【課題】厳しい熱履歴後も高度の誘電特性(低誘電率・低誘電正接)を有し、かつ高い密着信頼性を有する硬化物を与える硬化性樹脂組成物、その製造方法、及び硬化物を提供することにあり、これらは電気・電子産業、宇宙・航空機産業等の分野において誘電材料、絶縁材料、耐熱材料として用いることができる。
【解決手段】(A)ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させて得られ、ナフトールアラルキル樹脂のOH基の60〜100モル%がビニルベンジロキシ基に置換されたポリ(ビニルベンジル)エーテル化合物、(B)1分子中に2以上のエポキシ基を有する芳香族系、シアヌレート系又は脂環式エポキシ樹脂、及び(C)硬化剤を含有する硬化性樹脂組成物。
上記(A)成分が、全ハロゲン含有量が600ppm(wt)以下で、ガスクロマトグラフィー(GC)測定においてビニル芳香族ハロメチル化合物のピーク面積がポリ(ビニルベンジル)エーテル化合物のピーク面積と合計した総ピーク面積に対して、1.0%以下である請求項1〜5のいずれかに記載の硬化性樹脂組成物。
上記(B)成分が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、キシリレン変性フェノールノボラック型エポキシ樹脂、キシリレン変性アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリグリシジルイソシアヌレート、シクロヘキサン型エポキシ樹脂及びアダマンタン型エポキシ樹脂からなる群から選ばれる1種以上のエポキシ樹脂である請求項1〜5のいずれかに記載の硬化性樹脂組成物。
上記(C)成分が、o−クレゾールノボラック、p−クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル型フェノールノボラック樹脂、ビフェニル型ナフトールノボラック樹脂、ポリ(ジ−o−ヒドロキシフェニル)メタン、ポリ(ジ−m−ヒドロキシフェニル)メタン、ポリ(ジ−p−ヒドロキシフェニル)メタン、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸並びにジシクロペンタジエン骨格を有する酸無水物及び該酸無水物の変性物からなる群から選ばれる1種以上のエポキシ樹脂硬化剤である請求項1〜5のいずれかに記載の硬化性樹脂組成物。
上記(D)成分が、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリシクロオレフィン樹脂、水添スチレン−ブタジエン共重合体及び水添スチレン−イソプレン共重合体からなる群から選ばれる1種以上の高分子量樹脂である請求項2〜5のいずれかに記載の硬化性樹脂組成物。
【発明を実施するための形態】
【0021】
以下、本発明を更に説明する。
本発明の(A)成分として使用されるポリ(ビニルベンジル)エーテル化合物はナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させて得られ、上記式(1)で表される構造をもつ化合物である。
【0022】
式(1)において、R
1はそれぞれ独立して水素原子、炭素数1〜6のアルキル基、アリル基、または炭素数6〜10のアリール基を表す。アリール基は、さらに置換基を有しても良く、例えば、炭素数1〜6のアルキル基である。アリール基の炭素数の計算には、置換基の炭素数を含まない。好ましくは溶解性及び誘電特性と硬化性及び難燃性とのバランスの点から、R
1は、水素原子、炭素数1〜6のアルキル基、または炭素数6〜10のアリール基であり、より好ましくは、水素原子、炭素数1〜6のアルキル基、または炭素数6のアリール基であり、特に好ましくは水素原子または炭素数1〜3のアルキル基である。
また、mは1〜6の数を表すが、好ましくは溶解性と難燃性のバランスの点から、R
1が水素以外の置換基である場合、その数(m’)は0〜2である。
【0023】
また、R
2は、それぞれ独立して水素原子、炭素数1〜12のアルキル基、またはビニルベンジル基を表す。そして、R
2中に占めるビニルベンジル基の割合(モル%)は、60〜100%であるが、好ましくは90〜100%である。一方で、R
2中の0〜40モル%が水素原子、アルキル基または両者である。R
2の一部を、炭素数1〜12のアルキル基とすることは、靱性、成形性及び誘電特性が優れるものを与えるため好ましい。より好ましくは、R
2における炭素数1〜12のアルキル基の割合が1〜30モル%であり、さらに好ましくは1〜10%である。また、ビニルベンジル基の割合が60%未満の場合は、重合活性点が少なく、硬化不足という問題が起こる。さらに、R
2におけるビニルベンジル基と炭素数1〜12のアルキル基の総和が61%未満の場合には、誘電特性が悪化する傾向がある。
また、rは1〜3の数を表すが、好ましくは溶解性と靱性の点から、1〜2の数である。m+rは6又は7であるが、R
1が水素原子以外の置換基であるものの数をm’とすると、m’+rは好ましくは1〜4である。
【0024】
Ar
1は炭素数6〜50の芳香族炭化水素基を表す。例えば、−Ph−、−Ph−Ph−、−Np−、−Np−CH
2−Np−、−Ph−CH
2−Ph−、−Ph−C(CH
3)
2−Ph−、−Ph−CH(CH
3)−Ph−、−Ph−CH(C
6H
5)−Ph−、−Ph−Flu−Ph−、及び−Flu(CH
3)
2−からなる群れから選ばれる炭素数6〜50の芳香族炭化水素基等が挙げられる。より好ましくは、炭素数が6〜20である芳香族炭化水素基である。ここで、Phはフェニレン基(-C
6H
4-)を表し、Npはナフチレン基(-C
10H
6−)を表し、Fluはフルオレニル基(-C
13H
8−)を表す。ここで、Ph、Np及びFluは、置換基を有しても良く、例えば、アルキル基、アルコキシ基、フェニル基である。好ましくは炭素数が1〜6のアルキル基が挙げられる。また、Ar
1として、溶解性及び難燃性の観点から、より好ましくは、無置換、アルキル基置換、アルコキシ基置換もしくはフェニル基置換の−Ph−、−Ph−Ph−または−Np−である。
【0025】
また、nは平均値で1〜20の数を表すが、好ましくは1〜10である。nが20を超えると粘度が上昇し、微細パターンへの充填性が低下するという点で好ましくない。なお、分子量分布を有するときは、数平均値である。
【0026】
さらに、上記式(1)で表されるポリ(ビニルベンジル)エーテル化合物は、ガスクロマトグラフィー(GC)測定においてビニル芳香族ハロメチル化合物に基くピーク面積(a)が、ポリ(ビニルベンジル)エーテル化合物のピーク面積(b)と合計したピーク面積(a+b)に対して、1.0%以下であることが好ましい。好ましくは、0.5%以下であり、より好ましくは0.2%以下である。このピーク面積が1.0%を越えると、250℃以上の熱履歴を長時間受けた後での誘電特性が低下する傾向にある。ここで、ポリ(ビニルベンジル)エーテル化合物のピーク面積とは、上記式(1)を満足する純粋なポリ(ビニルベンジル)エーテル化合物に基くピーク面積を意味する。(A)成分として使用されるポリ(ビニルベンジル)エーテル化合物は反応生成物又はこれを精製したものであり、純粋なポリ(ビニルベンジル)エーテル化合物の他に、上記式(1)を満足しない不純物としての他の成分を少量含む。
【0027】
(A)成分として使用されるポリ(ビニルベンジル)エーテル化合物は、全ハロゲン含有量が600ppm以下であることが好ましい。より好ましくは、450ppm以下であり、更に好ましくは200ppm以下である。全ハロゲン含有量が600ppmを超えると、250℃以上の熱履歴を長時間受けた後での誘電特性が低下する傾向にある。このハロゲンは、主に原料である芳香族ハロメチル化合物に基くので、上記ポリ(ビニルベンジル)エーテル化合物のピーク面積と関連する。
また、ハロゲン含有量が600ppm以下になると、反りや転写不良といった、成形不良現象を回避できるという望外の効果も得られることからも好ましい。しかしながら、必要以上に全ハロゲン含有量やビニル芳香族ハロメチル化合物の含有量を低下させることは、精製歩留まりを大幅に低下させることになる。実験によれば、全ハロゲン含有量は2ppm以上であれば、上記のような工業的な実施に関わる問題が生じないことが判明したので、それを超える精製は精製歩留まりの面からは有利とは言えない。
【0028】
上記(A)成分として使用されるポリ(ビニルベンジル)エーテル化合物は、上記のとおり、ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させて得られる。このナフトールアラルキル樹脂は下記式(2)で表される。
【化2】
【0029】
式(1)及び(2)において、同一の記号は同じ意味を有する。したがって、式(2)中のR
1、Ar
1、n、m及びrは、式(1)のそれらと同意である。
【0030】
上記式(2)で表されるナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物との反応は、特に制限されるものではないが、例えば、極性溶媒等の液相でアルカリ金属水酸化物を脱ハロゲン化水素剤として用いて反応させることにより行われる。この反応ではナフトールアラルキル樹脂のフェノール性水酸基と、ビニル芳香族ハロメチル化合物のCH
2X基が縮合反応して、脱HClとO−CH
2結合の生成が起こり、ポリ(ビニルベンジル)エーテル化合物が生成する。
【0031】
また、靱性、成形性及び誘電特性を向上させる目的で、上記式(2)で表されるナフトールアラルキル樹脂のフェノール性水酸基の一部を、例えば、特許4465257公報に記載の方法に従って、酸性触媒の存在下に炭素数1〜12のアルコール類と反応させることにより、前記式(1)のR
2における炭素数1〜12のアルキル基を導入することもできる。アルキル基を導入する場合、前記式(1)のR
2におけるアルキル基の割合が1〜30モル%であるようにすることがよい。
【0032】
アルキル基を導入する反応は、ビニル芳香族ハロメチル化合物との反応の前でもあっても、後であってもよいが、ビニル基の重合を回避するためには、前が好ましい。前の場合は、フェノール性水酸基の水素原子の一部がアルキル基に置換されたナフトールアラルキル樹脂(以下、「一部変性されたナフトールアラルキル樹脂」という。)を先に合成し、その後ビニル芳香族ハロメチル化合物と反応させて、一部がアルキル化されたポリ(ビニルベンジル)エーテル化合物(以下、「一部変性されたポリ(ビニルベンジル)エーテル化合物」という。)を得る方法である。後の場合は、ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させて、ポリ(ビニルベンジル)エーテル化合物を得て、その後、残存するフェノール性水酸基の水素原子の一部をアルキル化して、一部変性されたポリ(ビニルベンジル)エーテル化合物を得る方法である。ここで、一部変性されたポリ(ビニルベンジル)エーテル化合物は当然、本明細書でいうポリ(ビニルベンジル)エーテル化合物に包含される。また、一部変性されたナフトールアラルキル樹脂は、本明細書でいうナフトールアラルキル樹脂に包含される。
【0033】
また、ナフトールアラルキル樹脂の原料の一部又は全部として、ヒドロキシナフタレン類として、フェノール性水酸基の水素原子の一部又は全部をアルキル基としたものを使用することもでき、これらとフェノール性水酸基の水素原子がアルキル化されていないヒドロキシナフタレン類と併用することもできる。
【0034】
また、ナフトールアラルキル樹脂は、フェノール性水酸基の水素原子の全部がアルキル化されたものと、フェノール性水酸基の水素原子の全部が残っているものとの混合物であってもよく、これも一部変性されたナフトールアラルキル樹脂に包含される。
【0035】
上記式(2)で表されるナフトールアラルキル樹脂としては、上記の反応で得られる他、市販のものを利用することもでき、例えば、新日鉄住金化学株式会社製SN170、SN180、SN190、SN475、SN485、SN495等が好適に使用できる。より好ましくは、溶解性、靱性及び難燃性という点で、SN475、SN485、SN495、SN485V、SN495Vである。誘電特性、靱性と成形性の観点から、特に好ましいのは、SN485V、SN495Vである。
また、上記式(2)で表されるナフトールアラルキル樹脂は、公知の方法によって製造することも可能である。該方法は、例えば特開2001−213946号公報、特開平11−255868号公報、特開平11−228673号公報、特開平08―073570号公報、特開平08−048755号公報、特開平10−310634や特開平11−116647号公報等に記載されている。上記式(2)で表されるナフトールアラルキル樹脂は、単独で使用してもよいし二種類以上を併用してもよい。
【0036】
上記ビニル芳香族ハロメチル化合物は、CH
2=CH―Ar
2−CH
2Xで表わされる。ここで、Ar
2はフェニレン基又は置換フェニレン基である。置換フェニレン基の場合の置換基としては、例えば、アルキル基、アルコキシ基、フェニル基が挙げられる。好ましくは炭素数が1〜6のアルキル基が挙げられる。また、Ar
2として、溶解性及び難燃性の観点から、より好ましくは、無置換、アルキル基置換、アルコキシ基置換もしくはフェニル基置換のフェニレン基である。更に好ましくは、工業的に製造が容易である、無置換及びアルキル基置換のフェニレン基である。このビニル芳香族ハロメチル化合物は、R
2のビニルベンジル基を与えるから、ビニルベンジル基はそのベンゼン環に置換基を有する置換ビニルベンジル基であってもよいと理解される。
【0037】
好ましいビニル芳香族ハロメチル化合物としては、p−ビニルベンジルクロライド、m−ビニルベンジルクロライド、p−ビニルベンジルクロライドとm−ビニルベンジルクロライドとの混合体、p−ビニルベンジルブロマイド、m−ビニルベンジルブロマイド、p−ビニルベンジルブロマイドとm−ビニルベンジルブロマイドとの混合体を挙げることができる。中でも、p−ビニルベンジルクロライドとm−ビニルベンジルクロライドとの混合体を使用すると、溶解性に優れたポリ(ビニルベンジル)エーテル化合物が得られ、他の材料との相溶性及び作業性が良好となるため好ましい。p−ビニルベンジルハライドとm−ビニルベンジルハライドの混合体を使用する場合、組成比に特に制限はないが、p−体/m−体=90/10〜10/90(モル/モル)であることが好ましく、70/30〜30/70(モル/モル)であることがより好ましく、60/40〜40/60(モル/モル)であることが更に好ましい。
【0038】
次に、本発明の(B)成分として使用される1分子中に2以上のエポキシ基を有するエポキシ樹脂について説明する。このエポキシ樹脂としては、1分子中に2以上のエポキシ基と芳香族構造を有するエポキシ樹脂(B1)、1分子中に2以上のエポキシ基とシアヌレート構造を有するエポキシ樹脂(B2)又は1分子中に2以上のエポキシ基と脂環構造を有するエポキシ樹脂(B3)の1種以上が使用される。エポキシ樹脂(B1)は、芳香族系エポキシ樹脂と、エポキシ樹脂(B2)はシアヌレート系エポキシ樹脂と、エポキシ樹脂(B3)は脂環式エポキシ樹脂ともいう。脂環式エポキシ樹脂は炭素数3〜8の脂環構造を有することがよい。
【0039】
(B)成分として使用される1分子中に2以上のエポキシ基を有するエポキシ樹脂の好ましい例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、キシリレン変性フェノールノボラック型エポキシ樹脂、キシリレン変性アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール類とフェノール性ヒドロキシル基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ナフタレン型エポキシ樹脂、トリグリシジルイソシアヌレート、シクロヘキサン型エポキシ樹脂、アダマンタン型エポキシ樹脂等を挙げることができる。これらのエポキシ樹脂は各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。
【0040】
ビスフェノールF型エポキシ樹脂としては、例えば、例えば、4,4’‐メチレンビス(2,6‐ジメチルフェノール)のジグリシジルエーテルを主成分とするエポキシ樹脂、4,4’‐メチレンビス(2,3,6‐トリメチルフェノール)のジグリシジルエーテルを主成分とするエポキシ樹脂、4,4’‐メチレンビスフェノールのジグリシジルエーテルを主成分とするエポキシ樹脂が挙げられる。なかでも4,4’‐メチレンビス(2,6‐ジメチルフェノール)のジグリシジルエーテルを主成分とするエポキシ樹脂が好ましい。前記ビスフェノールF型エポキシ樹脂としては市販品として新日鉄住金化学株式会社製商品名YSLV‐80XYとして入手可能である。
【0041】
ビフェニル型エポキシ樹脂としては、4,4’−ジグリシジルビフェニル、及び4,4’−ジグリシジル−3,3’,5,5’−テトラメチルビフェニル等のエポキシ樹脂が挙げられる。前記ビフェニル型エポキシ樹脂としては市販品として三菱化学株式会社製商品名YX−4000、YL−6121Hとして入手可能である。
【0042】
ジシクロペンタジエン型エポキシ樹脂としては、ジシクロペンタジエンジオキシド、及びジシクロペンタジエン骨格を有するフェノールノボラックエポキシモノマー等が挙げられる。
【0043】
ナフタレン型エポキシ樹脂としては、1,2−ジグリシジルナフタレン、1,5−ジグリシジルナフタレン、1,6−ジグリシジルナフタレン、1,7−ジグリシジルナフタレン、2,7−ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6−テトラグリシジルナフタレン、ナフトール・アラルキル型エポキシ樹脂、ナフタレン骨格変性クレゾールノボラック型エポキシ樹脂、メトキシナフタレン変性クレゾールノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、メトキシナフタレンジメチレン型エポキシ樹脂等の変性ナフタレン型エポキシ樹脂等が挙げられる。
【0044】
また、アダマンタン型エポキシ樹脂としては、1−(2,4−ジグリシジルオキシフェニル)アダマンタン、1−(2,3,4−トリグリシジルオキシフェニル)アダマンタン、1,3−ビス(2,4−ジグリシジルオキシフェニル)アダマンタン、1,3−ビス(2,3,4−トリグリシジルオキシフェニル)アダマンタン、2,2−ビス(2,4−ジグリシジルオキシフェニル)アダマンタン、1−(2,3,4−トリヒドロキシフェニル)アダマンタン、1,3−ビス(2,4−ジヒドロキシフェニル)アダマンタン、1,3−ビス(2,3,4−トリヒドロキシフェニル)アダマンタン、及び、2,2−ビス(2,4−ジヒドロキシフェニル)アダマンタンなどを挙げることができる。
【0045】
上記のエポキシ樹脂の内、(A)成分との相溶性、誘電特性、及び、成形品の反りの小ささの観点から、ビスフェノールF型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、キシリレン変性フェノールノボラック型エポキシ樹脂、キシリレン変性アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリグリシジルイソシアヌレート、シクロヘキサン型エポキシ樹脂、アダマンテン型エポキシ樹脂が好適に使用される。
【0046】
(B)成分として使用するエポキシ樹脂の重量平均分子量(Mw)は1万未満であることが好ましい。より好ましいMwは、600以下であり、さらに好ましくは200以上550以下である。Mwが200未満の場合、(B)成分の揮発性が高くなり、キャストフィルム・シートの取扱い性が悪くなる傾向にある。一方で、Mwが1万を超えると、キャストフィルム・シートが固くかつ脆くなりやすく、キャストフィルム・シートの硬化物の接着性が低下する傾向にある。
【0047】
(B)成分の含有量は、(A)成分100重量部に対して、下限が5重量部であり、かつ上限が100重量部であることが好ましい。より好ましくは、(A)成分100重量部に対して、(B)成分の含有量のより好ましい下限は10重量部である。一方、より好ましい上限は80重量部、更に好ましい上限は60重量部である。(B)成分の含有量が上記好ましい下限を満たすと、キャストフィルム・シートの硬化物の接着性をより一層高めることができる。(B)成分の含有量が上記好ましい上限を満たすと、未硬化状態でのキャストフィルム・シートのハンドリング性がより一層高くなる。
【0048】
次に、(C)成分として使用される硬化剤について説明する。(C)成分の硬化剤は、(B)成分であるエポキシ樹脂を硬化させるものであれば特に限定されない。(C)成分の硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0049】
(C)成分の硬化剤は、フェノール樹脂、又は芳香族骨格もしくは脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物であることが好ましい。これらの好ましい硬化剤の使用により、耐熱性、耐湿性及び電気物性のバランスに優れた硬化物となる硬化性樹脂組成物を得ることができる。
【0050】
(C)成分の硬化剤として使用されるフェノール樹脂は特に限定されない。上記フェノール樹脂の具体例としては、フェノールノボラック、o−クレゾールノボラック、p−クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル型フェノールノボラック樹脂、ビフェニル型ナフトールノボラック樹脂、デカリン変性ノボラック、ポリ(ジ−o−ヒドロキシフェニル)メタン、ポリ(ジ−m−ヒドロキシフェニル)メタン、及びポリ(ジ−p−ヒドロキシフェニル)メタン等が挙げられる。なかでも、絶縁シートの柔軟性及び難燃性をより一層高めることができるので、メラミン骨格を有するフェノール樹脂、トリアジン骨格を有するフェノール樹脂、又はアリル基を有するフェノール樹脂が好ましい。
【0051】
上記フェノール樹脂の市販品としては、MEH−8005、MEH−8010及びNEH−8015(以上いずれも明和化成社製)、YLH903(ジャパンエポキシレジン社製)、LA―7052、LA−7054、LA−7751、LA−1356及びLA−3018−50P(以上いずれもDIC社製)、並びにPS6313及びPS6492(群栄化学社製)等が挙げられる。
【0052】
(C)成分の硬化剤として使用される芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物についても、特に構造は限定されない。芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、例えば、スチレン/無水マレイン酸コポリマー、ベンゾフェノンテトラカルボン酸無水物、ピロメリット酸無水物、トリメリット酸無水物、4,4’−オキシジフタル酸無水物、フェニルエチニルフタル酸無水物、グリセロールビス(アンヒドロトリメリテート)モノアセテート、エチレングリコールビス(アンヒドロトリメリテート)、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、及びトリアルキルテトラヒドロ無水フタル酸、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、又は、ジシクロペンタジエン骨格を有する酸無水物もしくは該酸無水物の変性物等が挙げられる。
【0053】
上記芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、SMAレジンEF30、SMAレジンEF40、SMAレジンEF60及びSMAレジンEF80(以上いずれもサートマー・ジャパン社製)、ODPA−M及びPEPA(以上いずれもマナック社製)、リカジットMTA−10、リカジットMTA−15、リカジットTMTA、リカジットTMEG−100、リカジットTMEG−200、リカジットTMEG−300、リカジットTMEG−500、リカジットTMEG−S、リカジットTH、リカジットHT−1A、リカジットHH、リカジットMH−700、リカジットMT−500、リカジットDSDA及びリカジットTDA−100(以上いずれも新日本理化社製)、並びにEPICLON B4400、EPICLON B650、及びEPICLON B570(以上いずれもDIC社製)等が挙げられる。
【0054】
上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物は、多脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物、又はテルペン系化合物と無水マレイン酸との付加反応により得られる脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物であることが好ましい。この場合には、絶縁シートの柔軟性、耐湿性又は接着性をより一層高めることができる。また、上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、メチルナジック酸無水物、ジシクロペンタジエン骨格を有する酸無水物又は該酸無水物の変性物等も挙げられる。
【0055】
上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、リカジットHNA及びリカジットHNA−100(以上いずれも新日本理化社製)、並びにエピキュアYH306、エピキュアYH307、エピキュアYH308H及びエピキュアYH309(以上いずれもジャパンエポキシレジン社製)等が挙げられる。
【0056】
本発明の(C)成分として使用される硬化剤としては、本発明の(A)との相溶性と耐湿性、接着性の観点から、o−クレゾールノボラック、p−クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、キシリレン変性ノボラック、ポリ(ジ−o−ヒドロキシフェニル)メタン、ポリ(ジ−m−ヒドロキシフェニル)メタン、ポリ(ジ−p−ヒドロキシフェニル)メタン、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、又は、ジシクロペンタジエン骨格を有する酸無水物もしくは該酸無水物の変性物であることがより好ましい。
【0057】
本発明の硬化性樹脂組成物には(D)成分として、Mwが1万以上である高分子量樹脂を添加することができる。(D)成分の高分子量樹脂はMwが1万以上であれば、特に限定されず、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0058】
(D)成分の具体例を挙げると、ポリフェニレンサルファイド樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリベンゾオキサゾール樹脂、フェノキシ樹脂、スチレン系樹脂、(メタ)アクリル系樹脂、ポリシクロペンタジエン樹脂、ポリシクロオレフィン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、あるいは、既知の熱可塑性エラストマー、例えば、スチレン−エチレン−プロピレン共重合体、スチレン−エチレン−ブチレン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、水添スチレン−ブタジエン共重合体、水添スチレン−イソプレン共重合体等やあるいはゴム類、例えばポリブタジェン、ポリイソプレン等の高分子量樹脂を使用できる。
【0059】
これらの高分子量樹脂の内で、好適に使用されるのは、本発明の(A)成分との相溶性、密着信頼性の観点から、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリシクロオレフィン樹脂、水添スチレン−ブタジエン共重合体、水添スチレン−イソプレン共重合体などの高分子量樹脂である。
【0060】
(D)成分のガラス転移温度Tgの好ましい下限は−40℃、より好ましい下限は50℃、最も好ましい下限は90℃である。好ましい上限は250℃、より好ましい上限は200℃である。Tgが上記好ましい下限を満たすと、樹脂が熱劣化し難くなり、Tgが上記好ましい上限を満たすと、(D)成分と他の樹脂との相溶性が高くなる。この結果、未硬化状態でのキャストフィルム・シートのハンドリング性、並びにキャストフィルム・シートの硬化物の耐熱性をより一層高めることができる。
【0061】
(D)成分の高分子量樹脂のMwの好ましい下限は2万、より好ましい下限は3万、好ましい上限は100万、より好ましい上限は25万である。Mwが上記好ましい下限を満たすと、絶縁シートが熱劣化し難くなり、上記好ましい上限を満たすと、(D)成分と他の樹脂との相溶性が高くなる。この結果、未硬化状態でのキャストフィルム・シートのハンドリング性、並びにキャストフィルム・シートの硬化物の耐熱性をより一層高めることができる。
【0062】
本発明の樹脂組成物において、(A)〜(D)成分を含む場合、全樹脂成分(以下、全樹脂成分Xと略記することがある)の合計100重量%中に占める(D)成分の含有量は10〜60重量%の範囲内であることが好ましい。全樹脂成分Xの合計100重量%中の(D)成分の含有量のより好ましい下限は20重量%、より好ましい上限は50重量%である。(D)成分の含有量が上記好ましい下限を満たすと、未硬化状態でのキャストフィルム・シートのハンドリング性をより一層高めることができる。(D)成分の含有量が上記好ましい上限を満たすと、(F)成分である無機充填材の分散が容易になる。なお、全樹脂成分Xとは、(A)、(B)、(C)、(D)成分、及び必要に応じて添加される他の樹脂成分の総和をいう。硬化剤等の硬化後に樹脂成分となる成分は、樹脂成分として計算するが、(F)成分の無機充填材や(G)成分の難燃剤は含まれない。
【0063】
本発明の硬化性樹脂組成物は、上記成分の他に、所望により(E)成分としてラジカル重合開始剤(ラジカル重合触媒ともいう。)を含有させることができる。ラジカル重合開始剤としては、例えば、本発明の樹脂組成物は後述するように加熱等の手段により架橋反応を起こして硬化するが、その際の反応温度を低くしたり、不飽和基の架橋反応を促進する目的でラジカル重合開始剤を含有させたりして使用してもよい。ラジカル重合開始剤はラジカル重合触媒であるので、以下ラジカル重合開始剤で代表する。
【0064】
ラジカル重合開始剤の代表的な例を挙げると、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシベンゾエート、2,2−ビス(t−ブチルパーオキシ)ブタン、2,2−ビス(t−ブチルパーオキシ)オクタン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物があるがこれらに限定されない。また過酸化物ではないが、2,3−ジメチル−2,3−ジフェニルブタンもラジカル重合開始剤(又は重合触媒)として使用できる。しかし、本樹脂組成物の硬化に用いられる触媒、ラジカル重合開始剤はこれらの例に限定されない。
【0065】
ラジカル重合開始剤の配合量は、(A)成分であるポリ(ビニルベンジル)エーテル化合物に対し、0.01〜10重量部の範囲であれば、硬化反応を阻害することなく良好に反応が進行する。
【0066】
また、本発明の硬化性樹脂組成物に、必要に応じて、(A)成分のポリ(ビニルベンジル)エーテル化合物と共重合可能な他の重合性モノマーを配合して硬化させてもよい。
【0067】
共重合可能な重合性モノマーとしては、スチレン、スチレンダイマー、アルファメチルスチレン、アルファメチルスチレンダイマー、ジビニルベンゼン、ビニルトルエン、t−ブチルスチレン、クロロスチレン、ジブロモスチレン、ビニルナフタレン、ビニルビフェニル、アセナフチレン、ジビニルベンジルエーテル、アリルフェニルエーテル等を挙げることができる。
【0068】
また、本発明の硬化性樹脂組成物には、硬化速度又は硬化物の物性などを調整するために、上記(C)成分と併用して、硬化促進剤を添加してもよい。
【0069】
上記硬化促進剤は特に限定されない。硬化促進剤の具体例としては、例えば、3級アミン、イミダゾール類、イミダゾリン類、トリアジン類、有機リン系化合物、4級ホスホニウム塩類、有機酸塩等のジアザビシクロアルケン類等が挙げられる。また、上記硬化促進剤としては、有機金属化合物類、4級アンモニウム塩類及び金属ハロゲン化物等が挙げられる。上記有機金属化合物類としては、オクチル酸亜鉛、オクチル酸錫及びアルミニウムアセチルアセトン錯体等が挙げられる。
【0070】
硬化促進剤として、高融点のイミダゾール硬化促進剤、高融点の分散型潜在性硬化促進剤、マイクロカプセル型潜在性硬化促進剤、アミン塩型潜在性硬化促進剤、及び高温解離型かつ熱カチオン重合型潜在性硬化促進剤等も使用できる。硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0071】
上記高融点の分散型潜在性促進剤としては、ジシアンジアミド、及びアミンがエポキシモノマー等に付加されたアミン付加型促進剤等が挙げられる。上記マイクロカプセル型潜在性促進剤としては、イミダゾール系、リン系又はホスフィン系の促進剤の表面がポリマーにより被覆されたマイクロカプセル型潜在性促進剤が挙げられる。上記高温解離型かつ熱カチオン重合型潜在性硬化促進剤としては、ルイス酸塩又はブレンステッド酸塩等が挙げられる。
【0072】
硬化促進剤は、有機リン系化合物、及び、高融点のイミダゾール系硬化促進剤であることが好ましい。有機リン系化合物、及び、高融点のイミダゾール系硬化促進剤の使用により、反応系を容易に制御でき、かつキャストフィルム・シートの硬化速度、及びキャストフィルム・シートの硬化物の物性などをより一層容易に調整できる。融点100℃以上の高融点の硬化促進剤は、取扱性に優れている。従って、硬化促進剤の融点は100℃以上であることが好ましい。
【0073】
上記全樹脂成分Xの合計100重量%中、(C)成分の含有量は、好ましい下限が1重量%であり、かつ、好ましい上限が40重量%である。より好ましい下限は5重量%、より好ましい上限は25重量%である。(C)成分の含有量が上記好ましい下限を満たすと、キャストフィルム・シートを充分に硬化させることが容易となり、上記好ましい上限を満たすと、硬化に関与しない余剰な硬化剤が発生し難くなり、硬化物の架橋を充分に進行させることができる。このため、キャストフィルム・シートの硬化物の耐熱性及び接着性をより一層高めることができる。
【0074】
本発明の硬化性樹脂組成物では、当該硬化性樹脂組成物から得られる絶縁層の熱膨張率をさらに低下させるために、(F)成分として無機充填材を添加してもよい。(F)成分としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレニ、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、テタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、これらの中でも無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ等のシリカが特に好適である。シリカとしては球状のものが好ましい。
【0075】
(F)成分の無機充填材は2種以上を組み合わせて使用してもよい。無機充填材の平均粒径は、特に限定されるものではないが、絶縁層への微細配線形成の観点から好ましくは5μm以下、より好ましくは1μm以下、さらに好ましくは0.7μm以下である。なお、(F)成分の平均粒径が小さくなりすぎると、本発明の硬化性樹脂組成物を樹脂ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下する傾向にあるため、平均粒径は0.05μm以上であるのが好ましい。上記(F)成分の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、(F)成分の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、(F)成分を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製 LA-500等を使用することができる。
【0076】
(F)成分の無機充填材は、エポキシシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤等の表面処理剤で表面処理してその耐湿性を向上させたものが好ましい。(F)成分の添加量は、当該硬化性樹脂組成物の不揮発分100質量部に対し、20〜400質量部の範囲が好ましく、30〜350質量部の範囲がより好ましく、40〜300質量部の範囲が更に好ましい。(F)成分の含有量が400質量部を超えると、硬化物が脆くなる傾向や、ピール強度が低下する傾向にある。一方、(F)成分の含有量が20質量部未満である場合は、熱膨張率が十分に低下しない。
【0077】
本発明の硬化性樹脂組成物では、本発明の効果を損なわない範囲で(G)成分として難燃剤を含有させても良い。(G)成分の難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、三光(株)製のHCA、HCA−HQ、HCA−NQ等のフェナントレン型リン化合物、昭和高分子(株)製のHFB−2006M等のリン含有ベンゾオキサジン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のPPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX305等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂、ジャパンエポキシレジン(株)製のYL7613等のリン含有エポキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルアミド化合物、大塚化学(株)製のSPB100、SPEl00、(株)伏見製作所製FP-series等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)製のB-30、B-325、B-315、B-308、B-303、UFH-20等の水酸化アルミニウム等が挙げられる。
【0078】
本発明の硬化性樹脂組成物は、回路基板材料用ワニスとして使用することができる。本発明の回路基板材料用ワニスは、本発明の硬化性樹脂組成物をトルエン、キシレン、テトラヒドロフラン、ジオキソラン等の溶剤に溶解させることにより製造することができる。なお、本発明の回路基板材料は、本発明の硬化物、複合材料硬化物または積層体をもちいて製造される。具体的には、プリント配線基板、プリント回路板、フレキシブルプリント配線板、ビルドアップ配線板等が挙げられる。
【0079】
本発明の硬化性樹脂組成物を硬化させて得られる硬化物は成型物、積層物、注型物、接着剤、塗膜、フィルムとして使用できる。例えば、半導体封止材料の硬化物は注型物又は成型物であり、かかる用途の硬化物を得る方法としては、硬化性樹脂組成物を注型、或いはトランスファ−成形機、射出成形機などを用いて成形し、さらに80〜230℃で0.5〜10時間に加熱することにより硬化物を得ることができる。また、回路基板用ワニスの硬化物は積層物であることが有利であり、この硬化物を得る方法としては、回路基板用ワニスをガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥してプリプレグを得て、それを単独同士で、あるいは銅箔等の金属箔と積層し熱プレス成形して得ることができる。
【0080】
また、チタン酸バリウム等の無機の高誘電体粉末、あるいはフェライト等の無機磁性体を配合することにより電子部品用材料、特に高周波電子部品材料として有用である。
【0081】
また、本発明の硬化性樹脂組成物は、後述する硬化複合材料と同様、金属箔(金属板を含む意味である。以下、同じ。)と張り合わせて用いることができる。
【0082】
次に、本発明の硬化性樹脂組成物の硬化性複合材料とその硬化体について説明する。本発明の硬化性樹脂組成物による硬化性複合材料には、機械的強度を高め、寸法安定性を増大させるために基材を加える。
【0083】
このような基材としては、ロービングクロス、クロス、チョップドマット、サーフェシングマットなどの各種ガラス布、アスベスト布、金属繊維布及びその他合成若しくは天然の無機繊維布、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリベンゾザール繊維等の液晶繊維から得られる織布又は不織布、ポリビニルアルコール繊維、ポリエステル繊維、アクリル繊維などの合成繊維から得られる織布又は不織布、綿布、麻布、フェルトなどの天然繊維布、カーボン繊維布、クラフト紙、コットン紙、紙−ガラス混繊紙などの天然セルロース系布などの布類、紙類等がそれぞれ単独で、あるいは2種以上併せて用いられる。
【0084】
基材の占める割合は、硬化性複合材料中に5〜90wt%、好ましくは10〜80wt%、更に好ましくは20〜70wt%であることがよい。基材が5wt%より少なくなると複合材料の硬化後の寸法安定性や強度が低下する傾向にある。また基材が90wt%より多くなると複合材料の誘電特性が低下する傾向にある。
本発明の硬化性複合材料には、必要に応じて樹脂と基材の界面における接着性を改善する目的でカップリング剤を用いることができる。カップリング剤としては、シランカップリング剤、チタネートカップリング剤、アルミニウム系カップリング剤、ジルコアルミネートカップリング剤等一般のものが使用できる。
【0085】
本発明の硬化性複合材料を製造する方法としては、例えば、本発明の硬化性樹脂組成物と必要に応じて他の成分を前述の芳香族系、ケトン系等の溶媒若しくはその混合溶媒中に均一に溶解又は分散させ、基材に含浸させた後、乾燥する方法が挙げられる。含浸は浸漬(ディッピング)、塗布等によって行われる。含浸は必要に応じて複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を用いて含浸を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。
【0086】
本発明の硬化性複合材料を、加熱等の方法により硬化することによって複合材料硬化物が得られる。その製造方法は特に限定されるものではなく、例えば硬化性複合材料を複数枚重ね合わせ、加熱加圧下に各層間を接着せしめると同時に熱硬化を行い、所望の厚みの複合材料硬化物を得ることができる。また、一度接着硬化させた硬化複合材料と硬化性複合材料を組み合わせて新たな層構成の複合材料硬化物を得ることも可能である。積層成形と硬化は、通常熱プレス等を用い同時に行われるが、両者をそれぞれ単独で行ってもよい。すなわち、あらかじめ積層成形して得た未硬化あるいは半硬化の複合材料を、熱処理又は別の方法で処理することによって硬化させることができる。
【0087】
成形及び硬化は、温度:80〜300℃、圧力:0.1〜1000kg/cm
2、時間:1分〜10時間の範囲、より好ましくは、温度:150〜250℃、圧力1〜500kg/cm
2、時間:1分〜5時間の範囲で行うことができる。
【0088】
本発明の積層体とは、本発明の複合材料硬化物の層と金属箔の層より構成されるものである。ここで用いられる金属箔としては、例えば銅箔、アルミニウム箔等が挙げられる。その厚みは特に限定されないが、3〜200μm、より好ましくは3〜105μmの範囲である。
【0089】
本発明の積層体を製造する方法としては、例えば上で説明した本発明の硬化性樹脂組成物と基材から得た硬化性複合材料と、金属箔を目的に応じた層構成で積層し、加熱加圧下に各層間を接着せしめると同時に熱硬化させる方法を挙げることができる。本発明の硬化性樹脂組成物の積層体においては、複合材料硬化物と金属箔が任意の層構成で積層される。金属箔は表層としても中間層としても用いることができる。上記の他、積層と硬化を複数回繰り返して多層化することも可能である。
【0090】
金属箔との接着には接着剤を用いることもできる。接着剤としては、エポキシ系、アクリル系、フェノール系、シアノアクリレート系等が挙げられるが、特にこれらに限定されない。上記の積層成形と硬化は、本発明の硬化複合材料硬化物の製造と同様の条件で行うことができる。
【0091】
また、本発明の硬化性樹脂組成物をフィルム状に成形することもできる。その厚みは特に限定されないが、3〜200μm、より好ましくは5〜105μmの範囲である。
フィルムを製造する方法としては特に限定されることはなく、例えば硬化性樹脂組成物と必要に応じて他の成分を芳香族系、ケトン系等の溶媒若しくはその混合溶媒中に均一に溶解又は分散させ、PETフィルムなどの樹脂フィルムに塗布した後乾燥する方法などが挙げられる。塗布は必要に応じて複数回繰り返すことも可能であり、またこの際組成や濃度の異なる複数の溶液を用いて塗布を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。
【0092】
本発明の樹脂付き金属箔とは本発明の硬化性樹脂組成物と金属箔より構成されるものである。ここで用いられる金属箔としては、例えば銅箔、アルミニウム箔等が挙げられる。その厚みは特に限定されないが、3〜200μm、より好ましくは5〜105μmの範囲である。
【0093】
本発明の樹脂付き金属箔を製造する方法としては特に限定されることはなく、例えば硬化性樹脂組成物と必要に応じて他の成分を芳香族系、ケトン系等の溶媒若しくはその混合溶媒中に均一に溶解又は分散させ、金属箔に塗布した後乾燥する方法が挙げられる。塗布は必要に応じて複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を用いて塗布を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。
【実施例】
【0094】
以下、実施例により本発明を説明するが、本発明はこれらにより制限されるものではない。なお、各例中の部はいずれも重量部である。また、実施例中の測定結果は以下に示す方法により試料調製及び測定を行ったものである。
【0095】
1)ポリ(ビニルベンジル)エーテル化合物の分子量及び分子量分布
分子量及び分子量分布測定はGPC(東ソー製、HLC−8120GPC)を使用し、溶媒:テトラヒドロフラン(THF)、流量:1.0ml/min、カラム温度:40℃で行った。分子量は単分散ポリスチレンによる検量線を用い、ポリスチレン換算分子量として測定を行った。
【0096】
2)ポリ(ビニルベンジル)エーテル化合物の構造
日本電子製JNM−LA600型核磁気共鳴分光装置を用い、
13C−NMR及び
1H−NMR分析により決定した。溶媒としてクロロホルム−d
1を使用した。NMR測定溶媒であるテトラクロロエタン−d
2の共鳴線を内部標準として使用した。
【0097】
3)線膨張係数、ガラス転移温度(Tg)及び軟化温度測定
硬化性樹脂組成物溶液をガラス基板に乾燥後の厚さが、20μmになるように均一に塗布した後、ホットプレートを用いて、90℃で30分間加熱し、乾燥させた。得られたガラス基板上の樹脂膜はガラス基板と共に、TMA(熱機械分析装置)測定装置にセットし、窒素気流下、昇温速度10℃/分で220℃まで昇温し、更に、220℃で20分間加熱処理することにより、残存する溶媒を除去した。ガラス基板を室温まで放冷した後、TMA測定装置中の試料に分析用プローブを接触させ、窒素気流下、昇温速度10℃/分で30℃から360℃までスキャンさせることにより測定を行い、接線法により軟化温度を求めた。また、線膨張係数の変化する変曲点よりTgを求めた。さらに、平均線膨張係数(CTE)は、0〜40℃における試験片の寸法変化より算出した。
加熱プレス成形により得られた硬化物フィルムのTgの測定は動的粘弾性測定装置を使用し、昇温速度2℃/minで測定を行い、損失弾性率のピークより決定した。
【0098】
4)引張り強度及び伸び率
硬化物フィルムの引張り強度及び伸び率は引張り試験装置を用いて測定を行った。伸び率は引張り試験のチャートから測定した。
5)誘電率及び誘電正接
JIS C2565規格に準拠し、株式会社エーイーティー製、空洞共振器法誘電率測定装置により、絶乾後23℃、湿度50%の室内に24時間保管した後の硬化物フィルムの2GHzでの誘電率及び誘電正接を測定した。
また、硬化物フィルムを200℃で60分間放置した後、誘電率及び誘電正接の測定を行い、耐熱性試験後の誘電率及び誘電正接を測定した。
6)銅箔引き剥し強さ
銅箔の上に硬化性樹脂組成物ワニスを塗工し、80℃で溶媒除去し、乾燥後、樹脂付き銅箔を得た。そして、銅張積層板より銅箔をエッチングによって除去した積層板と硬化性樹脂組成物ワニスを塗工した樹脂付き銅箔とを加圧真空プレス成形機を使用して積層し、積層体硬化物を作成した。積層体硬化物から幅20mm、長さ100mmの試験片を切り出し、銅箔面に幅10mmの平行な切り込みを入れた後、面に対して90°の方向に50mm/分の速さで連続的に銅箔を引き剥し、その時の応力を引張り試験機にて測定し、その応力の最低値を銅箔引き剥し強さとして記録した。(JIS C 6481に準拠)。
耐湿熱性試験後の銅箔引き剥がし強さの試験は、上記の試験片を85℃、相対湿度85%で500時間放置した後、上記と同様にして測定した。
7)成形性
黒化処理を行った銅張り積層板の上に、硬化性樹脂組成物の未硬化フィルムを積層し、真空ラミネーターを用いて、温度:110℃、プレス圧:0.1MPaで真空ラミネートを行い、黒化処理銅箔とフィルムの接着状態により評価を行った。評価は黒化処理銅箔とフィルムの接着状態が良好であったものを「○」、黒化処理銅箔とフィルムとが容易に剥離することができる接着状態のものを「×」として評価した。
【0099】
合成例1
温度調節器、攪拌装置、冷却コンデンサー及び滴下ロートを備えた4つ口フラスコにSN495V(新日鉄住金化学社製ナフトールアラルキル樹脂;フェノール性水酸基のOH当量232g/eq.、フェノール性水酸基のメトキシ変性量:2.7%、p−キシリレングリコールジメチルエーテル由来のメトキシ基含有量:N.D.)195部(1.0当量)、CMS−AM(セイミケミカル社製クロロメチルスチレン)160.1部(1.05当量)、テトラ−n−ブチルアンモニウムブロマイド9.6部、2,4−ジニトロフェノール0.152部、メチルエチルケトン255部を仕込み攪拌溶解し、液温を75℃にし、50%水酸化ナトリウム水溶液160部(2.0当量)を20分間で滴下し、更に75℃で4時間攪拌を続けた。次に10%塩酸水溶液でフラスコ内を中和した後、トルエン400部を追加し、有機層を1500mlの水で3回洗浄した。
【0100】
得られた有機相を蒸留することにより、有機相が500部になるまで濃縮し、メタノール/水=75/25(vol/vol)1,000部を加えて生成物を再沈殿した。同じ条件の再沈殿をさらに2回繰り返した。得られた樹脂の沈殿を濾過・乾燥し、SN495Vとビニルベンジルクロライドとの反応生成物であるポリ(ビニルベンジル)エーテル化合物としてのビニルベンジル化ナフトールアラルキル樹脂(VBE−SN495V)を246.7部得た。
【0101】
生成物の確認をGPC、赤外線スペクトル(IR)、1H核磁気共鳴スペクトル(
1H−NMR)で行ったところ、GPCより回収された反応生成物では、原料に由来するピークが消失し、高分子量側に新しいピークが生成していること、IRよりフェノール性水酸基が消失していること、
1H−NMRで、クロロメチルスチレンに由来するプロトンの共鳴線が消失し、代わりに、5.02ppm付近にベンジルエーテル基に由来するプロトンの共鳴線、5.25ppm、5.77ppm及び6.73ppm付近にビニル基に由来するプロトンの共鳴線を有することが確認され、VBE−SN495Vが得られていることを確認した。そして、メトキシ基含有量は2.6%、ビニルベンジルエーテル基含有量は97.4%、フェノール性水酸基は検出することはできなかった。また、元素分析により総塩素含有量を測定したところ167ppmであった。GC測定を行ったところ、クロロメチルスチレンに由来するピークは、観察されなかった。また、示差走査熱量計(DSC)により、窒素気流下、昇温速度:10℃/分で熱相転移挙動を測定したところ、結晶に由来する融解ピークは観察されなかった。また、熱天秤(TGA)を使用し、窒素気流下、昇温速度:10℃/分で、熱分解挙動を測定したところ、接線法による熱分解開始温度:405.7℃であり、600℃における炭化物生成量は、37.8wt%であった。
【0102】
合成例2
温度調節器、攪拌装置、冷却コンデンサー及び滴下ロートを備えた4つ口フラスコにSN475N(新日鉄住金化学製ナフトールアラルキル樹脂;フェノール性水酸基の水酸基当量218g/eq.、フェノール性水酸基のメトキシ変性量:N.D.、p−キシリレングリコールジメチルエーテル由来のメトキシ基含有量:N.D.)195部(1.0当量)、CMS−AM(セイミケミカル社製ビニルベンジルクロライド)160.1部(1.05当量)、テトラ−n−ブチルアンモニウムブロマイド9.6部、2,4−ジニトロフェノール0.152部、メチルエチルケトン255部を仕込み攪拌溶解し、液温を75℃にし、50%水酸化ナトリウム水溶液160部(2.0当量)を20分間で滴下し、更に75℃で4時間攪拌を続けた。次に10%塩酸水溶液でフラスコ内を中和した後、トルエン400部を追加し、有機層を1500mlの水で3回洗浄した。
【0103】
得られた有機相を蒸留することにより、有機相が500部になるまで濃縮し、メタノール/水=75/25(vol/vol)1,000部を加えて生成物を再沈殿した。同じ条件の再沈殿をさらに2回繰り返した。得られた樹脂の沈殿を濾過・乾燥し、SN475Nとビニルベンジルクロライドとの反応生成物であるビニルベンジル化ナフトールアラルキル樹脂(VBE−SN475N)223.5部を得た。
【0104】
生成物の確認を行ったところ、GPCより回収された反応生成物では、原料に由来するピークが消失し、高分子量側に新しいピークが生成していること、IRよりフェノール性水酸基が消失していること、
1H−NMRで、クロロメチルスチレンに由来するプロトンの共鳴線が消失し、代わりに、5.02ppm付近にベンジルエーテル基に由来するプロトンの共鳴線、5.25ppm、5.77ppm及び6.73ppm付近にビニル基に由来するプロトンの共鳴線を有することが確認され、VBE−SN475Nが得られていることを確認した。そして、ビニルベンジルエーテル基含有量は99.5%以上、一方、1−ナフトールのフェノール性水酸基が変性されたメトキシ基とフェノール性水酸基は検出することはできなかった。また、元素分析により総塩素含有量を測定したところ178ppmであった。GC測定を行ったところ、クロロメチルスチレンの含有量は0.02%であった。また、示差走査熱量計(DSC)により、窒素気流下、昇温速度:10℃/分で熱相転移挙動を測定したところ、結晶に由来する融解ピークは観察されなかった。また、熱天秤(TGA)を使用し、窒素気流下、昇温速度:10℃/分で、熱分解挙動を測定したところ、接線法による熱分解開始温度:412.0℃であり、600℃における炭化物生成量は、40.1wt%であった。
【0105】
合成例3
温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら、フェノール414部、及び4,4’−ビス(クロロメチル)−1,1’−ビフェニル251部、p−トルエンスルホン酸13部を仕込み、撹拌下で80℃まで昇温、溶解させた。4時間攪拌後、メチルイソブチルケトン700部を加えた後洗浄水が中性になるまで、300部の水で3回水洗し、次いで油層から未反応フェノール、メチルイソブチルケトンを1.3kPaの圧力下において減圧留去し、式(2)において、R
1が水素原子、nが1.5であるフェノールアラルキル樹脂(P)310部を得た。得られたフェノールアラルキル樹脂の軟化点は65℃、水酸基当量は202g/eqであった。
【0106】
温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら、得られたフェノールアラルキル樹脂(P)を404部、メチルエチルケトンを848部、4−ビニルベンジルクロライドを320部、テトラn−ブチルアンモニウムブロマイド12部を仕込み、攪拌して溶解せしめ、液温を70℃にした。そこに30%水酸化ナトリウム水溶液320部を30分間かけて滴下し、さらに70℃で6時間攪拌をつづけた。次に35%塩酸でフラスコ内容物を中和した後、分液し、有機層を400部の水で3回洗浄し、未反応原料やメチルエチルケトンなどを減圧留去し、ビフェニル構造を含有するフェノールアラルキル樹脂がビニルベンジルエーテル化された、nが1.5であるポリ(ビニルベンジル)エーテル化合物(VB1)512部を得た。得られたポリ(ビニルベンジル)エーテル化合物の軟化点は54℃であり、赤外線吸収スペクトル測定の結果、原料のフェノール性水酸基起因の吸収は消失していた。また、元素分析により総塩素含有量を測定したところ980ppmであった。GC測定を行ったところ、クロロメチルスチレンの含有量は0.58%であった。また、示差走査熱量計(DSC)により、窒素気流下、昇温速度:10℃/分で熱相転移挙動を測定したところ、結晶に由来する融解ピークは観察されなかった。また、熱天秤(TGA)を使用し、窒素気流下、昇温速度:10℃/分で、熱分解挙動を測定したところ、接線法による熱分解開始温度:376℃であり、600℃における炭化物生成量は、31.8wt%であった。
【0107】
略号を次に示す。
YDCN−700−3:クレゾールノボラック型エポキシ樹脂(新日鉄住金化学(株)製、エポトートYDCN−700−3)
MEH−7851−S:ビフェニル型フェノールノボラック樹脂(明和化成社製、MEH−7851−S)
ESN−475V:ナフトール型エポキシ樹脂(新日鉄住金化学社製、ESN−475V、エポキシ当量340、固形分65wt%のMEK溶液)
エピコート828US:ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン社製、エピコート828US、Mw=370)
オンコートEX1011:フルオレン骨格エポキシ樹脂(大阪ガスケミカル社製、オンコートEX1011、Mw=486)
PS−6492;メラミン骨格系フェノール樹脂(群栄化学工業社製、PS−6492)
YL7553BH30:フェノキシ樹脂(重量平均分子量37000、三菱化学(株)製、YL7553BH30、不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)
A1535:水添スチレンブタジエンブロック共重合体(クレイトンポリマージャパン(株)製、KRATON A1535、Mw=223,000)
パークミルD:ジクミルパーオキサイド(日油社製、パークミルD)
パークミルP;ジイソプロピルベンゼンハイドロパーオキシド(日油社製、パークミルP)
AO−60:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート](アデカ(株)製、アデカスタブAO−60)
SE2050 SPE;フェニルシランカップリング剤により処理されているアモルファス球状シリカ(アドマテックス社製、SE2050 SPE、平均粒子径0.5μm)
【0108】
実施例1
合成例1で得られたVBE−SN495V 80gと、エポキシ樹脂としてYDCN−7 10g、フェノール樹脂としてMEH−7851−S 10g、重合開始剤としてパークミルD 1.0g、硬化促進剤として、トリフェニルホスフィン(TPP)0.4g、酸化防止剤としてAO−60 0.2gをトルエン43.5gに溶解し硬化性樹脂組成物(ワニスA)を得た。
【0109】
調製したワニスAを金型上に滴下し、80℃で溶媒を減圧下、脱揮除去し、乾燥後、金型を組上げた後、180℃、3MPaの条件で1時間真空加圧プレスを行い、熱硬化させ、得られた厚さ:0.2mmの硬化物シートについて、2.0GHzの誘電率と誘電正接を始めとする諸特性を測定した。また、200℃の空気雰囲気下のオーブン中に1hr放置した後の誘電率と誘電正接を測定し放置前後の誘電率及び誘電正接の変化率を測定した。これら測定により得られた結果を表1に示した。
【0110】
比較例1
合成例3で得られたVB1 80gと、エポキシ樹脂としてYDCN−700−3 10g、フェノール樹脂としてMEH−7851−S 10g、重合開始剤としてパークミルD 1.0g、硬化促進剤として、TPP 0.4g、酸化防止剤としてAO−60 0.2gをトルエン43.5gに溶解し硬化性樹脂組成物(ワニスB)を得た。
【0111】
調製したワニスBを金型上に滴下し、80℃で溶媒を減圧下、脱揮除去し、乾燥後、金型を組上げた後、180℃、3MPaの条件で1時間真空加圧プレスを行い、熱硬化させ、得られた厚さ:0.2mmの硬化物シートについて、2.0GHzの誘電率と誘電正接を始めとする諸特性を測定した。また、200℃の空気雰囲気下のオーブン中に1hr放置した後の誘電率と誘電正接を測定し放置前後の誘電率及び誘電正接の変化率を測定した。これら測定により得られた結果を表1に示した。
【0112】
【表1】
【0113】
実施例2
合成例2で得られたVBE−SN475N 60g、エポキシ樹脂としてYDCN−700−3 10g、フェノール樹脂としてMEH−7851−S 10gと、熱可塑性エラストマーとして水添スチレンブタジエンブロック共重合体(クレイトンポリマージャパン(株)製、商品名:KRATON A1535、Mw=223,000)20g及び重合開始剤としてパークミルD 1.0g、硬化促進剤としてTPP 0.4g、酸化防止剤としてAO−60 0.2gをキシレン82.8gに溶解し硬化性樹脂組成物(ワニスC)を得た。
【0114】
調製したワニスCをPETフィルム上に塗布し80℃で溶媒除去し、乾燥後PETフィルム上から塗膜を剥がし取り、単離したキャストフィルムを、180℃、3MPaの条件で1時間真空加圧プレスを行い、熱硬化させ、得られた硬化物フィルムについて諸特性を測定した。また、厚み0.2mmのフィルムプレス硬化物を0.3cm×10cmに切り出して試験片を作成し、2.0GHzの誘電率と誘電正接を測定した。また、200℃の空気雰囲気下のオーブン中に1hr放置した後の誘電率と誘電正接を測定し放置前後の誘電率及び誘電正接の変化率を測定した。
【0115】
別に、銅箔の上に、ワニスCを塗工し、80℃で溶媒除去し、乾燥後、樹脂付き銅箔を得た。この樹脂付き銅箔から、銅箔引き剥し強さの測定に記載した条件で、試験片を切り出し、銅箔引き剥し強さを測定した。また、耐湿熱性試験後の銅箔引き剥がし強さを測定した。
更に、黒化処理を行った銅張り積層板の上に、上記キャストフィルムを積層し、成形性を評価した。
これら測定により得られた結果を表2に示した。
【0116】
比較例2
合成例3で得られたVB1 30gエポキシ樹脂としてYDCN−700−3 10g、フェノール樹脂としてMEH−7851−S 10gと、熱可塑性エラストマーとしてA1535 20g及び重合開始剤としてパークミルD 1.0g、硬化促進剤として、TPP 0.4g、酸化防止剤としてAO−60 0.2gをキシレン82.8gに溶解し硬化性樹脂組成物(ワニスD)を得た。
【0117】
調製したワニスDの溶液粘度はE型粘度計を使用して測定した。調製したワニスDをPETフィルム上に塗布し80℃で溶媒除去し、乾燥後PETフィルム上から塗膜を剥がし取り、単離したキャストフィルムを、180℃、3MPaの条件で1時間真空加圧プレスを行い、熱硬化させ、得られた硬化物フィルムについて、実施例2と同様にして諸特性を測定した。その結果を表2に示した。
【0118】
【表2】
【0119】
実施例3
実施例2で得られたワニスCにガラスクロス(Eガラス、目付71g/m
2)を浸漬して含浸を行い、50℃のエアーオーブン中で30分間乾燥させた。得られたプリプレグのレジンコンテンツ(R.C)は52%であった。
このプリプレグを使用して、直径0.35mmのスルーホールが5mmピッチで配置されている厚み0.8mmのコア材を張り合わせたところ、樹脂が充填されていないスルーホールは4500穴中0であった。
【0120】
成形後の厚みが約0.6mm〜1.0mmになるように、上記の硬化性複合材料を必要に応じて複数枚重ね合わせ、その両面に厚さ18μmの銅箔を置いてプレス成形機により成形硬化させて積層体を得た。各実施例の硬化条件は、3℃/分で昇温し、180℃で60分間保持することにとした。また、圧力はいずれも30kg/cm
2とした。
【0121】
このようにして得られた積層体の諸物性を以下の方法で測定した。
1)耐トリクロロエチレン性:銅箔を除去した積層体を25mm角に切り出し、トリクロロエチレン中で5分間煮沸し、外観の変化を目視により観察した(JIS C6481に準拠)。
2)ハンダ耐熱性:銅箔を除去した積層体を25mm角に切り出し、260℃のハンダ浴中に120秒間浮かべ、外観の変化を目視により観察した(JIS C6481に準拠)。
【0122】
耐トリクロロエチレン性試験では積層体の外観に変化は観察されなかった。ハンダ耐熱性試験では積層体の外観に変化は観察されなかった。
【0123】
実施例4
実施例2で得られたワニスCを18μmの電解銅箔上に塗布し、10分間風乾した後、80℃のエアーオーブン中で10分間乾燥させた。銅箔上の樹脂厚みは50μmであった。本樹脂付き銅箔と実施例5の積層体を重ね180℃で90分間、30kg/cm
2の圧力で加熱加圧硬化した。スルーホールを観察したところ、樹脂が充填されていないスルーホールは確認されなかった。
【0124】
実施例5〜10
表3に示す配合でワニスを調製したこと以外は、実施例2と同一の条件で試験を行った。試験により得られた結果を表3に示した。
表3において、配合成分の配合量は、単位の記載がない場合は、wt%である。
【0125】
【表3】