特表2021-521003(P2021-521003A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ スディン・バイオファーマの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】特表2021-521003(P2021-521003A)
(43)【公表日】2021年8月26日
(54)【発明の名称】粒子沈降デバイス
(51)【国際特許分類】
   B01D 21/02 20060101AFI20210730BHJP
   C12N 1/02 20060101ALI20210730BHJP
   C12M 1/26 20060101ALI20210730BHJP
   B01D 21/30 20060101ALI20210730BHJP
【FI】
   B01D21/02 F
   C12N1/02
   C12M1/26
   B01D21/30 K
【審査請求】有
【予備審査請求】未請求
【全頁数】52
(21)【出願番号】特願2020-558546(P2020-558546)
(86)(22)【出願日】2019年4月4日
(85)【翻訳文提出日】2020年12月14日
(86)【国際出願番号】US2019025884
(87)【国際公開番号】WO2019204044
(87)【国際公開日】20191024
(31)【優先権主張番号】62/659,295
(32)【優先日】2018年4月18日
(33)【優先権主張国】US
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】520402122
【氏名又は名称】スディン・バイオファーマ
【氏名又は名称原語表記】SUDHIN BIOPHARMA
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100132263
【弁理士】
【氏名又は名称】江間 晴彦
(74)【代理人】
【識別番号】100197583
【弁理士】
【氏名又は名称】高岡 健
(72)【発明者】
【氏名】ディナカル・エス・コンパラ
【テーマコード(参考)】
4B029
4B065
【Fターム(参考)】
4B029AA09
4B029BB01
4B029BB15
4B029CC01
4B029DG06
4B029DG08
4B029GA08
4B029HA05
4B029HA10
4B065AA01X
4B065AA72X
4B065AA83X
4B065AA88X
4B065AA90X
4B065BC41
4B065BD14
4B065BD50
4B065CA03
4B065CA05
4B065CA24
4B065CA41
4B065CA44
4B065CA54
(57)【要約】
多くの分野における適用を有する、バルク流体から粒子を分離するための沈降デバイス。粒子沈降デバイスには、上向き又は下向きに方向づけられた小開口部を有するコーンの第1スタックが含まれる。必要に応じて、沈降デバイスには、下向き又は上向きに方向づけられた小開口部を有するコーンの第2スタックが含まれてよい。これらのデバイスは、生物(微生物、哺乳類、植物、昆虫又は藻類)細胞培養、液体又は気体からの固体触媒粒子の分離、廃水処理などの多くの分野における適用を有する、バルク流体からの小さな(ミリメートル又はミクロンの大きさの)粒子を分離するのに有用である。
【特許請求の範囲】
【請求項1】
沈降デバイスであって、
少なくとも1つのポートを有する上方錐体部;
円筒部;
少なくとも1つのポートを有する下方錐体部;及び
沈降デバイス内に設置されたコーンのスタック
を有して成り、コーンのスタックの各コーンは小開口部及び大開口部を含み、小開口部は上方錐体部及び下方錐体開口部の一方に向かって方向づけられ、コーンのスタックは概して沈降デバイスの長手軸を中心とする、沈降デバイス。
【請求項2】
コーンのスタックの少なくとも1つのコーンが、金属、プラスチック、及びガラスのうちの1つから構成されている、請求項1に記載の沈降デバイス。
【請求項3】
上方ハウジングが、下方ハウジングの第2フランジと係合するように構成された第1フランジをさらに有して成る、請求項1に記載の沈降デバイス。
【請求項4】
コーンの第1スタックのコーンの表面が、長手軸に対して約25度〜約85度の角度にある、請求項1に記載の沈降デバイス。
【請求項5】
第1錐体部及び第2錐体部が、長手軸に向かって内側に凹状である、請求項1に記載の沈降デバイス。
【請求項6】
コーンのボディの長手方向の断面が、円弧形状のラインを形成する、請求項6に記載の沈降デバイス。
【請求項7】
第1錐体部が長手軸に向かって内側に凹状であり、第2錐体部が長手軸から離れるように外側に凹状である、請求項1に記載の沈降デバイス。
【請求項8】
沈降デバイス内に設置されたコーンの第2スタックをさらに有して成り、コーンの第2スタックの各コーンは、第1錐体部から離れるように方向づけられた小開口部、及び第1錐体部に向かって方向づけられた大開口部を含む、請求項7に記載の沈降デバイス。
【請求項9】
コーンの第2スタックのコーンが、長手軸から離れるように外側に凹状であるボディを有する、請求項8に記載の沈降デバイス。
【請求項10】
沈降デバイス内の状態を測定するためのセンサーをさらに有して成る、請求項1に記載の沈降デバイス。
【請求項11】
センサーが、蛍光プローブを有して成り、並びに
センサーに近接する第2錐体部の少なくとも一部が透明又は半透明であること;及び
第2錐体部が透明又は半透明であること
の一方である、請求項10に記載の沈降デバイス。
【請求項12】
センサーが、pH、溶存酸素(DO)、グルコース、温度、及び溶存CO(pCO)の少なくとも1つを測定するように作動可能である、請求項10に記載の沈降デバイス。
【請求項13】
懸濁液中の粒子を沈降させる方法であって、
(a)沈降デバイス内に粒子の懸濁液体を導入することであって、沈降デバイスが、
第1錐体部、第1円筒部、及び少なくとも1つのポートを有する上方ハウジング;
上方ハウジングに相互接続可能であって、第2錐体部、第2円筒部、及び少なくとも1つのポートを含む下方ハウジング;並びに
沈降デバイス内に設置されるコーンのスタック
を含み、及びコーンのスタックの各コーンは第1錐体部に向かって方向づけられた小開口部を含み、沈降デバイスの長手軸に向かって内側に凹状であるボディを有する、沈降デバイスであること;
(b)上方ハウジングの少なくとも1つのポートから、清澄化された液体を回収すること;並びに
(c)下方ハウジングの少なくとも1つのポートから、濃縮された液体懸濁液を回収すること
を含む、方法。
【請求項14】
懸濁液体が、組換え細胞懸濁液、アルコール発酵、固体触媒粒子の懸濁液、都市廃水、工業廃水、哺乳類細胞、細菌細胞、酵母菌細胞、植物細胞、藻類細胞、哺乳類及び/又はマウスのハイブリドーマ細胞、幹細胞、CAR−T細胞、赤血球の前駆細胞及び成熟細胞、心筋細胞又は微小担体ビーズに付着して増殖する他の付着しやすい細胞、ビール中の酵母菌、真核細胞のうち少なくとも1つを含んで成る、請求項13に記載の方法。
【請求項15】
懸濁液体が、
(a)ピキア・パストリス、サッカロマイセス・セレビシエ、クルイベロマイセス・ラクティス、アスペルギルス・ニガー、大腸菌、枯草菌、及び他の微生物細胞の少なくとも1つから選択された組換え微生物細胞;並びに
(b)付着型の幹細胞増殖のための微小担体ビーズ、親和性配位子が被覆された微小球状ビーズ又は樹脂、及び表面が活性化された微小球状ビーズの1つ又はそれより多くなどの非細胞粒子
の少なくとも一方を含んで成る、請求項13に記載の方法。
【請求項16】
懸濁液体を導入することが、プラスチックの使い捨てバイオリアクター・バッグから沈降デバイスに懸濁液体を方向づけることを含む、請求項13に記載の方法。
【請求項17】
回収される清澄化された液体が、生体分子、有機化合物又は無機化合物、化学反応物、及び化学反応生成物の少なくとも1つを含んで成る、請求項13に記載の方法。
【請求項18】
回収される清澄化された液体が、炭化水素、ポリペプチド、タンパク質、アルコール、脂肪酸、ホルモン、炭水化物、抗体、糖タンパク質、テルペン、イソプレノイド、ポリプレノイド、香気化合物及び香味化合物、並びにビールの少なくとも1つを含んで成る、請求項13に記載の方法。
【請求項19】
回収される清澄化された液体が、バイオディーゼル、インスリン又はその類似物、ブラゼイン、抗体、成長因子、コロニー刺激因子、及びエリトロポエチン(EPO)の少なくとも1つを含んで成る、請求項13に記載の方法。
【請求項20】
上方ハウジング及び下方ハウジングの少なくとも一方と関連する流体ジャケットに流体を導入することをさらに含む、請求項13に記載の方法。
【請求項21】
沈降デバイス内に位置付けられるセンサーからデータを回収することをさらに含み、センサーはpH、DO、グルコース、温度、及びpCOの少なくとも1つを測定するように作動可能である、請求項13に記載の方法。
【請求項22】
沈降デバイス内のpH、温度、溶存酸素濃度、溶存二酸化炭素、及び栄養塩の濃度の1つ又はそれより多くを調節するため、センサーから受信したデータを用いることをさらに含む、請求項21に記載の方法。
【請求項23】
沈降デバイス内にコーンの第2スタックを位置付けることをさらに含み、コーンの第2スタックのコーンは、沈降デバイスの長手軸から離れるように外側に凹状であるボディを有する、請求項13に記載の方法。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、米国特許法第119条(e)の下で、2018年4月18日に出願された米国仮特許出願第62/659,295号の優先権の利益を主張する。また、本願は、2017年1月5日に出願された米国特許出願第15/324,062号の一部の継続出願である2017年5月4日に出願された米国特許出願第15/586,902号、及び米国を指定国とし、2015年12月1日の国際出願日を有するPCT出願番号PCT/US2015/063195の関連出願である。また、本出願は2016年5月6日に出願された米国仮特許出願第62/332,546号、及び2017年2月15日に出願された米国仮特許出願第62/459,509号の関連出願である。米国特許出願第15/324,062号は、米国を指定国とし、2015年7月9日の国際出願日を有するPCT出願番号PCT/US2015/039723の、米国特許法371条の下での国内段階出願であって、当該PCT出願は、2014年7月9日に出願された米国仮特許出願第62/022,276号、及び2014年8月14日に出願された米国仮特許出願第62/037,513号の利益を主張する。PCT出願番号PCT/US2015/063195は、2014年12月1日に出願された米国仮特許出願第62/086,122号の利益を主張する。これらの出願の全てが、参照によりそれらの全体が本明細書に組み込まれる。
【技術分野】
【0002】
本開示は、層状に積み重ねられた傾斜面への沈降を増進させる、細胞又は粒子の沈降デバイスを供する。本開示のデバイスは、(i)ポリペプチド、ホルモン、タンパク質又は糖タンパク質、ワクチン又はワクチン様粒子、若しくは、エタノール、イソブタノール、イソプレノイド、香味又は香気(又は芳香、fragrance)化合物などの他の小さな化学生成物などを分泌する、高い細胞密度(又は濃度、density)の生物(哺乳類、微生物、植物又は藻類)細胞の培養;(ii)固体粒子を包囲し、液相又は気相中の化学反応を触媒する、多孔性又は非多孔性固体触媒粒子の分離及びリサイクル;(iii)周囲の液相からの結晶化、凝集、凝塊(又は集塊、agglomeration)、沈殿などの物理的変形において、新たに形成される固体の分離及び収集;(iv)極小球状ビーズに固定されたプロテインAなど、親和性配位子における、モノクローナル抗体などの分泌されたタンパク質の捕捉及び精製;(v)ヒト間葉幹細胞、分化したヒト細胞(例えば、心筋細胞又は赤血球細胞)、改変されたヒト細胞(例えば、自家又は同種の(又は同種異系の、allogenic)細胞治療適用のための、Tリンパ細胞又はCAR−T細胞がトランスフェクトされた(又は遺伝子挿入された、transfected)キメラ抗原受容体);及び(vi)大規模な都市又は商業廃水処理工場において、複雑な(又は複合の、complex)生物共同体(biological consortia)又は活性汚泥、若しくは他の固体粒子を沈降及び除去することによる処理水の清澄化、を含む、多くの分野における用途を有する。
【背景技術】
【0003】
沈降デバイスの適用の上述の分野の全てにおいて、より迅速に適用可能な確立された分野は、組換え微生物細胞又は哺乳類細胞の懸濁培養から分泌される、生物学的なタンパク質、ポリペプチド又はホルモンの産生である。組換え哺乳類細胞及び微生物細胞における生物的なタンパク質産生の最も一般的な方法は、フェド・バッチ(又は流加、fed-batch)培養に頼るものであって、細胞は、高細胞密度まで増殖され、次いで、一般的には、誘導培地又は誘導物質に暴露され、タンパク質類の産生を誘発する。所望のタンパク質類が細胞から分泌される場合、フェド・バッチ培養から、連続灌流培養に切り替えることがより好ましく、それは、よりずっと長い培養時間にわたって高い細胞密度及び高い産生能を維持できる。連続灌流培養の間、生細胞及び産生細胞は、保持される、又はバイオリアクターに戻りリサイクルされる。その一方で、分泌されたタンパク質類は、下流の精製プロセスのため、バイオリアクターから連続的に回収される。
【0004】
フェド・バッチ培養に対する連続灌流培養のいくつかの重要な利点は、(1)分泌されたタンパク質産物が、死細胞から培養培地に放出されるタンパク質分解酵素及び/又は糖分解酵素によってこれらの産物を潜在的に分解させることなく、バイオリアクターから連続的に除去されること;(2)生細胞及び産生細胞が、保持される、又はバイオリアクターに戻りリサイクルされ、連続灌流バイオリアクターにおいて高い細胞密度を達成することであって、それらは、死滅され、各フェド・バッチ培養の最後にバイオリアクターから除去されるのではなく、よりずっと長い培養時間において、制御されたバイオリアクター環境の中で有用なタンパク質類を産生し続けること;(3)フェド・バッチ培養における栄養物及び老廃産物の濃度の動的な変化とは異なり、灌流バイオリアクターの環境が、新たな栄養培地の連続的な添加、及び回収されたタンパク質産物と共に老廃産物の除去を伴い、定常状態の条件のよりずっと近くで維持され得ること(それによって、設計によるより一貫した産物の質を維持する);(4)細胞のサブセット(又は部分集合、subset)保持デバイスを伴い、より小さな死細胞又は死滅しかけている細胞(dying cells)が、これらの細胞が溶解する、及び細胞内酵素を放出する前に、灌流バイオリアクターから選択的に除去され得ることであって、それによって、それらの細胞が回収されるため、細胞の高い生存比率及び分泌されたタンパク質産物の高い質を維持すること、である。
【0005】
多くの細胞保持デバイスは、内部スピン・フィルター・デバイス(Himmelfarb et al., Science 164:555−557,1969)、外部ろ過モジュール(Brennan et al.,Biotechnol.Techniques,1(3):169−174,1987)、中空ファイバー・モジュール(Knazek et al.,Science,178:65−67,1972)、サイクロンにおける重力沈降(Kitano et al.,Appli.Microbiol.Biotechnol.24,282−286,1986)、傾斜沈降器(Batt et al.,Biotechnology Progress,6:458−464,1990)、連続遠心分離(Johnson et al.,Biotechnology Progress,12,855−864,1999)、及び音響ろ過(又は音波ろ過、acoustic filtering)(Gorenflo et al.,Biotechnology Progress,19,30−36,2003)など、哺乳類細胞培養産業において開発されている。サイクロンは、哺乳類細胞培養の実験で用いられる、デバイスのサイズ及び回収流速において、満足な細胞の分離のための十分な遠心力を供することができないということが見出されており(Kitano et al.,1986)、効率的な細胞分離に必要な高い流速(及び遠心力)では、哺乳類細胞がひどく損壊される(Elsayed,et al.,Eng.Life Sci.,6:347−354,2006)。他のデバイスのほとんどが、回収物からの全ての哺乳類細胞を適切に保持する一方で、これらのデバイスは、バイオリアクターにおいて、所望の生細胞から死細胞を分離することができない。結果として、死細胞は灌流バイオリアクター内に蓄積され続け、ろ過膜が目詰まりし、一般的には哺乳類細胞培養の3週間又は4週間以内に、連続灌流バイオリアクターを終了させることが必要となる。
【0006】
現在入手可能な全ての細胞保持デバイスの中で、傾斜沈降器(Batt et al.,1990,supra及びSearles et al.,Biotechnology Progress,10:198−206,1994)のみにより、オーバーフロー(overflow)又は回収ストリーム(又は回収流れ、harvest stream)において、より小さな死細胞及び細胞の残骸の選択的な除去が可能となり、その一方で、より大きな生細胞及び産生哺乳類細胞は、アンダーフロー(underflow)を介して灌流バイオリアクターに戻り、連続的にリサイクルされる。したがって、タンパク質産物が傾斜した沈降器の上部から連続的に回収される間、高い生存率及び高い細胞密度で無期限に灌流バイオリアクターの作動を続けることを実現可能である。
【0007】
傾斜した沈降器は、マルチ・プレート(又は複数の板、multi-plate)又は層状構造の沈降器として、以前に拡大されており(Probstein,R.F.,米国特許第4,151,084号、1979年4月)、廃水処理、飲用水の清澄化、金属の仕上げ処理、鉱業及び触媒のリサイクルなど、いくつかの大規模な産業プロセスにおいて広く用いられている(例えば、Odueyngbo et al.,米国特許第7,078,439号、2006年7月)。
【0008】
哺乳類細胞培養の適用における、分泌されるタンパク質類の産生能を増進するため、単一プレート(又は板、plate)の傾斜した沈降器の我々の最初の論証(Batt et al.,1990)を引用して、マルチ・プレート又は層状構造の沈降デバイスは、ハイブリドーマ細胞培養における使用のため、傾斜した沈降器を拡大して特許を取得した(Thompson and Wilson,米国特許第5,817,505号、1998年10月)。このような層状構造の傾斜した沈降デバイスは、長時間(例えば、灌流培養を終了させることを要さず、数か月間)、高い産生能(高い細胞密度による)及び高い生存率(>90%)での連続灌流バイオリアクターにおける組換え哺乳類細胞の培養に使用されている。Kaulingらの米国特許公開第2011/0097800には、傾斜した角度に巻かれた円筒チューブを用いた、傾斜した沈降器の拡大版が記載されている。そのデバイスは、CHO、BHK、HEK、HKB、ハイブリドーマ細胞、繊毛虫及び昆虫細胞などのより大きな哺乳類細胞の培養において有用であるとして記載されている。
【0009】
これらの細胞保持デバイスは、より小さい、従ってより難しい微生物細胞の灌流バイオリアクター培養において、分泌されたタンパク質産物の回収に関して論証されていない。層状構造の沈降器は、細胞の沈降を調査するため、酵母菌細胞で試され、限られた成功を収めた(Bungay and Millspaugh,Biotechnology and Bioengineering,23:640−641,1984)。ハイドロサイクロン(hydrocyclones)は、主にビールから酵母菌細胞を分離するため、酵母懸濁液において試され、再び限られた成功のみを収めた(Yuan et al.,Bioseparation,6:159−163,1996;Cilliers and Harrison,Chemical Engineering Journal,65:21−26,1997)。
【0010】
サイクロン内にらせん形の直立した(又は垂直な、vertical)プレートを有する、改変されたサイクロンは、廃水処理における分離効率を改善することを目的とされており(Boldyrev VV,Davydov EI,ロシア国特許第2,182,508号に記載された沈降タンク)、この配置の先の記載には、懸濁液における固体のデカンテーションに関して記載されている(米国特許第4,048,069号、1977年9月)。ロシア国特許第2,182,508号で開示された、改変されたサイクロンは、錐体の底部を有する直立した円筒型のバレル(又は胴、barrel)に収容された、らせん形に屈曲したプレートを含む。中央の廃水の入口チューブの全体の高さに沿ってスリットが供され、当該チューブは、入口チューブから、直立した、らせん形に屈曲したプレートに廃水を運ぶ(又は流す、channel)ため、底部に接続される。らせん形は、中央のチューブで開始し、円筒型ハウジングの壁で終了し、粒子を含有した廃水が流れるチャネルを形成する。粒子は、らせん形チャネルの直立した沈降カラムにおいて沈降する。沈降ゾーンの高さはらせん形プレートの垂直高さであり、チャネルの幅は、その長さ全体を通して一定に保持される、らせん形の屈曲したプレートの壁によって形成される。精製された水を除去するためのパイプは、円筒型のボディの上方部に設置される。沈殿物を除去するための導管は、錐体底部部分の底部に設置される。作動において、廃水は中央のチューブを介して入り、スリット又は開口部を介してらせん形のゾーンに入る。らせん形のチャネルは、流路を増やすのに役立ち、したがって、沈降器における液体の保持時間を増加させる。また、らせん形は流体の接触面積(壁)を増やすのに役立つ。懸濁液が、らせん形に屈曲した、直立した沈降カラムの周りを進む際、清澄化における主な駆動力は、懸濁液の粒子に働く重力である。らせん形の壁又はチャネルを出たスラリー(又は懸濁液、slurry)は沈降器の錐体底部内に落下し、沈降器から周期的に除去される。精製された水は、上部近くの円筒ハウジングの側部にあるパイプから引き抜かれる。
【0011】
ロシア国特許文献に記載されているとおり、汚水が中央のチューブを介して中心に入り、スリットを介してらせん形チャネルに入る際、固体を含む廃水の流れパターン(又は型、pattern)は、一般的なサイクロンの典型的な流れパターンとは逆である。精製された水は、精製水パイプを介して直立した円筒型のボディの周囲(又は外面、periphery)又は外側から除去される。この改変された逆流サイクロン・デバイスは、廃水処理の他のいずれの分野も目的とされておらず、又はいずれの分野にも適用されていない。
【0012】
したがって、比較的小さな空間において、懸濁液中の粒子にかかる遠心力及び重力を活用できる粒子沈降デバイスが所望される。
【発明の概要】
【0013】
本開示は、ハウジング内に配置された、層状に積み重ねられた傾斜面への増進された沈降を伴う、細胞又は粒子の沈降デバイスを供する。ハウジングは、サイクロン・ハウジングであってよい。本開示の粒子分離デバイスは、多数の適用において使用されてよく、先行技術の沈降デバイスの大きな改善を示す。これらの沈降デバイスにおいて、傾斜面は複数の直立した円筒形のプレートに取り付けられてよい。沈降デバイスには、らせん形の錐体(又は円錐体若しくはコニカル、conical)面、又はらせん形の底部に接続された、角度を有する錐体面に近い、いくつかの傾斜したプレートが含まれる。多くの積み重ねられた傾斜プレートは、錐体の周囲又はらせん形の沈降表面から沈降デバイスの中心へ液量が次第に移動する、錐体アッセンブリ(又は組立品、assembly)内の下方又は上方のどちらかに移動するバルク流体からの粒子の沈降効率を増進する。
【0014】
本開示の沈降デバイスは、直立したプレートを有さず、中心の開口部に向かって下に先細りする、ハウジング内に位置付けられた一連の積み重ねられたコーン(又は円錐体、cones)を取り囲むハウジングを含んでよい。この実施形態のコーンは、スタック(又は積み重ね、stack)における連続するコーンの間の距離(又はチャネル幅)を維持する支え(又は支持物、supports)によって、スタックにおいて他方の上に一方が保持される。支えは、1つ又はそれより多くのコーンの上方及び/又は下方の表面に取り付けられた、3つ又はそれより多くの突出部を有して成ってよく、所望の距離(所望のチャネル幅)だけ離れるように、連続したコーンを位置付ける。必要に応じて、支えは、コーンの欠けた(又は先端が切られた、truncated)頂部に対して遠位である各コーンの表面に相互接続された少なくとも3つのL型の要素を有して成ってよい。L型の要素は、頂部における第2側面に相互接続される第1側面を含み、コーンのスタックにおいて第1側面が第2コーンを支持するように表面に相互接続される。第2側面は、コーンの表面に実質的に平行である。必要に応じて、ハウジングの内面からコーンとの間隔をあけるため、第2側面はコーンを越えるように突出してよい。いくつかの実施形態において、積み重ねられた錐体面から中央の開口部に向かう、液体又は懸濁した粒子の流れを防ぐ、栓(又はプラグ、plug)若しくは他の障害はない。
【0015】
本開示の沈降デバイスには、以下を包囲するハウジングが含まれてよい:
1)中央の開口部を各々有する、2つ又はそれより多くの積み重ねられたコーンの第1スタック(又は第1のコーンのスタック、first stack of cones)、及び
2)中央の開口部を各々有し、ハウジングの底部における中央の開口部に向かって下に先細りする錐体面を有する底部に、又は底部付近で接合される(又は取り付けられる、joined)2つ又はそれより多くの積み重ねられたコーンの任意の第2スタック。
【0016】
積み重ねられたコーン(2つ又はそれより多くの積み重ねられたコーンの第1スタック及び任意の第2スタックの両方)は、スタックにおける隣の連続するコーン上の各コーンを支持する、少なくとも3つの突出部を有して成る。スタックにおける全てのコーンの間がほぼ等間隔になるようにスタックにおける連続する各コーンを保持するため、突出部は、好ましくは実質的に一定の間隔で配置され、一般的に等しいサイズで形成される。ある実施形態において、連続する各コーンを適切に保持するため、各コーンに少なくとも3つの突出部があるものの、各コーンは、必要に応じて十分に、又は適切にコーンを保持するため、3つより多くの突出部を有して成ってよい。例えば、スタックにおける隣の連続したコーンを保持するため、各コーンは、4つの突出部を有して成ってよく、又は8つの突出部を有して成ってよい。
【0017】
突出部、又は「直立した支え」は、中央の開口部、又はハウジングとコーンとの間の、ハウジングの内部環境の周りのギャップ(又は隙間、gap)に向かってコーンの表面を滑り落ちる、沈降する粒子又は細胞に対する妨害を示してよい。これらの突出部はコーンの表面の1つに取り付けられるものの、これらの突出部はコーンのスタックにおける別のコーンに取り付けられる必要はない。したがって、これらの突出部は、スタックにおいて2つ又はそれより多くのコーンを互いに取り付ける必要はなく、ほとんどの実施形態において取り付けられていない。
【0018】
好ましくは、コーンのスタックにおいて連続した各コーンを支持する突出部によって作られた、連続する各錐体面の間には、実質的に一定の間隔がある。連続したコーンの間の間隔は、約1mm〜約2.5cmで変動してよい。
【0019】
粒子沈降デバイス、及びその中の錐体面が、沈降デバイス内の錐体沈降面の分解及び洗浄などの定期的又は継続的な点検を要する分離用途において、連続したコーンのスタックによって供される沈降面のこの配置は、特に有用である。連続したコーンのスタックの各々は隣の連続したコーンによって保持されるものの、隣の連続したコーンに持続的に取り付けられない。
【0020】
コーンの第1スタック及び任意の第2スタックのこの配置は、バルク流体が沈降デバイスを介して動くように、バルク流体からの粒子の沈降効率を大幅に増進する。細胞などの粒子を含むバルク液体が本開示の沈降デバイスの積み重ねられたコーンを介して移動する際、より大きな粒子(例えば、生細胞又は産生細胞)はコーンの表面に沈降する。コーンの上方スタック又は第1スタックを滑り落ちる細胞は、錐体面をコーンの外端まで滑り落ち、ハウジングの錐体部分に垂直に落下する。さらに、コーンの下方スタック、又は第2スタックを滑り落ちる細胞は、錐体面をコーンの中央の開口部にまで滑り落ち、ハウジングの中央の開口部に向かって垂直に落下する。
【0021】
これまでの沈降デバイスの、より一般的な一次元又は二次元の拡大縮小(又はスケーリング、scaling)と比較して、分離表面が三次元で容積に関して拡大又は縮小されるため、これらのデバイスは、様々な産業若しくは用途の分離のニーズ、又は様々なサイズに適するように、拡大又は縮小され得る。
【0022】
本開示のデバイスの拡大は、単に、ハウジングの径の増加(及び内部に積み重ねられるコーンの径の対応する増加)及び/又はハウジングの高さの増加(コーンの第1スタック及び第2スタックの一方又は両方におけるコーンの数を増加させる)によって実施され得る。細胞が沈降する有効な投影面積は、ハウジングの径の二乗に比例して増加し、内側の円筒部の高さに比例して増加する。本開示の小型沈降デバイスの有効な沈降面積は、ハウジングの径の三乗に比例して(内部の沈降器の高さも比例して増加すると仮定する)、又は同等に、ハウジングの容積に比例して拡大する。有効な沈降面積の、この三次元又は容積の拡大により、本開示の沈降デバイスは、これまでの傾斜した沈降デバイスと比較して、よりずっと小型になる。
【0023】
異なる円筒部間又はコーン間の、管状領域における半径方向の間隔は、約1cm〜約10cmであって、約2.5cm程度が最適であり得る。傾斜した沈降コーンと隣の連続したコーンの内面との間の、約1mmの小さな隙間により、沈降する粒子(例えば細胞)に、コーンの底部にまでずっと滑り落ちるのではなく、コーンの表面を滑り落ちて側部から出るための有用な間隔が供される。側部から出た細胞は、各円筒部の内側に沿って垂直的に沈降する。これらの沈降する細胞が各円筒部の底部における錐体面に達した場合、それらは、コーンの傾斜面において、サイクロン・ハウジングの底部にある中央の開口部にまで滑り落ちる。傾斜した錐体面を中央の開口部にまで降下する間、流体の速度を増加させることの利点は、コーンを滑り落ちる、沈降する細胞の数が増加することで、より速い液体速度によって、蓄積されるのではなく、中央の開口部に流し落とされる(又は掃き落される、swept down)ことである。
【0024】
沈降面の傾斜角は、垂直から約15度〜約75度の範囲で一定であってよく、又は一定でなくてよい。より粘着性の粒子(一般的には哺乳類細胞)を伴う使用では、傾斜角は垂直により近くてよい(すなわち、垂直から15度程度)。非粘着性の固体触媒粒子を伴う使用では、傾斜角は垂直からさらに離れ得る(例えば、垂直から75度程度)。いくつかの実施形態において、傾斜角が長手軸(又は縦軸、longitudinal axis)に対して約10度〜約80度、又は約15度〜約75度で変動するように、錐体面は円弧状(又は弓状、arcuate)の長手方向の断面を有する。
【0025】
本開示の沈降器デバイスの全てには、第1開口部の反対側のハウジングの端部において、ハウジングの少なくとも一部を覆うクロージャ(又は封止、closure)若しくは蓋が含まれてよい。また、これらの全ての実施形態において、クロージャ又は蓋には、液体を除去する、又は沈降デバイス内に液体を入れるための出口又はポートが含まれてよい。ハウジング及び/又は蓋における、開口部、並びに追加のポート又は出口は、沈降デバイスのハウジングに入る及び/又は出る液体の通過を可能とするため、ハウジングの内側及び外側に液体連通している。このような開口部又は入口/出口の各例において、ハウジングを出入りするこれらの通路(又は通過手段、passage way)には、本開示の沈降デバイスを出入りする液体の流れを止める、又は制限するために、開閉され得るバルブ又は他の機構が含まれてよい。
【0026】
本開示の粒子沈降デバイスには、ハウジング、及びハウジング内に配置された少なくとも1つの直立したチューブが含まれてよく、少なくとも1つの直立したチューブは、サイクロン・ハウジングにおける第1開口部まで先細りする錐体面を有する1つの端部に接合される。実質的に第1開口部の反対側のハウジングには、少なくとも1つの追加の開口部がある。
【0027】
ある実施形態において、錐体面の傾斜角は垂直から約45度であって、又は垂直から約15度〜75度で変動してよい。必要に応じて、錐体面、並びに/若しくはハウジングの上部又は底部は、傾斜角が垂直から約15度〜約75度で変動するように、凹状又は凸状の形状を有してよい。
【0028】
隣接する直立したチューブ間に形成された円環のリング状のチャネルの幅は、約1mm〜約50mmである。沈降デバイス内の直立したチューブの数は、約2〜約30であってよい。
【0029】
沈降デバイスには、第1開口部の反対側のハウジングの端部において、ハウジングの少なくとも一部を覆うクロージャが含まれてよい。ハウジングにおける少なくとも1つの追加の開口部は、ハウジングの外側及び内側と液体連通して、少なくとも1つの直立したチューブに接するハウジングの側部から開くように構成されてよい。
【0030】
液体回収出口は、ハウジングの外側及び内側と液体連通して、クロージャにおいて形成されてよい。
【0031】
本開示の別の態様は、限定されないものの、ハウジングを含んでよい粒子沈降デバイスであって、ハウジングには、(1)第1錐体部(又は第1コニカル部、first conical portion);(2)第2錐体部(又は第2コニカル部、second conical portion);(3)第1錐体部と第2錐体部との間に設置された円筒部;(4)ハウジングに液体を導入するための、少なくとも1つの入口;(5)第1出口ポート;(6)第2出口ポート;及び(7)ハウジング内に設置された、コーンの第1スタック、の1つ又はそれより多くが含まれる。ある実施形態において、第1出口ポートは第1錐体部と関連し、第2出口ポートは第2錐体部と関連する。必要に応じて、ハウジングに導入される液体は、粒子を含む懸濁液であってよい。粒子は、複数のサイズであってよい。
【0032】
ある実施形態において、第1出口ポートは、清澄化された液体を回収するためのものであってよい。清澄化された液体には、粒子の第1サブセットが含まれてよい。粒子の第1サブセットは、細胞の残骸、死細胞などを含んで成ってよい。必要に応じて、第1出口ポートは、ハウジングのクロージャに形成されてよい。第1出口ポートは、ハウジングの外側及び内側と液体連通している。
【0033】
必要に応じて、別の実施形態において、第2出口ポートは、濃縮された液体を回収するためのものであってよい。濃縮された液体には、生細胞などの粒子の第2サブセットが含まれてよい。一般的に、粒子の第2サブセットの粒子は、概して粒子の第1サブセットの粒子よりも大きい。粒子の第2サブセットの各粒子は、一般的に、粒子の第1サブセットの粒子よりも大きな質量を有する。第2出口ポートは、ハウジングの外側及び内側と液体連通している。
【0034】
コーンの第1スタックは、第1錐体部の少なくとも一部を占める。必要に応じて、コーンの第1スタックは、円筒部の少なくとも一部を占める。必要に応じて、コーンの第1スタックの1つ又はそれより多くのコーンには、第1出口ポートに向かって方向づけられた、欠けた頂部が含まれる。さらに、又は代わりに、コーンの第1スタックの少なくとも1つのコーンには、中央の開口部がない。別の実施形態では、コーンの第1スタックの各コーンには、第2出口ポートに向かって方向づけられた、開いた基部が含まれる。一般的に、コーンの第1スタックのコーンはハウジングの中心に配置され、例えば、コーンの第1スタックのコーンは、1つ又はそれより多くのコーンの欠けた頂部によって形成された、実質的に中央の開口部を中心として配置されてよい。
【0035】
必要に応じて、ハウジングには、コーンの第2スタック(又は第2のコーンのスタック、second stack of cones)がさらに含まれてよい。コーンの第2スタックは、第2錐体部の少なくとも一部を占めてよく、円筒部の少なくとも一部を占めてよい。ある実施形態において、コーンの第2スタックの各コーンは、コーンの第1スタックのコーンに対して横向きである。
【0036】
必要に応じて、コーンの第1スタックにおけるコーンの表面の傾斜角は、垂直から約15度〜約75度で変動してよい。ある実施形態において、コーン表面の断面が円弧状のラインを画定するように、コーンの表面は凸状又は凹状である。別の実施形態では、コーンの傾斜角は垂直から15〜75度のいずれかの角度において一定であってよい。ある実施形態において、コーンの傾斜角は約45度である。
【0037】
別の実施形態において、コーンの第2スタックの各コーンには、第2出口ポートに向かって方向づけられた、欠けた頂部が含まれる。また、コーンの第2スタックの各コーンには、第1出口ポートに向かって方向づけられた、開いた基部が含まれてよい。ある実施形態において、コーンの第2スタックのコーンは、一般的に、ハウジングの中央に配置される。別の実施形態において、コーンの第2スタックのコーンは、1つ又はそれより多くのコーンの欠けた頂部によって形成された、実質的に中央の開口部をおよそ中心として配置される。
【0038】
ある実施形態において、コーンの第2スタックにおけるコーンの表面の傾斜角は、垂直から約15度〜約75度である。コーンの第2スタックにおけるコーンの傾斜角は、約45度であってよい。
【0039】
ある実施形態において、コーンの第1スタックのコーンは、実質的に均一な間隔を有する。さらに、コーンの第2スタックのコーンは、実質的に均一な間隔を有してよい。ある実施形態において、コーンの第1スタックのコーンは、コーンの第2スタックのコーンと比べて異なる間隔を有する。
【0040】
少なくとも1つの入口は、ハウジングの外側及び内側と液体連通している入口ポートとして構成される。少なくとも1つの入口は、ハウジングの第1錐体部、第2錐体部、及び円筒部のうち少なくとも1つと関連してよい。ある実施形態において、少なくとも1つの入口の第1入口は、ハウジングの円筒部と関連する。別の実施形態において、少なくとも1つの入口の第2入口は、第1錐体部及び第2錐体部のうち一方と関連する。また別の実施形態では、第2入口は第2錐体部と関連する。別の実施形態では、入口の少なくとも1つは、使い捨てのバイオリアクターのバッグ(又は袋、bag)と相互接続されるように構成される。使い捨てのバイオリアクターのバッグは、プラスチック材料から構成されてよい。
【0041】
本開示の粒子沈降デバイスの構成には、ハウジングが含まれてよく、ハウジングは、(a)第1錐体部;(b)第2錐体部;(c)第1錐体部と第2錐体部との間に設置された円筒部;(d)懸濁液をハウジングに入れるための、少なくとも1つの入口;(e)清澄化された液体を回収するための第1出口ポート;(f)濃縮された懸濁液を排出するための第2出口ポート;及び(g)ハウジング内に設置されたコーンの第1スタック、を有して成る。このデバイスにおいて、コーンの第1スタックは、第1錐体部の少なくとも一部を占めてよく、円筒部の少なくとも一部を占めてよい。コーンの第1スタックの各コーンには、(i)第2錐体部の遠位に位置付けられた、欠けた頂部、及び(ii)第2錐体部に近接して位置付けられた、開いた基部が含まれる。必要に応じて、第1スタックのコーンは、コーンの第1スタックにおける各コーンの欠けた頂部によって形成された、実質的に中央の開口部を概して中心とする。
【0042】
コーンの第1スタックにおけるコーンの表面の傾斜角は、垂直から約15度〜約75度で変動してよい。例えば、コーン表面の断面は、円弧状のラインを画定する。これらのコーンは、凸状又は凹状の表面を有してよい。他の実施形態では、コーンの傾斜角は一定であり、例えば、約45度であってよい。好ましくは、コーンの第1スタックのコーンは、実質的に均一な間隔を有する。
【0043】
コーンの第2スタックにおけるコーンの表面の傾斜角は、垂直から約15度〜約75度で変動してよい。別の実施形態において、コーンの第2スタックにおけるコーンの傾斜角は、約45度である。
【0044】
本開示のまた別の態様は、粒子沈降デバイスであって、(A)ハウジング;(B)ハウジング内に配置された、少なくとも2つの錐体プレート;(C)ハウジングにおける第1開口部;(D)ハウジングにおける第2開口部、を有して成る。ある実施形態において、少なくとも2つの錐体プレートは、他方の上に一方を積み重ねられる。好ましくは、ハウジングには約3〜約30の錐体プレートが含まれる。少なくとも2つの錐体プレートは、実質的に一定の距離だけ隔てられてよい。必要に応じて、少なくとも2つの錐体プレートの隣接した表面の間に形成されたチャネルの幅は、約1mm〜約50mmである。3つ又はそれより多くの支えは、スタックにおける錐体プレートの各々を保持してよい。
【0045】
錐体プレートの各々には、第1開口部に近接する欠けた頂部、及び第1開口部の遠位に位置付けられた、開いた基部が含まれる。錐体プレートは、概してハウジングの中央に配置され、ハウジング内に実質的に直立した姿勢(又は位置、position)で配置される。少なくとも2つの錐体プレートの各々の表面の傾斜角は、垂直から約15度〜約75度で変動してよい。錐体プレートは、長手軸に関して凹状の形状を有してよい。錐体プレートは、長手軸に関して凸状の形状を有してよい。したがって、錐体プレートの断面は、円弧状のラインを画定してよい。ある実施形態において、錐体プレートは、少なくとも1つの曲率半径によって画定された形状を有する。
【0046】
これらのデバイスにおいて、ハウジングには、円筒部及び錐体部が含まれる。第1開口部は、錐体部と関連してよい。必要に応じて、第2開口部は、円筒部と関連してよい。第2開口部は、円筒部の側壁に位置付けられてよい。第2開口部は、円筒部の開いた端部と関連する蓋に位置付けられてよい。第2開口部は、錐体部に位置付けられてよい。
【0047】
本開示の別の態様は、沈降デバイスであって、当該沈降デバイスには、制限されないものの、(1)第1錐体部;第1円筒部;及び少なくとも1つのポートを含む上方ハウジング;(2)上方ハウジングに相互接続可能であって、第2錐体部;第2円筒部;及び少なくとも1つのポートを含む、下方ハウジング;並びに(3)沈降デバイス内に設置されたコーンのスタックが含まれる。コーンのスタックの各コーンには、第1錐体部に向かって方向づけられた小開口部、及び第2錐体部に向かって方向づけられた大開口部が含まれ、コーンの第1スタックは、概して、沈降デバイスの長手軸を中心として配置される。必要に応じて、上方ハウジングは、下方ハウジングの第2フランジと係合するように構成される第1フランジをさらに有して成る。上方ハウジングは、下方ハウジングに恒久的に接合されてよい。
【0048】
これらのデバイスにおいて、コーンの第1スタックのコーンの表面は、長手軸に対して約15度〜約85度の角度にある。必要に応じて、第1錐体部及び第2錐体部は、長手軸に向かって内側に凹状である。ある実施形態において、コーンのボディの長手方向の断面は、円弧形状を有するラインを形成する。
【0049】
さらに、又は代わりに、第1錐体部は長手軸に向かって内側に凹状であり、第2錐体部は長手軸から離れるように外側に凹状である。ある実施形態において、沈降デバイスには、沈降デバイス内に設置されたコーンの第2スタックが含まれる。別の実施形態において、コーンの第2スタックの各コーンには、第1錐体部から離れるように方向づけられた小開口部、及び第1錐体部に向かって方向づけられた大開口部が含まれる。必要に応じて、コーンの第2スタックのコーンは、長手軸から離れるように外側に凹状であるボディを有する。
【0050】
本開示の沈降デバイスのいずれかにおいて、ハウジング及び/又はコーン、並びに/若しくはデバイスのいずれかの他の構成要素は、金属又はプラスチックから構成されてよい。プラスチックは、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリスチレンなどの1つ又はそれより多くであってよい。ある実施形態において、沈降デバイスは全体的にプラスチックで形成される。別の実施形態では、コーンのスタックの少なくとも1つのコーンは、少なくとも部分的にステンレス鋼から構成される。金属表面(特にステンレス鋼)は、滑らかな表面を供するために電解研磨されてよい。同様に、本開示の沈降デバイスのいずれかにおいて、ハウジング及び/又はコーン、並びに/若しくはデバイスのいずれかの他の構成要素は、テフロン(登録商標)又はシリコンなどの非粘着性プラスチックの1つ又はそれより多くで、完全に、又は部分的に覆われてよい。
【0051】
本開示の沈降デバイスのいずれかにおいて、ハウジングには、第1錐体部、第2錐体部、及び/又は円筒部の1つ又はそれより多くと関連する流体ジャケットがさらに含まれてよい。ある実施形態において、流体ジャケットは、第2錐体部及び円筒部と関連する。流体ジャケットには、所定の温度の流体を受けるため、少なくとも1つのポートが含まれてよい。必要に応じて、流体ジャケットには、流体ジャケットから流体を抜き取るため、第2ポートが含まれてよい。サイクロン・ハウジング及びその内容物の全てを所望の温度範囲内で維持するため、水又は他の流体が流体ジャケットに方向づけられてよい。ポートは、ジャケットに達するように、サイクロン・ハウジングの外壁に形成されてよい。ポートは、ジャケットを通して流体を冷却する、又は加熱する循環のため、入口ポート又は出口ポートとして機能してよい。
【0052】
本開示の沈降デバイスのいずれかにおいて、1つ又はそれより多くのセンサーは、沈降デバイスの内部における物理的な状態(又は条件、condition)を監視する(又はモニタリングする、monitor)ために位置付けられてよい。さらに、又は代わりに、少なくとも1つのセンサーは、本開示の沈降デバイスに相互接続される管状ライン内の状態を監視するために位置付けられてよい。管状ラインは、沈降デバイスの底部出口ポートに相互接続された戻りラインであってよい。
【0053】
これらのセンサーは、ハウジング又は管状ライン内のpH、溶存酸素(DO:dissolved oxygen)、グルコース、温度、及びCO(部分的なCOとして知られる、溶存COを含む)の1つ又はそれより多くを決定するように選択されてよい。センサーには、ハウジング又は管状ライン内で溶液と接触する、1つ又はそれより多くのプローブが含まれてよい。プローブは、沈降デバイス又は管状ラインの内面に付けられてよい。好ましい実施形態において、少なくとも1つのセンサー及び/又はプローブは、沈降デバイスの下方錐体部内に位置付けられ、側部ポート及び底部ポートの一方又はそれより多くから離間されてよい。
【0054】
これらのプローブは、リーダー(又は読み取り機、reader)に接触せずにデータを送信してよい。このように、プローブは、沈降デバイス及び/又はライン内で状態を測定し、沈降デバイスの外側のリーダーにデータを送信してよい。1つ又はそれより多くのプローブは、蛍光プローブであってよい。pH、DO、グルコース、温度、及びpCOの1つ又はそれより多くは、サイクロン・ハウジング内でプローブによって測定されてよい。プローブは、ハウジングの一部に付けられてよい。ハウジングの一部は、蛍光プローブによって供される光を透過させるように作動可能であってよい。上述のように、ハウジングの一部は、透明又は半透明であってよい。リーダー(又はメーター(若しくは計器、meter))は、蛍光プローブからの光を受ける。また、リーダーには、蛍光プローブによって透過された光を集める光学ファイバーが含まれてよい。適当なプローブ及びリーダーは、PreSens Precision Sensing GmbHを含む、様々なベンダーから入手可能である。別の構成において、沈降デバイス内のプローブは、ネットワーク接続によって、沈降デバイスの外側のリーダーにデータを送信し得る。例えば、プローブは、Wifi、ブルートゥース(登録商標)、又はいずれかの他のワイヤレス通信様式(又は様相、modality)によって、リーダーと通信し得る。
【0055】
本開示の沈降デバイスの作動において、これらのセンサーからのデータは、流体ジャケット内の流体の温度を調節するのに用いられてよい。別の実施形態では、センサーからのデータは、粒子沈降デバイス内のpH、温度、溶存酸素濃度、溶存二酸化炭素、及び栄養物濃度の1つ又はそれより多くを調節するのに用いられてよい。
【0056】
本開示の別の態様は、懸濁液中の粒子又は細胞を沈降させる方法を供する。方法には、限定されないものの、(i)本開示の粒子沈降デバイスに粒子の懸濁液を導入すること;(ii)沈降デバイスのハウジングにおける第1開口部から粒子を収集すること;及び(iii)沈降デバイスにおける別の開口部から液体を収集すること、が含まれる。液体は、第1開口部の反対側のハウジングの端部において、ハウジングの少なくとも一部を覆うクロージャにおける開口部から収集されてよい。液体は、ハウジングにおける少なくとも1つの追加の開口部から収集されてよく、開口部は、ハウジングの側部から開くように構成される。これらの方法において、沈降デバイスに懸濁液を導入する工程には、プラスチックのバイオリアクターのバッグから粒子沈降デバイスへ懸濁液を方向づけることが含まれてよい。
【0057】
本開示の関連する態様は、懸濁液中の粒子を沈降させる方法を供する。方法には、(a)沈降デバイスに粒子の懸濁液を導入することであって、沈降デバイスには、(i)第1錐体部、第1円筒部、及び少なくとも1つのポート;(ii)上方ハウジングに相互接続可能であって、第2錐体部、第2円筒部、及び少なくとも1つのポートを含む、下方ハウジング;並びに(iii)沈降デバイス内に設置されたコーンのスタックであって、コーンのスタックの各コーンは、第1錐体部に向かって方向づけられた小開口部を含み、沈降デバイスの長手軸に向かって内側に凹状であるボディを有する、コーンのスタック、が含まれる、こと;(b)上方ハウジングの少なくとも1つのポートから、清澄化された液体を収集すること;並びに(c)下方ハウジングの少なくとも1つのポートから、濃縮された懸濁液を収集すること、の1つ又はそれより多くが含まれる。
【0058】
これらの方法において、清澄化された液体には、懸濁液の粒子の第1サブセットが含まれてよい。粒子の第1サブセットは、細胞の残骸、死細胞などを含んで成ってよい。
【0059】
また、濃縮された液体には懸濁液の粒子の第2サブセットが含まれてよく、粒子の第2サブセットには生細胞が含まれてよい。粒子の第2サブセットの粒子は、粒子の第1サブセットの粒子よりも大きくてよい。粒子の第2サブセットの各粒子は、粒子の第1サブセットの粒子よりも大きな質量を有してよい。
【0060】
これらの方法において、コーンの第2スタックは、必要に応じて沈降デバイス内に位置付けられてよい。コーンの第2スタックを形成するこれらのコーンは、沈降デバイスの長手軸から離れるように外側に凹状であるボディを有してよい。
【0061】
これらの方法のいずれかにおいて、懸濁液には、組換え細胞懸濁液、アルコール発酵、沈殿タンパク質溶液、細胞を含む水性流体及び抽出される有機生成物を含む有機層の混合物、主に生成物及び枯渇した反応体を含む液体混合物中の固体触媒粒子の懸濁液、細胞培養液からのモノクローナル抗体と結合し得るプロテインA分子で被覆した微小球の懸濁液、ビーズに付着して増殖する哺乳類細胞を有する微小担体ビーズの懸濁液、都市廃水、並びに工業廃水のうちの少なくとも1つが含まれてよい。これらの方法において、懸濁液には、哺乳類細胞、細菌細胞、酵母菌細胞、植物細胞、藻類細胞、ヒト幹細胞又は分化したヒト細胞、並びに/若しくは昆虫細胞のうち、少なくとも1つが含まれてよい。これらの方法において、懸濁液には、バイオディーゼルを産生する藻類細胞、組換え哺乳類及び/又はマウスのハイブリドーマ細胞、分泌有機産物を産生する代謝的に操作された酵母菌細胞、並びにビール中の酵母菌のうちの少なくとも1つが含まれてよい。これらの方法において、懸濁液には、ピキア・パストリス(Pichia pastoris)、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、クルイベロマイセス・ラクティス(Kluyveromyces lactis)、アスペルギルス・ニガー(Aspergillus niger)、大腸菌(Escherichia coli)、及び枯草菌(Bacillus subtilis)から選択される、組換え微生物細胞が含まれてよい。
【0062】
これらの方法において、沈降デバイスから集められる液体には、生体分子、有機化合物又は無機化合物、化学反応物、並びに化学反応生成物のうち少なくとも1つが含まれてよい。これらの方法において、沈降デバイスから集められる液体には、炭化水素、ポリペプチド、タンパク質、アルコール、脂肪酸、ホルモン、炭水化物、抗体、テルペン、イソプレノイド、バイオディーゼル、ポリプレノイド、及びビールのうちの少なくとも1つが含まれる。これらの方法において、沈降デバイスから集められる液体には、バイオディーゼル成分、分泌された治療用タンパク質、若しくはインスリン又はその類似物などのホルモン、抗体、モノクローナル抗体、成長因子、ワクチンのサブユニット、ウイルス、ウイルス様粒子、刺激因子のコロニー、エリスロポエチン(EPO:erythropoietin)、ゲラニオール、ミルセン、甘味タンパク質のブラゼインを含む、分泌された香味又は香気化合物などのうちの少なくとも1つが含まれる。
【0063】
これらの方法において、本開示の沈降デバイスは、自家細胞治療のための幹細胞及びCAR−T細胞などの哺乳類細胞のイン・ビトロ(又は体外の、in vitro)培養の独立型灌流バイオリアクターとして機能し得る。本開示の沈降デバイスのこれらの例示において、血清フリー又は動物性タンパク質フリーの細胞培養培地の入口は、底部ポート及び/又は側部ポートを介して、沈降器/灌流バイオリアクターに連続的にポンプ注入されてよい。また、O、CO、及びNの制御された混合物は、沈降器/バイオリアクター内の培養懸濁液のpH及びDOを制御するためにポンプ注入されてよい。イン・ビトロ細胞増殖の終わりにおいて、底部で集められる濃縮された沈降細胞は、底部ポートから回収されてよい。
【0064】
前述は、本開示の沈降デバイスのいくつかの態様の理解を供することを意図された、本開示の簡略化された概要である。この概要は、本発明の要約、並びにその様々な態様、実施形態、及び構成の広範なものでも網羅的なものでもない。この概要は、本開示の主要な、又は重要な要素を明らかにすることも、本開示の範囲を詳細に叙述することも意図しないものの、本開示の選択された概念を、以下に提示するより詳細な説明への導入として簡略化された形態で提示することを意図する。理解されるように、本開示の他の態様、実施形態、及び構成は、単独で又は組み合わせて、上述される又は以下に詳細に説明される特徴の1つ又はそれより多くを利用することが可能である。理解されるように、他の実施形態は、単独で又は組み合わせて、上述される又は本明細書で説明される特徴の1つ又はそれより多くを使用することが可能である。例えば、ある実施形態に関して示される及び/又は説明される様々な特徴及びデバイスは、他の実施形態の特徴又はデバイスと組み合わせる、若しくは置換されてよいことが意図されており、それは、そのような組合せ又は置換が本明細書で詳しく示される、若しくは説明されているかどうかに関わらない。本発明の追加の態様は、特に図面と共に用いられる場合、詳細な説明からより容易に明らかになるであろう。
【図面の簡単な説明】
【0065】
図1図1は、本開示の別の構成の沈降デバイスの正面斜視図である。
図2図2は、沈降デバイス内の凸状のコーンのスタックを図示している、図1の沈降デバイスの部分断面正面斜視図である。
図3図3は、図2の沈降デバイスの別の部分断面正面斜視図である。
図4図4は、図1の沈降デバイスの分解正面斜視図である。
図5A図5Aは、図1の沈降デバイスのハウジングの斜視図である。
図5B図5Bは、図5Aのハウジングの上面図である。
図5C図5Cは、図5Aのハウジングの側面図である。
図6図6は、図1の沈降デバイスの上面図である。
図7図7は、明確にするためにコーンのスタックを除去した、図6のライン7−7に沿った沈降デバイスの断面正面図である。
図8A図8Aは、図7の一部の詳細な断面正面図である。
図8B図8Bは、図7の一部の別の詳細な断面正面図である。
図9A図9Aは、図1の沈降デバイスのコーンの上面図である。
図9B図9Bは、図1の沈降デバイスのコーンの底面図である。
図9C図9Cは、図1の沈降デバイスのコーンの側面図である。
図9D図9Dは、図9Aのライン9D−9Dに沿った、沈降デバイスのコーンの断面側面図である。
図10図10は、本開示のまた別の構成の沈降デバイスの正面斜視図である。
図11図11は、図10の沈降デバイスの部分断面正面図である。
図12図12は、沈降デバイス内のコーンの上方スタック及びコーンの下方スタックを図示している、図10の沈降デバイスの別の部分断面正面斜視図である。
図13図13は、図10の沈降デバイスの下方ハウジングの部分断面斜視図であって、コーンの下方スタックを図示している。
図14図14は、図10の沈降デバイスの下方コーンの図である。
図15図15は、図10の沈降デバイスの下方コーンの図である。
図16図16は、仮想線で図示された沈降デバイスの内部要素を伴う、本開示の別の構成の沈降デバイスの正面斜視図である。
図17図17は、図16の沈降デバイスの断面正面図である。
図18】沈降デバイス内に位置付けられるように適合された、コーンの任意の第2セットを図示している、図16の沈降デバイスの分解正面図である。
図19A図19Aは、図16の沈降デバイスに用いるために構成された、本開示のある実施形態のコーンの斜視図である。
図19B図19Bは、図16の沈降デバイスに用いるために構成された、本開示のある実施形態のコーンの斜視図である。
図20A図20Aは、本開示の沈降デバイスに用いるための任意の導管の斜視図である。
図20B図20Bは、本開示の沈降デバイスに用いるための任意の導管の斜視図である。
図21A図21Aは、沈降デバイスに用いるために構成された、本開示の実施形態のディフューザーを概して図示する斜視図である。
図21B図21Bは、沈降デバイスに用いるために構成された、本開示の実施形態のディフューザーを概して図示する斜視図である。
図22図22は、本開示の実施形態の別の沈降デバイスの正面斜視図であって、仮想線で沈降デバイスのいくつかの内部要素を図示している。
図23図23は、図22の沈降デバイスの断面正面図である。
図24図24は、本開示の小型細胞/粒子沈降デバイスの、モジュラ・バイオリアクターへの取り付けの図式的な表示である。
図25図25は、細胞保持デバイスとして完全充填された小型細胞沈降器及び図24に図示されたセット・アップ(又は組み立て、set up)を用いた、酵母菌P.パストリス細胞の灌流バイオリアクター培養の結果を示すグラフである。
図26図26は、図24に図示された装置のセット・アップによる、バイオリアクター及び沈降器流出物から採取されたサンプルの粒子サイズ分析結果を示している。
【発明を実施するための形態】
【0066】
「a」又は「an」という語句の実体(または構成要素、entity)は、1つ又はそれより多くのその実体を指す。したがって、「a」(又は「an」)、「1つ又はそれより多く」及び「少なくとも1つ」という語句は、本明細書で互換的に用いられ得る。「有して成る(comprising)」、「含んで成る(または含む、including)」、及び「有する(having)」という語句は、互換的に用いられ得る。
【0067】
「少なくとも1つ」、「1つ又はそれより多く」、並びに「及び/又は」という用語は、動作において接続的であって離接的でもある、オープン・エンドの(又は制限しない、open-end)表現である。例えば、「A、B及びCの少なくとも1つ」、「A、B、又はCの少なくとも1つ」、「A、B、及びCの1つ又はそれより多く」、「A、B、又はCの1つ又はそれより多く」並びに「A、B、及び/又はC」という表現の各々は、Aのみ、Bのみ、Cのみ、A及びBを合わせて、A及びCを合わせて、B及びCを合わせて、若しくはA、B及びCを合わせて、ということを意味する。
【0068】
「含んで成る」、「含む(containing)」、又は「を特徴とする(characterized by)」と同義である「有して成る」という移行語句は、包括的又はオープン・エンドであって、付加的な、列挙されていない要素又は方法工程を除外しない。
【0069】
「から成る(consisting of)」という移行用語は、請求項で特定されていない、いかなる要素、工程、又は成分をも除外するものの、通常関連する不純物などの開示に関係しない、付加的な構成要素又は工程を除外しない。
【0070】
「から基本的に成る(consisting essentially of)」という移行用語は、特定された材料又は工程、並びに特許請求された発明の基本的及び新規の特徴に実質的に影響を及ぼさないものに、特許請求の範囲を制限する。
【0071】
ここで、図1を参照すると、粒子又は細胞を沈降させるのに有用な、本開示の沈降デバイス300の構成が図示されている。概して、沈降デバイス300には、上方ハウジング301A及び下方ハウジング301Bが含まれる。ある実施形態において、上方ハウジング301A及び下方ハウジング301Bは実質的に同一である。したがって、ある実施形態において、ハウジング301A、301Bは一般的に互換性がある。
【0072】
ここで、図2〜9を参照すると、ハウジング301A、301Bには、一般的に、錐体部(又は円錐体部分、conical portions)303A、303B、円筒部308A、308B、第1ポート(又は接続口、port)353A、353B、及び第2ポート354A、354Bが含まれる。
【0073】
必要に応じて、第1ポート353は、一般的にハウジング301の長手軸と同心円をなして揃えられる(又は位置調整される、aligned)。第1ポート353は、入口及び出口として用いられ得る。例示的な実施形態において、第2ポート354は、錐体部303を通って延在する。また、第2ポート354は、沈降デバイス300から液体、気体、及び固体を導入又は除去するために用いられ得る。必要に応じて、第2ポート354は、細胞沈降デバイスの長手軸350に概して平行に揃えられ得る。例示的な実施形態において、第2ポート354は、円筒部308を通って延在してよい。第1ポート353及び第2ポート354の他の構成が考えられる。また、ハウジング301は2つより多いポートを有してよい。ポート353、354は、管状ラインと相互接続するように構成される。
【0074】
このような管状ラインは、本開示の小型細胞沈降デバイスのいずれかに相互接続されてよい。当該ラインは、径を有してよく、又は本開示の実施形態のいずれかのポートと相互接続するように構成されてよい。ラインは、必要に応じて、中空内部に位置付けられたセンサーを少なくとも1つ含んでよい。センサーは、ライン内の流体及び/又は粒子と接してよい。必要に応じて、センサーはラインの内面に配置されてよいものの、他の構成が考えられる。センサーは、pH、DO、グルコース、温度、及びCO(溶解した、又は一部のCO)のうち1つ又はそれより多くを監視するように作動可能であってよい。必要に応じて、センサーの1つ又はそれより多くは、蛍光プローブを有して成ってよく、当該蛍光プローブは、プローブによって感知される条件に基づいて変動する光を放出する。光は、リーダー(又は読み取り器、reader)又はメーター(又は計器、meter)によって収集されてよい。必要に応じて、光は任意のファイバー・ケーブルによって集められ、メーターに送られてよい。メーターは、蛍光プローブによって感知されるpH、DO、グルコース、温度、及びCOのうち少なくとも1つのレベルを報告又は表示するように作動可能である。管状ラインは、透明な、又は少なくとも半透明な材料を有して成ってよい。したがって、センサーによって発せられた光は、ラインを通過してよい。あるいは、ラインの少なくとも一部は、窓と同様に透明又は半透明である。したがって、センサーによって発せられた光は、窓部を透過し、メーターによって集められてよい。
【0075】
コーン(又は円錐体、cones)309は、沈降デバイス300内に位置付けられ得る。図2及び図3に図示されるように、コーン309は、上方ハウジング301Aの第1ポート353Aに向かって方向付けられた、開いた頂部(又は開いた先端、open apex)と、下方ハウジング301Bの第1ポート353Aに向かって方向付けられた基部又は大開口部346とを積み重ねて配置されてよい。例示的な実施形態において、3〜25個のコーン309が、沈降デバイス300内に積み重ねて配置される。しかしながら、沈降デバイス300が図4に図示されるように組み立てられる場合、ハウジング301は、任意の数のコーン309を受けるような大きさを有し得る。
【0076】
ハウジング301及びコーン309などの沈降デバイス300の要素は、シングル・ユースの使い捨てプラスチック製であり得る。あるいは、ハウジング301及びコーン309の1つ又はそれより多くは、ステンレス鋼合金などの金属、又はガラスで製造され得る。コーン309の表面、及びハウジング301の内面は、非粘着性プラスチック、テフロン(登録商標)、シリコン及び当業者に既知である類似の材料の1つ又はそれより多くによって、完全に、又は部分的に覆われてよい。さらに、又は代わりに、表面(特に、ステンレス鋼で形成される場合)は、滑らかな表面を供するように電解研磨されてよい。これらの沈降デバイスは、任意の所望の大きさに合わせて容易に調整され得る。
【0077】
ハウジング301は、必要に応じて流体ジャケット(図示せず)を含んでよい。流体ジャケットは、水又は他の流体が1つ又はそれより多くのポートを通って流体ジャケットに注入され得るように作動可能であり、それによってハウジング301及び沈降デバイス300の中身を所望の温度範囲内に維持する。
【0078】
ここで、図5A〜5Cを参照すると、複数のスペーサー315は、ハウジング301の内面から内側に突出してよい。スペーサー315は、沈降デバイス300内にあるコーン309のスタック(又は積み重ね、stack)が、ハウジング301A,301Bの内面に立てかかることを防ぐように構成される。必要に応じて、スペーサー315は、沈降デバイス300の長手軸350におよそ平衡であり得る。スペーサー315の他の構成が想定される。スペーサー315は、沈降デバイス300内の液体及び懸濁粒子の移動又は流れへの妨害を防ぐ、又は最小化するため、実質的に薄い断面を有する。
【0079】
ここで、図7を参照すると、スペーサー315には、複数の第1スペーサー315A、第2スペーサー315B、第3スペーサー315Cが含まれてよい。一般的に図示されるように、ある実施形態において、第1スペーサー315Aの各々は、円筒部308の内面の少なくとも一部に沿って延在する。第2スペーサー315Bは、円筒部308に近接した錐体部303の内面から延在する。第3スペーサー315Cは、第2スペーサー315Bと離され得る。特に、ある実施形態において、第3スペーサー315Cは、円筒部303より第1ポート353の近くに配置される。
【0080】
ある実施形態において、上方ハウジング301A及び下方ハウジング301Bは、固定して接合される(又は連結される、joined)。例えば、上方ハウジング及び下方ハウジング301は、共に接着、熱溶接、又は超音波溶接され得る。
【0081】
あるいは、再び図1を参照すると、必要に応じて、フランジ318は一般的にハウジング301の円筒部308から延在し得る。例示的な実施形態において、フランジは長手軸350に対しておよそ垂直に延在する。任意のフランジ318Aは、上方ハウジング301Aを下方ハウジング301Bのフランジ318Bに相互接続するように構成される。フランジ318A、318Bは、必要に応じて、図5Aで最もよく見られる突出部320を含み得る。例示的な実施形態において、キャッチ又はホック322は、各突出部320の自由端に形成される。
【0082】
また、少なくとも1つの突起(又は突出、protrusion)324がフランジ318に形成され得る。突起324は、一般的に円柱の形状を有してよい。突起324は、別のフランジの対応する凹所(又はくぼみ、recess)326に受けられるように適応される。さらに、又は代わりに、フランジ318は、上方ハウジング301A及び下方ハウジング301Bを揃えるように適合される特徴(又は機構、features)332、334を含み得る。例示的な実施形態において、当該特徴は、タブ332及び関連するくぼみ(又はへこみ、depression)334を有して成る。図1に図示されるように、上方ハウジング301A及び下方ハウジング301Bが揃えられる場合、タブ332は対向するフランジのくぼみ334に嵌め込まれる。
【0083】
必要に応じて、フランジの突起324及び凹所326は、穴を含んでよい。上方ハウジング324の突起324が下方ハウジング301Bの凹所326に受けられる場合(図8Aに図示されるように)、突起及び凹所の穴は揃うように構成される。このようにして、ボルトなどの固定具328は、揃えられた穴を通過し得る。次いで、ナット330は固定具328に相互接続され、ハウジング301A、301Bを共に着脱可能に固定し得る。図8Bに一般的に図示されるように、上方ハウジング301Aが下方ハウジング301Bと揃えられる場合、フランジ318の突起320は、連結する(又は組み合う、interlock)ように構成される。具体的には、ある実施形態において、突起320のホック322は、着脱可能に連結する。
【0084】
溝336は、任意のフランジ318に形成され得る。図8A及び図8Bに一般的に図示されるように、溝336は、上方ハウジング301Aと下方ハウジング301Bとの間に位置付けられるワッシャー又はガスケット338を保持するように構成される。
【0085】
ある実施形態において、ハウジング301の錐体部303は、直線的ではない。より具体的には、錐体部303は、円筒部308に近接する最大径から、第1ポート353に近接する最小径までの円弧状経路(又は軌道、path)に沿って先細りになる。より具体的には、ここで図5C及び図7を参照すると、ハウジング301の錐体部303の長手方向の断面は、円筒部303と第1ポート353との間の円弧形状のラインを画定する。ある実施形態において、錐体部303は、沈降デバイス300の中心に向かって、内側に凹状である(又はくぼんでいる、concave)。別の実施形態において、錐体部303は一定の曲率半径を有し得る。必要に応じて、別の実施形態において、錐体部303は、2つ又はそれより多くの曲率半径を有し得る。例えば、錐体部303は、円筒部308に近接する第1の曲率半径、及び第1ポート353に近接する第2の曲率半径を有してよい。第1の曲率半径及び第2の曲率半径の中心点は、ハウジング内に位置付けられる。必要に応じて、錐体部308の勾配は、長手軸350に対して約15°〜約85°で変動してよい。ある実施形態において、錐体部303には、第1ポート353に近接する凸部(又は外へふくらむ部分、convex portion)が含まれる。凸部は、ハウジングの外部にある中心点を持つ曲率半径を有する。
【0086】
ここで、図9A〜9Dを参照すると、コーン309には、一般的に、小開口部344を有する頂部342、及び大開口部346を有する基部を有するボディ340が含まれる。必要に応じて、コーンの各々は別個に形成される。例示的な実施形態において、コーンは、実質的に同じ大きさ及び形状を有する。
【0087】
いくつかの実施形態において、ボディ340は、小開口部344と大開口部346との間で直線的でなくてよい。図9Dに図示されるように、ボディ340の長手方向の断面は、円弧形状を有するラインを形成する。各コーン309の円弧形状は、ハウジング301の錐体部303とおよそ同じであってよい。
【0088】
いくつかの実施形態において、ボディ340は、長手軸350に向かって内側に凹状である。したがって、大開口部346のある点から小開口部344のある点まで引いたラインは、ボディの内部にある。
【0089】
必要に応じて、ボディ340は一定の曲率半径を有する。あるいは、ボディは2つ又はそれより多くの曲率半径を有し得る。したがって、ボディは、小開口部344に近接する第1の曲率半径、及び大開口部346に近接する第2の曲率半径を有してよい。第1の曲率半径及び第2の曲率半径の中心点は、コーン309の内部に位置付けられる。このようにして、小開口部344に近接するボディ340の一部分は、大開口部に近接するボディの勾配とは異なる勾配を有し得る。例えば、小開口部344に近接するボディは、長手軸350に対して少なくとも約40°の角度に調整されてよい。一方、大開口部346付近のボディは、より垂直に近く(又は長手軸により近く)あり得る。より具体的には、ボディは、大開口部346に近接する点において、長手軸に対して少なくとも約45°の角度で傾斜してよい。必要に応じて、ボディ340の勾配は、長手軸に対して約5°〜約85°で変動されてよい。
【0090】
図9B、9Dに図示されるように、コーンのスタックにおいて、連続する各コーン309を実質的に等間隔に保持するように、各コーン309には、隣接するコーンと接するように構成される突出部313が含まれ得る。ある実施形態において、突出部313は、ボディ340の内面か内側に延在する。突出部313は、隣接するコーンのボディ340の外面に接するように構成される。あるいは、突出部313は、ボディ340の外面から延在し得る。
【0091】
突出部313は、隣接するコーンの間に任意の所望の間隔を供するような大きさを有してよい。必要に応じて、突出部313は、隣接するコーンと約1mm〜約2.5cmの距離を隔てるように構成される。例示的な実施形態において、各コーン309には少なくとも3つの突出部313が含まれる。
【0092】
ここで、図2及び図3を参照すると、コーン309が上方ハウジング301A内に位置付けられる場合、最下部のコーン309Aのボディ340は、下方ハウジング301Bの第2スペーサー315Bによって支持される。少なくとも下方ハウジング301Bの錐体部303及び円筒部308A、308Bのある部分には、コーンがなくてよい。したがって、培養液中の細胞は、沈降デバイス300に保持され得る。
【0093】
図1〜9Dに図示される実施形態の沈降デバイス300の作動中に、血清フリー又は動物性たんぱく質フリーの細胞培養媒地(又は媒体、medium)は、下方ハウジング301Bの第1ポート353及び第2ポート354の1つ又はそれより多くを介して、沈降デバイス300にポンプ注入されてよい。細胞培養媒地は、連続的に、又は周期的に沈降デバイス300にポンプ注入され得る。具体的には、沈降デバイス300は、バッチ(又は一括、batch)モード又は連続モード運転において作動し得る。
【0094】
また、沈降デバイス300内の培養液の上澄みのpH及びDOを制御するため、O、CO及びNの制御された混合物を、沈降デバイス300にポンプ注入してよい。必要に応じて、第2ポート354A、354B、及び下方ハウジング301B、第1ポート353Bの1つ又はそれより多くは、例えば、細胞の生存率の管理のためのバイオリアクター(又は生体反応器、bioreactor)の内容物のサンプリング、及びコンピュータで制御されたマルチ・ガス質量流量計(multi-gas mass flow controller)に入力する、液体のpH及びDOの連続測定に用いられ得る。
【0095】
イン・ビトロの(又は生体外の、もしくは試験管内の、in vitro)細胞の培養(又は増殖、expansion)の最後に、下方ハウジング301B内の沈降デバイス300の底に集められる、濃縮され、沈降した細胞は、下方ハウジングの第1ポート353Bから回収され得る。アンモニア及び乳酸、又はガスなどのいずれかの代謝老廃物成分を含む清澄化された培養流体は、まだ沈降していないより小さな死細胞、及び細胞の残骸のいずれかと共に、上方ハウジング301Aの第1ポート353Aを介して除去されてよい。
【0096】
必要に応じて、沈降デバイス300は、独立型のバイオリアクター/セル・ソーター(又は細胞分取器、cell sorter)の組合せとして用いられ得る。成長(又は培養、growth)培地は、第1ポート353及び第2ポート354の1つ又はそれより多くを介して、細胞沈降デバイスに加えられてよい。したがって、沈降デバイス300は、灌流バイオリアクターなしに用いられてよい。
【0097】
ある実施形態では、センサーを沈降デバイス300内に位置付けてよい。必要に応じて、ハウジング301A、301Bの1つ又はそれより多くの内面にセンサーを配置してよい。ハウジング301の少なくとも一部は、プラスチックから構成されてよい。例示的な実施形態において、ハウジング全体はプラスチックから構成されてよい。例示的な実施形態において、プラスチックは透明又は少なくとも半透明である。必要に応じて、ハウジング301の少なくとも一部は、透明又は半透明である。例えば、透明又は半透明な材料は、窓と同様に、ハウジング301における開孔(又は開き口もしくは穴、aperture)に相互接続されてよい。透明部分は、ガラス、プラスチック、又はいずれかの他の適当な材料を含んで成ってよい。透明部分は、所定の波長範囲、又は所定の複数の波長範囲の光に対して透過性を有する材料で形成されてよい。
【0098】
センサーが存在する場合、センサーは沈降デバイス300内の培地と接するように位置付けられる。センサーは、沈降デバイス300におけるpH、DO、グルコース、温度、及びCO(溶解した、又は一部のCOを含む)を監視するように作動可能であってよい。
【0099】
必要に応じて、1つ又はそれより多くのセンサーは、蛍光プローブを有して成ってよく、当該蛍光プローブは、蛍光プローブによって感知される条件に基づいて変動する光を放射するように作動可能である。蛍光プローブは、沈降デバイス300内の様々な異なる位置に配置されてよい。より具体的には、蛍光プローブは、細胞沈降デバイス内の様々な領域において、様々な条件、又は条件の変化を測定するように配置され得る。必要に応じて、蛍光プローブの少なくとも1つは、下方ハウジング301Bの錐体部303Bの内面に付けられる。
【0100】
蛍光プローブによって放射された光は、ハウジング301の表面(又はハウジングの透明部分)を通過し、リーダー又はメーターによって集められてよい。本明細書で説明されるように、メーターは、沈降デバイス300内の蛍光プローブによって感知されるpH、DO、グルコース、温度、及びCOの少なくとも1つのレベルを報告又は表示するように作動可能である。必要に応じて、蛍光プローブによって放射される光は、任意のファイバー・ケーブルによって集められ、メーターに送られてよい。
【0101】
ここで、図10〜15を参照すると、細胞又は粒子を沈降させるのに有用である、本開示の沈降デバイス400の別の構成が図示されている。一般的に、沈降デバイス400には、上方ハウジング301及び下方ハウジング401が含まれる。上方ハウジングにはコーン309の第1スタックが含まれ、下方ハウジングにはコーン409の第2スタックが含まれる。上方ハウジング301及びコーン309は、図1〜9Dと併せて説明されるハウジング301及びコーン309と同じ、又は類似している。
【0102】
一般的に、下方ハウジング401には、錐体部403、円筒部408、第1ポート453及び第2ポート454が含まれる。ポート453、454は、管状ラインと相互接続するように構成される。
【0103】
ある実施形態において、下方ハウジング401は、上方ハウジング301に固定して接合される。例えば、下方ハウジング及び上方ハウジングは、溶接(熱溶接を含む)、共に接着、又は当業者に既知である別の手段によって接合され得る。
【0104】
あるいは、下方ハウジング401は、必要に応じてフランジ418を含み得る。任意のフランジ418は、ハウジング301の任意のフランジ318に着脱可能に相互接続するように構成される。したがって、フランジ418には、フランジ318の特徴と同様に機能する、かぎ状の突出部、突起、凹所、タブ及びくぼみが含まれてよい。必要に応じて、スペーサー415は円筒部408から内側に延在してよい。
【0105】
ここで、図13を参照すると、ハウジング401の錐体部403は、長手軸450に向かって内側に凸状である。具体的には、第1ポートに近接する錐体部のある点から錐体部が円筒部408と交わる点まで引かれる直線は、ハウジング401の外側に位置することになる。
【0106】
錐体部403は、一定の曲率半径を有し得る。あるいは、錐体部403は2つ又はそれより多くの曲率半径を有し得る。例えば、錐体部403は、円筒部408と近接する第1曲率半径、及び第1ポート453と近接する第2曲率半径を有してよい。第1曲率半径及び第2曲率半径の中心点は、ハウジング401の外側に位置付けられる。ある実施形態では、錐体部403は、第1ポート453に近接する点において、長手軸450に対して約45°未満の角度の勾配を有する。必要に応じて、円筒部408に近接する点において、錐体部は長手軸に対して約45°より大きい勾配を有する。別の実施形態では、錐体部403の勾配は、長手軸に対して15°〜85°で変動してよい。
【0107】
例示的な実施形態において、センサーは沈降デバイス400内に位置付けられてよい。センサーは、ハウジング301、401の一方又はそれより多くの内面に配置され得る。センサーは、沈降デバイス400内の培地と接するように配置されてよい。センサーは、沈降デバイス400におけるpH、DO、グルコース、温度、及びCO(溶解した、又は部分的なCOを含む)の1つ又はそれより多くを監視するように作動可能である。センサーは、本明細書で説明される他のセンサーと同じであってよい。したがって、1つ又はそれより多くのセンサーは蛍光プローブを有して成ってよく、当該蛍光プローブは、蛍光プローブによって感知される条件に基づいて変動する光を放射するように作動可能である。光は、ハウジング401、301の透明部分を介して、又はハウジングの窓を介して透過されてよい。
【0108】
図12及び図13に図示されるように、コーン409は下方ハウジング401に積み重ねられる。コーン409は、第1ポート453に近接して位置付けられる、小開口部444に方向づけられる。各コーン409のボディ440は、一般的に、ハウジング錐体部403の形状に対応する形状を有する。具体的には、コーンのボディ440は、ハウジングの錐体部の少なくとも一部に対応する円弧形状を有し得る。例示的な実施形態において、コーンのボディは長手軸450に向かって内側に凸状である。必要に応じて、コーンのボディは一定の曲率半径を有する。あるいは、コーンのボディは2つ又はそれより多くの曲率半径を有してよい。ある実施形態において、ボディの勾配は、長手軸に対して約5°〜約85°で変動し得る。
【0109】
突出部413は、コーンのボディ440に形成されてよく、それによって隣接するコーンは所定の距離だけ隔てられる。ある実施形態において、突出部413は、コーンのボディの内面から内側に延在する。さらに、又は代わりに、突出部413は、必要に応じてコーンのボディの外面に形成され得る。コーンが共に積み重ねられる際に、隣接するコーンが所定の距離だけ隔てられるように、突出部413は下方のコーンの内面に接する。コーンがハウジング401に位置付けられる場合、最下のコーン409Aの突出部413は錐体部403の内面に接することになる。最上のコーン409Eには、必要に応じて、大開口部446を越えて延在する突出部448が含まれてよい。図12に示されるように、最上のコーン409Eの突出部448は、コーン309の上方のスタックの最下のコーン309Aの内面に接し得る。突出部448とコーン309Aとの間の接触により、コーン409のスタックの、意図されない、又は不慮の移動を防ぐ。
【0110】
図14及び図15に図示されるように、いくつかの実施形態において、コーン409は異なる直径を有する。最下のコーン409Aは、スタックにおける他のコーンより大きな直径を有してよい。409B〜409Eの各コーンは、連続的により小さい直径を有し、最上のコーン409Eは最も小さい直径を有する。ある実施形態において、6個のコーン409A〜409Eは、下方ハウジング401に積み重ねられてよい。別の実施形態では、下方ハウジングのコーン409のスタックには、4〜10個のコーンが含まれてよい。
【0111】
ハウジング301、401、及びコーン309、409を含む沈降デバイス400は、本明細書で説明される他の実施形態と同じ材料で形成され得る。例示的な実施形態において、ハウジング及びコーンの1つ又はそれより多くは、シングル・ユースの、使い捨てのプラスチック製である。あるいは、ハウジング及びコーンの1つ又はそれより多くは、ステンレス鋼合金などの金属、又はガラスで製造される。コーン309、409の表面、及びハウジング301、401の内面は、非粘着性プラスチック、テフロン(登録商標)、シリコン及び当業者に既知である類似材料の1つ又はそれより多くによって、完全に、又は部分的に覆われてよい。沈降デバイス400の表面は、(特にステンレス鋼で形成される場合)滑らかな表面を供するように電解研磨されてよい。沈降デバイス400は、任意の所望の大きさに合わせて調整され得る。
【0112】
沈降デバイス400は、沈降デバイス300と同様の、又は類似した方法で作動してよい。具体的には、血清フリー又は動物性たんぱく質フリーの細胞培養培地は、下方ハウジング401の第1ポート453及び第2ポート454の1つ又はそれより多くを介して、沈降デバイス400にポンプ注入されてよい。また、細胞培養培地は、連続的、又は周期的に沈降デバイス400にポンプ注入され得る。具体的には、沈降デバイス400は、バッチ又は連続運転において作動し得る。
【0113】
また、細胞沈降デバイス内の培養液の上澄みのpH及びDOを制御するため、O、CO、及びNの制御された混合物を沈降デバイス400にポンプ注入してよい。必要に応じて、第2ポート354、454、及び下方ハウジング301第1ポート353は、例えば細胞の生存率の確認のためのバイオリアクターの中身のサンプリング、及びコンピュータで制御されたマルチ・ガス質量流量計(multi-gas mass flow controller)に入力する、液体のpH及びDOの連続測定に用いられ得る。
【0114】
イン・ビトロの細胞増殖の最後に、沈降デバイス400の底に集められる、濃縮され、沈降した細胞は、下方ハウジング401の第1ポート453から回収され得る。アンモニア及び乳酸、又はガスなどのいずれかの代謝老廃物を含む清澄化された培養流体は、まだ沈降していない、より小さな死細胞及び細胞の残骸のいずれかと共に、上方ハウジング301の第1ポート353を介して除去されてよい。
【0115】
必要に応じて、沈降デバイス400は、独立型のバイオリアクター/セル・ソーターの組合せとして用いられ得る。成長培地は、第1ポート353、453及び第2ポート354、454の1つ又はそれより多くを介して、細胞沈降デバイスに加えられてよい。
【0116】
ここで、図16〜21を参照すると、本開示の粒子又は細胞のための沈降デバイス500の別の構成が図示されている。沈降デバイス500には、本開示の沈降デバイス300、400と同じ、又は類似した要素が含まれる。より詳細には、通常、沈降デバイス500には、中空の内面を概して画定する上方錐体部(又は上方コニカル部、upper conical portion)503A、円筒部508、下方錐体部(又は下方コニカル部、lower conical portion)503Bが含まれる。ある実施形態において、上方錐体部503A及び下方錐体部503Bは、実質的に同一である。コーン509のスタックの少なくとも1つは、沈降デバイス500内に位置付けられる。
【0117】
錐体部503A、503Bには、一般的に第1ポート553及び必要に応じて第2ポート554が含まれる。必要に応じて、第1ポート553は、実質的に、沈降デバイス500の長手軸550と同心円状に揃えられる。第1ポート553は、入口、及び出口として用いられ得る。
【0118】
また、第2ポート554は、沈降デバイス500の中空内部から、液体、気体、及び固体を導入又は除去するために用いられ得る。例示的な実施形態において、第2ポート554は、錐体部503を通るように延在する。必要に応じて、第2ポート554は、細胞沈降デバイスの長手軸550にほぼ平行に揃えられ得る。他の実施形態において、第2ポート554は、円筒部508を通るように延在する。ある実施形態において、第2ポート554は、長手軸550に対して横断して、又は垂直に方向づけられ得る。第1ポート553及び第2ポート554の他の構成が想定される。また、沈降デバイス500は、4個より多いポートを有してよい。
【0119】
ポート553、554は、管状ラインに相互接続するように構成される。このような管状ラインは、本開示のいずれかの小型細胞沈降デバイスに相互接続されてよい。管状ラインは直径を有してよく、又は本開示の実施形態のいずれかのポートに相互接続するように構成されてよい。ラインには、必要に応じて、中空内部に位置付けられる少なくとも1つのセンサーが含まれてよい。センサーは、ライン内の流体及び/又は粒子と接してよい。他の構成が想定されるものの、必要に応じて、センサーはラインの内面に配置されてよい。センサーは、ラインにおけるpH、DO、グルコース、温度、及びCO(溶解した、又は部分的なCOを含む)の1つ又はそれより多くを監視するように作動可能であってよい。
【0120】
必要に応じて、1つ又はそれより多くのセンサーは蛍光プローブを有して成ってよく、当該蛍光プローブは、プローブによって感知した条件に基づいて変動する光を放射する。光は、リーダー又はメーターによって集められてよい。光は、必要に応じて任意のファイバー・ケーブルによって集められ、メーターに送られ得る。メーターは、蛍光プローブによって感知されるpH、DO、グルコース、温度、及びCOの少なくとも1つのレベルを報告又は表示するように作動可能である。ラインは、透明又は少なくとも半透明な材料を有して成ってよい。したがって、センサーによって発せられる光は、ラインを通過してよい。あるいは、ラインの少なくとも一部は、窓と同様に透明又は半透明である。したがって、センサーによって発せられる光は、窓部分を透過し、メーターによって集められてよい。
【0121】
導管560は、必要に応じて、沈降デバイス500の内部にある第2ポート554の少なくとも1つに相互接続され得る。本開示の導管560のある実施形態は、図20A、20Bに概して図示されている。管腔(又は内腔、lumen)562は、導管を通って延在する。ある実施形態において、導管560は直線的ではない。より詳細には、導管560は曲げられ得る。この方式では、図17に概して図示されるように、導管は、長手軸550に近接して位置付けられる導管の自由端564を有し、沈降デバイス500内に内側へ延在するように位置付けられる。したがって、導管560を通る管腔562は、コーン509の内部からなど、沈降デバイス500の中間部分から流体を注入、又は取り出すために位置付けられ得る。この方式では、導管560を介して沈降デバイス500から流体を取り出すことで沈降デバイス内の流体の上向きの流れを促進することが可能であり、それによって流体内の細胞又は粒子はコーン上に沈降し、下方錐体部503Bの方へ移動する。
【0122】
また、図21A、21Bに概して図示されるように、沈降デバイス500には、中空内部に位置付けられるディフューザー(又は吹出し口もしくは拡散器、diffuser)570が含まれ得る。ディフューザー570は、下方第2ポート554Bなどの第2ポートの1つと関連し得る。流体は、下方錐体部503Bに近接して沈降した粒子又は細胞を妨げることなく、ディフューザーを介して沈降デバイス500から注入、又は取り出されてよい。流体がディフューザーを介して沈降デバイス500に注入される場合、細胞又は粒子を含み得る流体は、沈降器の下方錐体部503Bの全体にわたって均等に分配される。
【0123】
ここで、図21A、21Bを参照すると、ディフューザーは、ステム(又は軸、stem)572から延在する円環又はリング574を有して成ってよい。ステム572は概して直線的であってよく、長手軸550に平行に方向づけられるように構成されてよい。ディフューザー570が沈降デバイス500に相互接続される場合、リング574は長手軸550の周りに延在するように構成され得る。ある実施形態において、リング574は長手軸と実質的に同心円をなすように適合される。
【0124】
開孔576は、流体、細胞又は粒子のディフューザーを介する移動を促進するように、リング574を通じて形成される。ある実施形態において、開孔576は、ステム572に接続されるリングの側面に形成される。この方式において、ディフューザーが下方第2ポート554に相互接続される場合、開孔576は下方第1ポート553Bに向かって方向づけられ得る。開孔576は、単一チャネル又は溝として構成され得る。溝は、実質的にリングの周りに連続的に延在してよい。
【0125】
代わりに、リングは複数の個別の開孔576を有して成り得る。ある実施形態において、開孔は、長手軸とほぼ平行に流体を放出するように、軸方向に方向づけられる。開孔576は、全て同じ向きに方向づけられてよい。あるいは、開孔のいくつかは、異なる方向又は反対の方向に面し得る。必要に応じて、1つ又はそれより多くの開孔576は、長手軸550に対して横方向に向けられ得る。さらに、又は代わりに、開孔のいくつかは、径方向又は軸方向に向けられてよい。
【0126】
図17を再び参照すると、コーン509は、沈降デバイス500内に位置付けられ、上方錐体部503A及び下方錐体部503Bの1つ又はそれより多くに面するように方向づけられ得る。ある実施形態において、沈降デバイスにはコーンのスタックが1つ含まれ、コーン509Bの端部又は頂部542は、下方錐体部503Bの下方第1ポート553Bの方に向けられる。この実施形態において、コーンの基部又は大開口部546は、上方錐体部503Aの上方第1ポート553Aに向かって方向づけられる。例示的な実施形態では、3〜25個のコーン509が沈降デバイス500内に積み重ねて配置される。別の実施形態では、スタックには6〜14個のコーン、又は10個のコーンが含まれる。しかしながら、沈降デバイス500が図16〜17に図示されるように組み立てられる場合、沈降デバイス500はいかなる数のコーン509も受けるような大きさを有し得る。下方錐体部503Bの少なくとも一部には、コーンがなくてよい。より詳細には、最下のコーン509は、下方錐体部503Bの内面から所定の距離の間隔を有し得る。したがって、培養液中の細胞は、沈降デバイス500に、例えば、下方第1ポート553Bに近接して保持され得る。
【0127】
コーン509Bが、それらの頂部542が下方第1ポート553Bに近接するように方向づけられる場合、最下のコーン509のボディ540は、ディフューザー570によって支持され得る。より詳細には、図17に概して図示されるように、最下のコーン509は、コーンのボディ540がディフューザーのリングに接するように、ディフューザーのリング574を通って延在してよい。最下のコーンは、必要に応じてディフューザーのリングと接合、又は溶接され得る。このように、ディフューザー570は、下方錐体部503Bの内面から所定の距離に最下のコーン509を位置付けるように作動可能である。
【0128】
図17を再び参照すると、必要に応じて、フランジ518が沈降デバイスの錐体部503の大きな端部から延在し得る。フランジ518は、円筒部508の外形より大きいもののほぼ等しい内径を有し得る。ある実施形態において、沈降デバイスが組み立てられる際、フランジ518は、円筒部508の外面の外側に、長手軸550に対してほぼ平行に延在する。任意のフランジ518は、関連する錐体部503が円筒部508に相互接続するように構成される。例えば、錐体部503は、フランジ518に近接する円筒部508に溶接、又は固定され得る。
【0129】
さらに、又は代わりに、フランジ518には、関連する錐体部503を円筒部508と揃えるように適合される特徴が含まれ得る。例示的な実施形態において、当該特徴は、円筒部の対応する凹所に係合するように構成される突出部を有して成る。
【0130】
フランジは、錐体部と円筒部との間に位置付けられるワッシャー又はガスケットを保持するように構成され得る。ガスケットは、図8A及び図8Bに概して図示されるガスケット338と同一、又は類似し得る。
【0131】
ある実施形態において、沈降デバイス500の錐体部503の1つ又はそれより多くは、線形ではない。より詳細には、錐体部503は、円筒部508に近接する最大径から第1ポート553に近接する最小径まで、円弧状経路に沿って先細りであり得る。より詳細には、再び図17を参照すると、錐体部503の各々の長手方向の断面は、円筒部508と第1ポート553との間に、円弧形状を有するラインを画定する。ある実施形態において、錐体部503は、沈降デバイス500の中心に向かって内側に凹状である。別の実施形態では、錐体部503は一定の曲率半径を有し得る。必要に応じて、別の実施形態において、錐体部503の1つ又はそれより多くは、2つ又はそれより多くの曲率半径を有し得る。例えば、錐体部503は、円筒部508に近接する第1曲率半径、及び関連する第1ポート553に近接する第2曲率半径を有してよい。第1曲率半径及び第2曲率半径の中心点は、沈降デバイス500の内部に位置付けられる。必要に応じて、錐体部508の勾配は、長手軸550に対して約5°〜約85°で変動してよい。ある実施形態において、錐体部503には、第1ポート553に近接する凸状部分が含まれ得る。凸状部分は、沈降デバイス500の外に中心点のある曲率半径を有する。
【0132】
ここで、図19A及び図19Bを参照すると、コーン509には、概して、小開口部544を伴う頂部542、及び大開口部546を伴う基部を有するボディ540が含まれる。必要に応じて、コーンの各々は別個に形成される。例示的な実施形態において、コーンは実質的に同じ大きさ及び形状を有する。
【0133】
いくつかの実施形態において、ボディ540は、小開口部544と大開口部546との間で線形でなくてよい。図17に概して図示されるように、ボディ540の長手方向の断面は、円弧形状を有するラインを形成することになる。各コーン509の円弧形状は、沈降デバイス500の錐体部503の1つ又はそれより多くとほぼ同一であってよい。
【0134】
いくつかの実施形態において、ボディ540は、長手軸550に向かって内側に凹状である。したがって、大開口部546のある点から小開口部544のある点まで引いた直線は、ボディの内部にある。
【0135】
必要に応じて、ボディ540は一定の曲率半径を有する。あるいは、ボディは2つ又はそれより多くの曲率半径を有し得る。したがって、ボディは、小開口部544に近接する第1曲率半径、及び大開口部546に近接する第2曲率半径を有してよい。第1曲率半径及び第2曲率半径の中心点は、コーン509の内部に位置付けられる。このようにして、小開口部544に近接するボディ540の一部は、大開口部に近接するボディの勾配と異なる勾配を有し得る。例えば、小開口部544に近接するボディは、長手軸550に対して少なくとも約40°の角度に調整されてよい。対照的に、大開口部546付近では、ボディは垂直により近くてよい(又は長手軸により近くてよい)。より詳細には、ボディは、大開口部546に近接する点において、長手軸に対して約45°未満の角度で勾配を有してよい。必要に応じて、ボディ540の勾配は、長手軸に対して約5°〜約85°で変動してよい。
【0136】
図19A、19Bに図示されるように、各コーン509には突出部が含まれ得る。当該突出部は、実質的に等間隔にあるコーンのスタックの連続する各コーンを保持するため、隣接するコーンと接するように構成される。ある実施形態において、突出部513は、ボディ540の外面から外側に延在する。突出部513は、隣接するコーンのボディ540の内面に接するように構成される。あるいは、突出部513はボディ340の内面から延在し得る。いくつかの実施形態において、突出部513は長手軸550にほぼ平行に方向づけられる。
【0137】
突出部513は、隣接するコーン間に任意の所望の間隔を供するような大きさを有してよい。必要に応じて、突出部513は、隣接するコーンを約1mm〜約2.5cmの距離だけ隔てるように構成される。例示的な実施形態において、各コーン509には、少なくとも3つの突出部513が含まれる。
【0138】
突出部513は、必要に応じて第2コーンに関して第1コーンを固定するように構成され得る。より詳細には、突出部513にはフランジ532及び溝536が含まれる。図19Aに概して図示されるように、第1コーンの溝536は、隣接する第2コーンのフランジ532を受けることができる。
【0139】
ここで、図18を参照すると、沈降デバイス500には、必要に応じてコーン509Aの第2スタックが含まれ得る。コーンの第2スタックのコーン509Aは、コーン509Bと同様であってよい。あるいは、コーン509Aは、コーン509Bとは異なる大きさ又は形状を有してよい。ある実施形態において、コーンの第2スタックのコーン509Aは、各々異なる大きさを有してよい。例えば、コーン509Aの最上にあるものは、コーンのより下にあるものよりも大きい直径を有し得る。同様に、コーン509Aの最下にあるものは、コーンの第2スタックの他のコーンより小さな直径を有し得る。
【0140】
必要に応じて、1つ又はそれより多くのスペーサー(図示せず)は、沈降デバイス500の内面から内側に突出してよい。スペーサーは、沈降デバイス500内にあるコーン509のスタックが、錐体部503又は円筒部508の内面に立てかかることを防ぐように構成される。必要に応じて、スペーサーは、沈降デバイス300の長手軸550におよそ平行であり得る。スペーサーは、沈降デバイス500内の液体及び懸濁粒子の移動又は流れに対する妨害を防ぐ、又は最小化するため、実質的に薄い断面を有してよい。図16〜18に図示されていないものの、スペーサーは、図5A図5B、及び図7に図示され、本明細書で説明されるスペーサー315と同じ、又は類似し得る。
【0141】
錐体部503、円筒部508、及びコーン509などの沈降デバイス500の要素は、シングル・ユースで使い捨てのプラスチック製であり得る。あるいは、錐体部503、円筒部508、及びコーン509の1つ又はそれより多くは、ステンレス鋼合金などの金属、又はガラスで製造され得る。コーン509の表面、並びに錐体部503及び円筒部508の内面は、非粘着性プラスチック、テフロン(登録商標)、シリコン及び当業者に既知である類似材料の1つ又はそれより多くによって、完全に、又は部分的に覆われ得る。さらに、又は代わりに、表面(特にステンレス鋼で形成される場合)は、滑らかな表面を供するように電解研磨されてよい。これらの沈降デバイスは、いずれかの所望の大きさに合わせて容易に調整され得る。
【0142】
ある実施形態において、例えば、溶接(超音波溶接又は熱溶接など)、粘着剤、又は接着剤によって、錐体部は円筒部に固定して接合される。必要に応じて、1つ又はそれより多くのコーンは、沈降デバイスの内面に接合され得る。例えば、ある実施形態では、図17に概して図示されるように、コーンのスタックにおける最上のコーン509の一部は、上方錐体部503Aの内面に接し、固定され得る。ある実施形態では、コーンは、コーンのスタックを形成するように共に接合され得る。
【0143】
沈降デバイス500には、必要に応じて流体ジャケット(図示せず)が含まれ得る。流体ジャケットは、錐体部503及び円筒部508の1つ又はそれより多くと関連し得る。沈降デバイス500及びその中の流体を含む内容物を所望の温度範囲内に維持するため、水又は他の流体は、1つ又はそれより多くのポートを介して流体ジャケットに向けられてよい。
【0144】
図16〜18に図示される実施形態の沈降デバイス500の作動中に、血清フリー、又は動物性たんぱく質フリーの細胞培養培地は、下方錐体部503Bの第1ポート553B及び第2ポート554Bの1つ又はそれより多くを介して、沈降デバイス300にポンプ注入されてよい。細胞培養培地は、沈降デバイス500に連続的、又は周期的にポンプ注入され得る。具体的には、沈降デバイス500は、バッチ、又は連続運転で作動し得る。
【0145】
また、沈降デバイス500内の培養液の上澄みのpH及びDOを制御するため、O、CO、及びNの制御された混合物を沈降デバイス500にポンプ注入してよい。必要に応じて、第2ポート554A、554B及び下方錐体部503B、及び第1ポート553Bの1つ又はそれより多くは、例えば細胞の生存率を管理するためのバイオリアクターの内容物のサンプリング、及びコンピュータで制御されたマルチ・ガス質量流量計への入力のための液体のpH及びDOの連続測定のために用いられ得る。
【0146】
イン・ビトロでの細胞増殖の最後に、濃縮されて沈降した細胞は、下方錐体部503B内の沈降デバイス500の底に集められ、沈降デバイス500の第1ポート553Bから回収され得る。アンモニア及び乳酸などのいずれかの代謝老廃物、又はガスを含む清澄化された培養流体は、まだ沈降していない、より小さな死細胞及び細胞の残骸と共に、上方錐体部503Aの第1ポート553Aを介して除去されてよい。
【0147】
必要に応じて、沈降デバイス500は、独立型のバイオリアクター/セル・ソーターの組合せとして用いられ得る。成長培地は、第1ポート553及び第2ポート554の1つ又はそれより多くを介して、細胞沈降デバイスに加えられてよい。したがって、沈降デバイス500は、灌流バイオリアクターに接続せずに用いられてよい。
【0148】
ある実施形態では、センサーを沈降デバイス500内に位置付けてよい。必要に応じて、センサーは、錐体部503及び円筒部508の1つ又はそれより多くの内面に配置されてよい。例示的な実施形態において、沈降デバイス500の少なくとも一部は、プラスチックから構成されてよい。例示的な実施形態において、ハウジングの全体はプラスチックから構成されてよい。例示的な実施形態において、プラスチックは透明、又は少なくとも半透明である。必要に応じて、沈降デバイス500の少なくとも一部は、透明又は半透明である。例えば、透明又は半透明の材料は、窓と同様に、沈降デバイス500の開孔に相互接続されてよい。透明部分は、ガラス、プラスチック、又は任意の他の適当な材料をから構成されてよい。透明部分は、所定の波長範囲、又は複数の波長範囲の光に対して透過性を有する材料で形成されてよい。
【0149】
センサーがある場合、センサーは沈降デバイス500内の培地と接するように位置付けられる。センサーは、沈降デバイス500におけるpH、DO、グルコース、温度、及びCO(溶解した、又は部分的なCOを含む)の1つ又はそれより多くを監視するように作動可能であってよい。
【0150】
必要に応じて、1つ又はそれより多くのセンサーは蛍光プローブを有して成ってよく、当該蛍光プローブは、蛍光プローブによって感知される条件に基づいて異なる光を放射するように作動可能である。蛍光プローブは、沈降デバイス500内の様々な異なる場所に配置されてよい。より詳細には、蛍光プローブは、沈降デバイス内の様々な領域における、様々な状態、又は状態の変化を測定するように配置され得る。必要に応じて、蛍光プローブの少なくとも1つは、沈降デバイスの下方錐体部503Bの内面に付けられる。
【0151】
蛍光プローブによって放射された光は、沈降デバイスの表面(又は沈降デバイスの透明部分)を通過し、リーダー又はメーターによって集められてよい。本明細書で説明されるように、メーターは、沈降デバイス500内の蛍光プローブによって感知されるpH、DO、グルコース、温度、及びCOの少なくとも1つのレベルを報告、又は表示するように作動可能である。
【0152】
ここで、図22〜23を参照すると、本開示の別の沈降デバイス600が概して図示されている。沈降デバイス600は沈降デバイス500に類似しており、多くの同じ特徴を含む。例えば、沈降デバイス600には、中空内部を概して画定する、上方錐体部503A、円筒部508、下方錐体部503Bが概して含まれる。ディフューザー570は、下方第2ポート553Bに流体連通して、中空内部に位置付けられ得る。
【0153】
コーン509Aのスタックは、沈降デバイス600内に位置付けられ得る。特に、コーン509Aは、それらの頂部542が上方錐体部503A及び第1上方ポート553Aに近接するように方向づけられてよい。
【0154】
コーン509Aは、上方錐体部503Aの内面に固定されてよい。より詳細には、ある実施形態において、本明細書で説明されるように、コーンには突出部513が含まれる。図23に概して図示されるように、上側のコーン509Aの突出部513は、上方錐体部503Aの内面に固定、又は溶接され得る。
【0155】
必要に応じて、コーンの第2スタック(図示せず)は、沈降デバイス600内に位置付けられてよい。コーンの第2スタックのコーンは、それらの頂部が下方錐体部503Bに近接するように方向づけられ得る。ある実施形態において、コーンの第2スタックのコーンは、コーン509Aと同じ、又は類似している。あるいは、コーンの第2スタックのコーンは、コーン509Aと異なる大きさ及び形状を有し得る。ある実施形態において、第2コーンは、図14及び図15に図示されるコーン409と同様に、連続的に増加する直径を有し得る。
【0156】
本開示の実施形態の各々において、積み重ねられるコーンの錐体面の表面の傾斜角は、垂直から約30度〜約60度であり得る。ある実施形態において、錐体面又は積み重ねられたコーンの表面の傾斜角は、垂直から約45度であってよい。また別の実施形態では、傾斜角は約15度〜約75度の範囲である。上述のように、粘着性の粒子(典型的には、哺乳類細胞)の分離には、傾斜角は、好ましくは垂直により近い(例えば、垂直から約30度)。粘着性の少ない固体粒子(例えば、触媒粒子)では、傾斜角は垂直からさらに離れ得る(好ましくは、垂直から約60度)。
【0157】
ハウジング、コーン、及び/又は沈降デバイスのいずれかの付加的な構成要素を含む、本開示のいずれかの沈降デバイスの構成材料は、ステンレス鋼(特に、ステンレス鋼316)、若しくは、微生物又は哺乳類細胞の培養における適用で使用される類似の材料、並びに触媒の分離やリサイクルなどの化学処理工業における適用で使用される他の金属であり得る。ステンレス鋼の表面は部分的に、又は完全に電解研磨されてよく、それによって、細胞又は粒子が懸濁液から沈降した後に滑り落ちてよい滑らかな表面が供される。本開示の沈降デバイスの表面のいくつか、又は全ては、非粘着性プラスチック又はジメチルジクロロシランなどのシリコンで覆われてよい。代わりに、又はさらに、本開示のこれらの沈降デバイスのいずれかの材料構成は、シングル・ユースの使い捨てプラスチックなどのプラスチックを含む、非金属であってよい。本開示の金属製沈降デバイスが、鋼角板の標準的な板圧延及び溶接によってらせん状プレートの底部を構成され得る一方で、本開示のプラスチック製沈降デバイス、又はそれらの個々の部品は、例えば射出成形又は三次元印刷技術を用いて、単一ピースとして、連続的に、より容易に製造されてよい。
【0158】
本開示のいずれかの沈降デバイスにおいて、液体は、ポート又は開口部と液体連通している1つより多くのポンプ(例えば、蠕動ポンプ)によって、沈降デバイスのハウジングにおけるいずれかのポート又は開口部に導入されてよく、又は引き抜かれてよい。このようなポンプ、若しくは液体を沈降デバイスに流入又は流出させる他の手段は、連続的又は断続的に作動してよい。断続的に作動する場合、ポンプが作動していない期間中は、包囲する流体は静止しながら、粒子又は細胞の沈降が起こる。これによって、既に沈降した粒子又は細胞は、液体の上向きの流れによって妨害されない、傾斜した錐体面を滑り落ちることが可能となる。断続的な作動は、細胞が下方へ滑り落ちる速度を改善することができ、それによって細胞の生存率や生産性が改善するという利点を有する。特定の実施形態において、ポンプは、細胞の懸濁液を、バイオリアクター又は発酵培地から本開示の沈降デバイスへ方向づけるために用いられる。
【0159】
本開示のいずれかの沈降デバイスのハウジング内に配置されるコーンを構成する材料の厚みは、好ましくは、形状を厳密に維持し、ハウジング内で支持される同中心をなすコーンのスタックの重量を最小化するために必要な厚みである。これらのデバイスの半径及び高さは、傾斜プレート沈降器(Batt et al.1990,supra)で供されるような推算式から算出され得るように、大規模な処理に必要な分だけ独立的に拡大され得る。
【0160】
本開示の沈降デバイスにおいて、粒子の分離が生じる重要な要因は、傾斜面における増進された沈降作用である。これは、血液細胞を用いてBoycott(Nature,104:532,1920)が実証に成功し、傾斜プレート上でBattら(1990,supra)がモノクローナル抗体(monoclonal antibodies)を産生するハイブリドーマ細胞(hybridoma cells)を用いて実証に成功した。細胞/粒子の分離を増進するさらなる要因は、連続的なシリンダー(又は筒体、cylinder)間の管状領域を上昇する間の、細胞/粒子にかかる遠心力、及び沈降する表面にかかる重力による沈降である。
【0161】
層状構造のプレートは、例えば長さ、又は幅もしくは各プレートの最上部に積み重ねられるプレートの数など、各次元の独立的な増加によって傾斜プレート沈降器を拡大するために用いられた。一方で、らせん状錐体沈降ゾーンは、本デバイスの水平面の半径を単に増加させることで、三次元において同時に拡大できる。デバイスの水平面の半径を大きくすると、連続的ならせん間の一定の距離(又はチャネルの幅)を保つことで、垂直面及び錐体面の数を比例的に増加させることができる。粒子の分離効率は、傾斜した沈降表面の総水平投影面積に正比例する。デバイスの半径の増加に伴い、水平投影面積は半径の二乗に比例して増加し、結果として、単純な半径の増加により、総投影面積において三次元的に拡大する(例えば、半径の三乗)。
【0162】
沈降デバイス600は、本開示の他の沈降デバイスと同様の様式で作動し得る。例えば、沈降デバイス600は、沈降デバイス300、400、500と併せて説明されるように用いられ、操作され得る。
【0163】
プロセスの使用及び操作方法
ここで、本開示の沈降デバイスの例示的な使用方法を説明する。液体を含有する粒子(例えば、細胞培養液、排水又は固体触媒粒子を含有する反応流体などを含む)は、ポートを介して本開示の沈降デバイスに導入される。流入する液体の約50%〜99%(特に、約90%)は、沈降デバイスの底部のポートを介して除去される。一方で、残存する1%〜50%(特に、約10%)の液体は、デバイスの上部にあるポートを介して除去される。上部のポートから液体を吸い出すのに、ポンプ(蠕動ポンプなど)を用いてよい。一方で、底部を出る濃縮された液体を、ポンプを必要とせずに、重力によってサイクロン・ハウジング(cyclone housing)の底部の出口から排出することを可能にしてよい。あるいは、沈降する細胞又は粒子を含む液体は、流入する液体の流速の約50〜99%で、錐体沈降器の底部ポートからポンプ排出されてよく、残存する清澄化された液体(1%〜50%)は、上部のポートを介して排出してよい。必要に応じて、ポートを出る流体は、回収ラインへポンプ排出されてよい。
【0164】
流入する細胞(又は粒子)のほとんどは、流入すると、遠心力を介して沈降デバイス・アッセンブリの壁に押し付けられ、最初は緩やかな渦動を介して、液体及び粒子/細胞が落ち、底部ポートを介して出ていくにつれて段々と加速しながら、錐体部を沈降する。沈降していない細胞又は粒子は、コーンのスタックを通って上に移動することになる。液体がコーンのスタックを通ってゆっくり上に移動するに際して、より大きい粒子(例えば、生細胞)は、コーンの表面に沈降し、コーンを滑り落ちる、又はコーンとサイクロン・ハウジングの外壁との間に供される小さな空間に落ちることになる。これらの沈降した粒子は、アッセンブリの錐体底部に到達するまで円筒部の外側に沿って垂直に落ち、底部ポートまで錐体部を滑り落ち続ける。
【0165】
ポートを通る液体の入口の流速が増加することによって、傾斜した沈降ゾーン内の液体の滞留時間を減少させることが可能になり、それによって、より小さな粒子(例えば、死細胞及び細胞の残骸)は、液体が沈降ゾーンの上部に達する時間まで沈降しないことになる。したがって、これらのより小さな粒子は、上部のポートを介して沈降デバイスから出る。この特徴によって、より小さな粒子(死細胞及び細胞の残骸など)を、上部ポートを介して回収ストリーム(又は回収流、harvest stream)に選択的に除去するための単純な方法が供される。一方で、より大きな粒子(生細胞及び産生細胞など)は、底部ポートから別の容器(バイオリアクターなど)に戻される。
【0166】
したがって、これらの方法において、これらの沈降デバイスに懸濁液を導入する工程には、プラスチックのバイオリアクターのバッグ(又は袋、bag)から粒子沈降デバイスへ懸濁液を方向づけることが含まれてよい。
【0167】
液体は、ポート又は開口部と液体連通する1つ又はそれより多くのポンプ(例えば、蠕動ポンプ)によって、沈降デバイスのいずれかのポート又は開口部に方向づけられてよく、又はそれらから引き出されてよい。このようなポンプ、若しくは沈降デバイスに液体を流入又は流出させる他の手段は、連続的、又は断続的に作動してよい。断続的に作動する場合、ポンプが作動していない期間中には、周囲の流体が静止している間に粒子又は細胞の沈降が起こる。これにより、既に沈降しているそれらの粒子又は細胞は、液体の上向きの流れによって妨害されない、傾斜した錐体面を滑り落ちることが可能になる。断続的な作動は、細胞が下方向に滑り落ちる速度を改善することが可能であり、それによって細胞の生存率及び産生率が改善する、という利点を有する。特定の実施形態において、ポンプは、細胞の懸濁液を、バイオリアクター又は産生培地から本開示の沈降デバイスへ方向づけるために用いられる。
【0168】
本開示の沈降デバイスを用いるこれらの方法において調節され得るパラメーターの1つは、沈降デバイスを出入りする液体の流速である。液体の流速は、全体的にデバイスの特定の適用に依存することになり、速度は、沈降して、清澄化された液体から分離される粒子を保護するために変更され得る。詳細には、流速は、本開示の沈降デバイスで分離され、細胞培地に戻されてよい生細胞の生存率を保守するために調節される必要があり得る。しかしながら、流速は、沈降デバイスに蓄積する大量の細胞又は粒子、若しくは沈降デバイスを出入りする液体を移送する導管の閉塞(又は目詰まり、clogging)を防ぐためにも調節されるべきである。
【0169】
これらの方法において、沈降デバイスから集められる清澄化された液体は、生体分子、有機又は無機化合物、化学反応体、及び化学反応生成物の少なくとも1つを含んでよい。沈降デバイスから集められる清澄化された液体には、炭化水素、ポリペプチド、タンパク質、アルコール、脂肪酸、ホルモン、炭水化物、抗体、イソプレノイド、バイオディーゼル、及びビール(又は発酵性飲料、beer)の少なくとも1つが含まれてよい。これらの方法の例において、沈降デバイスから集められる清澄化された液体には、インスリン又はその類似物質、モノクローナル抗体、成長因子(又は増殖因子若しくは培養因子、growth factor)、サブユニット・ワクチン(sub-unit vaccines)、ウイルス、ウイルス様粒子、コロニー刺激因子(colony stimulating factors)及びエリスロポエチン(EPO:erythropoietin)の少なくとも1つが含まれる。
【0170】
本明細書において引用される各公開物又は特許は、参照によりその全体が本明細書に組み込まれる。ここで、概して説明される本開示の沈降デバイスは、単に本開示の実施形態のある態様の図示の目的で含まれる後述の実施例を参照することで、より容易に理解されるであろう。実施例は、上述の教示及び後述の実施例から、他の技術及び方法が特許請求の範囲を満たし得ること、並びに本開示の範囲から外れることなく採用され得ることを当業者が認識するように、本開示を制限することを意図されていない。
【実施例】
【0171】
[実施例1]
タンパク質産物を分泌する酵母菌又は他の微生物細胞
異種タンパク質(例えば、インスリン又はブラゼイン)若しくは自然に分泌される酵素(例えば、A.niger,B.subtilisなど)を分泌するように操作された、酵母菌又は真菌(ピキア・パストリス(Pichia pastoris)、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、クルイベロマイセス・ラクティス(Kluyveromyces lactis)、アスペルギルス・ニガー(Aspergillus niger)など)、若しくは細菌(大腸菌(Escherichia coli)、枯草菌(Bacillus subtilis)など)の細胞などの組換え微生物細胞は、バイオリアクターへ戻る生細胞及び産生細胞をリサイクルするため、本開示の小型沈降デバイスに取り付けられたバイオリアクターで培養され得る。それによって、高い細胞密度(又は濃度、density)及び高い産生能を達成することになる。新たな栄養培地は、高い細胞密度のバイオリアクター内の生細胞及び産生細胞に連続的に供給され、分泌されたタンパク質又は酵素は、上部ポート(又は上部側出口353A、354A、553A、554A)から、清澄化されたものの出口で連続的に回収される。その一方で、濃縮された生細胞及び産生細胞は、バイオリアクターに戻される。死細胞及びごくわずかな生細胞は、回収出口を介してバイオリアクターから連続的に除去されるため、バイオリアクターの作動を終了することを実際必要とせずに、細胞の増殖及びタンパク質の産生が無期限に維持され得る。本開示の錐体沈降デバイスに酵母菌のピキア細胞を用いる作動では、灌流バイオリアクターは1ヶ月にわたって作動している。懸濁培養液及び細胞保持デバイスにおける微生物細胞の増殖は、いずれかの所望の大きさに拡大され得るため、本開示の沈降器は、ラボ規模(<1リットル)から工業規模(>50,000リットル)で異なる大きさ、又は、高い細胞密度の灌流培養液を達成するように、その間のいずれかの大きさの懸濁バイオリアクターに取り付けられ得る。
【0172】
ある特定の実施例では、酵母菌のピキア・パストリス細胞の灌流バイオリアクター培養液が説明される。酵母菌のピキア・パストリス細胞は、5リットルのコンピュータ制御されたバイオリアクターにおいて増殖され、まず、バッチ・モードにおいて最初の50時間種菌から細胞を増殖し、続いて、次の100時間、フェド・バッチ(又は流加若しくは半回、fed-batch)モードにおいて、取り付けられた12リットルの細胞沈降器をゆっくりと満たし、次いで、連続灌流モードにおいて、本開示の小型細胞沈降器で小さな死細胞を除去し、大きな生細胞をバイオリアクターへリサイクルする。いずれかのモジュール式のバイオリアクター(modular bioreactor)への、本開示の小型細胞/粒子沈降器の典型的な取り付けの概略図を図24に示す。
【0173】
図24を参照すると、酵母菌のピキア・パストリス細胞は、灌流バイオリアクター(218)において増殖された。増殖培地は、入口ライン(201)に相互接続される第1ポンプ(202)を介して培地リザーバー(又は培地貯槽、media reservoir)(200)からバイオリアクター(218)に加えられた。溶存酸素の含量及びpHは、溶存酸素モニター(206)及びpHモニター(204)によって、バイオリアクターにおいて連続的に監視された。バイオリアクター(218)からのイースト菌細胞培養液は、ライン(212)に相互接続される第2ポンプ(214)を介して、本開示の12リットルの小型細胞沈降器(208)へ移送された。より小さな死細胞が含まれる、小型細胞沈降器(208)からの流出物は、流出ライン(210)によって引き上げられた(又は排出された、evacuated)。より大きな生細胞は、第3ポンプ(216)及び戻りライン(217)を介して、細胞沈降器(208)からバイオリアクター(218)へ戻り、リサイクルされた。バイオリアクター(218)における培地及び培養液のレベルは、細胞培養液が取り込まれる、又は捨てられるための第4ポンプ(220)及び除去ライン(222)を介して過剰の細胞培養液を除去することによって制御された。
【0174】
本開示の小型細胞/粒子沈降器が設けられた本灌流バイオリアクターで得られた結果を図25に示す。丸は、初期バッチ及びフェド・バッチで約150時間の期間の培養と、後に続く最大1600時間又は2ヶ月より長い連続灌流操作の間に蓄積されるバイオリアクターのサンプルの、600nmで測定された光学密度(OD:optical density)を示す。沈降器の流出又は回収速度は、沈降器の入口ポンプの設定及び/又は沈降器のリサイクル・ポンプの設定のどちらかを操作することによって調整される。細胞密度(600nmにおけるODによって測定されるとする)及びサイズ分布は、回収流速及びバイオリアクターから入る細胞の細胞サイズ分布、並びに沈降器からのリサイクル比などの他の要因によって決定される。灌流速度が2000ml/日から6,000ml/日以上にまで徐々に上昇するに際して、0〜30の非常に低いOD範囲で測定されるように、流出ストリームはごくわずかの細胞を含む。これらの結果は、ほとんどの生細胞がバイオリアクターに戻ってリサイクルされ、小さな死細胞及び細胞の残骸が選択的に除去されるため、バイオリアクターにおいて非常に高い細胞密度が得られ、維持されたということを論証している。これらの上昇した灌流速度においてでさえも、競合する膜ベースの細胞保持デバイスにおける目詰まりした膜のように、バイオリアクターを終了するいずれの理由もなく、高い細胞密度においてバイオリアクターを無期限に作動させることができる。
【0175】
バイオリアクター及び沈降器流出物から同時点で取られたサンプルは、粒子サイズ分析器で分析された。図26に示される、規格化された細胞サイズ分布の結果は、沈降器流出物が、バイオリアクターにおける細胞のものと比較して非常に小さな細胞サイズ分布を含むことを明示している。これらの結果は、沈降器が流出物においてより小さな死細胞及びいずれかの細胞の残骸を優先的に除去し、その一方でより大きな生細胞が優先的にバイオリアクターへ戻されるということを論証している。したがって、バイオリアクターは、沈降器の流出による死細胞及び細胞の残骸の選択的な除去によって連続的に浄化され(又は洗浄され、cleaned)、結果として、他の全ての細胞保持デバイスで定期的に発生するような、バイオリアクター内における死細胞及び細胞の残骸の蓄積がない。
【0176】
バイオリアクター及び沈降流出物のサンプルを、灌流培養中の早い時点から集め、小さな2mlのバイアルで遠心分離した。沈降デバイス(208)からの流出物から沈殿した(又は沈降した、pelleted)細胞、及びバイオリアクター内(218)から沈殿した細胞は、バイオリアクターから沈殿した細胞がバイアル中の湿潤充填細胞体積(wet packed cell volume)のおよそ50%を占めており、一方で、沈降器流出物において沈降した細胞は湿潤充填細胞体積の約5%のみを占める、ということを示した。これらの結果は、バイオリアクターからのごくわずかな無傷の(又は完全な、intact)より小さい細胞のみが沈降器流出物で除去され、一方でより大きな無傷細胞のほとんどは優先的にバイオリアクターへ戻される、ということを再び確証する。
【0177】
2ヶ月間の灌流操作の間、バイオリアクター及び沈降器流出物における全タンパク質濃度を測定し、初期バッチ及びフェド・バッチ操作後の、すなわち、長期の灌流操作中の沈降デバイス(208)からの流出物サンプルにおける全タンパク質含量は、バイオリアクター(218)からのサンプルにおける全タンパク質含量よりも一貫して多いということが示された。これらの結果は、哺乳類細胞の灌流培養におけるATFなどの膜ベースの細胞保持デバイスで一般的にみられるような沈降器(208)内のタンパク質のふるい分けがないということを非常に強く示唆する。さらに、これらの結果は、沈降器(208)にいくつかの付加的なタンパク質産生があり、それによって流出物のプロテイン濃度が同時点のバイオリアクターにおける濃度よりも一貫して高くなる、ということを示唆する。
【0178】
図24に図示した連続灌流バイオリアクターの構成からの回収ストリームにおける蓄積された全タンパク質が、単一のフェド・バッチのバイオリアクター(218)の細胞フリーの上澄み液において回収され得るタンパク質と比較され得る。バイオリアクター(218)は、150時間又は約6日にわたって作動し、約1600時間の間同じ培養を幾度も繰り返した。フェド・バッチ培養は、典型的に、回収し又はバイオリアクターを空にし、内面を洗浄し、蒸気を用いてイン・サイチュ(in situ)で滅菌し、冷却し、バイオリアクターに滅菌培地を補充し、新たな細胞をバイオリアクターに植え付け、次いでタンパク質の力価(titer)の著しい増加をみるのに十分な高い細胞密度にまで細胞を増殖させるために、長い停止時間を有する。一方で、連続灌流バイオリアクターは、培養操作を通して、高い細胞密度及び高い産生速度で、連続して作動し続ける。結果として、連続的に回収される産生ストリームにおける蓄積された全タンパク質は、灌流速度が上昇するにつれて非常に速い速度で増加し、同じ5リットルのバイオリアクターにおいて、フェド・バッチ培養操作を8回繰り返した細胞フリーの上澄み液で回収され得るタンパク質の量より、5倍高い160gにまで蓄積する。
【0179】
[実施例2]
ビールからの酵母菌の除去
大規模な醸造操作において、定期的に目詰まりするろ過デバイス、又は高価な高速機器デバイスである遠心分離デバイスによって、製品ビールから酵母菌細胞が除去される。以前に、ハイドロサイクロン(hydrocyclones)がこの適用において試されたが、不成功であった(Yuan et al.,1996;Cilliers and Harrison,1997)。これらのデバイスは、本開示の沈降デバイスによって容易に置き換えられることができ、上部の出口からビールを清澄化し(又は浄化し、clarify)、底部の出口から濃縮された酵母菌細胞懸濁液を除去する。本開示の錐体沈降ゾーンにおいて、滞留時間を増加させ、沈降を増進させることにより、発明者は細胞培養液からの酵母菌細胞の好結果の分離を達成し、最初の操作で、沈降デバイスに入る細胞をわずか約5%のみ含む培養液の上澄みを回収した。デバイスは、細胞の分離効率が上昇又は低下するように、拡大又は縮小され得るため、所望ならば、回収ポートから完全に細胞フリーのビールを得ることが可能である。したがって、本開示のデバイスは、ビールの醸造、並びにビールの清澄化、及び連続醸造設備において特に有用であってよい。
【0180】
[実施例3]
哺乳類細胞培養液からの清澄化又は除去
上述の実施例2と同様に、フェド・バッチのバイオリアクター培養の最後における細胞培養液からの哺乳類細胞の清澄化は、抗体又は治療用の糖タンパク質などの分泌産物の回収において必要な第1工程であり、一連の他の下流の処理操作が後に続く。一般に、遠心分離及び深層ろ過を共通のユニット操作として用いて、細胞培養液から哺乳類細胞及び細胞の残骸を除去する。しかしながら、連続的な遠心分離処理で、蓄積される細胞を周期的に除去することは、結果として清澄化された細胞培養液の上澄みへの細胞のクラウドバースト(又は噴出、cloudburst)を繰り返す。本開示の沈降デバイスは、哺乳類細胞をデバイス内で容易に沈降させるため、連続的に清澄化された(細胞フリー又は細胞が激減した)上澄み液を供する。これらの小型沈降デバイスは、細胞培養液からの細胞のより一貫した除去を提示し、潜在的に、いずれかの遠心分離の必要性に取って代わり、補助的な深層ろ過操作において必要な膜面積の量を削減して、いかなる残存する細胞をも、及び全ての細胞の残骸を完全に除去する。以下に説明されるように、灌流バイオリアクターにおいて、清澄化はバッチ運転又は連続運転であり得る。
【0181】
[実施例4]
哺乳類細胞の灌流培養
傾斜した沈降器におけるマウスのハイブリドーマ及び組み換え哺乳類細胞の沈降の増進は、既に論証に成功しており(Batt et al.,1990及びSearles et al.,1994)、層状構造の沈降器で拡大されている(Thompson and Wilson,U.S.Patent No.5,817,505)。層状構造の沈降器が三次元で独立的に拡大される一方で、本開示の錐体沈降デバイスは、上述で論じられるように、単に半径を増加することにより、三次元で同時に拡大させることができる。したがって、本開示の沈降器はより小型であり、より小さなフットプリント(footprint)で沈降する傾斜面をより多く含み、モノクローナル抗体などの糖タンパク質及び他の治療用タンパク質を分泌する哺乳類細胞の培養における実証済みの適用を有する、より容易に大きさを変更できる細胞保持デバイスである。分泌されたタンパク質を含有する、上部ポートからの清澄化された回収産物(又は生産物、output)は、細胞保持デバイスから連続的に回収され、その一方で、底部出口からの濃縮された細胞はバイオリアクターへと戻され、結果として高い細胞密度の灌流バイオリアクターをもたらし、無期限に作動され得る(すなわち、数か月間にわたる連続的な灌流運転)。単一の、1000リットルの高細胞密度灌流バイオリアクターからの高い力価の回収物は、年換算で、大きな(>20,000リットル)フェド・バッチのバイオリアクターからの蓄積される産生物よりも多くあり得る。
【0182】
過剰発現及び治療用糖タンパク質の分泌において一般的に用いられる組換えのチャイニーズ・ハムスターの卵巣細胞は、図24に概略的に示されるような、4”小型細胞沈降器を取り付けた1リットルの制御されたバイオリアクターで培養される。バイオリアクター、沈降器上部の流出物、及びバイオリアクターへ戻る沈降器底部における生存細胞(又は生細胞、viable cells)の密度を測定した。運転開始直後60時間、ごく少量の生細胞が沈降器上部の流出物から除去され、増加する生存細胞は沈降器底部の出口からバイオリアクターへ戻される。その結果、灌流操作開始後、バイオリアクターの生存細胞密度(VCD:viable cell density)は徐々に増加し、灌流を開始する際、バイオリアクターにおける生存百分率(菱形)はより急激に上昇する。
【0183】
細胞のサイズ分布は、5日目のバイオリアクター及び沈降器上部の流出物からのサンプルで測定された。Beckman−Coulter Multisize Analyzerによってバイオリアクターのサンプルを測定した細胞/粒子サイズのヒストグラムは、生細胞の広い分布を示し、約16ミクロンのピークを有する約10ミクロン〜約30ミクロンのサイズ範囲においておそらくダブレット(又は二重、doublet)を示し、8〜9ミクロンのサイズの死細胞の鋭いピーク、及び8ミクロン未満のより小さなサイズ範囲において細胞の残骸の大きなテール(又は大きな末尾部、huge tail)を示す。小型細胞沈降器(208)の上部ポートの流出物からのサンプルを同じ機器によって測定した細胞/粒子のサイズの別のヒストグラムは、8〜9ミクロンのサイズにおいて死細胞の増幅されたピーク、8ミクロン未満のサイズにおいて細胞の残骸のテールを示し、約16ミクロンの生細胞のいずれのピークも全てなくなることを示した。これらのサイズ測定は、沈降器上部の流出物が、より小さな死細胞及び細胞の残骸を灌流バイオリアクター(218)から選択的に除去し、その一方で、より大きな生細胞は灌流バイオリアクター(218)へ連続的に戻されるということを強く論証する。この、より小さな死細胞及び細胞の残骸の選択的な除去は、傾斜プレート沈降器で論証されている(Batt et al.1990及びSearles et al.1994)。それらを連続的に再現する小型細胞沈降器の本開示は、結果として、より小型で、より容易に拡大縮小が可能な設計をもたらす。現在入手できる他の哺乳類細胞の細胞保持デバイスは、より小さな死細胞及び細胞の残骸のみの除去においてこのような選択性を示さない。
【0184】
[実施例5]
ワクチン、ウイルス又はウイルス様粒子若しくは遺伝子治療ベクターの産生
ウイルス又はウイルス様粒子(VLPs:virus-like particles)などのワクチン、若しくはアデノ随伴ウイルス(AAV:adeno-associated viruses)、レンチ・ウイルスなどの遺伝子治療ベクターの産生は、通常、バッチ又はフェド・バッチのバイオリアクター培養において、生哺乳類細胞又は昆虫細胞の感染及び細胞溶解(又は溶解、lysis)によって実施される。ウイルス又はウイルス様粒子は、これらのウイルス又はウイルス様粒子の細胞内での大量産生後、溶解プロセスにおいて感染した細胞から放出される。生哺乳類細胞及び昆虫細胞のサイズ(約5〜20ミクロン)と比較して、これらの粒子のサイズ(サブ・ミクロン又はナノメートル・スケール)において大きな差があり、バッチ又はフェド・バッチのバイオリアクター培養液からのウイルス又はウイルス様粒子の分離は非常に単純である。細胞の残骸と共に、ほとんどのウイルス又はVLPsを含む清澄化された細胞培養液の、連続的な回収又は排出の速度を制御することによって、増殖する生細胞と共に、バイオリアクター内により少数の感染性粒子を保持することも可能であり、ウイルス及びVLPsの連続的な回収のため、本開示の沈降デバイスを取り付けた連続灌流バイオリアクターにおいて、連続的に感染し、ワクチンを産生する。
【0185】
[実施例6]
固体触媒粒子の分離とリサイクル
フィッシャー・トロプシュ合成などの液相の化学反応をさらに触媒することにおける、反応器へのリサイクル及び再使用のための固体触媒粒子の分離は、層状構造の沈降器で以前に論証されている(米国特許第6,720,358号、2001)。液相又は気相反応における固体触媒粒子を含む、このような多くの二相の化学反応は、本開示の粒子沈降デバイスによって増進され得る。これは、層状構造の沈降器で論証されたのと同様に固体の分離及びリサイクルを達成する、より小型の粒子分離を供する。
【0186】
[実施例7]
様々な産物を分泌する組み換え植物細胞の培養は、まだ商業的に実行可能ではないものの、本開示の沈降デバイスの潜在的な適用のまた別の分野である。傾斜沈降器は、いくつかの植物細胞の培養の適用において用いられている。このようなデバイスは、本開示のより小型の錐体らせん状沈降デバイスで置き換えられ得る。植物細胞のサイズは酵母菌又は哺乳類細胞のサイズより大きく、細胞の分離効率は、単一の植物細胞又は植物組織の培養においてより高くなる。
【0187】
より迅速で商業的な本開示の沈降デバイスの適用は、藻類細胞内からバイオディーゼル産物を回収するため、大規模な培養池(又は栽培池、cultivation ponds)から藻類細胞を回収することにおけるものであってよい。太陽光エネルギーを細胞内の貯蔵された脂肪又は脂肪酸に変換する大きな(エーカーサイズの)浅い池における比較的希薄な藻類細胞の集団(又は量、mass)は、本開示の錐体らせん状沈降デバイスを介して容易に回収可能であり、濃縮された藻類細胞は、底部の出口から回収され得る。
【0188】
[実施例8]
都市廃水処理
大規模な都市廃水処理工場(汚水又は廃水における生物的又は有機廃物の分解のため、活性汚泥又は多様な細菌種の共同体(consortia)を用いる)は、一般的に大きな沈降タンクを用いており、これらの工場のより現代的なものは、汚泥から清澄化された水を除去する層状構造の沈降器を用いる。本開示の錐体型らせん状沈降デバイスは、これらの処理工場で現在用いられる大きな沈降タンク又は層状構造の沈降器よりも小さなサイズを維持しながら、これらの工場で要求されるより大きなサイズに拡大され得る。
【0189】
[実施例9]
工業処理水の清澄化
浮遊した固体を含む濁水の工業廃水又は天然原料のどちらかを浄化する、大規模な水処理工場では、大規模な沈降タンク又は層状構造の傾斜沈降器が用いられる。ここで、これらの大規模なデバイスは、新たな水の工業的再使用又は都市供給のために水を清澄化する同様の目的を達成するように、本開示のより小型な錐体型らせん状沈降デバイスで置き換えられ得る。
【0190】
[実施例10]
プロテインA被覆ビーズにおけるモノクローナル抗体の捕捉及び精製
モノクローナル抗体を含む細胞培養上澄み液は、2つの異なる入口を介して、本沈降器内でプロテインAを被覆した微小球状(又は微粒子、microsphere)又はビーズ(40〜200ミクロン)に接触され得る。例えば、接触及び捕捉の効率を最大化するため、ビーズは上部の入口から入り、細胞培養上澄み液は底部ポートを介して入る。プロテインAビーズにおけるモノクローナル抗体の捕捉は非常に素早く、競合するアフィニティ・クロマトグラフィー(又は親和クロマトグラフィー、affinity chromatography)のカラム内の保持時間は一般的に10分未満である。プロテインA被覆微小球状ビーズは、素早く沈降し、底部の入口から細胞培養上澄み液をポンプ注入することによって浮遊し続け、その上澄み液と接触するようによく混ぜられ得る。枯渇した(又は取り尽くされた、depleted)細胞培養上澄み液は、バッチ充填操作において本開示の細胞沈降器の上部出口から連続的に除去され得る。液体の上向きの流れに同調されるいずれのビーズも、傾斜面に沈降し、底部の攪拌領域に戻ることになる。加えるビーズの結合容量の最大近くにまで充填後、上澄み液にある死細胞の残骸と共に、未結合のホストプロテイン細胞を上部の出口を介して除去するため、ビーズは沈降器の約3〜5倍の体積の典型的な洗浄溶液で洗浄され得る。
【0191】
完全な洗浄の完了後、結合抗体を除去するため、溶離媒体が液体培地中にゆっくりとポンプ注入され、沈降器の中にビーズを残したまま、濃縮された抗体溶液は上部ポートを介して除去される。溶離を完了させた後、底部入口から平衡化溶液をポンプ注入することによってビーズの平衡化が実施され、その間、流入する溶液によってビーズは浮遊状態を保持される。平衡化後、細胞培養上澄み液の次のバッチが沈降器内に充填され、クロマトグラフィーのカラムで用いられる順序と同様に、上述の4工程の処理を繰り返す。モノクローナル抗体の捕捉に本開示の細胞沈降デバイスを用いるいくつかの利点は、(i)プロテインAビーズと接触するため、上澄み液に通常存在する死細胞又は細胞の残骸を除去することを必要とせず、細胞培養上澄み液を直接充填できること;及び(ii)カラムの後の部分におけるビーズの固定床へのモノクローナル抗体の漸進的、又は遅延した暴露よりも、流入する上澄み用液において、全ての浮遊したビーズがより効率的に、迅速に接触すること、である。本開示の実施形態の沈降デバイス内で浮遊するプロテインAビーズによって、アフィニティ・カラム・クロマトグラフィーを抗体のアフィニティ捕捉(又は親和力の捕捉、affinity capture)に置き換える場合、死細胞及び細胞の残骸を除去するために現在要求される遠心分離及び/又は深層ろ過のユニット操作の排除は、多くのコストの節減をもたらすことになる。
【0192】
洗浄、溶離及び再生工程が後に続く、プロテインA被覆ビーズによる分泌された抗体産物のこのアフィニティ捕捉は、一連のバッチ操作で、単一の沈降器において、又は一連の沈降器において連続的に実施され得る。操作において、本開示の実施形態の各沈降器における細胞培養液又は様々な緩衝液を伴う真逆の流れ又は直交流の操作で、プロテインAビーズはある沈降器から次の沈降器へ流れることになる。
【0193】
[実施例11]
細胞からの分泌有機産物のイン・サイチュ抽出のデカンタ/細胞沈降器
いくつかの香気(又は芳香、fragrance)及び香味化合物の生成及び分泌は、サッカロマイセス・セレビシエなどの微生物酵母菌細胞内で代謝的に作られている(又は設計されている、engineered)。これらの化合物のいくつかは、細胞に対してより有毒であってよく、細胞の毒性を減ずるため、並びに酵母菌細胞の産生能を上げるため、有機液体中に容易に抽出され得る。攪拌されるタンクのバイオリアクターからの、分泌された産物を含む有機液体のエマルション及び産生微生物細胞を含む水層は、本開示の小型細胞沈降デバイスの入口ポートにポンプ注入され得る。沈降器の静的なゾーン内において、エマルションは、上部ポートを介して回収される、上部に浮いている有気相と、底部ポートを介してバイオリアクターへリサイクルされる、底部に沈降している生細胞及び産生細胞を含む水層とに容易く分離される。細胞の残骸はいずれも有機層に分配され、沈降器の上部から容易に除去される。灌流バイオリアクター内の細胞の濃度及び産生能を上げるため、水層における生細胞及び産生細胞はバイオリアクターに戻される。
【0194】
[実施例12]
独立型灌流バイオリアクターとして用いられる小型細胞沈降器における、様々な哺乳類細胞のイン・ビトロ増殖
現在、幹細胞及びCAR−T細胞などの様々な哺乳類細胞のイン・ビトロ増殖の分野は、攪拌のための振動台(rocking platform)の上、又はpH制御のためのCOインキュベーター(又は恒温器若しくは培養器、incubator)内に配置される、バイオリアクターとしての無菌のシングル・ユース使い捨て培養バッグを用いて、急速に拡大している。このようなバッグのバイオリアクターは、増殖の間、高い細胞生存率を維持するために細胞保持デバイスとして微細ろ過膜(又は精密ろ過膜、microfiltration membranes)を用いて、アンモニアや乳酸などの蓄積された代謝老廃副産物を除去するため、連続灌流モードにおいてますます多く操作される。しかしながら、長期の灌流操作の間、死細胞及び細胞の残骸はこれらのバッグに蓄積し、バッグの微細ろ過膜を介して除去できない。本開示の細胞沈降デバイスは、独立型の、エア・リフト(air-lift)のバイオリアクターとして効率的に操作され、新たな栄養物を運び込み、代謝老廃産物を除去するように、並びにいずれの死細胞及び細胞の残骸も選択的に除去するように、連続的な灌流において操作され得る。底部のポートは、バイオリアクターにおいて所望のpH及びDOを維持するため、CO、O及びNの複数のガスの制御された混合物の入口として用いられ得る。中央部分を通って上昇する空気は、いくらかの細胞培養液を同調させ、又は運び上げ、バイオリアクター内の栄養物の穏やかな攪拌を供し、上部の出口で流出する。その一方で、液体は沈降器の円筒部で離脱され、錐体沈降器にわたってリサイクルされる。戻ってくる細胞培養液は、不活性ガス混合物を制御するコンピュータに入力するpH、DOの連続測定のため、及び所望の細胞の濃度及び生存率の不定期なサンプリングのために採取され得る。所望の細胞増殖後、濃縮された生細胞は、ガスの流れを細胞回収バッグへ切り替えることによって、底部ポートを介して集められる。本細胞沈降器/バイオリアクターの主要な利点は、有害な代謝老廃副産物と共に死細胞及び細胞の残骸の容易な除去を供し、結果として自己細胞治療のイン・ビトロ増殖後の生細胞の高い細胞密度をもたらすことである。
【0195】
[実施例13]
沈殿及び濃縮された治療用タンパク質の連続分離
いくつかの治療用タンパク質(例えば、インスリン類似体のグラルジン及びモノクローナル抗体)は、単塩(例えば、グラルジンには塩化亜鉛、又は抗体には硫酸アンモニウム)を加えること、pHを調整すること、及び他の溶媒(例えば、グラルジンにはm−クレゾール又は他のフェノール類、及び抗体にはエタノール)によって沈殿し得る。この沈殿は、これらの治療用タンパク質の下流の精製処理において、クロマトグラフィーへの低コストの代替法である。現在、これらの沈殿工程はバッチ・モードで実施され、その後、沈殿物から上澄み液を除去するため、遠心分離又はデカンテーションが実施される。
【0196】
本開示の分離デバイスを用いて、連続分離処理が実施されてよい。タンパク質リッチな回収媒体(微細ろ過又は遠心分離、若しくは他の方法によっていずれの細胞も除去した後)は、溶媒、若しくはNaOH又はHClなどのpH調整溶液中の塩などの他の要求される化学種と共に、本開示の小型細胞沈降器に入れられる。沈殿プロセスは沈降器内で生じることになり、タンパク質リッチの沈殿は、上部出口から連続的に除去されるタンパク質希薄な上澄み液とは別に、底部出口において連続的に除去され得る。
【0197】
[実施例14]
微小担体ビーズにおける間葉間質/幹細胞(MSCs)のエクス・ビボ増殖及び増殖された幹細胞の精製
間葉間質/幹細胞(MSCs:mesenchymal stromal/stem cells)は、適当な増殖培地の存在下においてエクス・ビボ(又は生体外で、ex vivo)増殖が可能であり、一般的に、組織培養フラスコ、ペトリ皿、ローラー・ボトル(roller bottles)、セル・キューブ(cell cubes)、及び微小担体ビーズ(microcarrier beads)などの表面に付着して増殖される。微小担体ビーズ(100ミクロン〜500ミクロンの範囲のサイズ)に付着した増殖は、pH、温度、溶存酸素濃度及び栄養塩濃度などの最適増殖条件を制御された、攪拌又は振動(又はかき混ぜる若しくは攪拌、agitated)されるバイオリアクターにおいて、それらが浮遊するように、非常に容易く拡大縮小される。しかしながら、微小担体からの増殖した幹細胞の分離は課題であり、酵素の脱離、過剰な酵素を迅速に洗い落とすこと、及び微小担体ビーズからの幹細胞の分離を必要とする。現在、これらの様々な工程には、労働集約型及び汚染されやすいバッチ処理工程を用いることが試みられている。これらの困難な工程の各々は、サイクロン・ハウジング内に位置付けられるセンサー・プローブを含んでよい、本開示のバイオリアクター/細胞沈降デバイスにおいて、より容易に達成され得る。ある実施形態では、サイクロン・ハウジング内のpH、溶存酸素(DO)、グルコース濃度、温度、及びCOのレベルの1つ又はそれより多くを測定するため、センサー・プローブは蛍光プローブを含んで成る。より詳細には、これらの沈降デバイス内において、(i)過剰な酵素は、底部ポートを介して新たな栄養培地を送り込むことにより、上部ポートを介して非常に容易く洗浄又は除去される。その一方で、より遅く沈降する脱離した細胞、及びより速く沈降する新たな裸出された(又は露出した、denuded)微小担体ビーズは、沈降器内で循環し続ける;(ii)裸の微小担体ビーズ(100〜500ミクロン)は、幹細胞(10〜20ミクロン)よりずっと速く沈降することになり、幹細胞が懸濁液中で循環している間に底部ポートから除去され得る;及び(iii)最後に、増殖した幹細胞は、その後の細胞治療への適用のため、所望の濃度において底部ポートを介して回収され得る。
【0198】
[実施例15]
T−リンパ細胞又は心筋細胞などの他の分化細胞のイン・ビトロ増殖又は培養の支持に必要な培養因子を分泌するための微小担体ビーズにおける間質細胞の共生培養
多分化能性幹細胞の培養、及び心筋細胞又は活性リンパ細胞(CAR−T細胞)への分化は、培養バイオリアクターに追加される高価な培養因子を必要とする。このコストは、培養培地に所望の培養因子を分泌する、操作された間葉幹細胞(MSCs)と共に所望の細胞を共培養(又は共生培養、co-culturing)することによって削減され得る。細胞を分泌するこれらの培養因子は、CAR−T細胞、心筋細胞などの他の所望の細胞の培養を支持する。この共培養は、本開示のバイオリアクター/セル・ソーターの組合せデバイス内で作用され得るものであり、このような細胞の産生又は増殖のコストを大きく減ずる。バイオリアクター/細胞沈降器内により大きな微小担体ビーズを保持しながら、増殖した単細胞又は細胞の集合体を除去するため、必要な流速で新たな媒体を供給することによって、増殖した細胞は共培養から容易く除去され得る。
【0199】
[実施例16]
所望の特性又は望まない特性を有するいくつかの別個の分集団への、骨髄からなどのいずれかの混合細胞集団の分取又は分別
本開示のバイオリアクター/細胞沈降デバイスのいずれかに混合細胞集団(骨髄細胞など)のいくらかの初期ボーラス(又は塊、bolus)を充填後、ゆっくりと、段階的に増加する流速で新たな栄養培地を注入することができる。それによって、最も小さい細胞(例えば、血小板、赤血球など)は最も遅い流速で上部の流出ストリームを介して出て、その後、次第に上昇する流速においてより大きい細胞種(リンパ細胞、単核細胞など)、次いで最も高い流速において最も大きい細胞種(マクロファージ、巨核細胞など)が出る。栄養塩の供給、及びゆっくりと段階的に上昇する流速で上部の流出流速を上昇させることで、健全な細胞培養成長培地にバイオリアクター/セル・ソーターのデバイスを残して、単一の所望の細胞種の比較的純粋な集団が得られるため、その後の使用のためにさらに増殖され得る。
【0200】
[実施例17]
一般的な赤血球細胞のイン・ビトロ産生
新規の遺伝子操作方法は、赤血球系細胞系統への造血幹細胞の分化を対象として開発中である。赤血球形成における最も初期のコミットされた段階(又は委任段階、committed stage)である前赤芽球細胞はかなり大きく(12〜20ミクロン)、通常の赤血球より最大3倍大きい。赤血球系の系統における次の段階である多染性正赤芽球は、前赤芽球細胞より小さい(12〜15ミクロン)。有核の赤血球前駆細胞である正染性正赤芽球細胞はさらに小さく(8〜12ミクロン)、さらに小さな成熟除核赤血球細胞が続く(Geiler,C.,et al.,International Journal of Stem Cells,9:53−59)。本開示のバイオリアクター/セル・ソーターのデバイスのサイズ分別特性に基づき、全てのより大きな細胞を保持し、最も小さい成熟除核赤血球細胞のみをデバイスの上部流出物から除去する。その間、全てのより大きな前駆細胞は、バイオリアクター/セル・ソーターのデバイス内で連続的に増殖している。
【0201】
[実施例18]
大規模な血小板の産生
制御されたバイオリアクター培養条件における高倍数性巨核細胞のエクス・ビボ増殖、及びより小さい血小板細胞へのこれらのせん断(又は切断、shearing)は、基本的なレベルで徐々に理解されている(Panuganti,S.,Et al.,Tissue Engineering Part A, 19:998−1014)。この理解がさらに進むにつれて、これらの必要な培養パラメーターが得られ、沈降器から上部の出口を介して、成熟し、せん断されたより小さな血小板のみを回収しながら、巨核細胞の培養及び分化のためのこれらのバイオリアクター/セル・ソーター・デバイス内で制御され得る。
【0202】
さらなる背景、事情、及び米国特許法第112条の記載要件をさらに満たすため、以下の参照文献:米国特許第5,624,580号、米国特許出願公開第2009/159523号、米国特許出願公開第2011/097800号、米国特許出願公開第2012/180662号、米国特許出願公開第2014/011270号は、参照によってその全体が本明細書に組み込まれる。
【0203】
本開示の前述の実施例は、図示及び説明の目的で提示されている。これらの実施例は、本開示を本明細書で開示された形態に限定することを意図されていない。したがって、本開示の詳細な説明の教示、及び関連技術の技能又は知識と同等の変形及び変更は、本開示の範囲内である。本明細書で供される実施例において説明される特定の実施形態は、本開示の実施について知られる最良のモードをさらに説明すること、並びに当業者が、本開示の特定の適用又は使用によって要求される、このような、又は他の実施形態及び様々な変更において本開示を利用できることを意図している。付記された特許請求の範囲は、先行技術に許容される範囲に代替の実施形態を含むと解釈されるということを意図している。
図1
図2
図3
図4
図5A
図5B
図5C
図6
図7
図8A
図8B
図9A
図9B
図9C
図9D
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19A
図19B
図20A
図20B
図21A
図21B
図22
図23
図24
図25
図26
【国際調査報告】