【解決手段】単体シリコンと、単体シリコン以外のケイ素含有化合物とを含む研磨対象物を研磨する用途で使用される研磨用組成物であって、砥粒と、分散媒と、を含み、前記砥粒の単位表面積あたりのシラノール基数が、0個/nm
【発明を実施するための形態】
【0011】
本発明は、単体シリコンと、単体シリコン以外のケイ素含有化合物とを含む研磨対象物を研磨する用途で使用される研磨用組成物であって、砥粒と、分散媒と、を含み、前記砥粒の単位表面積あたりのシラノール基数が、0個/nm
2を超えて2.0個/nm
2以下である、研磨用組成物である。このような構成を有する本発明の研磨用組成物は、単体シリコンをより高い研磨速度で研磨することができる。
【0012】
本発明の研磨用組成物を用いた場合、単体シリコンの研磨速度が向上する詳細な理由は不明であるが、下記のような理由であると考えられる。なお、本発明は、下記に制限されるものではない。
【0013】
すなわち、砥粒の単位表面積あたりのシラノール基数(以下、単にシラノール基数とも称する)を0個/nm
2を超えて2.0個/nm
2以下とすることにより、砥粒表面の疎水性が高くなり、同様に疎水性の表面を有する単体シリコンとの相互作用が強くなる。この結果、単体シリコンの研磨速度が向上するものと考えられる。
【0014】
従来、砥粒表面のシラノール基数を減少させた場合、砥粒同士および/または砥粒の表面の結合がより強固になり、その結果砥粒の硬度が高くなるため、研磨対象物の材料の種類の如何に関わらず、研磨速度の向上が見られていた。
【0015】
しかしながら、本発明では、砥粒の単位表面積あたりのシラノール基数を特定の範囲とすることにより、砥粒表面の疎水性が高くなり、同様に疎水性の表面を有する単体シリコンとの相互作用が強くなり単体シリコンの研磨速度が向上するという、これまで知られていなかった作用機序を見出し、上記課題が解決することを見出したものである。加えて、本発明の研磨用組成物を用いることにより、単体シリコンの研磨速度を向上させつつ、単体シリコン以外のケイ素含有化合物の研磨速度を維持または抑制することができるという効果、すなわち単体シリコン以外のケイ素含有化合物の研磨速度に対する単体シリコンの研磨速度の比(選択比)を向上させるという効果も得られうる。
【0017】
[研磨対象物]
本発明に係る研磨対象物は、単体シリコンと単体シリコン以外のケイ素含有化合物とを含む。単体シリコンの例としては、ポリシリコン(Poly Si、多結晶シリコン)、単結晶シリコン、アモルファスシリコン等が挙げられる。
【0018】
単体シリコン以外のケイ素含有化合物の例としては、例えば、酸化ケイ素(SiO
2)、窒化ケイ素(SiN)、オルトケイ酸テトラエチル(TEOS)等が挙げられる。これらケイ素含有化合物は、単独でもまたは2種以上組み合わせても用いることができる。
【0019】
次に、本発明の研磨用組成物の構成について、詳細に説明する。
【0020】
[砥粒]
研磨用組成物中に含まれる砥粒は、研磨対象物を機械的に研磨する作用を有し、研磨用組成物による研磨対象物の研磨速度を向上させる。
【0021】
本発明で使用される砥粒は、シラノール基を有するものであれば特に制限されない。その具体例としては、例えば、シリカ、アルミナ、ジルコニア、チタニア等の金属酸化物からなる粒子が挙げられる。該砥粒は、単独でもまたは2種以上混合して用いてもよい。また、該砥粒は、市販品を用いてもよいし合成品を用いてもよい。
【0022】
これら砥粒の中でも、シリカが好ましく、ヒュームドシリカ、コロイダルシリカがより好ましく、特に好ましいのはコロイダルシリカである。コロイダルシリカの製造方法としては、ケイ酸ソーダ法、ゾルゲル法が挙げられ、いずれの製造方法で製造されたコロイダルシリカであっても、本発明の砥粒として好適に用いられる。しかしながら、金属不純物低減の観点から、高純度で製造できるゾルゲル法により製造されたコロイダルシリカが好ましい。
【0023】
さらに、砥粒は、単位表面積あたりのシラノール基数が上記範囲を満たす限り、表面修飾されていてもよい。なかでも、特に好ましいのは、有機酸を固定化したコロイダルシリカである。研磨用組成物中に含まれるコロイダルシリカの表面への有機酸の固定化は、例えばコロイダルシリカの表面に有機酸の官能基が化学的に結合することにより行われている。コロイダルシリカと有機酸を単に共存させただけではコロイダルシリカへの有機酸の固定化は果たされない。有機酸の一種であるスルホン酸をコロイダルシリカに固定化するのであれば、例えば、“Sulfonic acid-functionalized silica through quantitative oxidation of thiol groups”, Chem. Commun. 246-247 (2003)に記載の方法で行うことができる。具体的には、3−メルカプトプロピルトリメトキシシラン等のチオール基を有するシランカップリング剤をコロイダルシリカにカップリングさせた後に過酸化水素でチオール基を酸化することにより、スルホン酸が表面に固定化されたコロイダルシリカを得ることができる。あるいは、カルボン酸をコロイダルシリカに固定化するのであれば、例えば、“Novel Silane Coupling Agents Containing a Photolabile 2-Nitrobenzyl Ester for Introduction of a Carboxy Group on the Surface of Silica Gel”, Chemistry Letters, 3, 228-229 (2000)に記載の方法で行うことができる。具体的には、光反応性2−ニトロベンジルエステルを含むシランカップリング剤をコロイダルシリカにカップリングさせた後に光照射することにより、カルボン酸が表面に固定化されたコロイダルシリカを得ることができる。
【0024】
本発明の研磨用組成物に含まれる砥粒において、砥粒の単位表面積あたりのシラノール基数は、0個/nm
2を超えて2.0個/nm
2以下の範囲である。砥粒表面がシラノール基を有さない場合、すなわち上記シラノール基数が単位表面積あたり0個/nm
2の場合、砥粒同士が凝集し、単体シリコンの研磨速度が低下する。一方、2.0個/nm
2を超える場合、砥粒表面の親水基の数が多くなることで研磨対象物との疎水性相互作用が低下するため、単体シリコンの研磨速度が低下する。砥粒の単位表面積あたりのシラノール基数は、0.5個/nm
2以上2.0個/nm
2以下が好ましい。
【0025】
砥粒の単位表面積あたりのシラノール基数は、G.W.シアーズによるAnalytical Chemistry, vol.28, No.12, 1956, 1982〜1983に記載された中和滴定を用いたシアーズ法により算出することができる。シラノール基数の計算式は以下の式により計算する。
【0027】
砥粒の単位表面積あたりのシラノール基数は、砥粒の製造方法の選択等により制御することができる。
【0028】
砥粒の平均二次粒子径の下限は、5nm以上であることが好ましく、7nm以上であることがより好ましく、10nm以上であることがさらに好ましい。また、砥粒の平均二次粒子径の上限は、500nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることがさらに好ましい。このような範囲であれば、研磨用組成物による単体シリコンの研磨速度が向上する。
【0029】
また、研磨用組成物を用いて研磨した後の研磨対象物の表面にディッシングが生じるのをより抑えることができる。なお、砥粒の平均二次粒子径は、例えば、動的光散乱法によって算出される。
【0030】
研磨用組成物中の砥粒の含有量(濃度)の下限は、0.002質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。また、研磨用組成物中の砥粒の含有量(濃度)の上限は、10質量%以下であることが好ましく、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。このような範囲であれば、コストを抑えながら、高い研磨速度が得られ、効率的に加工することができる。
【0031】
[水]
本発明の研磨用組成物は、各成分を分散するための分散媒を含む。分散媒としては水が好ましい。他の成分の作用を阻害することを抑制するという観点から、不純物をできる限り含有しない水が好ましく、具体的には、イオン交換樹脂にて不純物イオンを除去した後、フィルタを通して異物を除去した純水や超純水、または蒸留水が好ましい。
【0032】
[研磨用組成物のpH]
本発明の研磨用組成物のpHは、特に制限されず、幅広いpH範囲で単体シリコンの研磨速度の向上という効果を発揮する。ただし、砥粒の分散安定性の観点から、pHの下限は、pH1.0以上であることが好ましく、pH2.0以上であることがより好ましい。また、pHの上限は、pH12以下であることが好ましく、pH10.5以下であることがより好ましい。
【0033】
該pHは、pH調節剤を適量添加することにより、調整することができる。研磨用組成物のpHを所望の値に調整するために必要に応じて使用されるpH調整剤は酸およびアルカリのいずれであってもよく、また、無機化合物および有機化合物のいずれであってもよい。酸の具体例としては、例えば、硫酸、硝酸、ホウ酸、炭酸、次亜リン酸、亜リン酸およびリン酸等の無機酸;ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸および乳酸などのカルボン酸、ならびにメタンスルホン酸、エタンスルホン酸およびイセチオン酸等の有機硫酸、フィチン酸、ヒドロキシエチリデンジホスホン酸等の有機リン系の酸等の有機酸等が挙げられる。アルカリの具体例としては、水酸化カリウム等のアルカリ金属の水酸化物、アンモニア、エチレンジアミンおよびピペラジンなどのアミン、ならびにテトラメチルアンモニウムおよびテトラエチルアンモニウムなどの第4級アンモニウム塩が挙げられる。これらpH調節剤は、単独でもまたは2種以上混合しても用いることができる。
【0034】
[他の成分]
本発明の研磨用組成物は、必要に応じて、酸化剤、金属防食剤、防腐剤、防カビ剤、水溶性高分子、難溶性の有機物を溶解するための有機溶媒等の他の成分をさらに含んでもよい。以下、好ましい他の成分である、酸化剤、金属防食剤、防腐剤、および防カビ剤について説明する。
【0035】
〔酸化剤〕
研磨用組成物に添加し得る酸化剤は、研磨対象物の表面を酸化する作用を有し、研磨用組成物による研磨対象物の研磨速度を向上させる。
【0036】
使用可能な酸化剤は、過酸化水素、過酸化ナトリウム、過酸化バリウム、オゾン水、銀(II)塩、鉄(III)塩、過マンガン酸、クロム酸、重クロム酸、ペルオキソ二硫酸、ペルオキソリン酸、ペルオキソ硫酸、ペルオキソホウ酸、過ギ酸、過酢酸、過安息香酸、過フタル酸、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、塩素酸、亜塩素酸、過塩素酸、臭素酸、ヨウ素酸、過ヨウ素酸、過硫酸、ジクロロイソシアヌル酸およびそれらの塩等が挙げられる。これら酸化剤は、単独でもまたは2種以上混合して用いてもよい。
【0037】
研磨用組成物中の酸化剤の含有量は0.1g/L以上であることが好ましく、より好ましくは1g/L以上であり、さらに好ましくは3g/L以上である。酸化剤の含有量が多くになるにつれて、研磨用組成物による研磨対象物の研磨速度はより向上する。
【0038】
研磨用組成物中の酸化剤の含有量はまた、200g/L以下であることが好ましく、より好ましくは100g/L以下であり、さらに好ましくは40g/L以下である。酸化剤の含有量が少なくなるにつれて、研磨用組成物の材料コストを抑えることができるのに加え、研磨使用後の研磨用組成物の処理、すなわち廃液処理の負荷を軽減することができる。また、酸化剤による研磨対象物表面の過剰な酸化が起こる虞を少なくすることもできる。
【0039】
〔金属防食剤〕
研磨用組成物中に金属防食剤を加えることにより、研磨用組成物を用いた研磨で配線の脇に凹みが生じるのをより抑えることができる。また、研磨用組成物を用いて研磨した後の研磨対象物の表面にディッシングが生じるのをより抑えることができる。
【0040】
使用可能な金属防食剤は、特に制限されないが、好ましくは複素環式化合物または界面活性剤である。複素環式化合物中の複素環の員数は特に限定されない。また、複素環式化合物は、単環化合物であってもよいし、縮合環を有する多環化合物であってもよい。該金属防食剤は、単独でもまたは2種以上混合して用いてもよい。また、該金属防食剤は、市販品を用いてもよいし合成品を用いてもよい。
【0041】
金属防食剤として使用可能な複素環化合物の具体例としては、例えば、ピロール化合物、ピラゾール化合物、イミダゾール化合物、トリアゾール化合物、テトラゾール化合物、ピリジン化合物、ピラジン化合物、ピリダジン化合物、ピリンジン化合物、インドリジン化合物、インドール化合物、イソインドール化合物、インダゾール化合物、プリン化合物、キノリジン化合物、キノリン化合物、イソキノリン化合物、ナフチリジン化合物、フタラジン化合物、キノキサリン化合物、キナゾリン化合物、シンノリン化合物、ブテリジン化合物、チアゾール化合物、イソチアゾール化合物、オキサゾール化合物、イソオキサゾール化合物、フラザン化合物等の含窒素複素環化合物が挙げられる。
【0042】
〔防腐剤および防カビ剤〕
本発明で用いられる防腐剤および防カビ剤としては、例えば、2−メチル−4−イソチアゾリン−3−オンや5−クロロ−2−メチル−4−イソチアゾリン−3−オン等のイソチアゾリン系防腐剤、パラオキシ安息香酸エステル類、およびフェノキシエタノール等が挙げられる。これら防腐剤および防カビ剤は、単独でもまたは2種以上混合して用いてもよい。
【0043】
[研磨用組成物の製造方法]
本発明の研磨用組成物の製造方法は、特に制限されず、例えば、砥粒、および必要に応じて他の成分を、水中で攪拌混合することにより得ることができる。
【0044】
各成分を混合する際の温度は特に制限されないが、10〜40℃が好ましく、溶解速度を上げるために加熱してもよい。また、混合時間も特に制限されない。
【0045】
[研磨方法および基板の製造方法]
上述のように、本発明の研磨用組成物は、特に、単体シリコンと、単体シリコン以外のケイ素含有化合物とを含む研磨対象物の研磨に好適に用いられる。よって、本発明は、単体シリコンと、単体シリコン以外のケイ素含有化合物とを含む研磨対象物を本発明の研磨用組成物で研磨する研磨方法を提供する。また、本発明は、単体シリコンと、単体シリコン以外のケイ素含有化合物とを含む研磨対象物を前記研磨方法で研磨する工程を含む基板の製造方法を提供する。
【0046】
研磨装置としては、研磨対象物を有する基板等を保持するホルダーと回転数を変更可能なモータ等とが取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤を有する一般的な研磨装置を使用することができる。
【0047】
前記研磨パッドとしては、一般的な不織布、ポリウレタン、および多孔質フッ素樹脂等を特に制限なく使用することができる。研磨パッドには、研磨液が溜まるような溝加工が施されていることが好ましい。
【0048】
研磨条件にも特に制限はなく、例えば、研磨定盤の回転速度は、10〜500rpmが好ましく、研磨対象物を有する基板にかける圧力(研磨圧力)は、0.5〜10psiが好ましい。研磨パッドに研磨用組成物を供給する方法も特に制限されず、例えば、ポンプ等で連続的に供給する方法が採用される。この供給量に制限はないが、研磨パッドの表面が常に本発明の研磨用組成物で覆われていることが好ましい。
【0049】
研磨終了後、基板を流水中で洗浄し、スピンドライヤ等により基板上に付着した水滴を払い落として乾燥させることにより、金属またはケイ素含有材料を有する層を有する基板が得られる。
【実施例】
【0050】
本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
【0051】
なお、砥粒の単位表面積あたりのシラノール基数(単位:個/nm
2)は、以下の測定方法または計算方法により、各パラメータを測定または算出した後、下記の方法により算出した。また、砥粒の平均二次粒子径は、動的光散乱式の粒子径測定装置で測定した。
【0052】
<シラノール基数の算出方法>
砥粒の単位表面積あたりのシラノール基数は、G.W.シアーズによるAnalytical Chemistry, vol.28, No.12, 1956, 1982〜1983に記載された中和滴定を用いたシアーズ法により算出することができる。シラノール基数の計算式は以下の式により計算した。
【0053】
【数2】
【0054】
[pH4での研磨]
(実施例1−1)
砥粒として、シラノール基数が1.5個/nm
2であるコロイダルシリカ(平均2次粒子径:67nm、ゾルゲル法で合成)を0.1質量%の濃度となるように水と混合し(混合温度:25℃、混合時間:10分)、さらにpH調整剤として硝酸を加えpHを調整し、研磨用組成物を調製した。研磨用組成物のpHは、pHメータにより4であることを確認した。
【0055】
(実施例1−2)
研磨用組成物中の砥粒の濃度を4質量%に変更したこと以外は、実施例1−1と同様にして、研磨用組成物を調製した。
【0056】
(実施例1−3)
砥粒として、シラノール基数が1.6個/nm
2であるコロイダルシリカ(ケイ酸ソーダ法で合成されたもの)を4質量%の濃度となるように水と混合し(混合温度:25℃、混合時間:10分)、さらにpH調整剤として硝酸を加えpHを調整し、研磨用組成物を調製した。研磨用組成物のpHは、pHメータにより4であることを確認した。
【0057】
(実施例1−4)
砥粒として、シラノール基数が1.9個/nm
2であるヒュームドシリカを1質量%の濃度となるように水と混合し(混合温度:25℃、混合時間:10分)、さらにpH調整剤として硝酸を加えpHを調整し、研磨用組成物を調製した。研磨用組成物のpHは、pHメータにより4であることを確認した。
【0058】
(比較例1−1)
砥粒として、シラノール基数が5.7個/nm
2であるコロイダルシリカ(商品名:SS−3P、扶桑化学工業株式会社製、平均2次粒子径:70nm、ゾルゲル法で合成されたもの)を用いたこと以外は、実施例1−1と同様にして、研磨用組成物を調製した。
【0059】
(比較例1−2)
砥粒として、シラノール基数が5.7個/nm
2であるコロイダルシリカ(商品名:SS−3P、扶桑化学工業株式会社製、平均2次粒子径:70nm、ゾルゲル法で合成されたもの)を用いたこと以外は、実施例1−2と同様にして、研磨用組成物を調製した。
【0060】
(比較例1−3)
砥粒として、シラノール基を有していないα−アルミナを用いたこと以外は、実施例1−1と同様にして、研磨用組成物を調製した。
【0061】
(比較例1−4)
砥粒として、シラノール基を有していないγ−アルミナを用いたこと以外は、実施例1−1と同様にして、研磨用組成物を調製した。
【0062】
(評価)
<砥粒の真密度>
砥粒の真密度は下記式に示すピクノメーター法により計算した。
【0063】
【数3】
【0064】
<研磨速度>
研磨速度は、以下の式により計算した。
【0065】
【数4】
【0066】
Poly Si、SiN、およびTEOSについては、膜厚を光干渉式膜厚測定装置によって求めて、その差を研磨時間で除することにより評価した。
【0067】
実施例1−1〜1−4および比較例1−1〜1−4の研磨用組成物の評価結果を下記表1に示す。なお、表1〜3中の選択比の欄において、「Poly Si/TEOS」の欄には、Poly Siの研磨速度をTEOSの研磨速度で除した値を、「Poly Si/SiN」の欄には、Poly Siの研磨速度をSiNの研磨速度で除した値を、それぞれ示す。
【0068】
【表1】
【0069】
上記表1に示すように、実施例1−1〜1−4の研磨用組成物は、比較例1−1〜1−4の研磨用組成物に比べて、ポリシリコン(Poly Si)の研磨速度をより向上させることが分かった。また、実施例1−1および実施例1−2においては、TEOSの研磨速度に対するポリシリコン(Poly Si)の研磨速度の比(選択比)が、比較例1−1〜1−4に比べて向上した。
【0070】
[pH7での研磨]
(実施例2−1)
pH調整剤として硝酸および水酸化カリウムを用い、研磨用組成物のpHを7に調整したこと以外は、実施例1−2と同様にして、研磨用組成物を調製した。
【0071】
(比較例2−1)
pH調整剤として硝酸および水酸化カリウムを用い、研磨用組成物のpHを7に調整したこと以外は、比較例1−2と同様にして、研磨用組成物を調製した。
【0072】
実施例2−1および比較例2−1の研磨用組成物の評価結果を下記表2に示す。
【0073】
【表2】
【0074】
上記表2に示すように、実施例2−1の研磨用組成物は、比較例2−1の研磨用組成物に比べて、ポリシリコン(Poly Si)の研磨速度をより向上させることが分かった。また、実施例2−1においては、TEOSの研磨速度に対するポリシリコン(Poly Si)の研磨速度の比(選択比)、およびSiNの研磨速度に対するポリシリコン(Poly Si)の研磨速度の比(選択比)が、比較例2−1に比べて向上した。
【0075】
[pH10での研磨]
(実施例3−1)
pH調整剤として水酸化カリウムを用い、研磨用組成物のpHを10に調整したこと以外は、実施例1−2と同様にして、研磨用組成物を調製した。
【0076】
(比較例3−1)
pH調整剤として水酸化カリウムを用い、研磨用組成物のpHを10に調整したこと以外は、比較例1−2と同様にして、研磨用組成物を調製した。
【0077】
実施例3−1および比較例3−1の研磨用組成物の評価結果を下記表3に示す。
【0078】
【表3】
【0079】
上記表3に示すように、実施例3−1の研磨用組成物は、比較例3−1の研磨用組成物に比べて、ポリシリコン(Poly Si)の研磨速度をより向上させることが分かった。また、実施例3−1の研磨用組成物を用いた場合、TEOSの研磨速度に対するポリシリコン(Poly Si)の研磨速度の比(選択比)、およびSiNの研磨速度に対するポリシリコン(Poly Si)の研磨速度の比(選択比)が、比較例3−1の研磨用組成物に比べて向上した。