナで取得できる計画画像とは対照的に、IGRT画像は、患者が治療体位にある間、治療室で直接取得される。フラクション間の動き(interfractional motion)を補正するために、IGRT画像を計画画像と比較して、計画画像が生成された後に発生した患者の解剖学的変化を定量化する。例えば、計画画像とIGRT画像とを解析して、計画画像とIGRT画像とを対応付けるグローバルシフト及び/又は回転を算出することができる。一旦、シフト及び/又は回転が計算されると、治療セッション中の患者の位置が、計画画像が取得されたときの患者の位置とより完全に一致するように、患者支持アクセサリの位置に対する対応する調整を行う。
【0008】
[008]
適応放射線治療(adaptive radiotherapy)は、フラクション間の動き(interfractional motion)の問題を解決することを目的としたもう一つの技術である。IGRTと同様に、適応放射線治療では、放射線治療セッションの直前に患者の1枚またはそれ以上の医用画像を取得し、それらの画像を使用してフラクション間の動き(interfractional motion)を特定して補正する。適応放射線治療では、計画画像および治療セッションの直前に撮影された画像を解析して変形ベクトル場(DVF)を生成することができる。DVFは、そのエレメントがベクトルである行列であり、各ベクトルは、計画画像中のボクセルを治療セッションの直前に撮影された画像中の対応するボクセルにマッピングするための幾何学的変換を定義する。DVFは、計画画像の取得後に生じた患者の解剖学的な変化を補償するために、治療計画で規定された放射線量の空間分布を変換するために使用することができる。
【0009】
[009]
このように線量分布を変形させると、対象者が所定の線量よりも少ない線量を受けることになる、および/または、OARが医師の意図よりも高いレベルの放射線を受けることになる可能性がある。したがって、変換された線量分布が臨床的に有効で安全であることを検証する必要がある。
【発明の概要】
【0010】
[010]
変形可能な放射線治療ファントムは、患者の医用画像に基づいて、付加製造プロセスを用いて製造することができる。変形可能なファントムは、放射線量分布を測定するための線量計を含むことができる。スマート材料は、印加された刺激に応じて変形することができる。とりわけ、ファントムは、放射線治療の治療計画である放射線量反りの検証、患者の最大許容変形量の決定、放射線量反りの累積精度の検証、および変形可能な画像
レジストレーションの検証などに使用することができる。
【0011】
[011]
本開示のさらなる利点は、以下の詳細な説明に部分的に記載され、その一部は、本明細書から明らかになるか、または本開示の実施により学習することができる。
【0012】
[012]
前述の一般的な説明および以下の詳細な説明は、例示的で説明的なものに過ぎず、クレームに記載されたように、本発明を制限するものではないことが理解されよう。
【図面の簡単な説明】
【0013】
[013]
本明細書の一部である添付図面は、いくつかの実施形態を図示しており、説明とともに、開示された原理を説明するのに役立つ。
【0014】
[014]
【0015】
[015]
【0016】
[016]
【0017】
[017]
【
図3】
図3は、ファントムを使用することができる検証または品質保証試験方法の一例を示す図である。
【0018】
[018]
【
図4】
図4は、線量マッピングアルゴリズムを検証する方法の一例を示す図である。
【0019】
[019]
【
図5】
図5は、更なる検証方法の一例を示す図である。
【0020】
[020]
【
図6】
図6は、本明細書に記載されているような、線量歪み、変形可能な画像
レジストレーション、またはその他を検証するような、本明細書に記載されている方法のうちの1つまたは複数の方法を実施することができる装置または機械の一実施形態のブロック図を示す。
【0021】
[021]
【
図7】
図7は、放射線治療システムの一例を示す図である。
【0022】
[022]
【
図8】
図8は、治療ビームを提供するように構成された放射線治療出力を含むことができる放射線治療システムの一例を示す図である。
【発明を実施するための形態】
【0023】
[023]
例示的な実施形態について添付図面を参照して説明する。図面において、参照番号の左端の桁が、参照番号が最初に表示されている図を示す。便利なのは、図面全体で同じ参照番号を使用し、同じまたは類似の部品を参照する。開示された原理の実施例および特徴が本明細書に記載されているが、開示された実施形態の精神および範囲から逸脱することなく、修正、適応、他の実施形態が可能である。また、「comprising(備える)」、「having(有する)」、「containing(含む)」、「including(含む)」、および他の類似の形態の単語は、これらの単語のいずれかに続く項目または項目が、そのような項目または項目の網羅的なリストを意味するものではなく、また、リストされた項目または項目のみに限定されることを意味するものではないという点で、意味が同等であり、オープンエンドであることが意図されている。また、本明細書および添付の特許請求の範囲で使用されるように、「a」、「an」および「the」という単数形は、文脈から明らかに指示されない限り、複数の参照を含むことにも留意すべきである。
【0024】
[024]
例示的な実施形態は、一般に、適応型放射線治療における品質保証のためのファントムの使用に関する。以下でより詳細に説明するように、ファントムは患者の医用画像を用いて作成され、その結果、放射線治療によって治療される特定の患者の解剖学的構造を忠実に反映したファントムが得られる。複数の線量計がファントム内に配置され、それにより、ファントムの内部容積内の複数の点で放射線量を測定することができ、これにより、患者が受ける線量の空間的分布を予測することができる。いくつかの実施形態では、ファントムは、線量分布に対する患者の動きの影響をモデリングできるように変形可能である。各ファントムが患者の異なる医用画像を使用して製造されるような、複数のこのようなファントムを製造することができる。各ファントムによって受信された線量分布は、例えば、適応放射線治療のための治療計画、または適応放射線治療のための変形ベクトル場を生成するために使用される変形可能な画像
レジストレーションアルゴリズムを検証するために比較することができる。
【0025】
[025]
放射線治療の分野では、「ファントム」とは、患者の身体の一部、あるいは患者の身体の代用として使用される物体のことである。ファントムは通常、放射線治療の治療計画をテストするために使用される。例えば、治療計画に従って放射線のビームをファントムに印加することができ、ファントムを通過する放射線は、ビームに対向して配置された検出器によって測定することができる。ファントムが受けた放射線量は、検出器の測定値から推測することができる。治療計画の臨床的有効性および安全性は、処方された線量(すなわち、治療計画が送達することを意図した線量)と、ファントムが実際に受けた線量とを比較することによって決定することができる。このように、ファントムを使用することで、患者を放射線にさらすことなく治療計画を検査することができる。
【0026】
[026]
次に、
図1および
図2を参照して、本開示に従ったファントムを説明する。
図1A、
図1B、
図1Cは、相互に直交する3つの方向に描かれた、患者の関心領域100の概略図である。より具体的には、
図1Aは関心領域100の平面図であり、
図1Bは関心領域100の正面図であり、
図1Cは関心領域100の側面図である。関心領域100は、リスク臓器(OAR)104と標的104とを含む。
図1は、関心領域の非常に単純化された表現であり、純粋に説明の目的のために意図されていることが理解されるであろう。実際には、OAR102および標的104は、非常に不規則な形状を有し得る。さらに、実際には、関心領域100は、複数のOAR、他の非標的領域、および/または複数の標的を有し得る。
【0027】
[027]
本開示によれば、関心領域100のファントムは、患者の医用画像を用いて生成される。医用画像は、ボクセルと呼ばれる複数の要素で構成された三次元画像(ボリューメトリック画像とも呼ばれる)である。各ボクセルは、3次元空間の特定の点における画像の強度を表す。医用画像を取得するために、コンピュータ断層撮影(CT)、磁気共鳴イメージング(MRI)、陽電子放出断層撮影(PET)、超音波、または単一光子放出コンピュータ断層撮影(SPECT)のような任意の適切な撮像モダリティを使用することができる。あるいは、医用画像は、2つまたはそれ以上の異なる撮像モダリティを用いて取得された画像を融合して生成することができる。ファントムを作成するために使用される医用画像は、放射線治療そのものを目的として取得された画像でもよい。例えば、計画画像や毎日の画像を用いてファントムを生成することができる。これにより、ファントムを生成する目的のためだけに画像を取得する必要を回避することができる。
【0028】
[028]
医用画像は、標的領域と、少なくとも1つの非標的領域とにセグメンテーションされている。セグメンテーションとは、一般的に、画像内のボクセルにラベルを割り当てて、それらのボクセルが何を表しているかを示すプロセスを指す。このように、標的領域は、放射線への曝露によって治療される標的104としてラベル付けされた複数のボクセルを含む。各非標的領域は、標的104以外のものとしてラベル付けされた複数のボクセルを含む。例えば、非標的領域は、リスク臓器102としてラベル付けされたボクセルを含み得る。医用画像は、危険な状態にある1つまたはそれ以上の臓器を含み得る。別の例として、非標的領域は、バックグラウンドボクセル、すなわち患者の身体を表さないボクセルとしてラベル付けされたボクセルを含み得る。医用画像は、手動で(例えば、医師、線量測定士、または医療従事者によって)、または自動的に(例えば、スウェーデンのストックホルムにあるエレクタAB社によって製造されたアトラスベースの自動セグメンテーションソフトウェア、ABAS(登録商標)のようなプログラムを使用して)セグメンテーションすることができる。
【0029】
[029]
ファントムは、患者の関心領域の医用画像に基づくような、付加製造プロセスによって製造され得る。関心領域は、標的領域と非標的領域とを含み得る。ファントムの第1の部分および第2の部分は、それぞれ、医用画像における標的領域の形状および非標的領域の形状によって定義されるそれぞれの形状を有する。
【0030】
[030]
撮像した後、付加製造プロセスを用いて、三次元医用画像の解剖学的構造をモデリングした三次元ファントムを作成する。本明細書で使用されるように、「付加製造(additive manufacturing)」という用語は、層に層を重ねて物体を製造するプロセスを指す。米国試験材料学会(ASTM:American Society for Testing and Materials)によると、現在、7種類の付加製造プロセス、すなわち、バインダージェッティング(binder jetting)、指向性エネルギー蒸着(directed energy deposition)、材料押出(material extrusion)(融合蒸着モデリング(fused deposition modeling)としても知られている)、材料ジェッティング(material jetting)、パウダーベッドフュージョン(powder bed fusion)、シートラミネーション(sheet lamination)、蒸着光重合(vat photopolymerization)が存在しているこれらの種類の任意の好適な1種以上の付加製造プロセス、または将来的に存在する可能性のある任意の他の好適なタイプの付加製造プロセスは、ファントムを製造するために使用することができる。さらに、三次元医用画像を、医用画像内の解剖学的構造を複製するファントムを製造するために、付加製造装置が使用できる命令および/またはデータに変換するために、任意の適切なソフトウェアツールを使用することができる。
【0031】
[031]
図2Aは、
図1Aから
図1Cに示された関心領域をモデリングするためのファントム200の透視図である。
図2Aから分かるように、ファントム200は、関心領域の解剖学的構造を表す3次元物理物体である。ファントムは、OAR102を表す部分202と、標的104を表す部分204とを有する。
図2は、ファントム200の非常に単純化された表現であり、実際には、ファントムは、患者の解剖学を反映したより複雑な形状を備えていることが理解されるであろう。さらに、ファントム200は、
図2Aに示された部分よりも多くの部分を備えていてもよい。
【0032】
[032]
ファントム200は、放射線吸収特性が関心領域100の解剖学的構造物の放射線吸収特性と類似または同一である1つまたはそれ以上の材料から構成されている。例えば、ファントム200の部分202は、臓器(前立腺、膀胱、脳など)の密度に類似した密度を有する材料で構成され、ファントム200の部分204は、腫瘍の密度に類似した密度を有する材料で構成される。したがって、ファントム200は、放射線治療中に患者の対応する解剖学的構造によって吸収される放射線量を予測するために使用することができる。ファントム200の構成材料は、放射線吸収特性と、特定の付加製造プロセスでの使用への適合性との両方に基づいて選択される。複数の材料は、所望の放射線吸収特性を有し、所与の付加製造プロセスによって製造することが可能なファントム200を製造するために組み合わせられる。例えば、部分202、204は、付加製造を用いて中空ポリマーシェルを形成し、次いで、シェルを、それぞれの解剖学的構造102、104の密度に類似した材料で充填することによって製造される。
【0033】
[033]
いくつかの実施形態では、ファントム200は変形可能である。ファントム200の変形は、OAR102および/または標的104の動きをモデリングすることを可能にする。ファントム200の変形によってモデリングされるOAR102および/または標的104の動きの原因には、例えば、呼吸、膀胱および/または腸の空にすること、膀胱および/または腸の充填のような生理学的プロセス;患者の体重減少または体重増加;疾患の進行による標的104の成長;放射線治療の成功による標的104の収縮、などが含まれる。ファントム200は、1つまたはそれ以上の変形可能な材料(例えばエラストマー材料)を用いてファントムを製造し、部分202、204の動きを引き起こすようにファントムに力を加えることによって、OAR102および/または標的104の実際の動きを正確に反映するように変形させることができる。部分202、204のいずれか一方または両方が変形可能である。
【0034】
[034]
いくつかの実施形態では、ファントム200の変形は、1つまたはそれ以上のスマート材料を使用してファントムを製造することによって達成される。スマート材料とは、外部からの刺激にさらされたときに、予測可能で制御可能な形状の変化を示す材料のことである。例えば、湿度、温度、光、電場、磁場などの刺激を受けると形状が変化するスマート材料がある。さらに、付加製造プロセスで使用できるスマート材料である、いわゆる「4Dプリンティング」材料も数多く存在する。スマート材料および/またはそれに適用される刺激の特性(例えば、振幅、周波数など)は、OAR102および/または標的104の動きをモデリングする方法でファントム200を変形させるように選択することができる。部分202、204のいずれか一方または両方が、スマート材料により構成することができる。
【0035】
[035]
ファントム200は、複数の放射線量計を備える。線量計は、ファントム200内に配置する。より詳細には、複数の線量計は、ファントム200の内部容積全体に分布させる。これにより、空間内の複数の点で放射線量を測定することができ、これにより、ファントム200が受ける線量の空間分布を決定することができる。これにより、ファントム200は、放射線治療中にOAR102および標的104が受けるであろう線量を正確に予測することができる。また、線量計は、ファントム200の外面に配置してもよい。線量計は、放射線量を測定することができる任意の適切な装置により構成することができる。例えば、線量計は、金属酸化物半導体電界効果トランジスタ(MOSFET)線量計のような電子線量計を含み得る。代替的または追加的に、線量計は、熱発光線量計(TLD)、または放射線に曝露されたときに変化する性質(例えば、色)を有する化学物質を含むものでもよい。
【0036】
[036]
図2Bは、
図2Aのファントム200内の線量計206の配置を例示する概略図である。
図2Bは、線量計206の空間的分布を見ることができるように、部分202および204を断面で示す。
図2Bに示すように、複数の線量計206がファントム200の各部分202,204の内部容積全体に分布している。線量計206は、ファントム200の内部容積全体に一様に分布してもよい。例えば、
図2Bでは、線量計206は、破線で図示された3次元グリッドのノード上に配置されている。しかし、線量計206は、ファントム200の内部容積全体に一様に分布している必要はない。例えば、単位体積当たりの線量計206の数がより多い方が、より高い空間分解能で線量を測定することが望まれる領域(例えば、OAR102と標的104の境界付近)で使用され、単位体積当たりの線量計206の数がより少ない方が、他の場所で使用されてもよい。別の例として、線量計の不均一な分布により、ファントム200を変形させることとなってもよい。線量計206は、付加製造プロセス中にファントム200内に自動的に配置されてもよいし、付加製造プロセスが完了した後にファントムに追加されてもよい。
【0037】
[037]
上述したファントムは、様々な品質保証試験に使用することができる。放射線治療の分野では、品質保証(QA)とは、一般的に患者が処方された放射線量を確実に受け取るための手順を指す。
【0038】
[038]
図3は、ファントムが使用可能な品質保証試験方法300の一例を示す図である。ステップ302では、患者の関心領域(ROI)の医用画像に基づくファントムが生成または得られる。ROIは、放射線治療によって治療される標的領域と、放射線治療が回避されるべき臓器(OAR)を含む非標的領域とを含む。ファントムは、本明細書に記載されているような3D印刷技術または他の付加製造プロセスによって製造することができる。ファントムは、放射線治療を受ける患者の一部と同様の方法で変形可能であり、これは、放射線カウチ上で患者を位置決めまたは再位置決めすること、または、呼吸等を介して患者の他の動きまたは変形させることを含む。例示的な実施形態では、ファントムは、それに含まれるか、またはそれに分布される複数の放射線量計を含むことができる。
【0039】
[039]
ステップ304では、ファントムは、患者の標的領域または非標的領域の少なくとも一方または両方の変形をモデリングするように変形する。この変形は、患者の対応する領域の予想された、予測された、または測定された変形に類似するようにファントムを圧縮、伸張、捻じ曲げ、またはその他の方法で変形させるように、ファントムに物理的な力を加えることを含む。例示的な実施形態では、ファントムは、外部刺激に曝されたときに形状の変化を示す「スマート」材料を含むことができ、この場合、ファントムを変形させることは、外部刺激をスマート材料に与えることである。
【0040】
[040]
ステップ306では、所定の放射線量に幾何学的変換を適用するようにして、歪んだ放射線量を計算する。所定の放射線量は、患者のROIに送達される放射線の意図した空間的分布を定義する。所定の放射線量は、スウェーデンのエレクタAB社から入手可能なモナコ治療計画システム(TPS)のモンテカルロ線量計算技術を使用して作成されるように、患者に対する治療計画の一部として含めることができる。所定の放射線量の放射線の意図した空間分布を幾何学的に変換する。
【0041】
[041]
例示的な実施例では、幾何学的変換は、(1)ファントムを変形させる前に、ファントムの画像を取得すること;(2)変形したファントムの画像を取得すること;(3)変形していないファントムの画像と変形したファントムの画像とに基づいて幾何学的変換を計算することにより生成することができる、変形行列を適用することを任意に含む。
【0042】
[042]
例えば、変形していないファントムの画像および変形したファントムの画像はそれぞれ複数のボクセルを含み、幾何学的変換を計算することは、ファントムの画像内の各ボクセルを変形したファントムの画像内の対応するボクセルにマッピングする変形ベクトル場行列を計算するための変形可能な画像レジストレーションを実行することを含む。
【0043】
[043]
ステップ308では、歪んだ放射線量を送達するために放射線治療装置を構成するための放射線治療計画は、歪んだ放射線量を生成するために適用されるモンテカルロ線量計算技術を使用すること、例えば、スウェーデンのエレクタAB社から入手可能なモナコ治療計画システム(TPS)を使用するようにして生成する。
【0044】
[044]
ステップ310では、放射線治療計画に従って放射線治療装置を操作して放射線が変形ファントムに照射された場合のように、変形ファントムが受ける放射線量分布の測定値を獲得する。このような測定は、変形したファントム内に含まれているか、または分布している複数の線量計を用いて得ることができる。
【0045】
[045]
ステップ312では、測定された放射線量分布を所定の放射線量と比較することにより、放射線治療計画を検証する。これは、測定された放射線量分布と所定の放射線量分布との間の類似度または差のメトリックを計算し、測定された放射線量分布と所定の放射線量分布との間の類似度が所定の類似充足値を超えた場合、または測定された放射線量分布と所定の放射線量分布との間の差が所定の差充足値未満である場合に、治療計画を肯定することを含む。1つまたはそれ以上の測定基準は、追加的または代替的に、例えば、1つまたはそれ以上のリスク臓器(OAR)の集約的または他の放射線被曝が最大許容値を超えた場合に、放射線治療計画を検証するために使用することができる。
【0046】
[046]
異なる変形がステップ304で変形可能なファントムに適用される場合には、ステップ304からステップ312が、任意に繰り返される。ステップ304で適用される異なる変形を用いてステップ312で検証することにより、ステップ314では、放射線治療計画が有効である標的領域または非標的領域の少なくとも1つの最大許容変形を決定する。例えば、再帰的に増加する一連の変形をステップ304で増加させる場合、変形が所定の値を超えて増加すると、測定された放射線量と所定の放射線量との間の類似度メトリックは、最終的に所定の許容可能な類似度限界を下回ることができ、または差分メトリックは、再帰的に増加する一連の変形の中の前の(許容可能な)変形を最大許容可能な変形として宣言することができるように、最終的に所定の許容可能な差分限界を超えることができる。
【0047】
[047]
図4は、線量マッピングアルゴリズムを検証する方法400の一例を示す。ステップ402では、画像処理回路が、撮像モダリティを用いて得られたボクセルデータを含む医用画像データベースにアクセスするようにして、患者のROIを表す第1の医用画像にアクセスする。ステップ404では、第2の医用画像を生成するために第1の医用画像に第1の変形ベクトル場を適用するようにして、第1の医用画像を用いて第2の医用画像を生成する。ステップ405Aでは、第1の医用画像にしたがって、第1のファントムが得られ、提供され、または生成される(例えば、3D印刷技術または他の付加製造プロセスを使用することを含む)。ステップ405Bでは、(変形された)第2の医用画像にしたがって、(変形された)第2のファントムが得られ、提供され、または生成される(例えば、3D印刷技術または他の付加製造プロセスを使用することを含む)。ステップ406では、少なくとも1つのファントムによって受信された放射線量分布を、例えば、放射線治療装置を操作することによってファントムに送達された放射線に応答して、例えば、放射線治療計画に従って測定する。一実施例では、少なくとも1つのファントムは、第1のファントムおよび第2のファントムを含む。例示的な実施形態では、少なくとも1つのファントムは、3D印刷技術または他の付加的プロセスを使用して製造することができ、例えば、複数の線量計が含まれる、またはそれに分布されるようにして製造することができる。ステップ408では、画像処理回路は、検証されるべき線量歪みまたはマッピング技術を使用して、測定された放射線量分布に第1の変形ベクトル場を適用することにより、例えば、歪んだ放射線量を計算するために使用される。ステップ410では、検証されるべき線量歪みまたはマッピング技術の精度または他の属性は、計算された線量分布を、同じファントム上で測定された放射線量分布と比較することによって検証される。これは、ボクセルごとのまたは集合的な複合類似度または差分メトリックを計算し、類似度または差分メトリックを対応する閾値と比較して、メトリックが許容可能な範囲内に収まるかどうかを判断して、線量歪みまたはマッピング技術の精度を検証することを含む。追加的または代替的に、ボクセルごとの検証と複合体の検証の組み合わせを使用することができ、例えば、任意のボクセルの差または誤差のメトリックが対応する第1の許容範囲から外れた場合、または複合体の差または誤差のメトリックが対応する第2の許容範囲から外れた場合、線量歪みまたはマッピング技術は無効であると宣言することができる。さらに、追加的または代替的に、より複雑な検証規則のセットを適用することができ、例えば、歪んだ放射線量分布が測定または計算されている異なる密度領域に対して、統計的メトリックを異なるように計算することができる。このような濃度情報は、例えば、医用画像データから取得することができる。
【0048】
[048]
図5は、線量歪みおよび変形可能な画像
レジストレーションの累積精度を任意に検証するさらなる方法500の一例を示す。ステップ402からステップ410は、
図4により上述したように実行する。
【0049】
[049]
ステップ512では、任意に、第1の医用画像および第2の医用画像上で変形可能な画像
レジストレーションを実行することによって、第2の変形ベクトル場を生成する。これは、第1の医用画像内の個別のボクセル(例えば、個別のボクセルのそれぞれ)を第2の医用画像内の対応するボクセルにマッピングすることを含む。
【0050】
[050]
ステップ514では、任意に、歪んだ放射線量分布は、例えば、ステップ410で生成された第2の変形ベクトル場を適用することによって計算される。
【0051】
[051]
ステップ516では、任意に、第2の変形ベクトル場を生成するために使用される第1の医用画像および第2の医用画像の変形可能な画像
レジストレーションと、ステップ414で計算された歪んだ放射線量分布の累積精度の検証を行う。この検証では、ステップ406での測定された放射線量分布を、変形可能な画像
レジストレーションに基づく第2の変形ベクトル場を用いてステップ414で計算された歪んだ放射線量と比較することができる。本明細書で他の場所で説明されるように、この検証は、ボクセルごとのまたはそれらの間の集約複合類似度または差分メトリックを計算し、類似度または差分メトリックを対応する閾値と比較して、メトリックが線量歪みまたはマッピング技術の精度を検証するために許容可能な範囲内に収まるかどうかを決定することを含む。ボクセルごとの検証と複合体の検証の組み合わせは、追加的または代替的に使用することができ、例えば、任意のボクセルの差または誤差のメトリックが対応する第1の許容範囲から外れた場合、または複合体の差または誤差のメトリックが対応する第2の許容範囲から外れた場合、線量歪みまたはマッピング技術は無効であると宣言することができる。さらに、追加的または代替的に、より複雑な検証規則のセットを適用することができ、例えば、歪んだ放射線量分布が測定または計算されている異なる密度領域に対して、統計的メトリックを異なるように計算することができる。このような濃度情報は、例えば、医用画像データから取得することができる。
【0052】
[052]
図6は、本明細書で説明される方法の1つまたはそれ以上を実施することができる装置またはマシン1000の実施形態のブロック図を一実施例として示す。本明細書に記載された画像処理回路の1つまたはそれ以上のアイテムは、マシン1000によって実装される。マシン1000は、スタンドアロンデバイスとして動作することができ、または他のマシンに接続されても(例えば、ネットワーク化されても)よい。1つまたはそれ以上の実施形態において、画像処理回路は、マシン1000の1つまたはそれ以上のアイテムを含むことができる。ネットワーク化された配置では、マシン1000は、サーバー、またはサーバークライアントネットワーク環境のサーバーのクライアントマシンの容量で、またはピアツーピア(または分散)ネットワーク環境のピアマシンとして動作する。マシンは、パーソナルコンピュータ(PC)、タブレットPC、セットトップボックス(STB)、携帯情報端末(PDA)、携帯電話、ウェブアプライアンス、ネットワークルーター、スイッチまたはブリッジ、またはそのマシンが実行するアクションを指定する命令(シーケンシャルまたはそれ以外)を実行できるマシンであることができる。さらに、単一のマシンのみが示されているが、「マシン」という用語は、本明細書で説明する方法論の1つまたは複数を実行する命令のセット(または複数のセット)を個別または共同で実行するマシンの集合も含むものとする。
【0053】
[053]
例示的なマシン1000は、バス1008を介して互いに接続されているプロセッシング回路1002(例えば、中央処理装置(CPU)、グラフィック処理装置(GPU)、特定用途向け集積回路、1つまたはそれ以上のトランジスタ、抵抗器、コンデンサ、インダクタ、ダイオード、論理ゲート、マルチプレクサ、バッファ、変調器、復調器、無線装置(例えば、送信または受信無線装置またはトランシーバのような回路)、センサ1021(例えば、エネルギー(光、熱、電気、機械、またはその他のエネルギー)のあるフォームを他のフォームに変換するトランスデューサーなど、またはそれらの組み合わせ)、メインメモリ1004、およびスタティックメモリを含み得る。記載された方法に関連するまたはデータム(datum)又はデータ(data)は、そのようなメモリに格納され、またはそのようなメモリから取り出され、本明細書に記載された方法を実行するために必要に応じて初期化又は更新され得る。マシン1000(例えば、コンピュータシステム)は、ビデオディスプレイユニット1010(例えば、液晶ディスプレイ(LCD)または陰極線管(CRT))をさらに含み得る。マシン1000は、英数字入力装置1012(例えば、キーボード)、ユーザインターフェース(UI)ナビゲーション装置1014(例えば、マウス)、ディスクドライブまたは大容量記憶装置1016、信号生成装置1018(例えば、スピーカー)およびネットワークインターフェース装置1020も含み得る。
【0054】
[054]
ディスクドライブユニット1016は、本明細書で説明される方法または機能のうちのいずれか1つまたはそれ以上によって具現化または利用される命令およびデータ構造(例えば、ソフトウェア)1024の1つまたはそれ以上のセットが記憶される機械可読媒体1022を含み得る。命令1024は、また、マシン1000、メインメモリ1004およびプロセッサ1002による実行中に、完全にまたは少なくとも部分的に、メインメモリ1004および/またはプロセッサ1002内に常駐し、機械可読媒体を構成することができる。
【0055】
[055]
図示されたマシン1000は、出力コントローラ1028を含み得る。出力コントローラ1028は、マシン1000への、またはマシン1000からのデータフローを管理する。出力コントローラ1028はデバイスコントローラと呼ばれ、出力コントローラ1028と直接相互に作用するソフトウェアはデバイスドライバと呼ばれる。
【0056】
[056]
機械可読媒体1022は、例示的な実施形態では単一の媒体であるように示されているが、用語「機械可読媒体」は、1つまたはそれ以上の命令またはデータ構造を格納する、単一の媒体または複数の媒体(例えば、集中型または分散型データベース、および/または関連するキャッシュおよびサーバー)を含み得る。「機械可読媒体」という用語は、機械による実行のための命令を格納、符号化、または搬送することができ、機械に本発明の方法論の1つまたはそれ以上を実行させることができ、またはそのような命令によって利用される、または関連するデータ構造を保存、エンコード、または実行することができる、いかなる有形媒体も含むものとする。したがって、「機械可読媒体」という用語は、ソリッドステートメモリ、光学および磁気媒体を含むと解されるが、これらに限定されない。機械可読媒体の特定の例は、半導体メモリデバイスを含む不揮発性メモリ、たとえば、消去可能プログラマブル読み取り専用メモリ(EPROM)、電気的消去可能プログラマブル読み取り専用メモリ(EEPROM)、およびフラッシュメモリデバイス、内蔵ハードディスクやリムーバブルディスクなどの磁気ディスク。光磁気ディスク、およびCD−ROMおよびDVD−ROMディスクを含む。
【0057】
[057]
命令1024は、さらに、伝送媒体を使用して通信ネットワーク1026を介して送信または受信され得る。命令1024は、ネットワークインターフェース装置1020や、いくつかの周知の転送プロトコル(例えば、HTTP)のうちのいずれか1つを使用して送信され得る。通信ネットワークの例には、ローカルエリアネットワーク(「LAN」)、ワイドエリアネットワーク(「WAN」)、インターネット、携帯電話ネットワーク、プレインオールドテレフォン(POTS)ネットワーク、および無線データネットワーク(例えば、WiFi、WiMaxネットワークなど)が含まれる。「伝送媒体」という用語は、機械による実行のための命令を保存、エンコード、または実行できる無形媒体を含み、そのようなソフトウェアの通信を促進するためのデジタルまたはアナログ通信信号または他の無形媒体を含むものとする。
【0058】
[058]
図7は、患者、患者の一部、または、患者または患者の一部を表す標的物体を含む「ファントム」に放射線療法を提供するための例示的な放射線治療システム7100を示す。放射線治療システム7100は、画像処理装置7112を含む。画像処理装置7112は、ネットワーク7120に接続され得る。ネットワーク7120は、インターネット7122に接続され得る。ネットワーク7120は、画像処理装置7112を、データベース7124、病院データベース7126、腫瘍学情報システム(OIS)7128、放射線治療装置7130、画像取得装置7132、表示装置7134、ユーザインターフェース7136のうちの1つまたはそれ以上のものに接続することができる。画像処理装置7112は、放射線治療装置7130によって使用される放射線療法治療計画7142を生成するように構成することができる。
【0059】
[059]
画像処理装置7112は、メモリ装置7116、プロセッサ7114、および通信インターフェース7118を含むことができる。メモリ装置7116は、オペレーティングシステム7143、放射線療法治療計画7142(例えば、オリジナルの治療計画、適合された治療計画など)、ソフトウェアプログラム7144(例えば、人工知能、ディープラーニング、ニューラルネットワーク、放射線治療計画ソフトウェア)、およびプロセッサ7114によって実行される他の任意のコンピュータ実行可能命令のような、コンピュータ実行可能命令を格納することができる。一実施形態では、ソフトウェアプログラム7144は、疑似CT画像のような合成画像を生成することによって、1つのフォーマット(例えば、MRI)の医用画像を別のフォーマット(例えば、CT)に変換することができる。例えば、ソフトウェアプログラム7144は、あるモダリティ(例えば、MRI画像)の医用画像7146を異なるモダリティの合成画像(例えば、疑似CT画像)に変換するための予測モデルを訓練する画像処理プログラムを含むことができ、あるいは、訓練された予測モデルは、CT画像をMRI画像に変換することができる。別の実施形態では、ソフトウェアプログラム7144は、対応する画像ボクセルおよび線量ボクセルがネットワークによって適切に関連付けられるように、患者画像(例えば、CT画像またはMR画像)をその患者の線量分布(画像としても表される)に
レジストレーションすることができる。さらに別の実施形態では、ソフトウェアプログラム7144は、画像情報のいくつかの態様を強調する画像の署名付き距離関数または処理されたバージョンのような患者画像の関数を代替してもよい。そのような関数は、ボクセルテクスチャのエッジや違い、またはニューラルネットワークの学習に役立つその他の構造的側面を強調する。別の実施形態では、ソフトウェアプログラム7144は、線量情報のいくつかの側面を強調する線量分布の関数を代替してもよい。そのような関数は、標的の周りの急勾配、またはニューラルネットワークの学習に役立つその他の構造的側面を強調する。メモリ装置7116は、医用画像7146、患者データ7145、および放射線療法治療計画7142を作成および実施するために必要な他のデータを含むデータを格納することができる。
【0060】
[060]
ソフトウェアプログラム7144を格納するメモリ7116に加えて、ソフトウェアプログラム7144は、ハードドライブ、コンピュータディスク、CD−ROM、DVD、HD、ブルーレイDVD、USBフラッシュドライブ、SDカード、メモリスティック、またはその他の適切なメディアのようなリムーバブルコンピュータ媒体に格納することができ、画像処理装置7112にダウンロードされたときソフトウェアプログラム7144は、画像プロセッサ71714によって実行することができる。
【0061】
[061]
プロセッサ7114は、メモリ装置7116に通信可能に結合されることができ、プロセッサ7114は、そこに格納されたコンピュータ実行可能命令を実行するように構成することができる。プロセッサ7114は、医用画像7146をメモリ7116に送信または受信することができる。例えば、プロセッサ7114は、通信インターフェース7118およびネットワーク7120を介して画像取得装置7132から医用画像7146を受信して、メモリ7116に格納することができる。プロセッサ7114は、また、メモリ7116に格納された医用画像7146を、通信インターフェース7118を介して、ネットワーク7120に送信し、データベース7124または病院データベース7126のいずれかに格納される。
【0062】
[062]
さらに、プロセッサ7114は、医用画像7146および患者データ7145と共にソフトウェアプログラム7144(例えば、治療計画ソフトウェア)を利用して、放射線療法治療計画42を作成することができる。医用画像7146は、患者の解剖学的領域、器官、または関心セグメンテーションデータのボリュームに関連する画像データのような情報を含むことができる。患者データ7145は、(1)機能臓器モデリングデータ(例えば、直列対並列臓器、適切な用量反応モデルなど)、(2)放射線量データ(例えば、線量−体積ヒストグラム(DVH)情報)、または(3)患者および治療コースに関する他の臨床情報(例えば、他の手術、化学療法、以前の放射線療法など)のような情報を含むことができる。
【0063】
[063]
さらに、プロセッサ7114は、ソフトウェアプログラムを利用して、例えば、ニューラルネットワークモデルによって使用される更新されたパラメータなどの中間データを生成することができ、または、中間の2Dまたは3D画像を生成することができ、その後、それらはメモリ7116に記憶される。その後、プロセッサ7114は、実行可能な放射線療法治療計画7142を、通信インターフェース7118とネットワーク7120を介して、放射線治療装置30に送信することができ、そこで放射線療法計画は、放射線で患者を治療するために使用される。さらに、プロセッサ7114は、ソフトウェアプログラム7144を実行して、画像変換、画像セグメンテーション、ディープラーニング、ニューラルネットワーク、および人工知能のような機能を実装することができる。例えば、プロセッサ7114は、医用画像を訓練または輪郭化するソフトウェアプログラム7144を実行することができ、そのようなソフトウェア7144は、実行されると、境界検出器を訓練し、形状辞書を利用することができる。
【0064】
[064]
プロセッサ7114は、例えば、マイクロプロセッサ、中央処理装置(CPU)、グラフィックス・プロセッシング・ユニット(GPU:Graphics Processing Unit)、および/またはアクセラレーテッド・プロセッシング・ユニット(APU:Accelerated Processing Unit)のような1つまたはそれ以上の汎用処理装置を含む処理装置であってもよい。詳細には、いくつかの実施形態では、プロセッサ7114は、複合命令セットコンピューティング(CISC:complex instruction set computing)マイクロプロセッサ、縮小命令セットコンピューティング(RISC:reduced instruction set computing)マイクロプロセッサ、超長命令ワード(VLIW:very long instruction Word)マイクロプロセッサ、他の命令セットを実装するプロセッサ、または命令セットの組み合わせを実装するプロセッサであってもよい。プロセッサ7114は、特定用途向け集積回路(ASIC:application specific integrated circuit)、フィールドプログラマブルゲートアレイ(FPGA:field programmable gate array)、デジタルシグナルプロセッサ(DSP:digital signal processor)、システムオンチップ(SoC:System on a Chip)、またはその他の適切なプロセッサのような1つまたはそれ以上の専用処理装置によって実装されることができる。当業者に理解されるように、いくつかの実施形態では、プロセッサ7114は、汎用プロセッサではなく、専用プロセッサであってもよい。プロセッサ7114は、Intel(登録商標)によって製造されたPentium(登録商標)、Core(登録商標)、Xeon(登録商標)、またはItanium(登録商標)ファミリー、AMD(登録商標)によって製造されたTurion(登録商標)、Athlon(登録商標)、Sempron(登録商標)、Opteron(登録商標)、FX(登録商標)、Phenon(登録商標)ファミリー、Sun Microsystemsによって製造された様々なプロセッサのいずれか、または他の適切なプロセッサのような、1つまたはそれ以上の既知の処理装置を含み得る。プロセッサ7114は、また、Nvidia(登録商標)によって製造されたGeForce(登録商標)、Quadro(登録商標)、Tesla(登録商標)ファミリー、Intel(登録商標)によって製造されたGMA、Iris(登録商標)ファミリー、またはAMD(登録商標)によって製造されたRadeon(登録商標)ファミリーのような、グラフィック処理ユニットを含み得る。プロセッサ7114は、また、Intel(登録商標)によって製造されたXeon Phi(登録商標)ファミリーのような、加速処理装置を含み得る。開示された実施形態は、いかなるタイプのプロセッサに限定されるものではなく、大量の撮像データを識別、分析、維持、生成、および/または提供するというコンピューティング命令を満たすように構成されている。さらに、「プロセッサ」という用語は、複数のプロセッサ、例えばマルチコア設計またはそれぞれがマルチコア設計を有する複数のプロセッサを含むことができる。プロセッサ7114は、本開示の例示的な実施形態による様々な動作、プロセス、および方法を実行するために、例えば、メモリ7116に格納されたコンピュータプログラム命令のシーケンスを実行するように構成され得る。
【0065】
[065]
メモリ装置7116は、医用画像7146を格納することができる。いくつかの実施形態では、医用画像7146は、1つまたはそれ以上のMRI画像(例えば、2DMRI、3DMRI、2DストリーミングMRI、4DMRI、4D容積測定MRI、4DシネMRI、など)、機能的MRI画像(例えば、fMRI、DCE−MRI、拡散MRI)、コンピュータ断層撮影(CT)画像(例えば、2DCT、コーンビームCT、3DCT、4DCT)、超音波画像(例えば、2D超音波、3D超音波、4D超音波)、陽電子放射断層撮影(PET)画像、X線画像、X線透視画像、放射線治療ポータル画像、単一光放出コンピュータ断層撮影(SPECT)画像、コンピュータ生成合成画像(例えば、疑似CT画像)など、を含み得る。さらに、医用画像7146は、また、医用画像データ、例えば、トレーニング画像、およびグラウンドトゥルース画像、等高線画像、および線量画像を含み得る。一実施形態では、医用画像7146は、画像取得装置7132から受け取ることができる。したがって、画像取得装置7132は、MRI撮像装置、CT撮像装置、PET撮像装置、超音波撮像装置、蛍光透視装置、SPECT撮像装置、統合線形加速器およびMRI撮像装置、または、患者の医用画像を取得するための他の医療撮像装置を含み得る。医用画像7146は、画像処理装置7112が、開示された実施形態による動作を実行するために使用することができる任意のタイプのデータまたは任意のタイプのフォーマットで受け取られ、格納され得る。メモリ装置7116は、読み取り専用メモリ(ROM)、相変化ランダムアクセスメモリ(PRAM)、スタティックランダムアクセスメモリ(SRAM)、フラッシュメモリ、ランダムアクセスメモリ(RAM)、シンクロナスDRAM(SDRAM)のようなダイナミックランダムアクセスメモリ(DRAM)、電気的に消去可能なプログラム可能な読み取り専用メモリ(EEPROM)、スタティックメモリ(例えば、フラッシュメモリ、フラッシュディスク、スタティックランダムアクセスメモリ)、および、キャッシュ、レジスタ、コンパクトディスク読み取り専用メモリ(CD−ROM)、デジタル多用途ディスク(DVD)、またはその他の光学式ストレージ、カセットテープ、その他の磁気記憶装置のようなその他のタイプのランダムアクセスメモリ、のような非一時的なコンピュータ可読媒体、または、画像、データ、または、プロセッサ7114、または任意の他のタイプのコンピュータ装置によりアクセスすることができる(例えば、任意のフォーマットで格納される)コンピュータ実行可能命令を含む情報を格納するために使用できる他の任意の非一時的媒体であり得る。コンピュータプログラム命令は、プロセッサ7114によってアクセスされ、ROMまたは他の任意の適切なメモリ位置から読み取られ、プロセッサ7114による実行のためにRAMにロードされ得る。例えば、メモリ7116は、1つまたはそれ以上のソフトウェアアプリケーションを格納することができる。メモリ7116に格納されたソフトウェアアプリケーションは、例えば、一般的なコンピュータシステムのためのオペレーティングシステム7143およびソフトウェア制御装置を含み得る。さらに、メモリ7116は、プロセッサ7114によって実行可能なソフトウェアアプリケーション全体またはソフトウェアアプリケーションの一部のみを格納することができる。例えば、メモリ装置7116は、1つまたはそれ以上の放射線療法治療計画7142を格納することができる。
【0066】
[066]
画像処理装置7112は、プロセッサ7114およびメモリ7116に通信可能に結合された通信インターフェース7118を介してネットワーク7120と通信することができる。通信インターフェース7118は、画像処理装置7112と放射線治療システム7100の構成要素との間の通信接続を提供する(例えば、外部装置とのデータの交換を可能にする)ことができる。例えば、通信インターフェース7118は、いくつかの実施形態では、ユーザインターフェース7136に接続するための適切なインターフェース回路を有することができ、それは、ユーザが放射線治療システム7100に情報を入力することができる、ハードウェアキーボード、キーパッド、またはタッチスクリーンとすることができる。
【0067】
[067]
通信インターフェース7118は、例えば、ネットワークアダプタ、ケーブルコネクタ、シリアルコネクタ、USBコネクタ、パラレルコネクタ、高速データ伝送アダプタ(例えば、ファイバ、USB3.0、サンダーボルト、など)、無線ネットワークアダプタ(例えば、WiFiアダプタのような)、電気通信アダプタ(例えば、3G、4G/LTE、など)などを含み得る。通信インターフェース7118は、画像処理装置7112が、ネットワーク7120を介して遠隔配置された構成要素のような、他の機械および装置と通信することを可能にする1つまたはそれ以上のデジタルおよび/またはアナログ通信装置を含み得る。
【0068】
[068]
ネットワーク7120は、ローカルエリアネットワーク(LAN)、無線ネットワーク、クラウドコンピューティング環境(例えば、サービスとしてのソフトウェア、サービスとしてのプラットフォーム、サービスとしてのインフラストラクチャ、など)、クライアントサーバー、広域ネットワーク(WAN)など機能を提供することができる。例えば、ネットワーク7120は、他のシステムS1(7138)、S2(7140)、およびS3(7141)を含むLANまたはWANとすることができる。システムS1、S2、およびS3は、画像処理装置7112と同一であってもよく、または異なるシステムであってもよい。いくつかの実施形態では、ネットワーク7120内の1つまたはそれ以上のシステムは、本明細書で説明される実施形態を協調的に実行する分散コンピューティング/シミュレーション環境を形成することができる。いくつかの実施形態では、1つまたはそれ以上のシステムS1、S2、およびS3は、CT画像(例えば、医用画像46)を取得するCTスキャナを含むことができる。さらに、ネットワーク20をインターネット22に接続して、インターネット上で遠隔地にあるサーバーおよびクライアントと通信することができる。
【0069】
[069]
したがって、ネットワーク7120は、画像処理装置7112と、OIS7128、放射線治療装置7130、および画像取得装置7132のような多くの他の様々なシステムおよび装置との間のデータ伝送を可能にすることができる。さらに、OIS7128および/または画像取得装置7132によって生成されたデータは、メモリ7116、データベース7124、および/または病院データベース7126に格納され得る。データは、必要に応じて、プロセッサ7114によりアクセスされるために、ネットワーク7120を介して通信インターフェース7118を介して送信/受信することができる。
【0070】
[070]
画像処理装置7112は、ネットワーク7120を介してデータベース7124と通信して、データベース7124に格納された複数の様々なタイプのデータを送受信することができる。例えば、データベース7124は、放射線治療装置7130、画像取得装置7132、または放射線療法に関連する他の機械に関連する情報である機械データを含み得る。マシンデータ情報は、放射線ビームサイズ、アーク配置、ビームオン/オフ時間、マシンパラメータ、セグメント、マルチリーフコリメータ(MLC)構成、ガントリ速度、MRIパルスシーケンスなどが含まれ得る。データベース7124は、記憶装置であり得、適切なデータベース管理ソフトウェアプログラムを備え得る。当業者は、データベース7124が、中央にまたは分散して配置された複数の装置を含み得ることを理解するであろう。
【0071】
[071]
いくつかの実施形態では、データベース24は、プロセッサ可読記憶媒体(図示せず)を含み得る。一実施形態におけるプロセッサ可読記憶媒体は単一の媒体であり得るが、用語「プロセッサ可読記憶媒体」は、1つまたはそれ以上のコンピュータ実行可能命令またはデータのセットを格納する単一の媒体または複数の媒体(例えば、集中型または分散型データベース、および/または関連するキャッシュおよびサーバー)と解釈されるべきである。用語「プロセッサ可読記憶媒体」は、プロセッサによる実行のための命令のセットを格納または符号化することができ、かつ、プロセッサに本開示の1つまたはそれ以上の方法論のいずれかを実行させる任意の媒体を含むと解釈されるものとする。したがって、用語「プロセッサ可読記憶媒体」は、固体メモリ、光学および磁気媒体を含むがこれらに限定されないものと解釈されるべきである。例えば、プロセッサ可読記憶媒体は、1つまたはそれ以上の揮発性、非一時的、または不揮発性の有形のコンピュータ可読媒体とすることができる。
【0072】
[072]
画像プロセッサ7114は、データベース7124と通信して、画像をメモリ7116に読み込むか、または画像をメモリ7116からデータベース7124に格納することができる。例えば、データベース7124は、データベース7124が画像取得装置7132から受信した複数の画像(例えば、3DMRI、4DMRI、2DMRIスライス画像、CT画像、2D透視画像、X線画像、MRスキャンまたはCTスキャンからの生データ、医学におけるデジタル画像および通信(DIMCOM)データ等)を格納するように構成されている。データベース7124は、ソフトウェアプログラム44を実行するとき、または放射線療法治療計画42を作成するときに、画像プロセッサ7114によって使用されるデータを格納することができる。データベース7124は、ネットワークによって学習されたモデルを構成するネットワークパラメータおよび結果として生じる予測データを含む、訓練されたニューラルネットワークによって生成されたデータを格納することができる。画像処理装置7112は、データベース7124、放射線治療装置7130(例えば、MRI−リニアック)、および/または画像取得装置7132のいずれかからの画像データ7146(例えば、2DMRIスライス画像、CT画像、2D蛍光透視画像、X線画像、3DMRI画像、4DMRI画像、など)を受け取り、治療計画7142を生成することができる。
【0073】
[073]
一実施形態では、放射線治療システム7100は、患者の医用画像(例えば、磁気共鳴画像法(MRI)画像、3DMRI、2DストリーミングMRI、4D容積測定MRI、コンピュータ断層撮影(CT)画像、コーンビームCT、陽電子放射断層撮影(PET)画像、機能的MRI画像(例えば、fMRI、DCE−MRIおよび拡散MRI)、X線画像、透視画像、超音波画像、放射線治療ポータル画像、シングルフォトエミッションコンピュータ断層撮影(SPECT)画像など)を取得できる画像取得装置7132を含むことができる。画像取得装置7132は、例えば、MRI撮像装置、CT撮像装置、PET撮像装置、超音波装置、蛍光透視装置、SPECT撮像装置、または、患者の1つまたはそれ以上の医用画像を取得するための他の任意の適切な医療撮像装置であり得る。画像取得装置7132によって取得された画像は、撮像データおよび/または試験データのいいずれかとしてデータベース7124内に格納することができる。例として、画像取得装置7132によって取得された画像は、また、画像処理装置7112によって、医用画像データ7146としてメモリ7116に格納することができる。
【0074】
[074]
一実施形態では、例えば、画像取得装置7132は、単一装置として放射線治療装置7130と一体化してもよい(例えば、「MRI−Linac」とも呼ばれる線形加速器と組み合わせたMRI装置)。このようなMRI−Linacを使用して、例えば、放射線療法治療計画7142に従って放射線治療を正確に所定の標的に向けるように、患者の標的器官または標的腫瘍の位置を決定することができる。
【0075】
[075]
画像取得装置7132は、関心領域(例えば、標的臓器、標的腫瘍、またはその両方)についての患者の解剖学的構造の1つまたはそれ以上の画像を取得するように構成されている。各画像、典型的には2D画像またはスライスは、1つまたはそれ以上のパラメータ(例えば、2Dスライスの厚さ、向き、および場所、など)を含むことができる。一実施形態では、画像取得装置7132は、任意の向きで2Dスライスを取得することができる。例えば、2Dスライスの方向には、矢状方向、冠状方向、または軸方向が含まれる。プロセッサ7114は、2Dスライスの厚さおよび/または向きなどの1つまたはそれ以上のパラメータを調整して、標的器官および/または標的腫瘍を含めることができる。一実施形態では、2Dスライスは、3DMRIボリュームなどの情報から決定することができる。そのような2Dスライスは、例えば、放射線治療装置7130を使用するとき、患者が放射線治療を受けているあいだ、「ほぼリアルタイム」で画像取得装置7132によって取得することができる。「ほぼリアルタイム」とは、少なくとも数ミリ秒以内にデータを取得することを意味する。
【0076】
[076]
画像処理装置7112は、1人またはそれ以上の患者のための放射線療法治療計画7142を生成および保存することができる。放射線療法治療計画7142は、各患者に適用される特定の放射線量に関する情報を提供することができる。放射線療法治療計画7142は、また、ビーム角、線量ヒストグラム、ボリューム情報、治療中に使用される放射線ビームの数、ビーム当たりの線量のような他の放射線療法情報を含み得る。
【0077】
[077]
画像プロセッサ7114は、スウェーデンのストックホルムにあるエレクタAB社によって製造されたMonaco(登録商標)のような治療計画ソフトウェアのようなソフトウェアプログラム44を使用することにより、放射線療法治療計画7142を生成することができる。放射線療法治療計画7142を生成するために、画像プロセッサ7114は、画像取得装置7132(例えば、CT装置、MRI装置、PET装置、X線装置、超音波装置、など)と通信して、患者の画像にアクセスし、かつ、腫瘍のような標的の輪郭を描くことができる。いくつかの実施形態において、腫瘍の周囲にある、または腫瘍のすぐ近くにある健康な組織のような1つまたはそれ以上のリスク臓器(OAR)の描写が必要になる場合がある。したがって、OARが標的腫瘍に近いときに、OARのセグメンテーションが行われる。さらに、標的腫瘍がOAR(例えば、膀胱および直腸に近い前立腺)に近い場合には、OARを腫瘍からセグメンテーションすることにより、放射線治療システム7100は、標的内だけでなくOAR内の線量分布を調べることができる。
【0078】
[078]
OARと区別して標的臓器または標的腫瘍の輪郭を描くためには、放射線治療を受けている患者のMRI画像、CT画像、PET画像、fMRI画像、X線画像、超音波画像、放射線治療ポータル画像、SPECT画像のような医用画像が、画像取得装置7132によって非侵襲的に取得され、身体の部分の内部構造を明らかにすることができる。医用画像からの情報に基づいて、関連する解剖学的部分の3D構造を取得することができる。さらに、治療計画プロセス中に、標的腫瘍の効率的な治療(例えば、標的腫瘍が効果的な治療のために十分な放射線量を受けるという)とOARへの低線量(例えば、OARが可能な限り低い放射線量を受けるという)との間のバランスを達成するために、多くのパラメータが考慮される。考慮され得る他のパラメータには、標的臓器および標的腫瘍の位置、OARの位置、OARに対する標的の動きが含まれる。例えば、三次元構造は、MRI又はCT画像の各二次元レイヤまたはスライス内の標的の輪郭を描くまたはOARの輪郭を描くこと、および各二次元レイヤまたはスライスの輪郭を結合することにより取得することができる。輪郭は、手動で(例えば、スウェーデンのストックホルムのエレクタAB社によって製造されたMONACO(登録商標)のようなプログラムを用いて医師、線量測定士、または医療従事者によって)または自動で(例えば、スウェーデンのストックホルムのエレクタAB社によって製造されたアトラスベースの自動セグメンテーションソフトウェアであるABAS(登録商標)を用いて)生成することができる。特定の実施形態では、標的腫瘍またはOARの3D構造は、治療計画ソフトウェアによって自動的に生成される。
【0079】
[079]
標的腫瘍とOARの位置を特定して輪郭を描いた後、線量測定士、医師、または医療従事者は、標的腫瘍に照射される放射線の線量と共に、腫瘍に近接したOAR(例えば、左右の耳下腺、視神経、目、水晶体、内耳、脊髄、脳幹、または他の解剖学的構造)が受ける可能性のある最大線量とを決定することができる。関連する解剖学的構造(例、標的腫瘍、OAR)の放射線量を決定した後、逆計画法(inverse planning)として知られるプロセスを実行して、望ましい放射線量分布を達成する1つまたはそれ以上の治療計画パラメータを決定することができる。治療計画パラメータの例には、(例えば、標的ボリュームの輪郭を定める、機密構造の輪郭を描く、などの)ボリューム描写パラメータ、標的腫瘍およびOARの周囲のマージン、ビーム角選択、コリメータ設定、および/またはビームオン時間が含まれる。逆計画プロセス中、医師は、OARが受ける可能性のある放射線量の境界を設定する線量制約パラメータを定めること(例えば、腫瘍標的への全線量と任意のOARへのゼロ線量を定めること;脊髄、脳幹、および視覚構造が、それぞれ、45Gy以下の線量、55Gy以下の線量、および54Gyより低い線量を受けると定めること)ができる。逆計画の結果は、メモリ7116またはデータベース7124に保存される放射線療法治療計画7142を構成することができる。これらの治療パラメータのいくつかは相関している可能性がある。例えば、治療計画を変更しようとして1つのパラメータ(例えば、標的腫瘍への線量を増やすなどのさまざまな目的の重み)を調整すると、少なくとも1つの他のパラメータに影響を与え、その結果、異なる治療計画が開発される可能性がある。したがって、画像処理装置7112は、放射線治療装置7130が患者に放射線療法治療を提供するために、これらのパラメータを有する調整された放射線療法治療計画42を生成する。
【0080】
[080]
さらに、放射線治療システム7100は、表示装置7134およびユーザインターフェース7136を含むことができる。表示装置7134は、医用画像、インターフェース情報、治療計画パラメータ(例えば、輪郭、線量、ビーム角、など)、治療計画、標的、標的の位置特定、および/または標的の追跡、または、ユーザへの適切な情報、を表示するように構成された1つまたはそれ以上の表示画面を含むことができる。ユーザインターフェース7136は、キーボード、キーパッド、タッチスクリーン、または、ユーザが放射線治療システム7100に情報を入力することができる任意のタイプのデバイスであり得る。または、表示装置7134およびユーザインターフェース7136は、タブレットコンピュータ、例えば、アップル社製のiPad(登録商標)、Lenovo社製のThinkpad(登録商標)、サムソン社製のGalaxy(登録商標)のようなデバイスに組み込むことができる。
【0081】
[081]
さらに、放射線治療システム7100のありとあらゆる構成要素は、仮想マシン(例えば、VMWare、Hyper−Vなど)として実装されてもよい。例えば、仮想マシンはハードウェアとして機能するソフトウェアであってもよい。したがって、仮想マシンは、ハードウェアとして一緒に機能する少なくとも1つまたはそれ以上の仮想プロセッサ、1つまたはそれ以上の仮想メモリ、および/または1つまたはそれ以上の仮想通信インターフェースを含むことができる。例えば、画像処理装置7112、OIS7128、画像取得装置7132は、仮想マシンとして実装されてもよい。利用可能な処理能力、メモリ、および計算能力が与えられるならば、放射線治療システム7100全体を仮想マシンとして実装することができる。
【0082】
[082]
図8は、X線源または線形加速器のような放射線源、カウチ8216、撮像検出器8214、および放射線治療出力8204を含む、例示的な放射線治療装置150を示す。放射線治療装置8202は、放射線ビーム8208を出射して患者に治療を提供するように構成されている。放射線治療出力8204は、マルチリーフコリメータ(MLC)のような1つまたはそれ以上の減衰器またはコリメータを含むことができる。
【0083】
[083]
図8において、患者は、治療カウチ8216により支持されて領域8212に配置され、放射線療法治療計画に従って放射線療法線量を受け取ることができる。放射線治療出力8204は、ガントリ8206または他の機械的支持体に載せられまたは取り付けられることができる。1つまたはそれ以上のシャーシモーター(図示せず)は、カウチ8216が治療領域に挿入されるとき、ガントリ8206と放射線治療出力8204をカウチ8216の周りで回転させることができる。一実施形態では、ガントリ8206は、カウチ8216が治療領域に挿入されるとき、カウチ8216の周りで連続的に回転されてもよい。別の実施形態では、カウチ8216が治療領域に挿入されるとき、ガントリ8206は所定の位置まで回転されてもよい。例えば、ガントリ8206は、軸(「A」)を中心に治療出力8204を回転させるように構成することができる。カウチ8216と放射線治療出力8204の両方は、横方向(「T」)に移動可能、横方向(「L」)に移動可能、または、横軸(「R」と表示)を中心とした回転のように1つまたは複数の周りの回転のように、患者の周りの他の位置に独立して移動可能である。1つまたは複数のアクチュエータ(図示せず)に通信可能に接続されたコントローラは、放射線療法治療計画に従って患者を放射線ビーム8208の位置に、または外に適切に配置するために、カウチ8216の動きまたは回転を制御することができる。カウチ8216とガントリ8206の両方が複数の自由度で互いに独立して移動可能であるので、放射線ビーム8208が腫瘍を正確に標的とすることができるように患者を配置することができる。
【0084】
[084]
図8に示す座標系(軸A、T、Lを含む)は、アイソセンタ8210に位置する原点を有する。アイソセンタは、放射線治療ビーム8208が、処方された放射線量を患者の上または内部の場所に送達するような、座標軸の原点と交差する場所として定義することができる。または、アイソセンタ8210は、ガントリ8206によって軸Aの周りに位置決めされた放射線治療出力8204の様々な回転位置について、放射線治療ビーム8208が患者と交差する場所として定義することができる。
【0085】
[085]
ガントリ8206は、また、取り付けられた撮像検出器8214を有し得る。撮像検出器8214は、好ましくは放射線源8204の反対側に配置され、一実施例では、撮像検出器8214は、治療ビーム8208のフィールド内に配置することができる。
【0086】
[086]
撮像検出器8214は、ガントリ8206上に、好ましくは、治療ビーム8208との位置合わせを維持するような、放射線治療出力8204の反対側に取り付けることができる。ガントリ8206が回転すると、撮像検出器8214が回転軸の周りを回転する。一実施形態では、撮像検出器8214は、フラットパネル検出器(例えば、直接検出器またはシンチレータ検出器)とすることができる。このようにして、撮像検出器8214を使用して、治療ビーム8208を監視することができ、または、撮像検出器8214を使用して、ポータルイメージングなどの患者の解剖学的構造を撮像することができる。放射線治療装置8202の制御回路は、システム8100内に統合されてもよいし、システムとは別個であってもよい。
【0087】
[087]
図示された実施形態では、カウチ8216、治療出力8204、またはガントリ8206のうちの1つまたは複数を自動的に配置することができ、治療出力8204は、特定の治療送出インスタンスの指定線量に従って治療ビーム8208を確立することができる。ガントリ8206、カウチ8216、または治療出力8204の1つまたはそれ以上の異なる向きまたは場所を使用するような放射線治療処置計画に従って、一連の治療送達を指定することができる。治療の提供は連続して行うことができるが、アイソセンタ8210のような患者の上または患者の内部の所望の治療軌跡で交差することができる。それにより、処方された累積線量の放射線療法を、治療部位の近くの組織への損傷が低減または回避しながら、治療部位に送達することができる。
【0088】
[088]
図8は、放射線治療出力を中心軸(例えば、軸「A」)の周りに回転させることができる構成を含む、患者に放射線治療を提供するように構成された放射線治療装置の一実施形態の概略を示す。他の放射線療法の出力構成を使用することができる。例えば、放射線治療出力は、複数の自由度を持つロボットアームまたはマニピュレータに取り付けることができる。更に別の実施形態では、治療出力を、患者から横方向に離れた領域に位置するように固定することができ、患者を支持するプラットフォームを使用して、放射線治療アイソセンタを患者内の指定された標的位置に整列させることができる。
【0089】
[089]
別の実施形態では、放射線治療装置を、線形加速器と画像取得装置との組み合わせとすることができる。いくつかの実施形態では、画像取得装置は、当業者によって認識されるように、MRI、X線、CT、CBCT、スパイラルCT、PET、SPECT、光断層撮影、蛍光イメージング、超音波イメージング、または放射線治療ポータルイメージング装置等、のような装置とすることができる。
【0090】
[090]
本明細書で使用されるように「その間が通信的に結合されている」とは、いずれかの結合上の実在物(entity)が、その間のアイテム(item)を介して通信しなければならず、それらの実在物(entity)は、アイテム(item)を介して通信しなければ相互に通信できないことを意味する。
【0091】
[091]
上記の詳細な説明は、詳細な説明の一部を形成する添付の図面への参照を含む。図面は、本発明を実施することができる特定の実施形態を、例示として示すものである。これらの実施形態は、本明細書では一般に「実施例」とも呼ばれる。そのような実施例は、図示または記載されたものに追加した要素を含むことができる。しかし、本願発明者らは、また、図示または記載されている要素のみが提供されている実施例を考慮している。さらに、本願発明者らは、また、特定の実施例(またはその1つまたは複数の態様)に関して、あるいは他の実施例(またはその1つまたは複数の態様)に関して示された、または説明された要素の任意の組合せまたは置換を用いる実施例を考慮している。
【0092】
[092]
本明細書と、参照により組み込まれた文書との間に一貫性のない用法がある場合、本明細書の用法が支配する。
【0093】
[093]
本明細書では、用語「a」または「an」は、特許文書で一般的であるように、本発明の態様の要素を導入するときに使用され、「少なくとも1つの」または「1つまたはそれ以上の」のいかなる他の例または使用法とは無関係に、1つまたはそれ以上の要素よりも1つまたはそれ以上を含む。本明細書では、用語「または(or)」は、「AまたはB(A or B」が、そうでないと示されない限り、「Aを含むがBを含まない(A but not B)」、「Bを含むがAを含まない(B but not A)」、「AおよびB(A and B)」を含むように、非排他的であることを指すために使用される。本文書において、用語「including(含む)」および「in which(その中で)」は、それぞれの用語「comprising(含む)」および「wherein(ここで)」の平易な英語の等価物として使用される。また、以下の請求項において、用語「including(含む)」および「comprising(含む)」は、オープンエンドであり、すなわち、請求項中のこのような用語の後に記載された要素に加えた要素を含むシステム、装置、成形品、組成物、製剤、またはプロセスは、依然としてその請求項の範囲内に含まれるものとみなされる。さらに、以下の請求項では、「第1の」、「第2の」、「第3の」などの用語は、単なるラベルとして使用されており、それらの対象に数値要件を課すことを意図していない。
【0094】
[094]
本明細書に記載された方法の実施例は、少なくとも部分的に機械的またはコンピュータ的に実施することができる。いくつかの実施例は、上記の実施例に記載されているような方法を実行するように電子デバイスを構成するために操作可能な命令をコード化したコンピュータ読み取り可能な媒体または機械読み取り可能な媒体を含むことができる。このような方法の実装は、マイクロコード、アセンブリ言語コード、より上位の言語コードなどのコードを含むことができる。このようなコードは、様々な方法を実行するためのコンピュータ読み取り可能な命令を含むことができる。コードは、コンピュータプログラム製品の一部を形成することができる。さらに、例示的な実施形態では、コードは、実行中または他の時間帯に、1つまたはそれ以上の揮発性、非一過性、または非揮発性の有形コンピュータ可読媒体に目に見える方法で記憶することができる。これらの有形のコンピュータ可読媒体の例としては、ハードディスク、取り外し可能な磁気ディスク、取り外し可能な光ディスク(例えば、コンパクトディスクおよびデジタルビデオディスク)、磁気カセット、メモリカードまたはスティック、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)などが挙げられるが、これらに限定されるものではない。上記の説明は例示的なものであり、制限的なものではない。例えば、上述した実施例(またはその1つまたはそれ以上の態様)は、互いに組み合わせて使用することができる。他の実施形態は、上記の説明を検討する際に当業者によるように使用されてもよい。要約書は、読者が技術的開示の性質を迅速に確認できるようにするため、アメリカ合衆国特許規則第1.72(b)(37 C.F.R. §1.72(b))に準拠して提供されている。それは、請求項の範囲や意味を解釈したり制限したりするものではないと理解した上で提出されている。また、上記の詳細な説明では、開示を簡素化するために、さまざまな機能をグループ化することがある。これは、クレームされていない開示された機能がクレームに不可欠であることを意図するものとして解釈されるべきではない。むしろ、発明の主題は、特定の開示された実施形態のすべての特徴より少ない場合がある。したがって、以下の請求項は、例示または実施形態としてここに詳細な説明に組み込まれ、各請求項は、それ自体が別個の実施形態として成立しており、そのような実施形態は、様々な組み合わせまたは変形で互いに結合されてもよいことが企図されている。本発明の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲が権利を与えられる均等物の全範囲とともに決定されるべきである。
【0095】
[095]
本開示はまた、本明細書に記載された操作を実行するためのシステムに関する。このシステムは、必要な目的のために特別に構成されていてもよいし、コンピュータに記憶されたコンピュータプログラムによって選択的に起動または再構成される汎用コンピュータから構成されていてもよい。このようなコンピュータプログラムは、これらに限定されるものではないが、フロッピーディスク、光ディスク、CD−ROM、磁気−光ディスクを含む任意のタイプのディスク、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、EPROM、EEEPROM、磁気カードまたは光カード、または電子命令を格納するのに適した任意のタイプの媒体などのコンピュータ読み取り可能な記憶媒体に格納することができる。
【0096】
[096]
本明細書に図示され説明された実施形態における操作の執行または実行の順序は、特に指定されない限り、必須ではない。すなわち、操作は、特に指定されない限り、任意の順序で実行されてもよく、本発明の実施形態は、本明細書に開示されている操作よりも追加的または少ない操作を含んでもよい。例えば、特定の操作を別の操作の前、同時または後に執行または実行することは、特許請求の範囲の範囲内であることが意図されている。
【0097】
[097]
本開示は、コンピュータ実行可能な命令で実施することができる。コンピュータ実行可能な命令は、1つまたはそれ以上のコンピュータ実行可能なコンポーネントまたはモジュールに編成されていてもよい。本発明の側面は、そのような構成要素またはモジュールの任意の数および組織で実施することができる。例えば、本発明の態様は、特定のコンピュータ実行可能な命令、または図示され、本明細書に記載された特定の構成要素またはモジュールに限定されない。本発明の他の実施形態では、本明細書に図示および記載されたものとは異なるコンピュータ実行可能な命令または機能性を有する構成要素を含んでもよい。
【0098】
[098]
添付の特許請求の範囲から逸脱することなく、修正および変形が可能であることは明らかであろう。特許請求の範囲から逸脱することなく、上記の構造、製品、方法において様々な変更が可能であるため、上記の説明に含まれ、添付の図面に示されているすべての事項は、例示的なものとして解釈され、限定的な意味で解釈されるものではないことが意図されている。
【手続補正2】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
放射線治療計画を検証する方法であって、
患者の関心領域の医用画像に基づいてファントムを作成又は製造するステップであって、前記関心領域は、放射線治療によって治療される標的領域と非標的領域とを含むステップと、
前記標的領域又は前記非標的領域の少なくとも1つの変形をモデリングするために前記ファントムを変形するステップと、
前記放射線治療計画が有効である前記標的領域又は前記非標的領域の少なくとも1つの最大変形量を決定するステップと、
所定の放射線量に幾何学的変換を適用することにより、歪んだ放射線量を計算するステップであって、前記所定の放射線量は、前記関心領域に照射される放射線の空間的分布を定義するステップと、
前記歪んだ放射線量を提供するための放射線治療装置を構成するための放射線治療計画を生成するステップと、
前記放射線治療計画に従って前記放射線治療装置を操作することにより、放射線が前記変形されたファントムに照射されたときに前記変形されたファントムが受ける前記放射線量分布を測定するステップと、
前記測定された放射線量分布を前記所定の放射線量と比較することによりを含み、前記放射線治療計画を検証するステップと
を有する
ことを特徴とする方法。
【請求項2】
請求項1記載の方法において、
前記ファントムは、外部刺激にさらされたときに形状の変化を示すスマート材料からなり、
前記ファントムを変形するステップは、前記スマート材料に外部刺激を加えることを含む
ことを特徴とする方法。
【請求項3】
請求項1記載の方法において、
前記方法は、
前記ファントムを変形する前に、前記ファントムの画像を取得するステップと、
前記変形したファントムの画像を取得するステップと、
前記ファントムの画像と前記変形されたファントムの画像とに基づいて前記幾何学的変換を計算するステップと
を更に有する
ことを特徴とする方法。
【請求項4】
請求項3記載の方法において、
前記ファントムの画像と前記変形されたファントムの画像は、それぞれ複数のボクセルを有し、
前記幾何学的変換を計算するステップは、変形可能な画像レジストレーションを実行して、前記ファントムの画像内の各ボクセルを前記変形されたファントムの画像内の対応するボクセルにマッピングする変形ベクトル場を計算することを含む
ことを特徴とする方法。
【請求項5】
請求項1記載の方法において、
前記ファントムは、付加製造プロセスにより製造される
ことを特徴とする方法。
【請求項6】
請求項1記載の方法において、
前記ファントムを製造するステップは、前記ファントム内に複数の線量計を配置することを含む
ことを特徴とする方法。
【請求項7】
線量歪み又は他の線量マッピング技術を検証する方法であって、
患者の関心領域を表す第1の医用画像にアクセスするステップと、
前記第1の医用画像に第1の変形ベクトル場を適用することにより、第2の医用画像を生成するステップと、
前記第1の医用画像及び前記第2の医用画像にそれぞれ対応する第1のファントム及び第2のファントムを生成、取得、又は提供するステップと、
前記放射線治療装置を操作することにより、前記第1のファントム及び第2のファントムにそれぞれ放射線が照射されたとき、前記第1のファントム及び前記第2のファントムにより受けた対応する放射線量分布を測定するステップと、
前記第1の医用画像内の各ボクセルを前記第2の医用画像内の対応するボクセルにマッピングする前記第1の医用画像及び前記第2の医用画像への変形可能な画像レジストレーションを行い、そして、前記第2の変形ベクトル場を適用することにより歪んだ放射線量を計算することにより、第2の変形ベクトル場を生成するステップと、
検証されるべき線量歪み又は他の線量マッピング技術を用いて、前記第1のファントムを用いて測定された第1の放射線量分布に前記第1の変形ベクトル場を適用することによりを含み、歪んだ放射線量を計算するステップと、
前記計算された歪んだ線量を、前記第2のファントムを用いて測定された第2の放射線量分布と比較することにより、前記線量の歪み又はマッピング技術の精度を検証するステップと
を有する
ことを特徴とする方法。
【請求項8】
請求項7記載の方法において、
前記第1のファントム及び前記第2のファントムの少なくとも1つは、付加製造プロセスにより製造される
ことを特徴とする方法。
【請求項9】
請求項7記載の方法において、
前記第1のファントム及び前記第2のファントムの少なくとも1つを製造するステップは、前記第1のファントム及び前記第2のファントム内に複数の線量計を配置することを含む
ことを特徴とする方法。
【請求項10】
請求項7記載の方法において、
前記線量歪み及び前記変形可能な画像レジストレーションの累積精度を検証するステップを有する
ことを特徴とする方法。
【請求項11】
放射線治療セッションを検証する方法であって、
患者の関心領域の医用画像に基づいてファントムを製造するステップであって、前記医用画像は、放射線治療計画に従って放射線治療装置を操作することにより、放射線が前記患者に照射される放射線治療セッションの前に取得されたものであるステップと、
前記放射線治療計画が有効である前記標的領域又は前記非標的領域の少なくとも1つの最大変形量を決定するステップと、
前記放射線治療計画に従って前記放射線治療装置を操作することにより、放射線がファントムに照射されたときに前記ファントによる受ける前記放射線量分布を測定するステップと、
前記測定された放射線量分布を前記放射線治療セッション中に取得された線量測定値と比較することによりを含み、前記放射線治療セッションを検証するステップと
を有する
ことを特徴とする方法。
【請求項12】
請求項11記載の方法において、
前記ファントムは、付加製造プロセスにより製造される
ことを特徴とする方法。
【請求項13】
請求項11記載の方法において、
前記ファントムを製造するステップは、前記ファントム内に複数の線量計を配置することを含む
ことを特徴とする方法。
【請求項14】
放射線治療の品質保証に用いるためのファントムであって、
前記ファントムは、
患者の標的領域を表す第1の部分と、
前記患者の非標的領域を表す第2の部分と
を有し、
前記第1の部分又は前記第2の部分の少なくとも1つは、湿度、温度、光、電場、又は磁場の少なくとも1つに基づく外部刺激に曝されたときに形状の変化を示すスマート材料からなる
ことを特徴とするファントム。
【請求項15】
請求項14記載のファントムにおいて、
前記ファントムは、付加製造プロセスにより製造される
ことを特徴とするファントム。
【請求項16】
請求項14記載のファントムにおいて、
前記ファントムは、前記患者の関心領域の医用画像に基づいて、付加製造プロセスにより製造され、前記関心領域は、前記標的領域及び前記非標的領域を含み、前記ファントムの前記第1の部分及び前記第2の部分は、それぞれが、前記医用画像における前記標的領域及び前記非標的領域の形状によりそれぞれ定義されるそれぞれの形状を有する
ことを特徴とするファントム。
【請求項17】
請求項14記載のファントムにおいて、
前記ファントムは、前記ファントム内に配置された複数の線量計を有する
ことを特徴とするファントム。
【手続補正3】
【補正対象書類名】図面
【補正方法】変更
【補正の内容】
【国際調査報告】