【解決手段】対向する陽極と陰極の間に、1つ以上の発光層を含む有機電界発光素子において、少なくとも1つの発光層が、少なくとも2種の化合物を含むホスト材料と発光性ドーパントを含有し、このホスト材料が、(i)インドロカルバゾール環構造を1〜2個有するインドロカルバゾール化合物と、(ii)ジベンゾチオフェン環に結合するカルボラン環を有するカルボラン化合物を含むものであることを特徴とする有機電界発光素子。
対向する陽極と陰極の間に、1つ以上の発光層を含む有機電界発光素子において、少なくとも1つの発光層が、ホスト材料と発光性ドーパントを含有し、該ホスト材料が、(i)下記一般式(1)又は(2)で表される化合物と、(ii)下記一般式(3)で表される化合物を含むものであることを特徴とする有機電界発光素子。
【化1】
【化2】
(ここで、環a、環c、環c'は独立に、2つの隣接環と任意の位置で縮合する式(a1)で表される芳香環を示し、X
1はC−R又はNを示し、
環b、環d、環d'は独立に、2つの隣接環と任意の位置で縮合する式(b1)で表される複素環を示し、
Ar
1は独立に、p+1価の置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、p+1価の置換若しくは未置換の炭素数3〜16の芳香族複素環基を示し、
Zは2価の置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、2価の置換若しくは未置換の炭素数3〜16の芳香族複素環基、又はこれらの芳香族環が2〜10連結してなる2価の置換若しくは未置換の連結芳香族基を示し、
L
1は独立に、置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、置換若しくは未置換の炭素数3〜16の芳香族複素環基、又はこれらの芳香族環が2〜10連結してなる置換若しくは未置換の連結芳香族基を示し、
pは置換数であり、独立に0〜7の整数を示し、
R、R
1〜R
7は独立に、水素、炭素数1〜20のアルキル基、炭素数7〜38のアラルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数2〜40のジアルキルアミノ基、炭素数12〜44のジアリールアミノ基、炭素数14〜76のジアラルキルアミノ基、炭素数2〜20のアシル基、炭素数2〜20のアシルオキシ基、炭素数1〜20のアルコキシ基、炭素数2〜20のアルコキシカルボニル基、炭素数2〜20のアルコキシカルボニルオキシ基、炭素数1〜20のアルキルスルホニル基、炭素数6〜30の芳香族炭化水素基、又は炭素数3〜18の芳香族複素環基を示し、水素以外の基である場合は、置換基を有してもよく、R
1、R
2、R
4〜R
7がフェニル基の場合は、フェニル基が置換する芳香環と縮環を形成してもよい。
Ar
1、Z、L
1において、芳香族炭化水素基、芳香族炭化水素基又は連結芳香族基が置換基を有する場合の置換基は、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、又は炭素数2〜13のアシル基であり、R、R
1〜R
7において、置換基を有する場合の置換基は、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数2〜13のアシル基、炭素数6〜30の芳香族炭化水素基、又は炭素数3〜18の芳香族複素環基であり、置換基は複数であってもよく、複数の置換基は同一であっても異なっていてもよい。)
【化3】
(ここで、環Aは独立に式(c1)又は式(d1)で表されるC
2B
10H
10の2価のカルボラン基を示し、ジベンゾチオフェン環が環Aと結合する位置は1位、2位、又は3位である。
sは繰り返し数であり、1〜4の整数であり、nは置換数であり、0〜4の整数である。但し、n=1のとき、s=1である。
L
2、L
3は独立に、単結合、n+1価又は2価の置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、置換若しくは未置換の炭素数3〜30の芳香族複素環基、又はこれらの芳香族環が2〜6つ連結して構成される置換若しくは未置換の連結芳香族基を表す。但し、n=0の場合は、L
2は単結合となることはなく、n=1の場合は、少なくとも1つの芳香族複素環基を含む。
L
4は、水素、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数2〜13のアシル基、置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、置換若しくは未置換の炭素数3〜30の芳香族炭化水素基、又はこれらの芳香族環が2〜6つ連結して構成される置換若しくは未置換の連結芳香族基を表す。
L
2〜L
4において、芳香族炭化水素基、芳香族炭化水素基又は連結芳香族基が置換基を有する場合の置換基は、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、又は炭素数2〜13のアシル基であり、置換基は複数であってもよく、複数の置換基は同一であっても異なっていてもよく、また末端に存在するL
2-H及びL
3-Hは、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、又は炭素数2〜13のアシル基であってもよい。)
発光性ドーパントが、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体であることを特徴とする請求項1〜10のいずれかに記載の有機電界発光素子。
【発明を実施するための形態】
【0021】
本発明の有機電界発光素子は、対向する陽極と陰極の間に、少なくとも2種のホスト化合物を含むホスト材料と少なくとも1つの発光性ドーパントを含有する少なくとも1つの発光層を有する。この発光層に含まれるホスト材料は、ホスト化合物として上記一般式(1)〜(2)のいずれかで表される化合物から選ばれる第一のホスト材料と、上記一般式(3)で表される化合物から選ばれる第二のホスト材料を含む混合物である。なお、第1のホスト化合物と第二のホスト化合物は、2種以上の化合物からなる混合物であってもよい。
【0022】
以下、上記一般式(1)、(2)について説明する。一般式(1)、(2)において、共通する記号は同じ意味を有する。
【0023】
環a、環c、環c’は2つの隣接環の任意の位置で縮合する式(a1)で表される芳香環(芳香族炭化水素環、芳香族複素環又は両者を意味する。)を示す。ここで、式(a1)において、X
1はC−R又はNを示すが、C−Rであることが好ましい。
【0024】
環b、環d、環d’は2つの隣接環の任意の位置で縮合する式(b1)で表される複素環を示す。ここで、環cと環c’、環dと環d’は同一であっても異なっていてもよい。
【0025】
式(a1)で表される芳香環は、2つの隣接環と任意の位置で縮合することができるが、構造的に縮合できない位置がある。式(a1)で表される芳香環は、6つの辺を有するが、隣接する2つの辺で2つの隣接環と縮合することはない。また、式(b1)で表される複素環は2つの隣接環と任意の位置で縮合することができるが、構造的に縮合できない位置がある。すなわち、この複素環は、5つの辺を有するが、隣接する2つの辺で2つの隣接環と縮合することはなく、また、窒素原子を含む辺で隣接環と縮合することはない。したがって、一般式(1)、(2)で表される化合物の異性体の骨格の種類は限られる。
【0026】
Ar
1は独立に、p+1価の置換若しくは未置換の芳香族炭化水素基、又は置換若しくは未置換の芳香族複素環基である。芳香族炭化水素基の炭素数は、6〜30であり、好ましくは6〜22であり、より好ましくは6〜18である。芳香族複素環基の炭素数は、3〜16であることが好ましい。
【0027】
Ar
1の具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、又はベンゾイソチアゾール等の芳香族化合物からp+1個の水素を除いて生じる基が挙げられる。好ましくはベンゼン、ナフタレン、アントラセン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、キノリン、イソキノリン、キノキサリン、又はナフチリジンからp+1個の水素を除いて生じる基である。
【0028】
L
1は、それぞれ独立に置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、置換若しくは未置換の炭素数3〜16の芳香族複素環基、又はそれらの芳香族環が2〜10連結してなる置換若しくは未置換の連結芳香族基を示す。好ましくは炭素数6〜18の芳香族炭化水素基、炭素数3〜16の芳香族複素環基、又はそれらの芳香族環が2〜7連結してなる連結芳香族基である。
【0029】
L
1の具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、ベンゾイソチアゾール等の芳香族化合物、又はこれら芳香族化合物の芳香環が複数連結された芳香族化合物から1個の水素を除いて生じる連結芳香族基が挙げられる。
【0030】
本明細書でいう連結芳香族基は、単環又は縮合環構造の芳香族化合物の芳香族環(芳香族炭化水素環、芳香族複素環、又は両者をいう。)が複数連結された基である。芳香族環が連結するとは、芳香族基の芳香環が直接結合で結合して連結することを意味する。芳香族環が置換の芳香族環である場合、置換基が芳香族環であることはない。
連結芳香族基は直鎖状であっても分岐状であってもよく、連結する芳香族環は同一であっても異なっていてもよく、芳香族炭化水素環と芳香族複素環の一方又は両方を有してもよく、置換基を有してもよい。
【0031】
連結芳香族基が1価の基である場合、例えば下記で示すような連結様式が挙げられる。
【化5】
【0032】
連結芳香族基が2価の基である場合、例えば下記で示すような連結様式が挙げられる。3価以上の基である場合は、上記から理解される。
【0034】
式(4)〜(9)中、Ar
12〜Ar
16、Ar
21〜Ar
26は置換または未置換の芳香族環(芳香族基)を示し、芳香族環の環構成原子が直接結合で結合する。また、結合手は芳香族環の環構成原子から出る。芳香族環(芳香族基)は芳香族炭化水素基、又は芳香族複素環基を意味し、1価以上の基であることができる。
式(4)〜(9)では、結合手はAr
11、Ar
21、又はAr
23から出ているが、それ以外の芳香族環から出ることも可能である。また、2価以上の基である場合、1つの芳香族環から2以上の結合手が出てもよい。
【0035】
連結芳香族基の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ターピリジン、フェニルターフェニル、ビナフタレン、フェニルピリジン、ジフェニルピリジン、フェニルピリミジン、ジフェニルピリミジン、フェニルトリアジン、ジフェニルトリアジン、フェニルナフタレン、ジフェニルナフタレン、カルバゾリルベンゼン、ビスカルバゾリルベンゼン、ビスカルバゾリルトリアジン、ジベンゾフラニルベンゼン、ビスジベンゾフラニルベンゼン、ジベンゾチオフェニルベンゼン、ビスジベンゾチオフェニルベンゼン等の芳香族化合物から1又は1以上の水素を除いて生じる基が挙げられる。
【0036】
上記の連結芳香族基に関する説明は、一般式(1)、(2)及び(3)における説明で現れる連結芳香族基に共通する。
【0037】
一般式(2)中、Zは2価の置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、置換若しくは未置換の炭素数3〜16の芳香族複素環基、又はそれらが2〜10連結してなる置換若しくは未置換の連結芳香族基を示す。好ましくは、2価の炭素数6〜18の芳香族炭化水素基、炭素数3〜16の芳香族複素環基、又はそれらが2〜7連結してなる連結芳香族基である。
【0038】
Zの具体例としては、L
1の説明で例示した芳香族化合物、又はこれらが複数連結された芳香族化合物等から2個の水素を除いて生じる2価の基が挙げられる。
【0039】
一般式(1)、式(b1)において、pは置換数であり、独立に0〜7の整数を示す。好ましくは0〜5であり、より好ましくは0〜3である。式(b1)を一般式(1)、(2)に組み込むと、一般式(1)には(L
1)
pが2つあり、一般式(2)にはそれが1つあることになる。pが0であるときは、L
1は存在しないことになるが、一般式(1)にあっては、1つのpが0であるときは、他方のpは1以上であることが好ましい。
【0040】
Ar
1、Z、及びL
1が、置換の芳香族炭化水素基、置換の芳香族複素環基又は置換の連結芳香族基である場合、置換基としては、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数2〜13のアシル基が好ましく挙げられる。より好ましくは、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、又は炭素数2〜11のアシル基である。なお、置換基の数は0〜5であることがよく、好ましくは0〜2である。
本明細書において、炭素数の計算は置換基の炭素数を含まないと理解される。しかし、置換基の炭素数を含む総炭素数が、上記炭素数の範囲にあることが好ましいと言える。連結芳香族基の炭素数は、連結する芳香族炭化水素基、芳香族複素環基が各々有する炭素数の合計と理解される。
【0041】
上記置換基の具体例を以下に示す。
アルキル基は、飽和であっても不飽和であっても、直鎖状、分岐状、環状であってもよく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基等の炭素数1〜10の飽和アルキル基、エテニル基、プロぺニル基等の炭素数2〜10の不飽和アルキル基、シクロペンチル基、シクロヘキシル基等の炭素数5〜10のシクロアルキル基が好ましく挙げられる。
【0042】
アルコキシ基は、直鎖状、分岐状であってもよく、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t−ブトキシ基、ペントキシ基、2−エチルブトキシ基、ヘキシロキシ基、オクトキシ基等の炭素数1〜10のアルコキシ基が好ましく挙げられる。
【0043】
アシル基は、直鎖状、分岐状であってもよく、メチルカルボニル基(アセチル基)、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基、ブチルカルボニル基、t−ブチルカルボニル基、ペンチルカルボニル基、2−エチルブチルカルボニル基、ヘキシルカルボニル基、オクチルカルボニル基等の炭素数2〜11のアシル基が好ましく挙げられる。
【0044】
R、R
1〜R
7は独立に、水素、炭素数1〜20のアルキル基、炭素数7〜38のアラルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数2〜40のジアルキルアミノ基、炭素数12〜44のジアリールアミノ基、炭素数14〜76のジアラルキルアミノ基、炭素数2〜20のアシル基、炭素数2〜20のアシルオキシ基、炭素数1〜20のアルコキシ基、炭素数2〜20のアルコキシカルボニル基、炭素数2〜20のアルコキシカルボニルオキシ基、炭素数1〜20のアルキルスルホニル基、炭素数6〜30の芳香族炭化水素基又は炭素数3〜18の芳香族複素環基である。好ましくは、水素、炭素数1〜10のアルキル基、炭素数7〜24のアラルキル基、炭素数1〜10のアルコキシ基、炭素数2〜11のアシル基、炭素数12〜36のジアリールアミノ基、炭素数6〜18の芳香族炭化水素基又は炭素数3〜16の芳香族複素環基であり、より好ましくは、水素、炭素数6〜18の芳香族炭化水素基又は炭素数3〜16の芳香族複素環基である。
また、R
1〜R
2,及びR
4〜R
7はフェニル基である場合、置換する芳香環と縮環を形成してもよい。
【0045】
R、R
1〜R
7が、炭素数1〜20のアルキル基、炭素数7〜38のアラルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数2〜40のジアルキルアミノ基、炭素数12〜44のジアリールアミノ基、炭素数14〜76のジアラルキルアミノ基、炭素数2〜20のアシル基、炭素数2〜20のアシルオキシ基、炭素数1〜20のアルコキシ基、炭素数2〜20のアルコキシカルボニル基、炭素数2〜20のアルコキシカルボニルオキシ基、炭素数1〜20のアルキルスルホニル基である場合の具体例を、以下に示す。
【0046】
メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル、フェニルメチル、フェニルエチル、フェニルイコシル、ナフチルメチル、アントラニルメチル、フェナンスレニルメチル、ピレニルメチル、ビニル、プロペニル、ブテニル、ペンテニル、デセニル、イコセニル、エチニル、プロパルギル、ブチニル、ペンチニル、デシニル、イコシニル、ジメチルアミノ、エチルメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジペンチニルアミノ、ジデシルアミノ、ジイコシルアミノ、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ、ジピレニルアミノ、ジフェニルメチルアミノ、ジフェニルエチルアミノ、フェニルメチルフェニルエチルアミノ、ジナフチルメチルアミノ、ジアントラニルメチルアミノ、ジフェナンスレニルメチルアミノ、メチルカルボニル(アセチル)、エチルカルボニル、プロピルカルボニル、イソプロピルカルボニル、ブチルカルボニル、t−ブチルカルボニル、ペンチルカルボニル、2−エチルブチルカルボニル、ヘキシルカルボニル、オクチルカルボニル、バレリル、ベンゾイル、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、バレリルオキシ、ベンゾイルオキシ、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペントキシカルボニル、メトキシカルボニルオキシ、エトキシカルボニルオキシ、プロポキシカルボニルオキシ、ブトキシカルボニルオキシ、ペントキシカルボニルオキシ、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル等が挙げられる。好ましくは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル等のC1〜10のアルキル基、フェニルメチル、フェニルエチル、ナフチルメチル、アントラニルメチル、フェナンスレニルメチル、ピレニルメチル等のC7〜20のアラルキル基、メトキシ、エトキシ、プロポキシ、ブトキシ、ペントキシ、ヘキソキシ、ヘプトキシ、オクトキシ、ノノキシ、デコキシ等のC1〜10のアルコキシ基、メチルカルボニル(アセチル)、エチルカルボニル、プロピルカルボニル、イソプロピルカルボニル、ブチルカルボニル、t−ブチルカルボニル、ペンチルカルボニル、2−エチルブチルカルボニル、ヘキシルカルボニル、オクチルカルボニル等の炭素数2〜11のアシル基、ジフェニルアミノ、ナフチルフェニルアミノ、ジナフチルアミノ、ジアントラニルアミノ、ジフェナンスレニルアミノ等のC6〜15の芳香族炭化水素基を2つ有するジアリールアミノ基が挙げられる。
【0047】
R、R
1〜R
7が、炭素数6〜30の芳香族炭化水素基又は炭素数3〜18の芳香族複素環基である場合の具体例としては、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、チアジアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、インドロカルバゾール、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、又はベンゾイソチアゾール等の芳香族化合物から水素を除いて生じる基が挙げられる。好ましくはベンゼン、ナフタレン、アントラセン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、イソインドール、インダゾール、プリン、イソキノリン、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、インドール、カルバゾール、ジベンゾフラン、又はジベンゾチオフェンから水素を除いて生じる基が挙げられる。
【0048】
R、R
1〜R
7が水素以外の基である場合は、置換基を有してもよい。その置換基は、上記Ar
1、Z、及びL
1が、置換の芳香族炭化水素基、置換の芳香族複素環基である場合の置換基と同様な基の他、炭素数6〜30、好ましくは6〜18の芳香族炭化水素基、炭素数3〜18、好ましくは3〜15の芳香族複素環基が挙げられる。なお、置換基の数はR、R
1〜R
7の1つ当たり、0〜3が好ましく、0〜2がより好ましい。
【0049】
一般式(1)及び(2)で表される化合物の好ましい具体例を以下に示すが、これらに限定するものではない。
【0050】
【化7】
【化8】
【化9】
【化10】
【0051】
【化11】
【化12】
【化13】
【化14】
【0052】
【化15】
【化16】
【化17】
【化18】
【0053】
【化19】
【化20】
【化21】
【化22】
【化23】
【化24】
【0054】
次に、一般式(3)で表される化合物(カルボラン化合物)について説明する。
【0055】
環Aは式(c1)又は式(d1)で表されるC
2B
10H
8の2価のカルボラン基を示し、分子内の複数の環Aは同一であっても異なっていてもよいが、好ましくは全部の環Aが式(c1)で表されるカルボラン基である。
【0056】
2価のカルボラン基が有する2つの結合手はCから生じても、Bから生じてもよいが、ジベンゾチエニル基及びL
2、L
3と結合する結合手はCから生じることが好ましい。2価のカルボラン基の中でも、式(c1)で表されるカルボラン基が好ましい。また、一般式(3)中に存在するジベンゾチエニル基は、1、2又は3-ジベンゾチエニル基であり、好ましくは2-ジベンゾチエニル基である。一般式(3)におけるジベンゾチエニル基が、1-ジベンゾチエニル基、2-ジベンゾチエニル基及び3-ジベンゾチエニル基である場合は、それぞれ上記式(31)、(32)及び(33)で示される。一般式(3)及び式(31)〜(33)において、共通する記号は同じ意味を有する。
【0057】
sは繰り返し数であり、0〜1の整数を表し、好ましくはs=0である。nは置換数であり、0〜2の整数を表し、好ましくはn=0である。但し、n=1のときは、s=1である。
【0058】
L
2は独立に、単結合、又はn+1価の基を表す。n+1価の基の場合、置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、置換若しくは未置換の炭素数3〜30の芳香族複素環基、又はこれらの芳香族環が2〜6つ連結して構成される置換若しくは未置換の連結芳香族基であり、好ましくは炭素数6〜18の置換若しくは未置換の芳香族炭化水素基、置換若しくは未置換の炭素数3〜17の芳香族複素環基、又はこれらの芳香族環が2〜5連結してなる置換若しくは未置換の連結芳香族基である。連結芳香族基の場合は、直鎖状であっても分岐状であってもよく、連結する芳香族環は同一であっても異なっていてもよい。
【0059】
L
3は独立に、単結合、又は2価の基を表す。2価の基の場合、置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、置換若しくは未置換の炭素数3〜30の芳香族複素環基、又はこれらの芳香族環が2〜6つ連結して構成される置換若しくは未置換の連結芳香族基あり、好ましくは置換若しくは未置換の炭素数6〜18の芳香族炭化水素基、置換若しくは未置換の炭素数3〜17の芳香族複素環基、又はそれらが2〜5連結してなる置換若しくは未置換の連結芳香族基であり、より好ましくは置換若しくは未置換の炭素数3〜17の芳香族複素環基、又はそれらが2〜5連結してなる置換若しくは未置換の連結芳香族基である。
【0060】
但し、L
2及びL
3が一般式(3)の末端に存在する場合、それぞれL
2-H及びL
3-Hとなるが、このL
2-H及びL
3-Hは、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、又は炭素数2〜13のアシル基であってもよい。
【0061】
L
4は、水素、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、炭素数2〜13のアシル基、置換若しくは未置換の炭素数6〜30の芳香族炭化水素基、置換若しくは未置換の炭素数3〜30の芳香族炭化水素基、又はこれらの芳香族環が2〜6つ連結して構成される置換若しくは未置換の連結芳香族基を表す。
【0062】
L
2〜L
4において、未置換の芳香族炭化水素基の具体例としてはベンゼン、ペンタレン、インデン、ナフタレン、フルオレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン等の芳香族炭化水素化合物、又はこれらが複数連結した連結芳香族炭化水素化合物から水素を除いて生じる芳香族炭化水素基又は連結芳香族炭化水素基が挙げられ、好ましくはベンゼン、ナフタレン、アントラセン、フルオレン、フェナントレン、又はトリフェニレンから水素を除いて生じる基である。
【0063】
未置換の芳香族複素環基の具体例としてはフラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、アゼピン、ベンゾジアゼピン、トリベンゾアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、又はベンゾイソチアゾール、ジベンゾホスホール、ジベンゾボロール等の芳香族複素環化合物、又はこれらが複数連結した連結芳香族複素環化合物から水素を除いて生じる芳香族複素環基又は連結芳香族基が挙げられ、好ましくはピリジン、ピリミジン、トリアジン、ジベンゾフラン、ジベンゾチオフェン、又はカルバゾールから水素を除いて生じる基である。
除かれる水素の数はそれぞれ、n+1個、2個又は1個である。
【0064】
置換の芳香族炭化水素基、置換の芳香族複素環基又は置換の連結芳香族基の場合の置換基は、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、又は炭素数2〜13のアシル基であり、直鎖状、分岐状、環状であってもよい。より好ましくは、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、又は炭素数2〜11のアシル基である。なお、置換基の数は0〜5、好ましくは0〜2である。
【0065】
アルキル基は、飽和であっても不飽和であっても、直鎖状、分岐状、環状であってもよく、具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基等の炭素数1〜10の飽和アルキル基、エテニル基、プロぺニル基等の炭素数2〜10の不飽和アルキル基、シクロペンチル基、シクロヘキシル基等の炭素数5〜10のシクロアルキル基が好ましく挙げられる。
【0066】
アルコキシ基は、直鎖状、分岐状であってもよく、具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t−ブトキシ基、ペントキシ基、2−エチルブトキシ基、ヘキシロキシ基、オクトキシ基等の炭素数1〜10のアルコキシ基が好ましく挙げられる。
【0067】
アシル基は、直鎖状、分岐状であってもよく、具体例としては、メチルカルボニル基(アセチル基)、エチルカルボニル基、プロピルカルボニル基、イソプロピルカルボニル基、ブチルカルボニル基、t−ブチルカルボニル基、ペンチルカルボニル基、2−エチルブチルカルボニル基、ヘキシルカルボニル基、オクチルカルボニル基等の炭素数2〜11のアシル基が好ましく挙げられる。
【0068】
L
4、末端のL
2-H及びL
3-Hが、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、又は炭素数2〜13のアシル基である場合のアルキル基、アルコキシ基、アシル基も同様である。
【0069】
前記一般式(3)で表される化合物の好ましい具体例を以下に示すが、これらに限定されるものではない。
【0071】
【化28】
【化29】
【化30】
【化31】
【0072】
第一のホスト材料(H1)と第二のホスト材料(H2)を含むホスト材料は、素子を作成する前に混合して1つの蒸着源を用いて蒸着してもよく、複数の蒸着源を用いた共蒸着等の操作により素子を作成する時点で混合してもよい。ホスト材料の混合比(重量比)について、特に制限はないが、95:5〜5:95の範囲が好ましい。
【0073】
次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明
の有機EL素子の構造は何ら図示のものに限定されるものではない。
【0074】
(1)有機EL素子の構成
図1は一般的な有機EL素子の構造例を模式的に示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は電子注入層、8は陰極を各々示す。本発明の有機EL素子では、陽極、発光層、及び陰極を必須の層として有するが、必要により他の層を設けてもよい。他の層とは、例えば正孔注入輸送層や電子阻止層及び正孔阻止層が挙げられるが、これらに限定されるものではない。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味する。好ましくは、
図1に示される層を必須の層として有する。
【0075】
(2)基板
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの平滑で透明な合成樹脂の板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
【0076】
(3)陽極
基板1上には陽極2が設けられるが、陽極は正孔輸送層への正孔注入の役割を果たすものである。この陽極は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物、インジウム及び/又は亜鉛の酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、あるいは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などの場合には、適当なバインダー樹脂溶液に分散し、基板上に塗布することにより陽極を形成することもできる。更に、導電性高分子の場合は電解重合により直接基板上に薄膜を形成したり、基板1上に導電性高分子を塗布して陽極を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。陽極は異なる物質で積層して形成することも可能である。陽極の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常、60%以上、好ましくは80%以上とすることが望ましく、この場合、厚みは、通常、5〜1000nm、好ましくは10〜500nm程度である。不透明でよい場合には、陽極は基板と同一でもよい。また、更には上記の陽極の上に異なる導電材料を積層することも可能である。
【0077】
(4)正孔輸送層
陽極2の上に正孔輸送層4が設けられる。両者の間には、正孔注入層3を設けることもできる。正孔輸送層の材料に要求される条件としては、陽極からの正孔注入効率が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが必要である。そのためには、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、しかも正孔移動度が大きく、更に安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが要求される。また、発光層5に接するために発光層からの発光を消光したり、発光層との間でエキサイプレックスを形成して効率を低下させないことが求められる。上記の一般的要求以外に、車載表示用の応用を考えた場合、素子には更に耐熱性が要求される。従って、Tgとして85℃以上の値を有する材料が望ましい。
【0078】
正孔輸送材料としては、従来この層に用いられている公知の化合物を用いることができる。例えば、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4',4"-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J. Lumin., 72-74巻、985頁、1997年)、トリフェニルアミンの四量体からなる芳香族アミン化合物(Chem.Commun., 2175頁、1996年)、2,2',7,7'-テトラキス-(ジフェニルアミノ)-9,9'-スピロビフルオレン等のスピロ化合物(Synth. Metals, 91巻、209頁、1997年)等が挙げられる。これらの化合物は、単独で用いてもよいし、必要に応じて、各々、混合して用いてもよい。
また、上記の化合物以外に、正孔輸送層の材料として、ポリビニルカルバゾール、ポリビニルトリフェニルアミン(特開平7-53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym. Adv. Tech., 7巻、33頁、1996年)等の高分子材料が挙げられる。
【0079】
正孔輸送層を塗布法で形成する場合は、正孔輸送材料を1種又は2種以上と、必要により正孔のトラップにならないバインダー樹脂や塗布性改良剤などの添加剤とを添加し、溶解して塗布溶液を調製し、スピンコート法などの方法により陽極上に塗布し、乾燥して正孔輸送層を形成する。バインダー樹脂としては、ポリカーボネート、ポリアリレート、ポリエステル等が挙げられる。バインダー樹脂は添加量が多いと正孔移動度を低下させるので、少ない方が望ましく、通常、50重量%以下が好ましい。
【0080】
真空蒸着法で形成する場合は、正孔輸送材料を真空容器内に設置されたルツボに入れ、真空容器内を適当な真空ポンプで10
-4Pa程度にまで排気した後、ルツボを加熱して、正孔輸送材料を蒸発させ、ルツボと向き合って置かれた、陽極が形成された基板上に正孔輸送層を形成させる。正孔輸送層の膜厚は、通常、1〜300nm、好ましくは 5〜100nmである。この様に薄い膜を一様に形成するためには、一般に真空蒸着法がよく用いられる。
【0081】
(5)正孔注入層
正孔注入の効率を更に向上させ、かつ、有機層全体の陽極への付着力を改善させる目的で、正孔輸送層4と陽極2との間に正孔注入層3を挿入することも行われている。正孔注入層を挿入することで、初期の素子の駆動電圧が下がると同時に、素子を定電流で連続駆動した時の電圧上昇も抑制される効果がある。正孔注入層に用いられる材料に要求される条件としては、陽極とのコンタクトがよく均一な薄膜が形成でき、熱的に安定、すなわち、ガラス転移温度が高く、ガラス転移温度としては100℃以上が要求される。更に、イオン化ポテンシャルが低く陽極からの正孔注入が容易なこと、正孔移動度が大きいことが挙げられる。
【0082】
この目的のために、これまでに銅フタロシアニン等のフタロシアニン化合物(特開昭63−295695号公報)、ポリアニリン(Appl. Phys. Lett., 64巻、1245頁,1994年)、ポリチオフェン(Optical Materials, 9巻、125頁、1998年)等の有機化合物や、スパッタ・カーボン膜(Synth. Met., 91巻、73頁、1997年)や、バナジウム酸化物、ルテニウム酸化物、モリブデン酸化物等の金属酸化物(J.Phys. D, 29巻、2750頁、1996年)、1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTCDA)やヘキサニトリルヘキサアザトリフェニレン(HAT)などのP型有機物(WO2005-109542号公報)が報告されている。これらの化合物は、単独で用いてもよいし、必要に応じて、混合して用いてもよい。正孔注入層の場合も、正孔輸送層と同様にして薄膜形成可能であるが、無機物の場合には、更に、スパッタ法や電子ビーム蒸着法、プラズマCVD法が用いられる。以上の様にして形成される正孔注入層の膜厚は、通常、1〜300nm、好ましくは 5〜100nmである。
【0083】
(6)発光層
正孔輸送層4の上に発光層5が設けられる。発光層は、単一の発光層から形成されていてもよいし、複数の発光層を直接接するように積層して構成されていてもよい。発光層は、ホスト材料と発光性ドーパントを含む。発光性ドーパントとしては、蛍光発光材料、遅延蛍光発光材料及び燐光発光材料の場合がある。発光性ドーパントは、2種以上を組み合わせて使用してもよい。
【0084】
上記ホスト材料は、上記一般式(1)〜(2)のいずれかで表される化合物から選ばれる第一のホスト材料(H1)と、上記一般式(3)で表される化合物から選ばれる第二のホスト材料(H2)を含む。好ましくは、第一のホスト材料として、一般式(1)又は(2)の化合物を使用し、第二のホスト材料として、式(32)の化合物を使用することがよい。これらの化合物は、上記式に含まれる2以上の化合物を含んでいてもよい。
第一のホスト材料(H1)と、第二のホスト材料(H2)の使用割合(重量比)は、H1;H2=10〜90:90〜10の範囲が好ましく、より好ましくは20〜80:80〜20である。
【0085】
蛍光発光有機EL素子の場合、ホスト材料に添加する蛍光性発光材料としては、ペリレン、ルブレンなどの縮合環誘導体、キナクリドン誘導体、フェノキサゾン660、DCM1、ペリノン、クマリン誘導体、ピロメテン(ジアザインダセン)誘導体、シアニン色素などが使用できる。
【0086】
遅延蛍光発光有機EL素子の場合、発光層における遅延蛍光発光材料としては、例えば、カルボラン誘導体、スズ錯体、インドロカルバゾール誘導体、銅錯体、カルバゾール誘導体等が挙げられる。具体的には、以下の非特許文献、特許文献に記載されている化合物が挙げられるが、これらの化合物に限定されるものではない。
【0087】
1)Adv. Mater. 2009, 21, 4802-4806、2)Appl. Phys. Lett. 98, 083302 (2011)、3)特開2011-213643号公報、4)J. Am. Chem. Soc. 2012, 134, 14706-14709。
【0088】
遅延発光材料の具体的な例を示すが、下記の化合物に限定されるものではない。
【0090】
前記遅延蛍光発光材料を遅延蛍光発光ドーパントとして使用し、ホスト材料を含む場合、遅延蛍光発光ドーパントが発光層中に含有される量は、0.01〜50重量%、好ましくは0.1〜20重量%、より好ましくは0.01〜10%の範囲にあることがよい。
【0091】
燐光発光有機EL素子の場合、燐光性発光性ドーパントとしては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金などから選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。具体的には以下の特許公報に記載されている化合物が挙げられるが、これらの化合物に限定されない。
【0092】
WO2009-073245号公報、WO2009-046266号公報、WO2007-095118号公報、WO2008-156879号公報、WO2008-140657号公報、US2008-261076号公報、特表2008-542203号公報、WO2008-054584号公報、特表2008-505925号公報、特表2007-522126号公報、特表2004-506305号公報、特表2006-513278号公報、特表2006-50596号公報、WO2006-046980号公報、WO2005-113704号公報、US2005-260449号公報、US2005-2260448号公報、US2005-214576号公報、WO2005-076380号公報等。
【0093】
好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、Ir(bt)2・acac3等の錯体類、PtOEt3等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
【0095】
前記燐光発光ドーパントが発光層中に含有される量は、2〜40重量%、好ましくは5〜30重量%の範囲にあることがよい。
【0096】
発光層の膜厚については特に制限はないが、通常、1〜300nm、好ましくは5〜100nmであり、正孔輸送層と同様の方法にて薄膜形成される。
【0097】
(7)電子輸送層
素子の発光効率を更に向上させることを目的として、発光層5と陰極8の間に、電子輸送層6が設けられる。電子輸送層としては、陰極からスムーズに電子を注入できる電子輸送性材料が好ましく、一般的に使用される任意の材料を用いることができる。このような条件を満たす電子輸送材料としては、Alq3などの金属錯体(JP 59-194393A)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−又は5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(USP 5,645,948)、キノキサリン化合物(JP6-207169A)、フェナントロリン誘導体(JP5-331459A)、2−t−ブチル−9,10−N,N'−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
【0098】
電子輸送層の膜厚は、通常、1〜300nm、好ましくは5〜100 nmである。電子輸送層は、正孔輸送層と同様にして塗布法あるいは真空蒸着法により発光層上に積層することにより形成される。通常は、真空蒸着法が用いられる。
【0099】
(8)陰極
陰極8は、電子輸送層6に電子を注入する役割を果たす。陰極として用いられる材料は、前記陽極2に使用される材料を用いることが可能であるが、効率よく電子注入を行なうには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。
陰極の膜厚は通常、陽極と同様である。低仕事関数金属からなる陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層することは素子の安定性を増す。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。
更に、電子注入層7として、陰極8と電子輸送層6の間にLiF 、MgF
2、Li
2O等の極薄絶縁膜(0.1〜5nm)を挿入することも素子の効率を向上させる有効な方法である。
【0100】
なお、
図1とは逆の構造、すなわち、基板1上に陰極8、電子注入層7、電子輸送層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能であり、既述したように少なくとも一方が透明性の高い2枚の基板の間に本発明の有機EL素子を設けることも可能である。この場合も、必要により層を追加したり、省略したりすることが可能である。
【0101】
本発明の有機EL素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX−Yマトリックス状に配置された構造のいずれでもあることができる。本発明の有機EL素子によれば、発光層を2つのホスト材料からなる混合ホストとし、そのホスト材料の内少なくとも一つに特定の化合物を用いることで、低い電圧であっても発光効率が高くかつ駆動安定性においても大きく改善された素子が得られ、フルカラーあるいはマルチカラーのパネルへの応用において優れた性能を発揮できる。
【0102】
以下、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。なお、第一ホストは一般式(1)、又は一般式(2)で表されるホスト化合物を意味し、第二ホストは一般式(3)〜(5)で表されるホスト化合物を意味する。
【実施例】
【0103】
実施例1
膜厚 70nm の 酸化インジウムスズ(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2.0×10
-5 Pa で積層させた。まず、ITO 上に正孔注入層として、銅フタロシアニン(CuPC)を 30 nm の厚さに形成した。次に、正孔輸送層として4,4−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(NPB)を 15 nm の厚さに形成した。次に発光層として、第一ホストとして化合物1−30を、第二ホストとして化合物3−1を、発光層ゲストとして青色燐光材料であるイリジウム錯体[イリジウム(III)ビス(4,6-ジ-フルオロフェニル)-ピリジネート-N,C2']ピコリネート](FIrpic)とを異なる蒸着源から、共蒸着し、30 nm の厚さに発光層を形成した。この時、第一ホストと第二ホストとFIrpicの蒸着速度比は、47:47:6であった。次に、電子輸送層として Alq
3 を 25 nm厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を 1.0 nm厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70 nm厚さに形成した。得られた有機EL素子は、
図1に示す有機EL素子において、陰極と電子輸送層の間に、電子注入層が追加された層構成を有する。
【0104】
実施例2〜10
実施例1において、発光層の第二ホストとして表1に記載した化合物を用いた以外は実施例1と同様にして有機EL素子を作製した。
【0105】
実施例11〜20
また、発光層の第一ホストとして化合物1−99を、第二ホストとして表1に記載した化合物を用いた以外は実施例1と同様にして有機EL素子を作製した。
【0106】
比較例1〜12
実施例1において、発光層ホストとして表1に記載した化合物を単独で用いた以外は実施例1と同様にして有機EL素子を作製した。なお、ホスト量は、実施例1における第1ホストと第2ホストの合計と同じ量とし、ゲスト量は同様とした。
【0107】
実施例2〜20及び比較例1〜12で得られた有機EL素子に電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長475nmの発光スペクトルが観測され、FIrpicからの発光が得られていることがわかった。表1及び表2に作製した有機EL素子の特性を示す。
【0108】
表1及び表2において、輝度、電圧、及び発光効率は、駆動電流2.5 mA/cm
2時での値であり、輝度半減時間は、初期輝度1000 cd/m
2のときの値である。化合物No.は上記化学式に付した番号である。
【0109】
【表1】
【0110】
【表2】
【0111】
表1及び表2から、実施例1〜20は、輝度及び寿命特性が向上し、良好な特性を示すことが分かる。
【0112】
実施例21
膜厚 70nm の 酸化インジウムスズ(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2.0×10
-5 Pa で積層させた。まず、ITO 上に正孔注入層として、CuPCを 30 nm の厚さに形成した。次に、正孔輸送層としてNPBを 15 nm の厚さに形成した。次に発光層として、第一ホストとして化合物2−29を、第二ホストとして化合物3−1を、発光層ゲストとしてFIrpicとを異なる蒸着源から、共蒸着し、30 nm の厚さに発光層を形成した。この時、第一ホストと第二ホストとFIrpicの蒸着速度比は、47:47:6であった。次に、電子輸送層として Alq
3 を 25 nm厚さに形成した。更に、電子輸送層上に、電子注入層としてLiFを 1.0 nm厚さに形成した。最後に、電子注入層上に、電極としてAlを70 nm厚さに形成した。得られた有機EL素子は、
図1に示す有機EL素子において、陰極と電子輸送層の間に、電子注入層が追加された層構成を有する。
【0113】
実施例22〜30
実施例21において、発光層の第二ホストとして表3に記載した化合物を用いた以外は実施例21と同様にして有機EL素子を作製した(実施例22〜30)。
得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長475 nmの発光スペクトルが観測され、FIrpicからの発光が得られていることがわかった。表3に作製した有機EL素子の特性を示す。
【0114】
比較例13
実施例21において、発光層ホストとして表3に記載した化合物を単独で用いた以外は実施例21と同様にして有機EL素子を作製した。なお、ホスト量は、実施例21における第1ホストと第2ホストの合計と同じ量とし、ゲスト量は同様とした。得られた有機EL素子に電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長475nmの発光スペクトルが観測され、FIrpicからの発光が得られていることがわかった。表2に作製した有機EL素子の特性を示す。
【0115】
表3において、輝度、電圧、及び発光効率は、駆動電流2.5 mA/cm
2時での値であり、輝度半減時間は、初期輝度1000 cd/m
2のときの値である。
【0116】
【表3】
【0117】
表3から実施例21〜30は、輝度及び寿命特性が向上し、良好な特性を示すことが分かる。
【0118】
実施例31
膜厚150nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10
-4Paで積層させた。まず、ITO上に正孔注入層としてCuPcを20nmの厚さに形成し、次に正孔輸送層としてNPBを20nmの厚さに形成した。次に発光層として、第一ホストとして化合物1−2を、第二ホストとして化合物3−1を、発光層ゲストとしてトリス(2−フェニルピリジン)イリジウム(III)(Ir(PPy)
3)をそれぞれ異なる蒸着源から共蒸着し、30nmの厚さに形成した。この時、第一ホストと第二ホストとIr(PPy)
3の蒸着速度比は、47:47:6であった。次に、正孔阻止層としてアルミニウム(III)ビス(2−メチル−8−キノリナト)4−フェニルフェノラート(BAlq)を10nmの厚さに形成した。次に、電子輸送層としてAlq
3を40nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてLiFを0.5nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを100nmの厚さに形成し、有機EL素子を作製した。
得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、極大波長517nmの発光スペクトルが観測され、Ir(PPy)
3からの発光が得られていることがわかった。表4に作製した有機EL素子の特性(輝度、電圧、外部量子効率及び輝度半減時間)を示す。
【0119】
実施例32〜40
実施例31において、発光層の第二ホストとして表4に記載した化合物を用いた以外は実施例31と同様にして有機EL素子を作製した。
【0120】
実施例41〜50
実施例31において、発光層の第一ホストとして化合物1−3を、第二ホストとして表1に記載した化合物を用いた以外は実施例1と同様にして有機EL素子を作製した。
得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長517nmの発光スペクトルが観測され、Ir(PPy)
3からの発光が得られていることがわかった。表4に作製した有機EL素子の特性を示す。
【0121】
比較例14〜25
実施例31において、発光層ホストとして表5に記載した化合物を単独で用いた以外は実施例31と同様にして有機EL素子を作製した。なお、ホスト量は、実施例31における第1ホストと第2ホストの合計と同じ量とし、ゲスト量は同様とした。得られた有機EL素子に電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長517nmの発光スペクトルが観測され、Ir(PPy)
3からの発光が得られていることがわかった。表5に作製した有機EL素子の特性を示す。
【0122】
表4及び5において、輝度、電圧、及び発光効率は、駆動電流20mA/cm
2時での値であり、輝度半減時間は、初期輝度1000cd/m
2のときの値である。
【0123】
【表4】
【0124】
【表5】
【0125】
表4及び5から実施例31〜50は、輝度及び寿命特性が向上し、良好な特性を示すことが分かる。
【0126】
実施例51
膜厚150nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10
-4 Paで積層させた。まず、ITO上に正孔注入層としてCuPcを20nmの厚さに形成し、次に正孔輸送層としてNPBを20nmの厚さに形成した。次に発光層として、第一ホストとして化合物2−5を、第二ホストとして化合物3−1を、発光層ゲストとしてIr(PPy)
3をそれぞれ異なる蒸着源から共蒸着し、30nmの厚さに形成した。この時、第一ホストと第二ホストとIr(PPy)
3の蒸着速度比は、47:47:6であった。次に、正孔阻止層としてBAlqを10nmの厚さに形成した。次に、電子輸送層としてAlq
3を40nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてLiFを0.5nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを100nmの厚さに形成し、有機EL素子を作製した。
得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、極大波長517nmの発光スペクトルが観測され、Ir(PPy)
3からの発光が得られていることがわかった。表6に作製した有機EL素子の特性を示す。
【0127】
実施例52〜50
実施例51において、発光層第二ホストとして表6に記載した化合物を用いた以外は実施例51と同様にして有機EL素子を作製した。
【0128】
実施例61〜70
実施例51において、発光層の第一ホストとして化合物2−29を、第二ホストとして表6に記載した化合物を用いた以外は実施例51と同様にして有機EL素子を作製した。得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長517nmの発光スペクトルが観測され、Ir(PPy)
3からの発光が得られていることがわかった。
【0129】
比較例26〜27
実施例51において、発光層ホストとして表6に記載した化合物を単独で用いた以外は実施例51と同様にして有機EL素子を作製した。なお、ホスト量は、実施例51における第1ホストと2ホストの合計と同じ量とした。得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、いずれの有機EL素子からも極大波長517nmの発光スペクトルが観測され、Ir(PPy)
3からの発光が得られていることがわかった。
【0130】
表6に作製した有機EL素子の輝度、外部量子効率及び輝度半減寿命を示す。輝度及び外部量子効率は、駆動電流20mA/cm
2時での値であり、輝度半減時間は、初期輝度1000cd/m
2のときの値である。
【0131】
【表6】
【0132】
表6から、実施例51〜70は、輝度及び寿命特性が向上し、良好な特性を示すことが分かる。