(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2021-520858(P2021-520858A)
(43)【公表日】2021年8月26日
(54)【発明の名称】マイクロカテーテル
(51)【国際特許分類】
A61M 25/00 20060101AFI20210730BHJP
【FI】
A61M25/00 504
A61M25/00 506
A61M25/00 510
A61M25/00 530
A61M25/00 560
A61M25/00 620
【審査請求】有
【予備審査請求】未請求
【全頁数】23
(21)【出願番号】特願2019-544055(P2019-544055)
(86)(22)【出願日】2018年5月3日
(85)【翻訳文提出日】2019年10月4日
(86)【国際出願番号】CN2018085444
(87)【国際公開番号】WO2019184048
(87)【国際公開日】20191003
(31)【優先権主張番号】201810404958.5
(32)【優先日】2018年4月28日
(33)【優先権主張国】CN
(81)【指定国】
AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】519292811
【氏名又は名称】オーバスネイチ・メディカル(シェンゼン)・カンパニー・リミテッド
(74)【代理人】
【識別番号】110001737
【氏名又は名称】特許業務法人スズエ国際特許事務所
(72)【発明者】
【氏名】グオ、リシア
(72)【発明者】
【氏名】ジャン、ペンタオ
【テーマコード(参考)】
4C267
【Fターム(参考)】
4C267AA01
4C267BB02
4C267BB07
4C267BB12
4C267BB16
4C267BB17
4C267BB52
4C267CC08
4C267CC10
4C267GG07
4C267GG08
4C267GG09
4C267GG24
4C267HH04
4C267HH06
4C267HH17
(57)【要約】
本発明は一種類のマイクロカテーテルを公開した。このマイクロカテーテルは管状構造であり、カテーテル本体とカテーテル本体の遠位端にある先端とを含む。カテーテル本体は、中空管腔を有する内層と、内層の外に覆われ、スプリング層とスプリング層の局部に縦方向に延びる織物とを含む管状の中間層と、中間層の外に覆われている管状の外層とを含む。織物に覆われてないスプリング層の部分はカテーテル本体の縦軸方向に沿って一定の角度で屈曲する。本発明に係るマイクロカテーテルのカテーテル本体は多層構造であり、それに織物は近位端のスプリング層に近いところでのみ覆われる。織物に覆われてないスプリング層は、冠状動脈の分岐と主枝との間の角度に応じて、相応的な角度で屈曲することができ、マイクロカテーテルが冠状動脈の分岐病変に到達することが確保される。
【特許請求の範囲】
【請求項1】
マイクロカテーテルであって、管状構造であり、カテーテル本体と上記のカテーテル本体の遠位端に配置された先端とを含み、上記のカテーテル本体は近位端と遠位端とを有し、上記のカテーテル本体は、
中空管腔を有する内層と、
上記の内層の外に覆われ、スプリング層と上記のスプリング層の上に位置する上記のスプリング層の局部に縦方向に延びる織物とを含む管状の中間層と、
上記の中間層の外に覆われた管状の外層とを含み、
その中で、上記の織物に覆われてない上記のスプリング層の局部が、上記のカテーテル本体の縦軸方向に対して一定の角度で屈曲する。
【請求項2】
上記の請求項1のマイクロカテーテルにおいて、上記の織物に覆われてない上記のスプリング層の長さと上記の織物に覆われている上記のスプリング層の長さとの比は、1:3から1:10までである。
【請求項3】
上記の請求項1のマイクロカテーテルにおいて、上記の中間層の硬さは上記の内層と上記の外層の硬さより大きい;上記の外層は熱可塑性ポリマーから作製され、かつ上記の外層の熱可塑性ポリマーは上記の中間層を覆うように上記の中間層に埋め込まれている。
【請求項4】
上記の請求項3のマイクロカテーテルにおいて、上記のスプリング層は、スプリング管、中空のスケルトン管、或いは織物管である。
【請求項5】
上記の請求項1のマイクロカテーテルにおいて、上記のスプリング層の外径が上記のカテーテル本体の近位端から遠位端へ徐々に減少する。
【請求項6】
上記の請求項1のマイクロカテーテルにおいて、上記の織物は円形状の細糸と平坦な細糸とを含む。
【請求項7】
上記の請求項6のマイクロカテーテルにおいて、上記の織物は上記のカテーテル本体の縦軸方向に沿って上記のスプリング層の周りに螺旋状に延びる。
【請求項8】
上記の請求項6のマイクロカテーテルにおいて、上記の織物は複数の筋の細糸から織られて、その中で、少なくとも一つの筋の上記の細糸は外向きに突出して、上記の織物の外表面に螺旋状のリブを形成する。
【請求項9】
上記の請求項1のマイクロカテーテルにおいて、上記の外層の硬さは、上記のカテーテル本体の近位端から遠位端へ徐々に減少し、上記の外層の外径が、上記のカテーテル本体の近位端から遠位端へ徐々に減少し、上記の外層の壁厚さが、上記のカテーテル本体の近位端から遠位端へ徐々に減少する。
【請求項10】
上記の請求項1のマイクロカテーテルにおいて、上記のスプリング層は、直径が上記のカテーテル本体の近位端から遠位端へ徐々に減少するテーパスプリングであり、上記のスプリング層は、遠位端セクションと、近位端セクションと、上記の遠位端セクションと上記の遠位端セクションとの間を接続するフェードセクションとを含み、上記の遠位端セクションと上記の近位端セクションのピッチは、それぞれ一定であり、上記の遠位端セクションのピッチは、上記の近位端セクションのピッチより大きい、上記のフェードセクションのピッチは、近位端から遠位端へと増加する傾向にある。
【請求項11】
上記の請求項10のマイクロカテーテルにおいて、上記の遠位端のピッチは180PPIであり、上記の近位端のピッチは80PPIであり、上記のフェードセクションのピッチは近位端から遠位端へと80PPIから180PPIまで徐々に遷移する。
【請求項12】
上記の請求項1のマイクロカテーテルにおいて、上記の外層は螺旋波紋管であり、上記の螺旋波紋管の外表面に形成された螺旋状の突起の波頭と上記の波頭に対して凹んだ谷とを含み、上記の織物に覆われてない上記のスプリング層は、スプリング管であり、上記の外層の谷は、上記のスプリング管のねじ山間の隙間に埋め込まれ、上記の外層の波頭は、上記のスプリング管のねじ山と接触して結合される。
【請求項13】
上記の請求項12のマイクロカテーテルにおいて、上記の螺旋波紋管の壁厚さは、上記のカテーテル本体の縦軸方向に沿って近位端から遠位端へと減少する傾向にあり、隣接する2つの波頭の間の距離は、上記のカテーテル本体の縦軸方向に沿って近位端から遠位端へと増加する傾向にある。
【請求項14】
上記の請求項1のマイクロカテーテルにおいて、上記のカテーテル本体の外径が近位端から遠位端へと2.8F〜2.5Fから2.1F〜1.9Fまで徐々に減少し、上記のカテーテル本体の硬さは近位端から遠位端へと120gf〜70gfから5gf〜2gfまで徐々に遷移する。
【請求項15】
上記の請求項1のマイクロカテーテルにおいて、上記の織物に覆われてない上記のスプリング層は、上記の先端から10mm〜60mmの位置に配置される。
【請求項16】
上記の請求項1のマイクロカテーテルにおいて、上記のマイクロカテーテルは、
上記のカテーテル本体の近位側に配置された針座と、
上記の針座と上記のカテーテル本体の間に位置し、上記のカテーテル本体の硬さより小さい接続部材とを含む。
【請求項17】
上記の請求項1のマイクロカテーテルにおいて、上記の織物に覆われてない上記のスプリング層の上記の部分は、上記のカテーテル本体の遠位端の先端を動脈分岐の入り口にガイドするように、一定の角度で屈曲する。
【請求項18】
上記の請求項17のマイクロカテーテルにおいて、更に、
上記のカテーテル本体の中空部に配置され、上記のスプリング層を通過して延びるガイドワイヤを含み、
その中で、上記のスプリング層の遠位端から上記のガイドワイヤを引き戻すことにより、上記の織物に覆われてない上記のスプリング層の部分は、上記のカテーテル本体の遠位端の先端を動脈分岐の入り口にガイドするように、上記のカテーテル本体の縦軸に対して一定の角度で屈曲する。
【請求項19】
上記の請求項1のマイクロカテーテルにおいて、上記の織物に覆われてない上記のスプリング層の上記の部分は、上記のカテーテル本体の縦軸に対して約25°から約140°の範囲内で屈曲することができる。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は医療機械の分野に関し、特に曲げて側枝にアクセスすることができるようなマイクロカテーテルに関する。
【背景技術】
【0002】
臨床的には、介入治療の手術中にカテーテルワイヤの通過の成功率を高めるために、通常にマイクロカテーテルとカテーテルワイヤが一緒に使用される。その中で、マイクロカテーテルはカテーテルワイヤに支持力を提供することができる。
【0003】
既存の介入治療病例の統計により、分岐病変はよく見られ、それは主に冠状動脈の主枝及び/或いは分岐部位に発生する。冠状動脈の分岐は冠状動脈の主枝の端部に現れる分岐であり、主枝と分岐の間に大きさが異なる分岐角度が存在する。既存のマイクロカテーテルは冠状動脈の主枝に入った後、冠状動脈の分岐にスムーズに入ることができず、カテーテルワイヤ、バルーンカテーテルまたはステントシステムが病変部位に到達することに影響を与え、介入手術の中止あるいは失敗という深刻な結果をもたらす。
【発明の概要】
【0004】
本発明は、上記の検討した既存技術の中で存在するマイクロカテーテルはカテーテルワイヤが冠状動脈の分岐病変に到達することを助けず、介入手術の通常の動作に影響を及ぼす技術問題を解決するために、改善された側枝にアクセスする能力を有するマイクロカテーテルを提供する。
【0005】
上記の目的を実現するために、本発明は以下の技術方案を採用する。
本発明はマイクロカテーテルを提供し、上記のマイクロカテーテルは管状構造であり、カテーテル本体と上記のカテーテル本体の遠位端に配置された先端を含み、上記のカテーテル本体は近位端と遠位端とを有し、上記のカテーテル本体は、
中空管腔を有する内層と、
上記の内層の外側に被覆され、スプリング層と、上記のスプリング層の上方に位置する上記のスプリング層の局部に縦軸方向に延びる織物とを含む管状の中間層と、
上記の中間層の外側に被覆された管状の外層とを含み;
その中で、上記の織物で被覆されてない上記のスプリング層の部分が、上記のカテーテル本体の縦軸線に対して一定の角度で湾曲している。
【0006】
さらに、織物で被覆されてない上記のスプリング層の長さと、上記の織物で被覆されている上記のスプリング層の長さとの比は1:3〜1:10であり、好ましくは1:5〜1:9であり、より好ましくは1:8である。
【0007】
さらに、上記の中間層の硬さは上記の内層と上記の外層の硬さより大きい;上記の外層は熱可塑性ポリマーでできており、上記の外層の熱可塑性ポリマーは上記の中間層を包むように上記の中間層にはめ込む。
【0008】
さらに好ましくは、上記のスプリング層は、スプリングチューブ、中空のスケルトン管或いは織管である。
【0009】
さらに、上記のスプリング層の外径は、上記のカテーテル本体の近位端から遠位端に向かって徐々に減少する。
【0010】
さらに、上記のスプリング層は螺旋状に巻かれた平坦な細糸を含む。
【0011】
さらに、上記の織物は複数本の巻かれた細糸を含む。
【0012】
さらに好ましくは、上記の織物は円状の細糸と平坦な細糸を含む。
【0013】
さらに好ましくは、上記の織物は、上記のカテーテル本体の縦軸方向に上記のスプリング層の全周を周り螺旋状に延びている。
【0014】
さらに好ましくは、上記の織物は複数の細糸から構成され、その中で、少なくとも1本の上記の細糸が他の細糸より外へ突出し、上記の織物の外面は螺旋状の突起が形成される。
【0015】
さらに、上記の外層の硬さは上記のカテーテル本体の近位端から遠位端に向かって徐々に減少する。
【0016】
さらに、上記の外層の外径は上記のカテーテル本体の近位端から遠位端に向かって徐々に減少する。
【0017】
さらに、上記の外層の壁の厚さは上記のカテーテル本体の近位端から遠位端に向かって徐々に減少する。
【0018】
さらに、上記のスプリング層は、直径が上記のカテーテル本体の近位端から遠位端に向かって徐々に縮小するテーパスプリングであり、上記のスプリング層は遠位端セクションと、近位端セクションと、上記の遠位端セクションと上記の近位端セクションとの間を接続するフェードセクションとを含み、上記の遠位端と上記の近位端のピッチはそれぞれ一定で、上記の遠位端のピッチは上記の近位端のピッチより大きく、上記のフェードセクションのピッチは近位端から遠位端に向かって大きくなる傾向がある。
【0019】
さらに、上記の遠位端のピッチは180PPIであり、上記の近位端のピッチは80PPIであり、上記のフェードセクションのピッチは近位端から遠位端に向かって80PPIから180PPIへと遷移する。
【0020】
さらに好ましくは、上記の外層は螺旋ベローズであり、上記の螺旋ベローズの外面に螺旋状に突起した波頭と、上記の波頭に対して凹んだ谷とを含み、上記の織物で被覆されてない上記のスプリング層はスプリング管であり、上記の外層の谷は上記のスプリング管のネジ山の間の隙間に埋め込まれ、上記の波頭は上記のスプリング管のネジ山と接触し接着されている。
【0021】
さらに、上記の螺旋ベローズの壁厚さは、上記のカテーテル本体の縦軸方向に近位端から遠位端に向かって減少し、2つの隣接する波頭の間の距離は、カテーテル本体の縦軸方向に近位端から遠位端に向かって増大する傾向にある。
【0022】
さらに、上記のカテーテル本体の外径が近位端から遠位端に向かって2.8F〜2.5Fから2.1F〜1.9Fまでに徐々に小さくなり、上記のカテーテル本体の硬さは近位端から遠位端に向かって120gf〜70gfから5gf〜2gfまでに徐々に遷移する。
【0023】
さらに、上記の織物で被覆されてない上記のスプリング層は、上記の先端から10mm〜60mmの位置に配置されている。
【0024】
さらに、上記のマイクロカテーテルはさらに、
上記のカテーテル本体の近位側に配置された針座と、
上記の針座とカテーテル本体の間に位置する接続部材とを含み、その接続部材の硬さは上記のカテーテル本体の硬さより小さい。
【0025】
さらに、上記のスプリング層と上記の織物のうちの少なくとも一方は、ステンレス鋼またはニッケルチタン合金でできている。
【0026】
さらに、上記の織物で被覆されてない上記のスプリング層の部分は、上記のカテーテル本体の遠位端の先端を動脈の分岐の入り口に導くために、一定の角度で屈曲する。
【0027】
さらに好ましくは、上記のマイクロカテーテルは、さらにガイドワイヤを含み、上記のガイドワイヤは上記のカテーテル本体の中空管腔に位置し、上記のスプリング層を通過するように延びている;
その中で、上記のスプリング層の遠位端からカテーテルワイヤを引き戻すことにより、上記の織物で被覆されてない上記のスプリング層の部分は、上記のカテーテル本体の縦軸方向に一定の角度で屈曲され、上記のカテーテル本体の遠位端の先端は動脈の分岐の入り口に導入される。
【0028】
さらに、上記の織物で被覆されてない上記のスプリング層の上記の部分は、上記のカテーテル本体の縦軸方向に対して約25°から約140°までの範囲内で屈曲できる。
【0029】
上記の技術を用いる本発明は、既存の技術と比較して、マイクロカテーテルのカテーテル本体が多層に構成され、スプリング層の外壁の近位端にしか織物で被覆されてなく、織物で被覆されてないスプリング層の部分は管状動脈の主枝と分岐との間の角度に対応して屈曲でき、よって、マイクロカテーテルが管状動脈の分岐病変に到達することが保証するという技術効果を有する。また、プッシュセクションのカテーテル本体の硬さは、シェイプセクションのカテーテル本体の硬さよりも大きいため、プッシュセクションのカテーテル本体は、シェイプセクションのカテーテル本体の近位端に一定の支持力と反動力を提供でき、マイクロカテーテルのねじれ力を改善し、カテーテル本体に十分なねじれ力と支持力を持たせることで、マイクロカテーテルの透過性、追跡性、柔軟性を効果的に改善することができる。
【図面の簡単な説明】
【0030】
【
図1】本発明に係るマイクロカテーテルの概略図である。
【
図2】本発明に係るマイクロカテーテルの使用状態の概略図である。
【
図3】本発明に係るマイクロカテーテルのシェイプセクションの概略断面構造図である。
【
図4】本発明に係るマイクロカテーテルのプッシュセクションの概略断面構造図である。
【
図5】本発明に係るマイクロカテーテルのプッシュセクションの概略図である。
【
図6】本発明に係るマイクロカテーテルのプッシュセクションのプッシュセクション中間層の概略図である。
【
図7】本発明に係るマイクロカテーテルのカテーテル本体のスプリング層の概略図である。
【
図8】本発明に係るマイクロカテーテルのカテーテル本体の外層の概略図である。
【
図9】本発明に係るマイクロカテーテルのシェイプセクション中間層の概略図である。
【
図10】本発明に係るマイクロカテーテルのプッシュセクション中間層の概略図である。
【
図11】本発明に係るマイクロカテーテルのプッシュセクション中間層の概略図である。
【
図12】本発明に係るマイクロカテーテルのシェイプセクションの断面図である。
【
図13】
図1に示されているマイクロカテーテルの立体図である。
【
図14A】第一のアライメント位置に位置するマイクロカテーテルの概略側面図である。
【
図14B】シェイプセクションが
図14Aに示された位置から曲がり始めた時のマイクロカテーテルの概略側面図である。
【
図14C】マイクロカテーテルの縦軸方向に対して45°で曲げられた先端を有するマイクロカテーテルの概略側面図である。
【
図15】マイクロカテーテルが分岐にアクセスした状態の概略図である。
【発明を実施するための形態】
【0031】
本発明の特徴と利点を体現する典型的な実施形態は、以下の説明で詳細に述べる。本発明は、様々な実施形態において様々な変化を有することが可能であり、それらの変化は本発明の範囲から逸脱することはない。また、実施形態の説明および図示は本質的に説明のためであり、本発明を限定するためのものではないことが理解されるべきである。
【0032】
以下、本発明をより良く理解するために、本発明を具体的な実施の形態で詳細かつ具体的に説明するが、以下の実施形態は、本発明の範囲を限定するものではない。また、本発明は、方位を記述する際に、手術時に操作者に近づく方向を「近」とし、操作者から遠ざかる方向を「遠」とする。
【0033】
図1に示すように、本実施形態は、カテーテル本体11と、カテーテル本体11の遠位端に設けられた先端12とを含む管状構造のマイクロカテーテル1を提供する。
カテーテル本体11は、軸線Lに沿って縦方向に延びており、本説明書では軸線Lをカテーテル本体11の縦軸方向と呼び、先端12はタングステン粉末(70%)と熱可塑性エラストマー材料との混合物で作製される可能性がある。先端12は、それと接触した血管の内層への損傷を防止するために十分な柔軟性と柔軟性を有することができる。
【0034】
カテーテル本体11は、その縦軸方向Lに沿って、近位端のプッシュセクション111と遠位端のシェイプセクション112とを有している。シェイプセクション112は、適切な外力の下で挫屈せずに屈曲して、予め成形することができ、かつ、外力が除去された後にこのような予め形成されたシェイプを保持することができ、よって、カテーテル本体11の縦軸方向Lに沿って、シェイプセクション112の一部が一定の角度で屈曲塑性を得ることができ、成形後のマイクロカテーテル1はより良い支持力を発生させることができ、ガイドワイヤが複雑な迂回や石灰化病変部位にスムーズに進入するのを助けることができる。
【0035】
また、プッシュセクション111の硬さは、シェイプセクション112の硬さよりも大きいため、プッシュセクション111は、シェイプセクション112の近位端に一定の支持力と反動力を提供でき、マイクロカテーテル1のねじれ力は改善され、カテーテル本体11に十分なねじり力と支持力を持たせることにより、マイクロカテーテル1の透過性、追跡性及び柔軟性を効果的に向上させることができる。
【0036】
また、マイクロカテーテル1は、カテーテル本体11の近位端に位置する針座13を含む。針座13は、例えば、ポリカーボネート、ポリエステル、ポリアミド、ポリイミドから作られ、標準ルアーコネクターに接続するのに適合する。接続部材14は、針座13とカテーテル本体11との間にも設けられている。接続部材14は、針座13とカテーテル本体11との間でソフト/ハード遷移を起こすために、カテーテル本体11の硬さよりも低い硬さを有する弾性体材料から作られてもよい。
【0037】
操作中、操作者は通常、接続部材14を回転させることによりマイクロカテーテルを制御する。本実施形態では、A型ショア硬さ計によって、操作者の操作を容易にするために、接続部材14の硬さは15A〜75A、25A〜65A、または35A〜55Aである。採用されたショア硬さ計は、米国試験材料協会(ASTM)規格D−2240に記載されているものである。ASTM D−2240硬さ計テストは、試料に定格量の力を加え、加えた力による圧痕深さに基づいて硬さを測定した。スケールにより設定された「A」型試験に基づいて、直径1.1mm−1.4mmの硬化鋼棒と、切り欠きした35°円錐とを採用して圧痕を作製した。
【0038】
図2に示すように、実際の使用において、医師は、実際の必要に応じて穿刺針を用いて、シェイプセクション112の一部をカテーテル本体11の縦軸方向Lに対して一定の角度で曲げることができる。例えば、シェイプセクション112の屈曲角度αを血管開始セクションが曲がる角度に類似させ、αの範囲は約25°〜約140°、約30°〜約130°、約40°〜約120°、約50°〜約110°、約30°〜約100°、約30°〜約90°、約50°〜約110°、約25°、約30°、約40°、約50°、約60°、約70°、約80°、約90°、約100°、約110°、約120°、約130°である。また、特定のサイズの分岐入口解剖学の要求に応じて、シェイプセクション112は直接J型エルボに曲げられてもよい。このJ型エルボの曲げ半径は、血管の直径より大きくてはならない。シェイプセクション112はS型または半円状に曲げられてもよい。通常、シェイプセクション112は、平らで単純な曲線、複雑な曲線、逆方向の曲線、または双曲線を含むさまざまな曲線形状に形成することができる。曲線セクションの長さは変化することができ、シェイプセクションの異なる長さを含むことができる。様々な方法で力を加えることができ、例えば中空内層に挿入することができるカテーテルワイヤを使う。
【0039】
臨床的ニーズに基づいて、いくつかの実施形態では、シェイプセクション112は、多段エルボを形成するために、変化を有する曲げ半径に形成されてもよい。シェイプセクション112の曲率が所望の要求から逸脱した場合、シェイプセクション112は、例えば熱の増加など適切な外力によって、初期形状に復元してから、二次成形を行うことができる。
【0040】
いくつかの実施形態では、分岐アクセスの改善を実現するために、カテーテル本体11のシェイプセクション112は、先端12の端部から約10mm〜約60mmのところに設けられている。シェイプセクション112の柔軟性と湾曲可能のため、マイクロカテーテルはガイドワイヤを操作することによって遠位端脈管システムに入ることができる。それに、マイクロカテーテル1は、損傷部位を通過して、損傷部位に介入治療素子を配置するなどガイドワイヤおよび/または造影剤を送達してから、すぐに血流を回復させることができる。
【0041】
また、シェイプセクション112は、血管システムの分岐に入って、大動脈におけるマイクロカテーテルが大動脈から分岐する分岐点に到達した場合、シェイプセクション112は、分岐の入り口を指すために、例えば、マイクロカテーテルからガイドワイヤを除去することにより、カテーテル本体11の縦軸方向Lに対して適切な角度(例えば、約30°〜約140°)で屈曲することができる。マイクロカテーテルが操作者によって操作されている場合、すでに分岐の入口を指しているシェイプセクション112は、入口を介して動脈の分岐に移動することができる。注意すべきものは、中心軸線の周りに回転可能なカテーテル本体の針座を回転させることにより、カテーテルにねじれ力を加えることができる。
【0042】
本実施形態において、シェイプセクション112の硬さとシェイプセクション112の直径立方との間の比は、9gf〜17gf/インチ
3である。シェイプセクション中間層1122は金属材料であり、その硬さは、シェイプセクション内層1121とシェイプセクション外層1123の硬さよりも大きい。比較的大きい硬さのシェイプセクション中間層1122は、シェイプセクション112に十分な剛性を提供し、比較的小さい硬さのシェイプセクション内層1121とシェイプセクション外層1123は、シェイプセクション112に剛性に対応する柔軟性を提供することにより、シェイプセクション112に剛性と柔軟性が両立し、変形を発生させると同時にこの変形を記憶することができる。
【0043】
図3を参照すると、カテーテル本体のシェイプセクション112の概略断面図が示されている。本実施形態のカテーテル本体11部のシェイプセクション112は、中空管腔を有するシェイプセクション内層1121と、シェイプセクション内層1121の外側に覆われている管状のシェイプセクション中間層1122と、シェイプセクション中間層1122の外側に覆われている管状のシェイプセクション外層1123とを含む同心円三層構造で、その中で、上記のシェイプセクション中間層1122はスプリング層であり、当該のシェイプセクション中間層1122上に織物が覆われてない、織物で覆われてないシェイプセクション中間層1122の局部がカテーテル本体11の縦軸方向Lに対して一定の角度で屈曲できる。それで、マイクロカテーテル1が冠状動脈の分岐病変を通過する必要がある場合に、予め体外でシェイプセクション112を対応する角度に屈曲して、管状動脈の主枝と分岐の間の夾角に適合させて、よってマイクロカテーテル1を、順調に分岐病変を通過させることができる。薬物など必要な材料がカテーテル本体11のシェイプセクション内層1121に介入され、ガイドワイヤはシェイプセクション内層1121の中空管腔に配置されうる。シェイプセクション外層1123の外表面で測定されるように、カテーテル本体11の遠位端の外径は、例えば約0.2mmから約2mmまでなど変化してもよく、例えば、約0.2mm、約0.3mm、約0.4mm、約0.5mm、約0.6mm、約0.7mm、約0.8mm、約0.9mm、約1.0mm、約1.1mm、約1.2mm、約1.3mm、約1.4mm、約1.5mm、約1.6mm、約1.7mm、約1.8mm、約1.9mm、約2.0mmである。
【0044】
本実施形態において、カテーテル本体11の中間層は金属材料であり、プッシュセクション中間層1112の硬さは、シェイプセクションの中間層1122より大きい。プッシュセクション111の内層1111は、シェイプセクション112の内層1121と一体形成され、一緒にカテーテル本体11の内層を形成し、プッシュセクション111の外層1113は、シェイプセクション112の外層1123と一体に形成され、一緒にカテーテル本体11の外層を形成する。
【0045】
引き続き
図3を参照すると、本実施形態において、シェイプセクション中間層1122の管壁には多くの隙間がある。シェイプセクション112が内側から外側に向かって一体構造となるように、外層1123は、シェイプセクション中間層1122の空隙に埋め込まれ、かつ内層1121と熱接合される。当該の一体構造は、中間層1122の隙間の位置に、柔らかく、かつ一定の靭性を有しており、屈曲成形に有利であり、破損しにくく、それに、中間層1122の隙間ではない位置に特定の剛性があり、成形後の形状の保持に有利である。また、外層1123は、中間層1122の隙間に埋め込まれ、内層1121と一緒に熱接合することにより、カテーテル本体11は、中間層1122の隙間位置にリード角に類似した自動ロック式構造が形成され、よって、より良い事前成形効果を有するメモリマイクロカテーテル1が得られる。
【0046】
本実施形態において、シェイプセクション112のシェイプセクション中間層1122がスプリング管であり、スプリング管の隣接するねじ山の間に上記の空隙が形成されており、シェイプセクション外層1123は隣接するねじ山の間の空隙に埋め込まれ、それにシェイプセクション内層1121と接着し、よって優れた事前成形能力が得られる。
【0047】
外層1123は流動性の高い材料で作られ、内層1121は流動性の低い材料で作られ、外層1123は熱可塑性ポリマーで作られており、かつ、シェイプセクション外層1123の熱可塑性ポリマーは、シェイプセクション中間層1122の上で覆われるように、シェイプセクション中間層1122の中に埋め込まれる。両者が熱接合されると、シェイプセクション外層1123は、シェイプセクション中間層1122の空隙を透過して、シェイプセクション内層1121に浸透し、拡散して、融着することができる。
【0048】
図4に示すように、織物1115に覆われているスプリング層1124のプッシュセクション111におけるマイクロカテーテルの断面図である。本実施形態のプッシュセクション111は、内側から外側まで順に、中空管腔を有するプッシュセクション内層1111と、プッシュセクション内層1111の外を覆う管状のプッシュセクション中間層1112と、プッシュセクション中間層1112の外を覆う管状のプッシュセクション外層1113とを含む。その中で、プッシュセクション中間層1112は金属材料であり、かつ、プッシュセクション中間層1112の硬さは、シェイプ中間層1122の硬さより大きい。
【0049】
図5は、カテーテル本体11の縦方向の側面図である。本実施形態のシェイプセクション中間層1112は、スプリング層1114と、近位端からスプリング層1114の縦方向部分を覆う織物1115とを含む二層管である。カテーテル本体11の中間層は、シェイプセクション中間層1112からプッシュセクション111まで一体に延びて形成され、スプリング層1114の外は織物1115に覆われている。いくつかの実施形態において、織物1115は、スプリング層1114の長手方向全長の約10%−95%、約30−80%、約40%−70%、約60%−90%、または約75%−87.5%を覆う。湾曲点は、織物1115の覆い範囲が終了する位置から遠位端に位置する。しかしながら、湾曲点はシェイプセクション112に沿った任意の点に位置してもよい。特定の実施形態において、織物1115はスプリング層1114の全長の87.5%を覆い、例えば、スプリング層1124の全長は1.35mであると、織物1115の長さは1.2であり、織物1115に覆われていないスプリング層1114の長さは0.15mである。
【0050】
図5に示すように、シェイプセクションのスプリング層1124の外表面は、織物1115によって完全に覆われておらず(局部的)、織物1115を有するマイクロカテーテル部分は、織物1115を有しない部分に比べて、さらなる硬さと弾性があるため、織物1115を有する部分は、カテーテル本体11のプッシュセクション111を構成し、織物1115を有しない部分は、カテーテル本体11のシェイプセクション112を構成している。マイクロカテーテルが血管に入る時、硬いプッシュセクションは前への推力を与え、例えば厳重な病変箇所などの障害物を通るようにマイクロカテーテルを前進させることができる。
【0051】
本実施形態において、プッシュセクションスプリング層1114とシェイプセクションスプリング層1124とからなるカテーテル本体11の全体のスプリング層は、外径が近位端から遠位端に向かって減少する。スプリング層は、ステンレスまたはニッケル−チタン合金から作られたフラットワイヤから巻き付かれうる。他の金属材料で作られてもよい。例えば、他の金属は、超弾性ニッケルチタンと、形状記憶ニッケルチタンと、Ti−Niと、ニッケルチタンと、約55−60質量%のNiと、Ni−Ti−Hfと、Ni−Ti−Pdと、Ni−Mn−Gaと、300から400シリーズのSAEグレードのステンレス鋼(SST)(例えば304、316、402、440、MP35Nと17−7沈殿硬化(PH)ステンレス)と、その他のスプリング鋼と、その他の高張力材料と、あるいはその他の生体親和性金属材料とを含む。一つの好ましい実施形態において、材料は超弾性または形状記憶ニッケル・チタンであり、別の一つ好ましい実施形態において、材料はステンレスである。
【0052】
スプリング層は、一般に「形状記憶合金」と呼ばれる超弾性合金を含んでもよい。このような形状記憶合金で作られた素子は、変形後に元の形状を回復する能力を有しており、それらが通常の金属であれば永久変形を受ける。本発明に用いられる超弾性合金は、Elgiloy(登録商標)およびPhynox(登録商標)スプリング合金(Elgiloy(登録商標)合金はReading PaのCarpenter Technology Corporationから入手可能であり、Phynox(登録商標)合金はフランスImphyのMetal Imphyから入手可能である)と、SAEグレード316ステンレスと、Carpenter Technology会社とペンシルベニア州のLatrobeのLatrobeスチール会社とから入手可能なMP35N(ニッケルコバルト)合金と、カリフォルニア州のサンタクララ市のShape Memory Applicationsから入手可能な超弾性ニチノールとを含む。これらの合金のうちの1つまたは複数に関するさらなる情報は、すでに米国特許第5,891,191号に公開されている。
【0053】
上記のように、適切な超弾性合金は、本質的に49−53原子%のNiからなるニッケルチタン(ニチノール)と、本質的には38.5−41.5wt%のZnからなるCu−Zn合金と、1−10wt%のX(X=Be、Si、Sn、AlまたはGa)を含むCu−Zn−X合金と、本質的に36から38原子%のAlからなるNi−Al合金とを含む。特に好ましい超弾性合金はニチノールである。ニッケルチタン合金の機械性能は必要に応じて変化でき、Ti−Ni合金の一部を0.01から30.0原子%の別の元素X(X=Cu、PdまたはZr)に代えるか、冷間加工および/または最終熱処理の条件を選択する。使用した超弾性合金の耐曲げ強度(荷重が増加した時に発生する応力)は5〜200kg/mm
2(22℃)であり、好ましくは8〜150kg/mm
2であり、応力回復(荷重が低下した時に発生する応力)は3から180kg/mm
2(22℃)であり、好ましくは5から130kg/mm
2である。あるいは、スプリング層はポリマーによって形成されてもよい。ポリマーの例としては、ポリイミドと、PEEKと、ナイロンと、ポリウレタンと、ポリエチレンテレフタレート(PET)と、ラテックスと、HDHMWPE(高密度高分子量ポリエチレン)と、熱可塑性エラストマーとを含む。
【0054】
たとえば、スプリング層は、超弾性金属管を形成してから、凹部や穴を形成しようとする管の部分を除去することで製造することができる。管には、レーザー(例えば、YAGレーザー)、放電、化学エッチング、機械的カット、またはこれらの技術のいずれかを組み合わせて使用することによって、穴や切り口を形成することができる。発明者Moriuchiなどによる米国特許第5,879,381号のすべての内容は、参照により本明細書に組み込まれている。
【0055】
スプリング層は、加熱により所定の形状(たとえば曲線形状)に変形された後に冷却可能である。そして、スプリング層は、動脈などの血管に挿入しやすいように、搬送系内に変形状態で限定される。いったん管状モジュール上の物理的制約が除去されると、超弾性管状モジュールは元の未変形形状、すなわち曲線に戻ることができる。
【0056】
一つの実施形態において、スプリング層は複数の螺旋部分によって形成されてもよい。スプリング層には、連続および不連続なスパイラルカットパターンなど、いくつかの異なるタイプのスパイラルカットパターンを持つことができる。異なるスパイラルカットパターンは、同一または異なる管状モジュール上に分布することができる。押し込み性、ねじれ抵抗性、回転に応答するために用いられる軸トルク伝達および/または故障に対するトルク測定により、スパイラルカット部分は曲げ柔軟性の遷移を提供する。例えば、スパイラルカットパターンは、スプリング層の1つまたは複数の領域の柔軟性を高めるために、変化したピッチを有していてもよい。スパイラルカットのピッチは、隣接する2つのねじ山の同じ半径位置にあるポイント間の距離で測定できる。一つの実施形態において、スパイラルカットのピッチはカテーテルの近位端から遠位端に向かって増加することができる。螺旋の切口のピッチと切口、およびカットされてない経路を調節することにより、カテーテル(すなわち、管状モジュール)の押し込み性、ねじれ抵抗性、トルク、柔軟性と耐圧縮性を調整することができる。
【0057】
また、管状モジュールが曲がったり屈曲したりした時に、スパイラルカットパターンは管腔の断面直径を維持することができる。異なるカットパターンを有するスパイラルカット部分は、管状モジュールの長さに沿って分布することができる。スパイラルカットパターンは、モジュールの長さに沿って連続的であってもよいし、不連続であってもよい。例えば、モジュールの長さに沿って、1、2、3、4、5、6、7…n個のスパイラルカット部分があってもよい。スパイラルカット部分は連続的であってもよいし、切断されていてもよい。各部分には一定のカットパターンが存在してもよいが、管状モジュール内の異なる部分では、カットパターンは例えばピッチに応じて変化することができる。各部分は、特定の部分内の可変ピッチモードを含むこともできる。各スパイラルカット部分は、例えば0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.5mm、2.0mmなど、約0.05mmから約10mmの範囲で一定のピッチをとることができる。ピッチは各部分の中で変化してもよい。異なるスパイラルカット部分のピッチは、同じまたは異なる場合がある。あるいは、カテーテルは、カテーテルの長さに沿って連続的に変化するスパイラルカットパターンを有する管状モジュールにより形成されてもよい。モジュールの中の配向やスパイラルカット部の螺旋性は、螺旋の切口の中で変化する可能性がある。螺旋の切口の幅は、例えば約1ミクロンから約100ミクロンまで変化しうる。別の実施形態において、スプリング層は連続したコイルであってもよい。
【0058】
プッシュセクションの中間層1112部分の織物1115は、複数の糸から交互に織られている。少なくとも1筋の糸は、織物1115の外表面が流線形のリブを有するように、他の糸から外向きに突出する。本実施形態の織物1115の密度は、近位端から遠位端に向かって60PPIから160PPIまで徐々に遷移する。
【0059】
好ましくは、
図6に示すように、本実施形態において、織物1115は太いワイヤ1116と細いワイヤ1117とが交互に織られている。太い糸1116の表面は、細い糸1117の表面から突出しており、突出した太い糸1116は、織物の軸方向に沿って螺旋状に延びている。このような構成のマイクロカテーテル1において、カテーテル本体11の外層は織物の上に覆われた後、太い糸1116は外層の表面から螺旋状な突出を形成することができ、マイクロカテーテル1に血管内壁との接触面積を減少させ、マイクロカテーテル1を押し込む中の抵抗を低下することができる。
【0060】
具体的には、本実施形態の織物1115は、16本、24本、または32本の糸を採用して1:1または2:2の織り方で製作することができる。16本の糸で織る場合、その中の2本の太い糸1116と6本の細い糸1117を組み合わせてから、8本の細い糸1117と交互に織ることができる。その中で、太い糸1116の外径は、細い糸1117の外径より大きい。
【0061】
図7を参照すると、別の実施形態では、スプリング層114は、直径がカテーテル本体11の近位端から遠位端に向けて徐々に縮小するテーパスプリングであり、スプリング層114は、連続した巻線コイルによって形成してもよい。スプリング層114は、遠位端セクション1142と、近位端セクション1141と、遠位端セクション1142と近位端セクション1141との間の遷移セクション1143とを含む。本実施形態では、近位端セクション1141および遠位端セクション1142における巻線のピッチは一定であり、遠位端セクション1142のコイルピッチは、近位端セクション1141のコイルピッチよりも大きい。図に示す実施形態では、遷移セクション1143におけるコイルピッチは一定ではなく、縦方向の長さに沿って増加する。コイルのピッチを変更することにより、ガイド本体11のスプリング層114は遠位端に向けて徐々に柔軟性を増加させることができ、同時にマイクロカテーテルを操作することができるように適切なねじれ推力と延長性を維持することができる。
【0062】
本実施形態では、遠位端セクション1142と近位端セクション1141のピッチは一定であり、遠位端セクション1142のピッチは、近位端セクション1141のピッチよりも大きい。具体的には、遠位端セクション1142のピッチは180PPIであり、近位端セクション1141のピッチは80PPIであり、遷移セクション1143のピッチは近位端から遠位端に向かって大きくなり、遷移セクション1143のピッチは近位端から遠位端へ80PPIから180PPIに次第に遷移し、それによって、シェイプセクションの曲げと鎖形効果が得られると同時に、近位端の支持力と反動力を高めた。
【0063】
また、本実施形態のカテーテル本体11の中間層は、マイクロチューブ1の遠位端の柔軟性をさらに保証するために、直径が近位端から遠位端へ減少するテーパスプリングである。
【0064】
図8を参照すると、本実施形態では、本実施形態に係るカテーテル本体11の外層1123は、一体式螺旋波紋管であり、螺旋波紋管の外表面に形成された螺旋状の突起の波頭1135と波頭1135に対して凹んだ谷1136とを含む。本実施形態において、シェイプセクション112の中間層1122は、スプリング層である。さらに、カテーテル本体11の外層の谷1136は、スプリング層のネジ山間の隙間に埋め込まれ、カテーテル本体11の外層の波頭1135は、スプリング層のネジ山と接触して接着されている。このような構成のマイクロカテーテル1は、カテーテル本体11の外表面に螺旋状の突起の波状表面が形成されうる。このような波状表面は、突出した波頭1135が血管内壁と接触する傾向にあるのに対し、谷1136は血管内壁に接触しない傾向にあるため、マイクロカテーテル外層とマイクロカテーテルが通過した血管内壁との接触面積を減少させ、マイクロカテーテルが進行する過程における血管への摩擦力を減少させる。
【0065】
好ましくは、螺旋波紋管の壁厚さは、近位端から遠位端に向かって減少する傾向にあり、隣接する2つの波頭1135間の距離は近位端から遠位端に向かって増加する傾向にある。本実施形態において、螺旋波紋管のピッチは、近位端から遠位端に向かって80PPIから180PPIへと徐々に遷移する。
【0066】
また、本実施形態において、カテーテル本体11の外層の外径は、近位端から遠位端に向かって減少する傾向にあり、カテーテル本体11の外層の硬さは、近位端から遠位端に向かって減少する傾向にあり、カテーテル本体11の外層の壁厚さは、近位端から遠位端に向かって減少する傾向にある。
【0067】
具体的には、本実施形態のカテーテル本体11の外層は中間層の外表面の上に覆われ、当該の外層はポリエステル、ポリアミド、ポリイミド、ポリエチレン、ポリプロピレンなどの熱可塑性材料のうちの一つ材料のみから作成されることができ、或いはそのうちの2つ及び2つ以上の材料から重合して作製され、より良い潤滑性と加熱した後の流動性を得ることにより、カテーテル本体11の内層と外層の熱接合効果を向上させることができる。好ましくは、外層の硬さは近位端から遠位端にかけて減少する。好ましくは、A型ショア硬度計目盛りで、外層の硬さは約30Aから約80Aまで、約40Aから約70Aまで或いは約45Aから約65Aまでの範囲にある。また、外層1123の外径は近位端から遠位端にかけて減少することができ、これは更にカテーテル本体11の硬さが遠位端にかけて減少することを保証する。
【0068】
図9は、カテーテル本体11において中間層の好ましい構造概略図である。シェイプセクション中間層1122は、スプリング層から中空部を有するスケルトン管に置き換えられ、スケルトン管の上の中空部は中間層の隙間を構成し、カテーテル本体11の外層は、スケルトン管の中空部を通してシェイプセクション中間層1122に埋め込まれてシェイプセクション内層1121と熱接合されることにより、中空部は柔らかくて丈夫な構造になるように形成され、曲げ塑性に有利であり、折れにくく、非中空部の位置に一定の剛性があり、整形後の形状を維持するのに有利である。これはマイクロカテーテル1全体が剛性と柔軟性を交える構造に形成され、より良い事前塑性効果とより良いロック機能を有するマイクロカテーテル1が得られる。
【0069】
図10はカテーテル本体11のプッシュセクション中間層の別の代替実施形態である。当該のプッシュセクション中間層1112は、スプリング層1114と織物1115とを含む。当該の織物1115は、1筋の糸が巻かれたスプリング状の構造であり、これは比較的に小さいピッチでスプリング層1114の大部分を巻く。スプリング層1114はスプリング管である。スプリング層1114の遠位端にあるシェイプセクションスプリング層1124は、織物1115に覆われてない。すなわち、プッシュセクション中間層1112は、スプリング状の1筋の織物がスプリング管をかぶせる二層スプリング層構造であり、プッシュセクション111の硬さとシェイプセクション112の硬さが適度であることを保証し、マイクロカテーテル1の近位端でにねじれ推力と耐屈折性のバランスがとられ、遠位端で通過性、追跡性、柔軟性、支持力のバランスがとられ、マイクロカテーテル1が病変部位にスムーズに到達することが確保される。
【0070】
図11に示すように、カテーテル本体11のプッシュセクション111の中間層1112は、スプリング層1114と、スプリング層1114に部分的に覆われた織物1115とを含む。当該のスプリング管1114はスプリング管であり、織物1115はスケルトン層であり、本実施形態に係るスケルトン層は中空部を有する管体構造である。スケルトン層はスプリング管の外部に覆われており、スケルトン層は覆われているスプリング管と一緒にプッシュセクション111のプッシュセクション中間層1112を構成し、すなわち、プッシュセクション中間層1112はスケルトン管がスプリング管をかぶせる構造であり、さらに、マイクロカテーテル1の近位端でねじれ推力と耐屈折性のバランスがとられ、遠位端で通過性、追跡性、柔軟性、支持力のバランスがとられ、マイクロカテーテル1が病変部位にスムーズに到達することが確保される。
【0071】
図12は、本実施形態に係るマイクロカテーテル1のシェイプセクション112が、周期的に突起した補強筋1126から構成される螺旋波紋管を含む別の代替実施形態を示す。この螺旋波紋管は、管状の内壁1124と、内壁の外周に螺旋状に配置された波紋1125とを含み、螺旋波紋管の上には金属材質の補強筋1126が設けられている。本実施形態に係る補強筋1126は、波紋1125と内壁1124との間に配置され、波紋1125に沿って波紋1125の内側に接着される。他のいくつかの好ましい実施形態では、補強筋1126は、波紋1125間に埋め込まれる可能で、すなわち、波紋1125は二層構造であり、補強筋1126は、二層波紋1125の間に埋め込まれる。
【0072】
この螺旋波紋管の隣接する波紋1125間の位置は柔軟であり、一定の靭性を有し、屈曲塑性に有利であり、かつ折れにくいが、さらに、波紋1125の位置には一定の剛性があり、形状後の形状保持および形状ロックに有利であり、螺旋波紋管は変形後にその変形を記憶することができ、それによって、マイクロカテーテル1が冠状動脈分岐と主枝との間の異なる大きさの夾角に適合できることを保証し、マイクロカテーテル1が分岐病変を円滑に通過することを確保する。
【0073】
好ましくは、本実施形態では、螺旋波紋管の内壁1124は摩擦係数の小さい材料を用いて作製することができ、よって、螺旋波紋管に入った薬物、ガイドワイヤ、または他の介入システムが比較的小さい摩擦力を得て、血管内の病変の部位まで順調に到達することができる。
【0074】
好ましくは、本実施形態では、カテーテル本体11の外径は、近位端から遠位端へと減少する傾向にある。具体的には、カテーテル本体11の外径が近位端から遠位端への方向に沿って2.8F〜2.5Fから2.1F〜1.9Fへと漸減し、かつ、カテーテル本体11の硬さが近位端から遠位端への方向に沿って120gf〜70gfから5gf〜2gfに徐々に移行して、カテーテル本体11の柔軟性が近位端から遠位端方向へ増加することをさらに確保する。
【0075】
本実施例では、カテーテル本体11の内層は、ナイロン、ポリエーテルブロックアミド、PTFE(ポリテトラフルオロエチレン)、FEP(フッ素化エチレンプロピレン)、PFA(ペルフルオロアルコキシアルカン)、PET(ポリエチレンテレフタレート)またはPEEK(ポリエーテルエーテルケトン)などの高分子材料などの摩擦係数の小さい材料を用いて作製した。内層は、浸漬コーティングプロセスにより、あるいは中間層の内表面にコートを塗布することにより形成されてもよい。内層の低摩擦係数は、介入に必要な材料がマイクロカテーテルを通過するのに役立つ。これにより内層に入った薬物、ガイドワイヤ、または他の介入システムは少ない摩擦力が得られ、血管内病変の部位にスムーズに到達することができる。本実施例では、カテーテル本体11の外層の外表面に高潤滑性親水重合体が塗布されている。
外層は流動性のよい材料を選ぶことができ、内層は流動性の悪い材料を選択することができて、両者が溶けて接着する時、外層は内側の層に浸透して拡散して溶融することができる。
【0076】
説明すべきものは、他の実施形態において、上記のカテーテル本体11のスプリング層は等径の直通管であってもよいし、近位端から遠位端に向かって先細になる直径を有する変径管であってもよい。それに対応して、カテーテル本体11のスプリング層は等径の直通管である場合、カテーテル本体11の外層は等径の平滑外壁の直通管であってもよいし、等径の波紋管であってもよい。カテーテル本体11のスプリング層は近位端から遠位端に向かって先細になる直径を有する変形管である場合、カテーテル本体11の外層は直径に対応するテーパ管或いはテーパ波紋管であってもよい。
【0077】
図13は、マイクロカテーテルの軸線に対して微小な曲げ構造をしたシェイプセクション112を示すマイクロカテーテルの遠位端(外層が透明であることを示す)の斜視図である。
【0078】
図14A〜
図14Cは、マイクロカテーテルのシェイプセクション112が直線構造(縦軸Lに対して0°)からカテーテル本体の縦軸Lに対して約45°の屈曲位置に屈曲した順を示している。具体的には、
図14Aには、プッシュセクション111と、シェイプセクション112と先端12とを含むカテーテル本体は縦方向に整列している。
図14Bでは、シェイプセクション112が下方に曲がり始めている。いくつかの実施形態では、シェイプセクション112は、ガイドワイヤの抽出に伴って下向きに曲げられ、これにより、形状記憶のために、シェイプセクション112が自然な曲げ形状をとることができる。シェイプセクション112が湾曲するにつれて、先端12は、シェイプセクション112について下向きに湾曲する。
【0079】
図14Cでは、シェイプセクション112は、その形状記憶に基づいて安定限界に達しており、シェイプセクションの遠位端と先端は、縦軸Lに対して角度αで配向される。描かれた実施形態において、角度αは約45°であるが、別の様々な実施形態において、形状記憶に基づいて、予め異なる屈曲角度を設定することができ、血管システムの蛇行した分岐を通過するマイクロカテーテルを操作できる。シェイプセクション112は、シェイプセクションの任意の点で曲げられる。角度αの範囲は、約25°〜約140°、約30°〜約130°、約40°〜約120°、約50°〜約110°、約30°〜約100°、約30°〜約90°、約50°〜約110°、約25°、約30°、約40°、約50°、約60°、約70°、約80°、約90°、約100°、約110°、約120°、または約130°であってもよい。特定サイズの分岐入口の解剖学的な要件に応じて、シェイプセクション112は、J形エルボ、S形または半円形に直接曲げられてもよい。屈曲点は、コイルの厚さを調節したり、形状記憶金属の屈曲点での特性を利用したり設定することができる。
【0080】
図15はマイクロカテーテルの分岐アクセスを示す。
図15において、マイクロカテーテルは右方向に移動して、大動脈1501を通過する。分岐1502は大動脈の上部の接合部から現れ、大動脈から上と右に向かって延びている。図に示すように、マイクロカテーテル112のシェイプセクションは、
図14Cに示すように曲げられている。このような配置では、マイクロカテーテルの先端12は分岐1502の向きと整列している。マイクロカテーテルのカテーテル本体11は、操作者によるマイクロカテーテルに対する適切な操作により、上方に移動することができ、先端12は矢印の経路に沿って分岐1502に導くことができる。
【0081】
また、本発明の他の実施形態として、上記のカテーテル本体11のプッシュセクションの中間層1112は、単層構造または三層以上の構造であってもよいが、プッシュセクションの中間層1112はいくつかの層があっても、プッシュセクションの中間層1112の硬さはシェイプセクション1122の硬さより大きい要求を満たしていなければならない。プッシュセクション中間層1112は単層構造である場合、プッシュセクション中間層1112は、シェイプセクション中間層1122と異なる材料を採用して、別々に成形してから、両者を溶接接続してもよく、プッシュセクション中間層1112とシェイプセクション中間層1122は、同じ材料を採用するが、プッシュセクション中間層1112の材料の厚さまたは密度がより高いか、または、異なる構造を採用してプッシュセクション中間層1112の硬さがシェイプセクション中間層1122の硬さより大きくてもよい。
【0082】
要約すると、本出願のマイクロカテーテルの先端近くの一定の長さの範囲は、事前成形する能力を有するシェイプセクションであり、このシェイプセクションはあらかじめ体外で相応の角度で曲げられ、冠状動脈分枝と主枝の間の夾角を合わせて、マイクロカテーテルに順調に分枝の病変を通過させることができる。同時にプッシュセクションはシェイプセクションの近位端に一定の支持力と反動力を提供することができ、マイクロカテーテルのねじれ力を改善し、カテーテル本体に十分なねじれ力と支持力を持たせることができ、それによって、マイクロカテーテルの通過性、追跡性、柔軟性を高めることができる。
【0083】
以上、本発明の具体的な実施例について詳細に説明したが、これはただ例とするものであり、上記で説明した具体的な実施例に限定されるものではない。当業者にとっても、本発明に対する均等な修正および置換は、全部本発明の範囲内にある。したがって、本発明の精神と範囲から逸脱することなく行われた均等変換および修正は、本発明の範囲内に含まれるべきである。
【国際調査報告】