【課題】光の吸収波長の選択性が制御され、太陽光に含まれる熱線成分を幅広く遮蔽する日射遮蔽材料としての十分な特性を有する熱線遮蔽微粒子分散体および熱線遮蔽合わせ透明基材を提供する。
【解決手段】少なくとも熱線遮蔽微粒子と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体であって、前記熱線遮蔽微粒子は、ディスク形状および/またはロッド形状を持つ金属微粒子の集合体であり、前記金属微粒子の形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記金属微粒子のアスペクト比a/cの値の平均値、標準偏差、分布、等が所定範囲にあり、前記金属が、銀または銀合金であることを特徴とする熱線遮蔽微粒子分散体、およびそれを用いた熱線遮蔽合わせ透明基材を提供する。
前記銀合金が、白金、ルテニウム、金、パラジウム、イリジウム、銅、ニッケル、レニウム、オスニウム、ロジウムから選択される1種類以上の元素と、銀元素の合金である、ことを特徴とする請求項1から3のいずれかに記載の熱線遮蔽微粒子分散体。
前記熱可塑性樹脂が、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、
または、前記樹脂群から選択される2種以上の樹脂の混合物、
または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかである、ことを特徴とする請求項1から5のいずれかに記載の熱線遮蔽微粒子分散体。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態について、[1]金属微粒子による光の吸収、[2]銀微粒子の形状と近赤外光の吸収、[3]金属微粒子の形状制御、[4]金属微粒子の構成、[5]金属微粒子の集合体におけるアスペクト比、[6]金属微粒子の集合体の製造方法、[7]金属微粒子分散液とその製造方法、[8]金属微粒子分散体とその製造方法、[9]シート状またはフィルム状の金属微粒子分散体とその製造方法、[10]金属微粒子分散体合わせ透明基材とその製造方法、[11]赤外線吸収フィルムおよび赤外線吸収ガラスとその製造方法、の順で説明する。
【0017】
[1]金属微粒子による光の吸収
金属微粒子はその誘電特性に起因する光吸収を持つ。可視〜近赤外波長での吸収に限定して述べれば、具体的には、その電子構造に起因するバンド間遷移によるものと、プラズモン共鳴と呼ばれる、自由電子が光の電場と共鳴する機構によるものがある。
バンド間遷移は金属組成が決まるとその吸収波長がほぼ決まるのに対して、プラズモン共鳴吸収は金属微粒子の大きさや形状に依存して変化するため波長調整を行ないやすく、従って工業的利用対象となり得る。金属微粒子に電磁波が照射される時、この粒子径がおおむね100nm以下であるときには、局在表面プラズモン共鳴と呼ばれる強力な光吸収が発現することが知られている。金属微粒子が銀微粒子もしくは銀合金微粒子である場合、金属微粒子の粒子径がおおむね40nm以下になると、光の散乱が小さくなる一方で、局在表面プラズモン共鳴による光の吸収は強力になり、その吸収ピークは可視光の短波長側、おおよそ波長400〜450nmに位置する。
そして、金属微粒子のサイズが変化するとプラズモン共鳴波長は変化し、また共鳴の大きさも変化する。
【0018】
[2]金属微粒子の形状と近赤外光の吸収
金属微粒子が球状からはずれて細長いロッド状や扁平なディスク状となるとき、プラズモン共鳴による吸収波長位置は移動したり、2つに分離したりする。例えば扁平なディスク状粒子において、アスペクト比[長軸長]/[短軸長]の値が大きくなるにつれて、局在表面プラズモン共鳴波長は2つに分離しながら主要部は長波長側へ移動する。
【0019】
より具体的には、おおよそ波長400〜450nmにあった局在表面プラズモン共鳴による光の吸収が、短波長側と長波長側の2つのピークに分離する。
短波長側へ分離した吸収は、ディスク状微粒子の短軸方向への共鳴に対応し、おおよそ波長350〜400nm前後の紫外光〜可視光短波長の領域へと移動する。
他方、長波長側へ分離した吸収は、ディスク状微粒子の長軸方向への共鳴に対応し、アスペクト比が大きくなるにつれて波長400〜780nmの可視光領域へと吸収が移動する。そして、アスペクト比がより大きくなると吸収ピークは、波長780nmより長い波長を持つ近赤外光領域へと移動する。この結果、金属微粒子のアスペクト比がおおむね9.0以上のとき、長軸方向への共鳴に対応する吸収ピークは、波長780nm以降の近赤外光領域へ移動する。
一方、細長いロッド状粒子においても、アスペクト比[長軸長]/[短軸長]の値が大きくなるにつれて、局在表面プラズモン共鳴波長は2つに分離しながら主要部は長波長側へ移動する。
具体的には、ロッド状の場合、金属微粒子のアスペクト比がおおむね4.0以上のとき、長軸方向への共鳴に対応する吸収ピークは、波長780nm以降の近赤外光領域へ移動する。
【0020】
[3]金属微粒子の形状制御
上述した、単一形状の金属微粒子が持つ吸収は、光の波長に対して選択性が非常に高く、鋭く狭い吸収ピークを有する。従って、太陽光の持つ波長780〜2500nmのスペクトルを広い範囲にわたって効率よくカットし、可視光透過率を保ちつつ日射透過率を下げようとする日射遮蔽用途には不適であった。
【0021】
上述の認識の下、本発明者らは、共鳴波長や共鳴吸収を大きく変化させることのできる粒子形状の変化に着目し、鋭意研究検討を行った。その結果、金属微粒子の集合体において、各々の金属微粒子が有するアスペクト比の値をばらつかせて、当該金属微粒子の集合体中へ、金属微粒子の一定以上の連続するアスペクト比の広がりを導入することにより、太陽光の持つ波長780〜2500nmの近赤外光において、広い範囲を滑らかに遮蔽でき、日射透過率を下げるという、画期的な構成に想到した。
【0022】
なお、本発明において「集合体」とは、各々の形態を持つ1つ1つの微粒子が同一空間内に多数存在するもの、および、その状態を指す概念として用いている。一方、本発明において、複数の微粒子同士が凝集体を形成しているもの、および、その状態を指す概念としては用いていない。
【0023】
[4]金属微粒子の構成
本発明に係る金属微粒子は、近赤外領域においてプラズモン吸収による光の吸収を発現するものである。ここで、金属は銀または銀合金であることが好ましい。
【0024】
また、本発明に係る金属微粒子は、結晶としての完全性が高いほど大きい熱線遮蔽効果が得られる。尤も、結晶性が低くX線回折でブロードな回折ピークを生じるようなものであっても、微粒子内部において十分な自由電子が存在し、電子の挙動が金属的であるならば、局在表面プラズモン共鳴による熱線遮蔽効果を発現するため、本発明において適用することが可能である。
【0025】
また上述したように、銀微粒子は、本発明に係る金属微粒子として好ましい。しかし銀微粒子の集合体や分散体が、酸素、窒素酸化物、硫黄酸化物などの存在下であって、高温環境下や、長期間晒される場合、銀微粒子の表面に酸化物、窒化物、硫化物などの皮膜が形成され、光学特性を損なうことがある。かかる劣化を防止、あるいは軽減するため、本発明にかかる金属微粒子を、銀と他金属元素との銀合金微粒子とし、金属微粒子の耐候性を向上させることも好ましい構成である。
【0026】
上述した銀合金中における他金属元素としては、白金、ルテニウム、金、パラジウム、イリジウム、銅、ニッケル、レニウム、オスニウム、ロジウムから選択される1種類以上の元素であることが、銀の耐候性を向上する効果の面から好ましい。
尚、本発明において「銀合金」とは、銀と、銀以外の一種類以上の金属元素との合金を意味する。尤も、「銀合金」とは、質量割合、モル割合および/または体積割合において、銀の含有比率が、銀以外の金属の含有比率を上回っていることを必ずしも意味しない。すなわち、全組成中において、質量割合、モル割合および/または体積割合における銀以外の金属の割合が、銀の割合を上回っているとしても、その組成中に銀が含有されている限り、本明細書においては「銀合金」とする。従って、選択される1種類以上の元素の割合は、銀合金微粒子の用途、作業条件等に応じて適宜決定すれば良いが、概ね、1モル%以上70モル%以下含めれば良い。
【0027】
[5]金属微粒子の集合体におけるアスペクト比
本発明に係る金属微粒子の集合体は、所定の範囲の粒子形状を有する金属微粒子の集合体で構成されている。
尚、後述する金属微粒子の製造方法、および、金属微粒子分散体の製造方法で説明するように、金属微粒子の集合体に含有される金属微粒子の特徴は、金属微粒子分散体中の金属微粒子の特徴や、金属微粒子分散液中の金属微粒子の特徴と一致するものである。
【0028】
具体的には、まず、微粒子の形状がディスク状である場合は、金属微粒子の集合体であって、前記集合体に含有される金属微粒子の粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値において、a/cの平均値が9.0以上40.0以下であり、a/cの標準偏差が3.0以上であり、アスペクト比a/cの値が、少なくとも10.0から30.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上9.0未満である金属微粒子の個数割合が、前記集合体において10%を超えず、前記金属が銀もしくは銀合金から選ばれる1種類以上である金属微粒子の集合体を用いることで、可視光の透明性に優れ、太陽光の持つ波長780〜2500nmの近赤外光のうち広い範囲を遮蔽する、良好な日射遮蔽特性を発揮する。
一方、微粒子の形状がロッド状である場合は、金属微粒子の集合体であって、前記集合体に含有される金属微粒子の粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値において、a/cの平均値が4.0以上10.0以下であり、a/cの標準偏差が1.0以上であり、アスペクト比a/cの値が、少なくとも5.0から8.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上4.0未満である金属微粒子の個数割合が、前記集合体において10%を超えず、前記金属が銀もしくは銀合金から選ばれる1種類以上である金属微粒子の集合体を用いることで、可視光の透明性に優れ、太陽光の持つ波長780〜2500nmの近赤外光のうち広い範囲を遮蔽する、良好な日射遮蔽特性を発揮する。
【0029】
尚、本発明に係る金属微粒子のアスペクト比は、TEMトモグラフィー法によって得られる3次元画像によって個々の金属微粒子を識別し、3次元画像の長さスケールと粒子の具体的な形状を比較することで、個々の金属微粒子についてアスペクト比を算出することで求められる。
具体的には、当該3次元画像から100個以上、好ましくは200個以上の金属微粒子を識別する。識別された個々の金属微粒子について、粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、cとする(ただし、a≧b≧cとする)。そして最長軸の半軸長aと最短軸の半軸長cを用いて、アスペクト比a/cを算出することで求められる。
【0030】
また、前記ディスク状の形状を持つ金属微粒子の集合体と、前記ロッド状の形状を持つ金属微粒子の集合体とが混在してなる金属微粒子の集合体も、可視光の透明性に優れ、太陽光の持つ波長780〜2500nmの近赤外光のうち広い範囲を遮蔽する、良好な日射遮蔽特性を発揮する。
【0031】
ディスク状の金属微粒子の集合体とロッド状の金属微粒子の集合体とが混在してなる場合、本発明に係る金属微粒子のアスペクト比の統計値は、TEMトモグラフィー法によって得られる3次元画像によって個々の金属微粒子の形状をディスク状とロッド状に判別し、ディスク状と判別された微粒子群と、ロッド状と判別された微粒子群について、各々で統計を取ることで、アスペクト比の統計値を正確に評価することができる。
【0032】
具体的には、識別された個々の金属微粒子について、粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、cとする(ただし、a≧b≧cとする)。そして、長軸長aと短軸長cの平均値が中軸長bよりも小さい数値である場合、すなわち(a+c)/2<bが成立する場合、当該微粒子はディスク状と判別する。一方、長軸長aと短軸長cの平均値が中軸長bよりも大きい数値である場合、すなわち(a+c)/2>bが成立する場合、当該微粒子はロッド状と判別する。
そして、ディスク状と判別された粒子群におけるアスペクト比a/cの統計値において、a/cの平均値が9.0以上40.0以下であり、a/cの標準偏差が3.0以上であり、アスペクト比a/cの値が、少なくとも10.0から30.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上9.0未満である金属微粒子の個数割合が、前記集合体において10%を超えなければ、可視光の透明性に優れ、太陽光の持つ波長780〜2500nmの近赤外光のうち広い範囲を遮蔽する、良好な日射遮蔽特性を発揮する。
一方、ロッド状と判別された粒子群におけるアスペクト比a/cの統計値において、a/cの平均値が4.0以上10.0以下であり、a/cの標準偏差が1.0以上であり、アスペクト比a/cの値が、少なくとも5.0から8.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上4.0未満である金属微粒子の個数割合が、前記集合体において10%を超えず、前記金属が銀もしくは銀合金から選ばれる1種類以上である金属微粒子の集合体を用いることで、可視光の透明性に優れ、太陽光の持つ波長780〜2500nmの近赤外光のうち広い範囲を遮蔽する、良好な日射遮蔽特性を発揮する。
【0033】
[6]金属微粒子の集合体の製造方法
本発明に係る金属微粒子の集合体の製造方法例について説明する。
尚、本発明に係る金属微粒子の集合体の製造方法は、当該製造方法例に限定される訳ではなく、本発明に係る金属微粒子の集合体を構成する微粒子の形状的特徴や存在割合を実施出来る方法であれば、適用できる。
【0034】
まず、おおむね8〜40nmの範囲に平均粒子径を持つ、公知の球状金属微粒子を準備する。このとき、初期の(即ち、形状が球状である時点での、)粒径が小さい微粒子を用いる程、後述する処理を経た後に、アスペクト比の小さい金属粒子となる。
一方、初期の粒径が大きい微粒子を用いる程、後述する処理を経た後に、にアスペクト比の大きい粒子となる。
従って、本発明にかかる微粒子の集合体を製造するための、初期の金属微粒子の集合体において、当該集合体に含まれる金属微粒子の粒径を適切に選択することにより、上述した本発明に係るアスペクト比の構成を有する金属微粒子の集合体を製造することができる。
【0035】
上述した初期の金属微粒子の集合体における、当該集合体に含まれる金属微粒子の粒径の選択は、公知の方法によって適切な粒径分布を持つ球状の金属微粒子集合体を合成し、これを使用してもよい。また、公知の方法によってある粒径分布を持つ球状の金属微粒子集合体を合成し、別の粒径分布を持つ球状の金属微粒子と混合することで、適切な粒径分布を持つ微粒子の集合体を準備してもよい。
【0036】
[ディスク状である金属微粒子集合体の製造方法]
以下、適切な粒径分布を持つディスク状の金属微粒子集合体の製造方法の、好ましい1例について説明する。
上述した球状金属微粒子、分散メディア(本発明において、単に「ビーズ」と記載することがある。)、分散媒体(例えば、イソプロピルアルコール、エタノール、1−メトキシ−2−プロパノール、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n−ブチルなどの有機溶媒、または水を挙げることができる。)、および所望により適宜な分散剤(例えば、高分子系分散剤を挙げることができる。)とを、ミル(例えば、溶媒拡散ミルを挙げることができる。)へ装填し、ビーズミル分散を行う。
このとき、ミルの周速を通常の分散時よりも下げて運転(例えば、通常運転時の0.3〜0.5倍程度で運転する。)し、低いせん断力による湿式分散を行う。
【0037】
当該低いせん断力による湿式粉砕により、集合体に含有される金属微粒子の粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値において、a/cの平均値が9.0以上40.0以下であり、a/cの標準偏差が3.0以上であり、アスペクト比a/cの値が、少なくとも10.0から30.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上9.0未満である金属微粒子の個数割合が、前記集合体において10%を超えない金属微粒子の集合体を製造することができる。
【0038】
上述の製造条件にて、本発明に係る金属微粒子の集合体が製造出来る理由は定かではない。尤も、分散状態及びビーズミルの周速を上述の通り選択することで、球状の金属微粒子へのビーズの衝突や、ベッセル内壁とビーズの間、あるいはビーズとビーズの間に金属微粒子が挟まれることで、球状の金属微粒子に対して適切な応力が掛かり、塑性変形によって金属微粒子の形状が、球状からディスク状へ変形するためではないかと、本発明者らは考えている。
【0039】
また、上述したように、初期の(即ち、形状が球状である時点での、)、粒径が小さい金属微粒子ほど、湿式粉砕処理を経たあとにアスペクト比の小さい金属微粒子となる一方、初期の粒径が大きい金属微粒子ほど、湿式粉砕処理を経たあとにアスペクト比の大きい金属微粒子となる理由についても定かではない。尤も、本発明者らは上述の機構によって球状金属微粒子がディスク状へ変形するとき、塑性変形が生じた後の金属微粒子の厚みがほぼ一定になるためである、と推察している。即ち、同一の体積を持つ球状金属微粒子が、塑性変形のような体積がほぼ不変なままの変形処理により、ディスク状金属微粒子へ変形した場合を考えると、ディスク状金属微粒子の厚みが同一であれば、出発原料である球状金属微粒子の体積が大きい程、塑性変形後のディスク状金属微粒子の直径が大きくなることは必然である。
【0040】
上述した粉砕メディアの材質は任意に選択可能であるが、十分な硬度と比重を持つ材質を選択することが好ましい。これは十分な硬度および/または比重を持たない材質を用いた場合、上述した分散処理の際に、ビーズの衝突等により金属微粒子に組成変形を起こすことができないためである。
具体的には粉砕メディアとして、ジルコニアビーズ、イットリア添加ジルコニアビーズ、アルミナビーズ、窒化ケイ素ビーズなどが適している。
【0041】
粉砕メディアの直径は任意に選択可能であるが、微細な粒径を持つビーズを用いることが好ましい。これは微細な粒径を持つビーズを用いることで、分散処理の際にビーズと金属微粒子との衝突頻度が上がり、球状金属微粒子をディスク状金属微粒子へ変形させ易いためである。
また、本発明にかかる球状金属微粒子は非常に微細なため、金属微粒子同士が凝集を起こしてしまうことがある。ここで、微細な粒径を持つビーズを用いることで、金属微粒子同士の凝集を効率よく解膠することができるためである。具体的には、0.3mm以下の粒径を持つビーズが好ましく、0.1mm以下の粒径を持つビーズがより好ましい。
【0042】
以上、本発明に係るディスク形状を有する金属微粒子の集合体の製造方法について説明した。尤も、上述した製造方法は好ましい一例である。従って、光還元法、アミン還元法、二段階還元法といった、形状を制御可能な湿式法により製造された金属微粒子を用いたり、形状を制御できるプラズマトーチ法で製造された金属微粒子を用いることも出来る。いずれにせよ、最終的に、金属微粒子がディスク状あるいはロッド状であり、当該粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値が所定範囲内にある金属微粒子の集合体を製造することができる製造方法であれば、好適に用いることができる。
【0043】
[ロッド形状である金属微粒子集合体の製造方法]
ロッド形状を有する金属微粒子の製造方法としては、いくつか公知の方法があるが、本発明に係るロッド形状を有する金属微粒子の集合体の製造に適した製造方法例について説明する。
例えば、金属微粒子を所定の基板表面上に担持させた後、誘電体媒質中に浸漬する。そして、当該金属微粒子のプラズマ振動を誘起する偏光を照射し、基板表面で金属微粒子をプラズマ振動励起に対応させて線状に結合させ、一方、基板にバイアス電圧を印加し、誘電体媒質中の金属イオンを析出伸張させることによって、所定の金属からなる微細ロッドを固体表面に形成する方法(例えば、特開2001−064794号公報参照。)を用いることができる。
【0044】
また、適宜な添加剤を含む金属塩溶液を準備し、ナノ粒子の成長核の生成割合が低い還元剤を当該金属塩溶液に添加して金属塩を化学的に還元した後に、当該金属塩溶液へ紫外線を光照射し、当該光照射後は金属塩溶液を静置し、金属ナノロッドを成長させて棒状の金属ナノロッドを製造する方法を用いることもできる。
【0045】
さらにディスク状である金属微粒子集合体の製造方法欄にて説明した、光還元法、アミン還元法、二段階還元法といった、形状を制御可能な湿式法によりロッド形状を有する金属微粒子を製造したり、形状を制御できるプラズマトーチ法により、ロッド形状を有する金属微粒子を製造することも出来る。
【0046】
上述したいずれかの方法、または、それ以外の方法を採るにせよ、最終的に、金属微粒子がロッド状であり、当該粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値が所定範囲内にある金属微粒子の集合体を製造することができる製造方法であれば好適に用いることができる。
【0047】
そして、前記の製造方法にて製造された、各種の所定のロッド形状を有する金属微粒子を適宜に配合して、本発明に係る金属微粒子の形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記金属微粒子のアスペクト比a/cにおいて、a/cの平均値が4.0以上10.0以下であり、a/cの標準偏差が1.0以上であり、a/cの値が、少なくとも5.0から8.0の範囲において連続する分布を持ち、前記集合体において、a/cの値が、1.0以上4.0未満である金属微粒子の個数割合が10%以下であり、前記金属が銀または銀合金である、本発明に係る金属微粒子集合体を得ることができる。
【0048】
[ディスク形状および/またはロッド形状である金属微粒子集合体について]
本発明に係る金属微粒子の集合体に含有される微粒子の平均粒子径は、1nm以上100nm以下であることが好ましい。
当該平均粒子径が100nm以下であれば、後述する金属微粒子分散体を製造したとき、散乱により光を完全に遮蔽することが無く、可視光領域の視認性を担保し、同時に効率よく透明性を保持することができるからである。
また、当該平均粒子径が1nm以上あれば、当該金属微粒子の工業的生産は容易であるからである。
【0049】
本発明に係る金属微粒子の集合体、および、金属微粒子分散液において、特に、可視光領域の透明性を重視する場合には、更に金属微粒子による散乱の低減を考慮することが好ましい。
当該金属微粒子による散乱の低減を考慮するのであれば、金属微粒子の平均分散粒子径は100nm以下がよい。この理由は、金属微粒子の分散粒子径が小さければ、幾何学散乱、または、ミー散乱による波長400nm〜780nmの可視光線領域における光の散乱が低減されるからである。当該光の散乱が低減される結果、後述する金属微粒子分散体が曇りガラスのようになって、鮮明な透明性が得られなくなるのを回避することが出来る。
【0050】
これは、金属微粒子の平均分散粒子径が100nm以下になると、上記幾何学散乱若しくはミー散乱が低減し、レイリー散乱領域になるからである。当該レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、金属微粒子の平均粒子径の減少に伴い散乱が低減し、透明性が向上する。更に、金属微粒子の平均粒子径が50nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、金属微粒子の平均分散粒子径が小さい方が好ましい。
また、金属微粒子の表面を、Si、Ti、Zr、Alのいずれか1種類以上の元素を含有する酸化物で被覆すれば、耐候性をより向上させることが出来、好ましい。
【0051】
[7]金属微粒子分散液とその製造方法
本発明に係る銀微粒子や銀合金微粒子といった金属微粒子の集合体を、液状の媒体中に分散させることで、本発明に係る金属微粒子分散液を得ることが出来る。
当該金属微粒子分散液は、日射遮蔽用のインクとして用いることができ、後述する金属微粒子分散体、日射遮蔽用構造体へも好適に適用できるものである。
【0052】
本発明に係る金属微粒子分散液は、液状の媒体へ、上述した金属微粒子の集合体および所望により適量の分散剤、カップリング剤、界面活性剤等を添加し、分散処理を行うことで得ることができる。
以下、本発明に係る金属微粒子分散液とその製造方法を、(1)媒体、(2)分散剤、カップリング剤、界面活性剤、(3)金属微粒子とその含有量、の順で説明する。なお、本発明において、金属微粒子分散液を、単に「分散液」と記載する場合がある。
【0053】
(1)媒体
当該金属微粒子分散液の媒体には、金属微粒子分散液の分散性を保つための機能と、金属微粒子分散液を用いる際に欠陥を生じさせないための機能が要求される。
当該媒体としては水、有機溶媒、油脂、液状樹脂、液状のプラスチック用可塑剤、または、これらから選択される2種以上の混合物を選択し金属微粒子分散液を製造することができる。上記の要求を満たす有機溶媒としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系など、種々のものを選択することが可能である。具体的には、メタノール、エタノール、1−プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;3−メチル−メトキシ−プロピオネートなどのエステル系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;フォルムアミド、N−メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドンなどのアミド類;トルエン、キシレンなどの芳香族炭化水素類;エチレンクロライド、クロルベンゼンなどのハロゲン化炭化水素類などを挙げることができる。これらの中でも極性の低い有機溶剤が好ましく、特に、イソプロピルアルコール、エタノール、1−メトキシ−2−プロパノール、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n−ブチルなどがより好ましい。これらの溶媒は1種または2種以上を組み合わせて用いることができる。
【0054】
液状の樹脂としては、メタクリル酸メチル等が好ましい。液状のプラスチック用可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤や、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤などが好ましい例として挙げられる。なかでもトリエチレングリコールジ−2−エチルヘキサオネート、トリエチレングリコールジ−2−エチルブチレート、テトラエチレングリコールジ−2−エチルヘキサオネートは、加水分解性が低い為、さらに好ましい。
【0055】
(2)分散剤、カップリング剤、界面活性剤
分散剤、カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有することが好ましい。これらの官能基は、金属微粒子の表面に吸着し、金属微粒子集合体の凝集を防ぎ、後述する金属微粒子分散体中でも金属微粒子を均一に分散させる効果を持つ。
【0056】
好適に用いることのできる分散剤としては、リン酸エステル化合物、高分子系分散剤、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、等があるが、これらに限定されるものではない。高分子系分散剤としては、アクリル系高分子分散剤、ウレタン系高分子分散剤、アクリル・ブロックコポリマー系高分子分散剤、ポリエーテル類分散剤、ポリエステル系高分子分散剤などが挙げられる。
【0057】
当該分散剤の添加量は、金属微粒子集合体100重量部に対し10重量部〜1000重量部の範囲であることが望ましく、より好ましくは20重量部〜200重量部の範囲である。分散剤添加量が上記範囲にあれば、金属微粒子集合体が液中で凝集を起こすことがなく、分散安定性が保たれる。
【0058】
分散処理の方法は金属微粒子集合体が均一に液状媒体中へ分散する方法であれば公知の方法から任意に選択でき、たとえばビーズミル、ボールミル、サンドミル、超音波分散などの方法を用いることができる。
均一な金属微粒子分散液を得るために、各種添加剤や分散剤を添加したり、pH調整したりしても良い。
【0059】
(3)金属微粒子とその含有量
当該金属微粒子分散液中における金属微粒子の平均分散粒子径は、1nm以上100nm以下であることが好ましい。
平均分散粒子径が100nm以下であれば、当該金属微粒子分散液中を透過する光を散乱することがなく、透明性を担保できるからである。また、金属微粒子の平均分散粒子径が1nm以上あれば、当該金属微粒子分散液の工業的生産は容易であるからである。
【0060】
また、上述した金属微粒子分散液中における金属微粒子の含有量は0.01質量%以上50質量%以下であることが好ましい。0.01質量%以上であれば後述するコーティング膜、フィルム、シート、および、プラスチック成型体などの製造に好適に用いることができ、50質量%以下であれば工業的な生産が容易である。さらに好ましくは0.5質量%以上20質量%以下である。
【0061】
このような金属微粒子を液体媒体中に分散させた本発明に係る金属微粒子分散液は、適当な透明容器に入れ、分光光度計を用いて、光の透過率を波長の関数として測定することができる。
本発明に係る金属微粒子分散液は、吸収ピーク位置の光の吸光度に対する波長550nmの光の吸光度に対する比[(吸収ピーク位置の光の吸光度)/(波長550nmの吸光度)]の値が5.0以上12.0以下であるという、後述する金属微粒子分散体合わせ透明基材や赤外線吸収ガラス、赤外線吸収フィルム等に最適な、優れた光学的特性を有していた。
尚、当該測定において、金属微粒子分散液の透過率の調整は、その分散溶媒または分散溶媒と相溶性を有する適宜な溶媒で希釈することにより、容易になされる。
【0062】
[8]金属微粒子分散体とその製造方法
本発明に係る金属微粒子分散体とその製造方法について、(1)金属微粒子分散体、(2)金属微粒子分散体の製造方法、の順に説明する。
【0063】
(1)金属微粒子分散体
本発明に係る金属微粒子分散体は、前記金属微粒子と、熱可塑性樹脂またはUV硬化性樹脂とからなる。
熱可塑性樹脂としては特に制限はないが、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂という樹脂群から選択される1種の樹脂、
または、前記樹脂群から選択される2種以上の樹脂の混合物、
または、前記樹脂群から選択される2種以上の樹脂の共重合体、のいずれかであることが好ましい。
一方、UV硬化性樹脂としては特に制限はないが、例えばアクリル系UV硬化性樹脂を好適に用いることができる。
また、金属微粒子分散体中に分散して含まれる金属微粒子の量は、0.001質量%以上80.0質量%以下含むことが好ましく、0.01質量%以上70質量%以下であることがより好ましい。金属微粒子が0.001質量%上あれば、金属微粒子分散体が必要な近赤外線遮蔽効果を容易に得ることができる。また、金属微粒子が80質量%以下であれば、金属微粒子分散体において熱可塑性樹脂成分の割合を稼ぐことができ、強度を担保することができる。
【0064】
また、金属微粒子分散体が赤外線遮蔽効果を得る観点から、金属微粒子分散体に含まれる単位投影面積あたりの金属微粒子の含有量は、0.01g/m
2以上0.5g/m
2以下であることが好ましい。尚、「単位投影面積あたりの含有量」とは、本発明に係る金属微粒子分散体において、光が通過する単位面積(m
2)あたり、その厚み方向に含有されている金属微粒子の重量(g)である。
金属微粒子分散体は、シート形状、ボード形状またはフィルム形状へ加工することが出来、様々な用途に適用できる。
【0065】
(2)金属微粒子分散体の製造方法
金属微粒子分散液と熱可塑性樹脂あるいは可塑剤を混合後、溶媒成分を除去することで、熱可塑性樹脂中及び/または分散剤中に金属微粒子が高濃度に分散した分散体である金属微粒子分散粉(本発明において単に「分散粉」と記載することがある。)や、可塑剤中に金属微粒子が高濃度に分散した分散液(本発明において単に「可塑剤分散液」と記載することがある。)を得ることが出来る。金属微粒子分散液から溶媒成分を除去する方法としては、当該金属微粒子分散液を減圧乾燥することが好ましい。具体的には、金属微粒子分散液を攪拌しながら減圧乾燥し、分散粉もしくは可塑剤分散液と溶媒成分とを分離する。当該減圧乾燥に用いる装置としては、真空攪拌型の乾燥機があげられるが、上記機能を有する装置であれば良く、特に限定されない。また、乾燥工程の減圧の際の圧力値は適宜選択される。
【0066】
当該減圧乾燥法を用いることで、金属微粒子分散液からの溶媒の除去効率が向上すると伴に、金属微粒子分散粉や可塑剤分散液が長時間高温に曝されることがないので、分散粉中や可塑剤分散液中に分散している金属微粒子集合体の凝集が起こらず好ましい。さらに金属微粒子分散粉や金属微粒子可塑剤分散液の生産性も上がり、蒸発した溶媒を回収することも容易で、環境的配慮からも好ましい。
【0067】
当該乾燥工程後に得られた金属微粒子分散粉や金属微粒子可塑剤分散液において、残留する溶媒は5質量%以下であることが好ましい。残留する溶媒が5質量%以下であれば、当該金属微粒子分散粉や金属微粒子可塑剤分散液を、例えば、後述する金属微粒子分散体合わせ透明基材に加工した際に気泡が発生せず、外観や光学特性が良好に保たれるからである。
また、金属微粒子分散液や金属微粒子分散粉を樹脂中に分散させ、当該樹脂をペレット化することで、マスターバッチを得ることが出来る。
【0068】
また、金属微粒子分散液や金属微粒子分散粉と、熱可塑性樹脂の粉粒体またはペレット、および必要に応じて他の添加剤を均一に混合したのち、ベント式一軸若しくは二軸の押出機で混練し、一般的な溶融押出されたストランドをカットする方法によりペレット状に加工することによっても、マスターバッチを得ることが出来る。この場合、その形状としては円柱状や角柱状のものを挙げることができる。また、溶融押出物を直接カットするいわゆるホットカット法を採ることも可能である。この場合には球状に近い形状をとることが一般的である。
【0069】
[9]シート状またはフィルム状の金属微粒子分散体とその製造方法
前記金属微粒子分散粉や金属微粒子分散液、またはマスターバッチを透明樹脂中へ均一に混合することにより、本発明に係るシート形状、ボード形状またはフィルム形状の金属微粒子分散体を製造出来る。当該シート形状、ボード形状またはフィルム形状の金属微粒子分散体からは、金属微粒子分散体合わせ透明基材、赤外線吸収フィルム、赤外線吸収ガラスを製造できる。
【0070】
シート形状、ボード形状またはフィルム形状の金属微粒子分散体を製造する場合、当該シートやフィルムを構成する樹脂には多様な熱可塑性樹脂を用いることが出来る。そして、シート形状、ボード形状またはフィルム形状の金属微粒子分散体は、十分な透明性を持った熱可塑性樹脂であることが好ましい。
具体的には、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂といった樹脂群から選択される樹脂、または当該樹脂群から選択される2種以上の樹脂の混合物、または当該樹脂群から選択される2種以上の樹脂の共重合体から、好ましい樹脂の選択を行うことが出来る。
【0071】
また、シート形状、ボード形状またはフィルム形状の金属微粒子分散体を中間層として用いる場合であって、当該シート、ボードやフィルムを構成する熱可塑性樹脂が単独では柔軟性や透明基材との密着性を十分に有しない場合、例えば熱可塑性樹脂がポリビニルアセタール樹脂である場合は、さらに可塑剤を添加することが好ましい。
可塑剤としては、本発明に係る熱可塑性樹脂に対して可塑剤として用いられる物質を用いることができる。例えばポリビニルアセタール樹脂で構成された赤外線吸収フィルムに用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
【0072】
金属微粒子分散粉や金属微粒子分散液またはマスターバッチと、熱可塑性樹脂と、所望に応じて可塑剤その他添加剤とを混練した後、当該混練物を、押出成形法、射出成形法等の公知の方法により、例えば、平面状や曲面状に成形されたシート状の金属微粒子分散体を製造することができる。
シート状またはフィルム状の金属微粒子分散体の形成方法には、公知の方法を用いることが出来る。例えば、カレンダーロール法、押出法、キャスティング法、インフレーション法等を用いることができる。
【0073】
[10]金属微粒子分散体合わせ透明基材とその製造方法
シート形状、ボード形状またはフィルム形状の金属微粒子分散体を、板ガラスまたはプラスチック等の材質からなる複数枚の透明基材間に、中間層として介在させて成る金属微粒子分散体合わせ透明基材について説明する。
金属微粒子分散体合わせ透明基材は、中間層をその両側から透明基材を用いて挟み合わせたものである。当該透明基材としては、可視光領域において透明な板ガラス、または、板状のプラスチック、ボード状のプラスチック、またはフィルム状のプラスチックが用いられる。プラスチックの材質は、特に限定されるものではなく用途に応じて選択可能であり、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、PET樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、等が使用可能である。
【0074】
本発明にかかる金属微粒子分散体合わせ透明基材は、本発明に係るシート形状、ボード形状またはフィルム形状から選択される1種以上の金属微粒子分散体を挟み込んで存在させた対向する複数枚の透明基材を、公知の方法で張り合わせ一体化することによっても得られる。
【実施例】
【0075】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるわけではない。
本実施例に係る膜の光学特性は、分光光度計(日立製作所(株)製U−4100)を用いて測定した。可視光透過率ならびに日射透過率は、JIS R 3106に準拠して測定を行った。
【0076】
また、本実施例にかかる金属微粒子の粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値は、微粒子の集合体を分散した分散体に対してTEMトモグラフィーを用いた三次元画像解析を行い、100個の粒子についてアスペクト比を計測した結果をもとに決定した。
【0077】
(実施例1)
粒径にばらつきを有する公知の銀の球状粒子(粒子径が5〜23nmの範囲でばらつき、平均粒子径は18nmである。本発明において「微粒子A」と記載する場合がある)を準備した。
微粒子Aを3重量部、トルエン87重量部、分散剤(カルボキシル基を有する酸価10.5mgKOH/gのアクリル系分散剤である。本発明において「分散剤a」と記載する場合がある。)10重量部とを混合し、3kgのスラリーを調製した。このスラリーをビーズと共にビーズミルへ投入し、スラリーを循環させて、5時間分散処理を行った。
【0078】
使用したビーズミルは横型円筒形のアニュラータイプ(アシザワ株式会社製)であり、ベッセル内壁とローター(回転攪拌部)の材質はZrO
2とした。また、当該ビーズには、直径0.1mmのYSZ(Yttria-Stabilized Zirconia:イットリア安定化ジルコニア)製のビーズを使用した。スラリー流量は1kg/分とした。
【0079】
得られた銀微粒子の分散液(本発明において「分散液A」と記載する場合がある。)に含まれる銀微粒子形状を、前述のTEMトモグラフィーを用いた方法で測定した。銀微粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は平均値20.4、標準偏差7.0であり、アスペクト比が9未満である銀微粒子の個数割合は6%であった。
【0080】
分散液Aへ、さらに分散剤aを添加し、分散剤aと金属微粒子との質量比が[分散剤a/金属微粒子]=3となるように調製した。次に、スプレードライヤーを用いて、この複合タングステン酸化物微粒子分散液Aからトルエンを除去し、金属微粒子分散粉を得た(本発明において「分散粉A」と記載する場合がある。)。
【0081】
熱可塑性樹脂であるポリカーボネート樹脂に対して所定量の分散粉Aを添加し、熱線遮蔽シートの製造用組成物を調製した。
【0082】
この熱線遮蔽シートの製造用組成物を、二軸押出機を用いて280℃で混練し、Tダイより押出して、カレンダーロール法により1.0mm厚のシート材とし、実施例1に係る熱線遮蔽シートを得た。
得られた実施例1に係る熱線遮蔽シートの光学的特性を分光光度計により測定した。そして透過率曲線を得た。透過率曲線から、JIS R 3106に基づいて可視光透過率と日射透過率を求めた。求められた可視光透過率は82.7%、日射透過率は51.2%であった。
以上の結果を表1に示す。
【0083】
(実施例2)
微粒子Aの代替として、粒径にばらつきを持つ公知の銀の球状粒子(粒子径が15〜21nmの範囲でばらつき、平均粒子径は17nmである。本発明において「微粒子B」と記載する場合がある。)を用いた以外は、実施例1と同様にして実施例2にかかる銀微粒子の分散液(本発明において「分散液B」と記載する場合がある。)を得た。
【0084】
分散液Bに含まれる銀微粒子形状を実施例1と同様に測定した。銀微粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値18.8、標準偏差4.7であり、アスペクト比が9未満である銀微粒子の個数割合は5%であった。
【0085】
分散液Aの代替として分散液Bを用いた以外は実施例1と同様にして、実施例2にかかる金属微粒子分散粉(本発明において「分散粉B」と記載する場合がある。)を得た。
【0086】
分散粉Aの代替として分散粉Bを用いた以外は実施例1と同様にして、実施例2にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートB」と記載する場合がある)を作製した。熱線遮蔽シートBの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は85.9%、日射透過率は55.2%であった。
以上の結果を表1に示した。
【0087】
(実施例3)
微粒子Aの代替として、粒径にばらつきを持つ公知の銀の球状粒子(粒子径が19〜35nmの範囲でばらつき、平均粒子径は27nmである。本発明において「微粒子C」と記載する場合がある。)を用いた以外は、実施例1と同様にして実施例3にかかる銀微粒子の分散液(本発明において「分散液C」と記載する場合がある。)を得た。
【0088】
分散液Cに含まれる銀微粒子形状を実施例1と同様に測定した。銀微粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値36.2、標準偏差15.9であり、アスペクト比が9未満である銀微粒子の個数割合は8%であった。
【0089】
分散液Aの代替として分散液Cを用いた以外は実施例1と同様にして、実施例3にかかる金属微粒子分散粉(本発明において「分散粉C」と記載する場合がある。)を得た。
【0090】
分散粉Aの代替として分散粉Cを用いた以外は実施例1と同様にして、実施例3にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートC」と記載する場合がある。)を作製した。熱線遮蔽シートCの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は83.4%、日射透過率は54.8%であった。
以上の結果を表1に示した。
【0091】
(実施例4)
微粒子Aの代替として、粒径にばらつきを持つ公知の銀の球状粒子(粒子径が20〜28nmの範囲でばらつき、平均粒子径は24nmである。本発明において「微粒子D」と記載する場合がある)を用いた以外は、実施例1と同様にして実施例4にかかる銀微粒子の分散液(本発明において「分散液D」と記載する場合がある。)を得た。
【0092】
分散液Dに含まれる銀微粒子形状を実施例1と同様に測定した。銀微粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値30.3、標準偏差7.3であり、アスペクト比が9未満である粒子の個数割合は0%であった。
【0093】
分散液Aの代替として分散液Dを用いた以外は実施例1と同様にして、実施例4にかかる金属微粒子分散粉(本発明において「分散粉D」と記載する場合がある。)を得た。
【0094】
分散粉Aの代替として分散粉Dを用いた以外は実施例1と同様にして、実施例4にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートD」と記載する場合がある。)を作製した。熱線遮蔽シートDの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は87.6%、日射透過率は63.3%であった。
以上の結果を表1に示した。
【0095】
(実施例5)
微粒子Aの代替として、粒径にばらつきを持つ公知の銀−金合金(合金中に存在する金原子のモル比率[合金微粒子に含まれる金原子の物質量]/[合金微粒子に含まれる原子の全物質量]は10原子%)の球状粒子(粒子径が16〜27nmの範囲でばらつき、平均粒子径は22nmである。本発明において「微粒子E」と記載する場合がある。)を用いた以外は実施例1と同様にして、実施例5にかかる銀−金合金微粒子の分散液(本発明において「分散液E」と記載する場合がある。)を得た。
【0096】
分散液Eに含まれる銀−金合金微粒子形状を実施例1と同様に測定した。微粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値25.4、標準偏差9.2であり、アスペクト比が9未満である微粒子の個数割合は3%であった。
【0097】
分散液Aの代替として分散液Eを用いた以外は実施例1と同様にして、実施例5にかかる金属微粒子分散粉(本発明において「分散粉E」と記載する場合がある。)を得た。
【0098】
分散粉Aの代替として分散粉Eを用いた以外は実施例1と同様にして、実施例5にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートE」と記載する場合がある。)を作製した。熱線遮蔽シートEの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は83.6%、日射透過率は53.3%であった。
以上の結果を表1に示した。
【0099】
(実施例6)
微粒子Aの代替として、粒径にばらつきを持つ公知の銀−金合金(合金中に存在する金原子のモル比率[合金微粒子に含まれる金原子の物質量]/[合金微粒子に含まれる原子の全物質量]は50原子%)の球状粒子(粒子径が16〜24nmの範囲でばらつき、平均粒子径は20nmである。本発明において「微粒子F」と記載する場合がある。)を用いた以外は実施例1と同様にして、実施例6にかかる銀−金合金微粒子の分散液(本発明において「分散液F」と記載する場合がある。)を得た。
【0100】
分散液Fに含まれる銀−金合金微粒子形状を実施例1と同様に測定した。微粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値23.9、標準偏差7.0であり、アスペクト比が9未満である粒子の個数割合は2%であった。
【0101】
分散液Aの代替として分散液Fを用いた以外は実施例1と同様にして、実施例6にかかる金属微粒子分散粉(本発明において「分散粉F」と記載する場合がある。)を得た。
【0102】
分散粉Aの代替として分散粉Fを用いた以外は実施例1と同様にして、実施例6にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートF」と記載する場合がある。)を作製した。熱線遮蔽シートFの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は82.2%、日射透過率は55.4%であった。
以上の結果を表1に示した。
【0103】
(実施例7)
微粒子Aの代替として、粒径にばらつきを持つ公知の銀−パラジウム合金(合金中に存在するパラジウム原子のモル比率[合金微粒子に含まれるパラジウム原子の物質量]/[合金微粒子に含まれる原子の全物質量]は10原子%)の球状粒子(粒子径が17〜24nmの範囲でばらつき、平均粒子径は20nmである。本発明において「微粒子G」と記載する場合がある。)を用いた以外は実施例1と同様にして、実施例7にかかる銀−パラジウム合金微粒子の分散液(本発明において「分散液G」と記載する場合がある。)を得た。
【0104】
分散液Gに含まれる銀−パラジウム合金微粒子形状を実施例1と同様に測定した。微粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値23.1、標準偏差5.7であり、アスペクト比が9未満である微粒子の個数割合は1%であった。
【0105】
分散液Aの代替として分散液Gを用いた以外は実施例1と同様にして、実施例7にかかる金属微粒子分散粉(本発明において「分散粉G」と記載する場合がある。)を得た。
【0106】
分散粉Aの代替として分散粉Gを用いた以外は実施例1と同様にして、実施例7にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートG」と記載する場合がある。)を作製した。熱線遮蔽シートGの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は83.6%、日射透過率は59.5%であった。
以上の結果を表1に示した。
【0107】
(実施例8)
実施例1で作成した分散粉Aとポリカーボネート樹脂ペレットとを、金属微粒子の濃度が1.0質量%となるように混合し、さらにブレンダーを用いて均一に混合して混合物とした。当該混合物を、二軸押出機を用いて290℃で熔融混練し、押出されたストランドをペレット状にカットし、熱線遮蔽透明樹脂成形体用の実施例8に係るマスターバッチ(本発明において「マスターバッチA」と記載する場合がある。)を得た。
ポリカーボネート樹脂ペレットへ、所定量のマスターバッチAを所定量添加し、実施例8に係る熱線遮蔽シートの製造用組成物を調製した。
【0108】
当該実施例8に係る熱線遮蔽シートの製造用組成物を、二軸押出機を用いて280℃で混練し、Tダイより押出し、カレンダーロール法により1.0mm厚のシート材として、実施例8に係る熱線遮蔽シート(本発明において「熱線遮蔽シートH」と記載する場合がある。)を得た。
【0109】
当該熱線遮蔽シートHの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は82.6%、日射透過率は51.0%であった。
以上の結果より、実施例1の分散粉と同様に、熱線遮蔽シートの製造に好適に用いることのできる熱線遮蔽微粒子分散体であるマスターバッチを作製出来ることが確認された。
【0110】
(実施例9)
ポリビニルブチラール樹脂に可塑剤のトリエチレングリコ−ル−ジ−2−エチルブチレ−トを添加し、ポリビニルブチラール樹脂と可塑剤との重量比が[ポリビニルブチラール樹脂/可塑剤]=100/40となるように調製した混合物を作製した。この混合物に実施例1で作製した分散粉Aを、所定量添加し、熱線遮蔽フィルムの製造用組成物を調製した。
【0111】
この製造用組成物を3本ロールのミキサーを用いて70℃で30分練り込み混合し、混合物とした。当該混合物を、型押出機で180℃に昇温して厚み1mm程度にフィルム化してロールに巻き取ることで、実施例9に係る熱線遮蔽フィルムを作製した。
この実施例9に係る熱線遮蔽フィルムを10cm×10cmに裁断し、同寸法を有する厚さ2mmの無機クリアガラス板2枚の間に挟み込み、積層体とした。次に、この積層体を、ゴム製の真空袋に入れ、袋内を脱気して90℃で30分間保持した後、常温まで戻した。真空袋から積層体を取り出し、当該積層体をオートクレーブ装置に入れ、圧力12kg/cm
2、温度140℃で20分加圧加熱して、実施例9に係る熱線遮蔽合わせガラス(本発明において「熱線遮蔽合わせガラスI」と記載する場合がある。)を作製した。
【0112】
当該熱線遮蔽合わせガラスIの光学的特性を、実施例1と同様に測定した。そして、透過率曲線から求められた可視光透過率は82.1%、日射透過率は49.9%であった。
【0113】
(比較例1)
粒径において実質的にばらつきを持たない公知の銀の球状粒子(平均粒子径は7nmである。本発明において「微粒子α」と記載する場合がある。)を準備した。微粒子Aを3重量部、トルエン87重量部、分散剤a10重量部を混合し、3kgのスラリーを調製した。このスラリーをビーズと共にビーズミルへ投入し、スラリーを循環させて、5時間分散処理を行った。
【0114】
使用したビーズミルは横型円筒形のアニュラータイプ(アシザワ株式会社製)であり、ベッセル内壁とローター(回転攪拌部)の材質はZrO
2とした。また、当該ビーズには、直径0.1mmのガラス製のビーズを使用した。スラリー流量は1kg/分とした。
【0115】
得られた銀微粒子の分散液(本発明において「分散液α」と記載する場合がある。)に含まれる銀微粒子形状を、実施例1と同様に測定した。銀微粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値1.1、標準偏差0.2であり、アスペクト比が9未満である銀微粒子の個数割合は100%であった。
【0116】
分散液Aの代替として分散液αを用いた以外は実施例1と同様にして、比較例1にかかる金属微粒子分散粉(本発明において「分散粉α」と記載する場合がある。)を得た。
【0117】
分散粉Aの代替として分散粉αを用いた以外は実施例1と同様にして、比較例1にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートα」と記載する場合がある。)を作製した。熱線遮蔽シートαの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は87.9%、日射透過率は81.7%であった。
以上の結果を表1に示す。
【0118】
(比較例2)
微粒子Aの代替として、実質的に粒径にばらつきを持たない公知の銀の球状粒子(平均粒子径は19nmである。本発明において「微粒子β」と記載する場合がある。)を用いた以外は、実施例1と同様にして、実施例4にかかる銀微粒子の分散液(本発明において「分散液β」と記載する場合がある。)を得た。
【0119】
分散液βに含まれる銀微粒子形状を実施例1と同様に測定した。銀微粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値19.8、標準偏差0.3であり、アスペクト比が9未満である銀微粒子の個数割合は0%であった。
【0120】
分散液Aの代替として分散液βを用いた以外は実施例1と同様にして、比較例2にかかる金属微粒子分散粉(本発明において「分散粉β」と記載する場合がある。)を得た。
【0121】
分散粉Aの代替として分散粉βを用いた以外は実施例1と同様にして、比較例2にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートβ」と記載する場合がある。)を作製した。熱線遮蔽シートβの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は88.7%、日射透過率は77.6%であった。
以上の結果を表1に示す。
【0122】
(比較例3)
微粒子Aの代替として、粒径にばらつきを持つ公知の銀の球状粒子(粒子径が2〜26nmの範囲でばらつき、平均粒子径は15nmである。本発明において「微粒子γ」と記載する場合がある。)を用いた以外は、実施例1と同様にして、比較例3にかかる銀微粒子の分散液(本発明において「分散液γ」と記載する場合がある。)を得た。
【0123】
分散液γに含まれる粒子形状を実施例1と同様に測定した。粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値15.1、標準偏差17.5であり、アスペクト比が9未満である粒子の個数割合は20%であった。
【0124】
分散液Aの代替として分散液γを用いた以外は実施例1と同様にして、比較例3にかかる金属微粒子分散粉(本発明において「分散粉γと記載する場合がある。)を得た。
【0125】
分散粉Aの代替として分散粉γを用いた以外は実施例1と同様にして、比較例3にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートγ」と記載する場合がある。)を作製した。熱線遮蔽シートγの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は66.2%、日射透過率は40.4%であった。
以上の結果を表1に示す。
【0126】
(比較例4)
微粒子Aの代替として、粒径にばらつきを持つ公知の金の球状粒子(粒子径が10〜24nmの範囲でばらつき、平均粒子径は18nmである。本発明において「微粒子δ」と記載する場合がある。)を用いた以外は実施例1と同様にして、比較例4にかかる金微粒子の分散液(本発明において「分散液δ」と記載する場合がある。)を得た。
【0127】
分散液δに含まれる粒子形状を実施例1と同様に測定した。粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値18.9、標準偏差10.5であり、アスペクト比が9未満である粒子の個数割合は2%であった。
【0128】
分散液Aの代替として分散液δを用いた以外は実施例1と同様にして、比較例4にかかる金属微粒子分散粉(本発明において「分散粉δ」と記載する場合がある。)を得た。
【0129】
分散粉Aの代替として分散粉δを用いた以外は実施例1と同様にして、比較例4にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートδ」と記載する場合がある。)を作製した。熱線遮蔽シートδの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は75.0%、日射透過率は47.0%であった。
以上の結果を表1に示す。
【0130】
(比較例5)
微粒子Aの代替として、粒径にばらつきを持つ公知のパラジウムの球状粒子(粒子径が13〜23nmの範囲でばらつき、平均粒子径は19nmである。本明細書において「微粒子ε」と記載する場合がある。)を用いた以外は実施例1と同様にして、比較例5にかかるパラジウム微粒子の分散液(本発明において「分散液ε」と記載する場合がある。)を得た。
【0131】
分散液εに含まれる粒子形状を実施例1と同様に測定した。粒子の形状を近似的に回転楕円体とみなしたときのアスペクト比の値は、平均値20.0、標準偏差7.2であり、アスペクト比が9未満である粒子の個数割合は6%であった。
【0132】
分散液Aの代替として分散液εを用いた以外は実施例1と同様にして、比較例5にかかる金属微粒子分散粉(本発明において「分散粉ε」と記載する場合がある。)を得た。
【0133】
分散粉Aの代替として分散粉εを用いた以外は実施例1と同様にして、比較例5にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートε」と記載する場合がある。)を作製した。熱線遮蔽シートεの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は25.0%、日射透過率は28.8%であった。
以上の結果を表1に示す。
【0134】
(実施例10)
ガラス基板上に銀を蒸着し、直径5nmの銀微粒子を担持させた。当該銀微粒子を担持したガラス基板を濃度0.1mMの硫酸水中に浸漬し、銀微粒子のプラズモン吸収を励起する偏光を照射した。
当該偏光を照射しながらガラス基板へバイアス電圧を印加し、銀微粒子を異方的に伸長させてロッド状の銀微粒子を形成させた。このとき、バイアス電圧と印加時間とを制御することで、粒子の形状を近似的に楕円体とみなしたときのアスペクト比(a/c)の値が、後述する(1)〜(5)に係る統計値を有するロッド状の銀微粒子を生成させた。
生成したロッド状の銀微粒子をガラス基板から解離させ、洗浄後に乾燥することでロッド状の銀微粒子を得た。
【0135】
(1)平均値4.6、標準偏差0.7である微粒子の集合体(本発明において「微粒子H」と記載する場合がある)、
(2)平均値5.7、標準偏差0.7である微粒子の集合体(本発明において「微粒子I」と記載する場合がある)、
(3)平均値7.1、標準偏差0.8である微粒子の集合体(本発明において「微粒子J」と記載する場合がある)、
(4)平均値8.3、標準偏差0.9である微粒子の集合体(本発明において「微粒子K」と記載する場合がある)、
(5)平均値9.8、標準偏差0.8である微粒子の集合体(本発明において「微粒子L」と記載する場合がある)、を得た。
【0136】
上述した微粒子H、微粒子I、微粒子J、微粒子K、微粒子Lを等量ずつ秤量し、混合することで、本発明にかかる銀微粒子の集合体(本発明において「微粒子M」と記載する場合がある。)を得た。
【0137】
微粒子Mを3重量部、トルエン87重量部、分散剤a10重量部とを混合し、300gのスラリーを調製した。このスラリーに対してホモジナイザーを用いて1時間分散処理を行い、実施例10にかかる銀微粒子の分散液(本発明において「分散液J」と記載する場合がある。)を得た。
【0138】
分散液Jに含まれる銀微粒子形状を実施例1と同様に測定した。銀微粒子の形状はロッド状であり、形状を近似的に回転楕円体とみなしたときのアスペクト比(a/c)の値は、平均値7.1、標準偏差2.0であり、アスペクト比が4.0未満である銀微粒子の個数割合は5%であった。
【0139】
分散液Aの代替として分散液Jを用いた以外は実施例1と同様にして、実施例10にかかる金属微粒子分散粉(本発明において「分散粉J」と記載する場合がある。)を得た。
【0140】
分散粉Aの代替として分散粉Jを用いた以外は実施例1と同様にして、実施例10にかかる熱線遮蔽シート(本発明において「熱線遮蔽シートJ」と記載する場合がある。)を作製した。熱線遮蔽シートJの光学的特性を実施例1と同様に測定した。透過率曲線から求められた可視光透過率は86.1%、日射透過率は59.4%であった。
以上の結果を表1に示した。
【0141】
【表1】
【0142】
(実施例1〜10および比較例1〜5の評価)
以上より、実施例1〜7に係る、少なくとも熱線遮蔽微粒子の集合体と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体において、前記熱線遮蔽微粒子はディスク状である金属微粒子であって、前記集合体に含有される金属微粒子の粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値において、a/cの平均値が9.0以上40.0以下であり、a/cの標準偏差が3.0以上であり、アスペクト比a/cの値が、少なくとも10.0から30.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上9.0未満である金属微粒子の個数割合が、前記集合体において10%を超えず、前記金属が、銀、銀合金から選択される1種類以上である熱線遮蔽微粒子分散体は、可視光透過率が高く日射透過率が低いことから、優れた日射遮蔽特性を発揮することが明らかとなった。
【0143】
また、実施例8より、本発明にかかる熱線遮蔽微粒子分散体を好ましく製造することのできる熱線遮蔽マスターバッチを製造できることが明らかになった。
また、実施例9より、本発明にかかるフィルム状の熱線遮蔽微粒子分散体を中間層とした熱線遮蔽合わせガラスを製造可能であることが明らかとなった。
また、実施例10に係る、少なくとも熱線遮蔽微粒子の集合体と熱可塑性樹脂とを含む、熱線遮蔽微粒子分散体において、前記熱線遮蔽微粒子はロッド状である金属微粒子であって、前記集合体に含有される金属微粒子の粒子形状を楕円体で近似し、その互いに直交する半軸長をそれぞれa、b、c(ただし、a≧b≧cとする。)としたとき、前記集合体に含有される金属微粒子のアスペクト比a/cの統計値において、a/cの平均値が4.0以上10.0以下であり、a/cの標準偏差が1.0以上であり、アスペクト比a/cの値が、少なくとも5.0から8.0の範囲において連続する分布を持ち、当該アスペクト比a/cの値が1.0以上4.0未満である金属微粒子の個数割合が、前記集合体において10%を超えず、前記金属が、銀、銀合金から選択される1種類以上である熱線遮蔽微粒子分散体は、可視光透過率が高く日射透過率が低いことから、優れた日射遮蔽特性を発揮することが明らかとなった。
【0144】
これに対し、比較例1にかかる熱線遮蔽微粒子分散体では、含有される金属微粒子のアスペクト比の平均値が9.0以上40.0以下の範囲になく、アスペクト比9.0以上の粒子を実質的に含まないことから、近赤外領域の光の吸収能力をほとんど持たず、日射透過率が高く、日射遮蔽材料としては課題のある光学特性を有していた。
また、比較例2にかかる熱線遮蔽微粒子分散体では、含有される金属微粒子のアスペクト比の平均値は9.0以上40.0以下の範囲にあるものの、アスペクト比の標準偏差が小さいために、非常に狭い波長範囲の近赤外線しか吸収せず、日射透過率は高いままであり、日射遮蔽材料としては課題のある光学特性を有していた。
また、比較例3にかかる熱線遮蔽微粒子分散体では、含有される金属微粒子のアスペクト比の平均値は9.0以上40.0の範囲にあり、アスペクト比の標準偏差も4以上であるものの、可視光の領域を吸収してしまうアスペクト比が1.0以上9.0未満の粒子を多く含むことから可視光透過率が低く、日射遮蔽材料としては課題のある光学特性を有していた。
そして、比較例4および比較例5にかかる熱線遮蔽微粒子分散体では、含有される金属微粒子が銀微粒子または銀合金微粒子ではなく、アスペクト比の大きいディスク形状であっても可視光に吸収を持つ金微粒子またはパラジウム微粒子を用いたために、可視光透過率が低く、日射遮蔽材料としては課題のある光学特性を有していた。