特開2017-164841(P2017-164841A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人 名古屋工業大学の特許一覧 ▶ 住友電気工業株式会社の特許一覧 ▶ DMG森精機株式会社の特許一覧 ▶ 三菱重工航空エンジン株式会社の特許一覧

<>
  • 特開2017164841-切削工具および切削方法 図000003
  • 特開2017164841-切削工具および切削方法 図000004
  • 特開2017164841-切削工具および切削方法 図000005
  • 特開2017164841-切削工具および切削方法 図000006
  • 特開2017164841-切削工具および切削方法 図000007
  • 特開2017164841-切削工具および切削方法 図000008
  • 特開2017164841-切削工具および切削方法 図000009
  • 特開2017164841-切削工具および切削方法 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2017-164841(P2017-164841A)
(43)【公開日】2017年9月21日
(54)【発明の名称】切削工具および切削方法
(51)【国際特許分類】
   B23C 5/10 20060101AFI20170825BHJP
   B23C 3/00 20060101ALI20170825BHJP
【FI】
   B23C5/10 Z
   B23C3/00
【審査請求】未請求
【請求項の数】11
【出願形態】OL
【全頁数】13
(21)【出願番号】特願2016-51272(P2016-51272)
(22)【出願日】2016年3月15日
【新規性喪失の例外の表示】特許法第30条第2項適用申請有り https://www.jstage.jst.go.jp/article/mej/2/6/2_15−00348/pdf_Suppression of tool wear by extremely short−duration cutting 公開日 平成27年10月14日
(71)【出願人】
【識別番号】304021277
【氏名又は名称】国立大学法人 名古屋工業大学
(71)【出願人】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(71)【出願人】
【識別番号】000146847
【氏名又は名称】DMG森精機株式会社
(71)【出願人】
【識別番号】514275772
【氏名又は名称】三菱重工航空エンジン株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】山▲崎▼ 真
(72)【発明者】
【氏名】永見 志朗
(72)【発明者】
【氏名】丸井 順一
(72)【発明者】
【氏名】西岡 良樹
(72)【発明者】
【氏名】糸魚川 文広
(72)【発明者】
【氏名】目黒 貴一
(72)【発明者】
【氏名】小田 陽平
【テーマコード(参考)】
3C022
【Fターム(参考)】
3C022KK03
3C022KK06
3C022KK16
3C022KK29
(57)【要約】
【課題】難削材を加工するにあたり、加工能率を向上しつつ工具寿命を向上すること。
【解決手段】軸部1と、軸部1の側面に設けられた刃部2と、を備え、刃部2は、軸部1の側面11に周方向に沿って複数列配置され、かつ各列において軸部1の軸心Cの延在方向に複数段配置された切刃21を有する。そして、切刃21は、軸部1の側面11の接線に対して刃先から径方向内側に傾く径方向逃げ角と、軸部1の軸心Cの延在方向の先端側に向く先端側面が周方向に対して刃先から基端側に傾く先端側逃げ角と、軸部1の軸心Cの延在方向の基端側に向く基端側面が周方向に対して刃先から先端側に傾く基端側逃げ角と、を有する。
【選択図】図1
【特許請求の範囲】
【請求項1】
軸部と、
前記軸部の側面に設けられた刃部と、
を備え、
前記刃部は、前記軸部の側面に周方向に沿って複数列配置され、かつ各列において前記軸部の軸心の延在方向に複数段配置された切刃を有し、当該切刃は、前記軸部の側面の接線に対して刃先から径方向内側に傾く径方向逃げ角と、前記軸部の軸心の延在方向の先端側に向く先端側面が周方向に対して刃先から基端側に傾く先端側逃げ角と、前記軸部の軸心の延在方向の基端側に向く基端側面が周方向に対して刃先から先端側に傾く基端側逃げ角と、を有することを特徴とする切削工具。
【請求項2】
被加工材の加工高さH、前記切刃の刃長L1、ねじれ角γ、同一ねじれ線上の刃溝幅dであるとして、前記切刃の単位長さあたりの段数Aは、A={(L1+d)×Cosγ}/H=0.3段/mm以上7.0段/mm以下の範囲であることを特徴とする請求項1に記載の切削工具。
【請求項3】
前記軸部の回転速度V、一刃の切削弧長長さL2、L2/V<1.0×10−3とした際の前記軸部の回転がなす角度がθであるとして、前記切刃の列数Bは、B=360/θ以上の範囲であることを特徴とする請求項1または2に記載の切削工具。
【請求項4】
前記切刃は、径方向逃げ角が3度以上30度以下であり、先端側逃げ角が3度以上15度以下であり、基端側逃げ角が3度以上15度以下であることを特徴とする請求項1〜3のいずれか1つに記載の切削工具。
【請求項5】
前記切刃は、刃先の刃長L1が0.1mm以上3.0mm以下であることを特徴とする請求項1〜4のいずれか1つに記載の切削工具。
【請求項6】
前記切刃は、有効すくい角αeが20度以上40度以下であることを特徴とする請求項1〜5のいずれか1つに記載の切削工具。
【請求項7】
一刃の切削弧長長さL2と、前記軸部の回転速度Vとの比が、L2/V=1.0×10−3以下であることを特徴とする請求項1〜6のいずれか1つに記載の切削工具。
【請求項8】
前記軸部の周方向に沿って配置される前記切刃の各列において、前記切刃の段が軸心の延在方向でずれて配置されていることを特徴とする請求項1〜7のいずれか1つに記載の切削工具。
【請求項9】
軸部と、前記軸部の側面に設けられた刃部と、を備え、前記刃部は、前記軸部の側面に周方向に沿って複数列配置され、かつ各列において前記軸部の軸心の延在方向に複数段配置された切刃を有し、当該切刃は、前記軸部の側面の接線に対して刃先から径方向内側に傾く径方向逃げ角と、前記軸部の軸心の延在方向の先端側に向く先端側面が周方向に対して刃先から基端側に傾く先端側逃げ角と、前記軸部の軸心の延在方向の基端側に向く基端側面が周方向に対して刃先から先端側に傾く基端側逃げ角と、を有する切削工具を用いた切削方法であって、
被加工材の設定加工高さの範囲内で前記軸部の軸心の延在方向に前記切刃を複数段設けることを特徴とする切削方法。
【請求項10】
前記軸部の回転速度Vと一刃の切削弧長長さL2との比を、L2/V<1.0×10−3と設定することを特徴とする請求項9に記載の切削方法。
【請求項11】
前記軸部の回転がなす角度がθであるとして、前記切刃の列数BをB=360/θ以上の範囲に設定することを特徴とする請求項10に記載の切削方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、切削工具に関するものである。
【背景技術】
【0002】
従来、例えば、特許文献1に示される軸付き砥石は、鉄系鋳物仕上げ加工、特に溝加工において面加工およびコーナー加工の精度を向上させることを目的としている。この軸付き砥石は、回転機械の駆動軸に取り付けられる軸の先端側に連設された円筒状の台金の側面と端面に砥粒層がそれぞれ形成され、端面の砥粒層の外周寄りの部分に耐摩耗部材としてのダイヤモンド焼結体チップをろう材により固着している。
【0003】
また、従来、例えば、特許文献2に示されるニック付きエンドミルは、周方向に隣接する外周刃同士の間隔が異なる部分を有するエンドミルにニックを形成するのに、ニックの回転軌跡が重なり合ったときでも特定のニックに欠損等が生じ易くなるのを防いで、工具寿命の延長を図ることを目的としている。このニック付きエンドミルは、軸線回りに回転させられるエンドミル本体の先端部外周に螺旋状に捩れる複数条の外周刃が形成され、外周刃には複数のニックが、周方向に隣接する外周刃同士で軸線方向にずらされて形成され、複数条の外周刃のうち周方向に隣接する少なくとも一部の外周刃においては、これらの外周刃同士の周方向の間隔が異なる部分を有するとともに、この周方向の間隔が異なる部分では、周方向に隣接する外周刃同士の軸線方向に隣接するニックの軸線方向におけるピッチが互いに等しくされている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2003−053671号公報
【特許文献2】特開2012−206197号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述した特許文献1に示されるような軸付き砥石は、一般的にダイヤモンド粒又はCBN(Cubic boron nitride))が用いられ、一般材である鉄系鋳物やアルミ鋳造品の加工に用いられるが、ニッケル基合金などの難削材加工においては、粒の温度が上昇しやすく、例えばダイヤモンド粒の黒鉛化温度(約600℃)に容易に達する為、工具として使用することは不向きである。またCBN粒は非常に高価であり、よって工具としてもコスト面が課題となる。一方、上述した特許文献2に示されるようなニックを設けることで、切削抵抗を小さくしてより高い送り条件で加工が行えるが、難削材は前記の通り一般材と比較して工具刃先の温度が高くなることから、加工能率を高く設定することが困難であり、かつ工具寿命が短くなって頻繁に工具の交換が必要になる。
【0006】
なお、難削材の加工能率を向上するには、切削速度を増加させたり、送り量を増加させたりする。しかし、切削速度を増加させると工具の刃先の熱的摩耗が増大し工具寿命が大幅に低下することになり、送り量を増加させると工具の刃先の抵抗が増加し工具が欠損しやすくなる。逆に、難削材の加工において工具寿命を向上するには、切削速度を低減させたり、送り量を低減させたりするが、加工能率が低下してしまう。
【0007】
本発明は、上述した課題を解決するものであり、難削材を加工するにあたり、加工能率を向上しつつ工具寿命を向上することのできる切削工具および切削方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上述の目的を達成するために、本発明の切削工具は、軸部と、前記軸部の側面に設けられた刃部と、を備え、前記刃部は、前記軸部の側面に周方向に沿って複数列配置され、かつ各列において前記軸部の軸心の延在方向に複数段配置された切刃を有し、当該切刃は、前記軸部の側面の接線に対して刃先から径方向内側に傾く径方向逃げ角と、前記軸部の軸心の延在方向の先端側に向く先端側面が周方向に対して刃先から基端側に傾く先端側逃げ角と、前記軸部の軸心の延在方向の基端側に向く基端側面が周方向に対して刃先から先端側に傾く基端側逃げ角と、を有することを特徴とする。
【0009】
この切削工具によれば、径方向逃げ角と、先端側逃げ角と、基端側逃げ角と、を有する切刃を、軸部の側面に周方向に沿って複数列配置し、かつ各列において軸部の軸心の延在方向に複数段配置しているため、切削加工に際して切刃による切削量を増加させることができ、かつ逃げ角を有することで切刃に生じる熱的摩耗や抵抗を低減することができる。加えて、微小な切刃が独立して軸部に配置されることから切刃周辺より切削液による冷却および潤滑が促進される。この結果、難削材を加工するにあたり、加工能率を向上しつつ工具寿命を向上することができる。
【0010】
また、本発明の切削工具では、被加工材の設定加工高さH、前記切刃の刃長L1、ねじれ角γ、同一ねじれ線上の刃溝幅dであるとして、前記切刃の単位長さあたりの段数Aは、A={(L1+d)×Cosγ}/H=0.3段/mm以上7.0段/mm以下の範囲であることを特徴とする。
【0011】
この切削工具によれば、被加工材の設定加工高さHに対して切刃の段数Aを規定することで、設定加工高さHの被加工材を切削加工するにあたり、切刃による切削量を増加させ、かつ切刃に生じる熱的摩耗や抵抗を低減する効果を顕著に得るための切刃の段数Aを設定することができる。
【0012】
また、本発明の切削工具では、前記軸部の回転速度V、一刃の切削弧長長さL2、L2/V<1.0×10−3とした際の前記軸部の回転がなす角度がθであるとして、前記切刃の列数Bは、B=360/θ以上の範囲であることを特徴とする。
【0013】
この切削工具によれば、軸部の回転速度Vおよび一刃の切削弧長長さL2に対して切刃の列数Bを規定することで、軸部の回転速度Vおよび一刃の切削弧長長さL2で被加工材を切削加工するにあたり、切刃に生じる熱的摩耗や抵抗を低減する効果を顕著に得るための切刃の列数Bを設定することができる。
【0014】
また、本発明の切削工具では、前記切刃は、径方向逃げ角が3度以上30度以下であり、先端側逃げ角が3度以上15度以下であり、基端側逃げ角が3度以上15度以下であることを特徴とする。
【0015】
この切削工具によれば、径方向逃げ角、先端側逃げ角、および基端側逃げ角を規定することで、被加工材を切削加工するにあたり、切刃に生じる熱的摩耗や抵抗を低減する効果を顕著に得ることができる。
【0016】
また、本発明の切削工具では、前記切刃は、刃先の刃長L1が0.1mm以上3.0mm以下であることを特徴とする。
【0017】
この切削工具によれば、切刃の刃長L1を規定することで、切刃に生じる熱的摩耗や抵抗を低減する効果を顕著に得ることができる。また、切削加工時の刃先における刃長L1の中心部の静水圧を刃部の母材強度以下にすることができ、切刃中心より生じる損傷を低減する効果を顕著に得ることができる。
【0018】
また、本発明の切削工具では、前記切刃は、有効すくい角αeが20度以上40度以下であることを特徴とする。
【0019】
難削材を加工する場合に、切れ味を担保しつつ切削抵抗によって刃先が欠損することを防ぐ必要がある。そこで、すくい角βとねじれ角γより形成される有効すくい角αeを20度以上40度以下の範囲に設定することにより切れ味と刃先強度を両立することができる。
【0020】
また、本発明の切削工具では、一刃の切削弧長長さL2と、前記軸部の回転速度Vとの比が、L2/V=1.0×10−3以下であることを特徴とする。
【0021】
切削工具の切刃を被加工材に対して深く切り込ませると、びびり振動が発生し易くなるため、一般の切削工具では、工具切込み深さを大きく設定することができず、加工能率が高くない。これを解決するために工具回転数を増大させた場合、切削速度の増加に伴う切削熱により工具の熱的損傷が著しく進展する。一方、本発明の切削工具によれば、切刃列数が一般工具と比して大きい為、工具回転数(切削速度)を変更することなく、びびり振動の安定領域の十分広い領域で工具切込み深さを大きく設定することができ、工具寿命を向上しつつ加工能率を向上する効果をより顕著に得ることができる。
【0022】
また、本発明の切削工具では、前記軸部の周方向に沿って配置される前記切刃の各列において、前記切刃の段が軸心の延在方向でずれて配置されていることを特徴とする。
【0023】
この切削工具によれば、1つの列で切刃を複数段設けると、各段間で軸心の延在方向に隙間が発生する。この隙間は切刃に生じる熱的摩耗や抵抗を低減するため工具寿命を向上することに寄与するが、隙間の部分は加工を行うことができない。そこで、各列で切刃の段を軸心の延在方向でずれて配置することにより周方向において他列の切刃を上記隙間の位置に設けることができる。この結果、軸部の回転により軸心の延在方向で連続して切削加工を行うことが可能になるため、加工能率を向上することができる。なお、前列と次列との切刃の重なりを0.01mm以上とすることが、上記効果を顕著に得るうえで好ましい。
【0024】
上述の目的を達成するために、本発明の切削方法は、軸部と、前記軸部の側面に設けられた刃部と、を備え、前記刃部は、前記軸部の側面に周方向に沿って複数列配置され、かつ各列において前記軸部の軸心の延在方向に複数段配置された切刃を有し、当該切刃は、前記軸部の側面の接線に対して刃先から径方向内側に傾く径方向逃げ角と、前記軸部の軸心の延在方向の先端側に向く先端側面が周方向に対して刃先から基端側に傾く先端側逃げ角と、前記軸部の軸心の延在方向の基端側に向く基端側面が周方向に対して刃先から先端側に傾く基端側逃げ角と、を有する切削工具を用いた切削方法であって、被加工材の設定加工高さの範囲内で前記軸部の軸心の延在方向に前記切刃を複数段設けることを特徴とする。
【0025】
この切削方法によれば、径方向逃げ角と、先端側逃げ角と、基端側逃げ角と、を有する切刃を、軸部の側面に周方向に沿って複数列配置し、かつ各列において軸部の軸心の延在方向に複数段配置して、被加工材の設定加工高さの範囲内に複数段設けるため、切削加工に際して切刃による切削量を増加させることができ、かつ逃げ角を有することで切刃に生じる熱的摩耗や抵抗を低減することができる。加えて、微小な切刃が独立して軸部に配置されることから切刃周辺より切削液による冷却および潤滑が促進される。この結果、難削材を加工するにあたり、加工能率を向上しつつ工具寿命を向上することができる。
【0026】
また、本発明の切削方法では、前記軸部の回転速度Vと一刃の切削弧長長さL2との比を、L2/V<1.0×10−3と設定することを特徴とする。
【0027】
この切削方法によれば、切削工具の切刃を被加工材に対して深く切り込ませると、びびり振動が発生し易くなるため、一般の切削工具では、工具切込み深さを大きく設定することができず、加工能率が高くない。これを解決するために工具回転数を増大させた場合、切削速度の増加に伴う切削熱により工具の熱的損傷が著しく進展する。一方、本発明の切削工具によれば、切刃列数が一般工具と比して大きい為、工具回転数(切削速度)を変更することなく、びびり振動の安定領域の十分広い領域で工具切込み深さを大きく設定することができ、工具寿命を向上しつつ加工能率を向上する効果をより顕著に得ることができる。
【0028】
また、本発明の切削方法では、前記軸部の回転がなす角度がθであるとして、前記切刃の列数BをB=360/θ以上の範囲に設定することを特徴とする。
【0029】
この切削方法によれば、軸部の回転速度Vおよび一刃の切削弧長長さL2に対して切刃の列数Bを規定することで、軸部の回転速度Vおよび一刃の切削弧長長さL2で被加工材を切削加工するにあたり、切刃に生じる熱的摩耗や抵抗を低減する効果を顕著に得ることができる。
【発明の効果】
【0030】
本発明によれば、難削材を加工するにあたり、加工能率を向上しつつ工具寿命を向上することができる。
【図面の簡単な説明】
【0031】
図1図1は、本発明の実施形態に係る切削工具の側面図である。
図2図2は、本発明の実施形態に係る切削工具の先端側から視た図である。
図3図3は、本発明の実施形態に係る切削工具の横断面拡大図である。
図4図4は、本発明の実施形態に係る切削工具の側面視拡大図である。
図5図5は、本発明の実施形態に係る切削工具の平面視概略図である。
図6図6は、本発明の実施形態に係る切削工具および被加工材を示す概略側面図である。
図7図7は、有効すくい角の説明図である。
図8図8は、びびり振動における切削工具の回転数×切刃列数と切り込み深さの関係を示す図である。
【発明を実施するための形態】
【0032】
以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
【0033】
図1は、本実施形態に係る切削工具の側面図である。図2は、本実施形態に係る切削工具の先端側から視た図である。図3は、本実施形態に係る切削工具の横断面拡大図である。図4は、本実施形態に係る切削工具の側面視拡大図である。
【0034】
本実施形態の切削工具は、フライス加工を行う、いわゆるエンドミルである。また、本実施形態の切削工具により切削加工する被加工材は、難削材と呼ばれるもので、例えば、ニッケル基合金が挙げられる。
【0035】
このような難削材の被加工材を加工するため、本実施形態の切削工具は、超硬質工具材料(炭化タングステン(超硬)、サーメット、CBN(Cubic boron nitride)、焼結ダイヤモンド、セラミックなど)からなる工具として構成される。
【0036】
図1および図2に示すように、切削工具は、軸部1と、刃部2と、を備える。軸部1は、円柱形状に形成されており、基端が図示しない切削機械に取り付けられて当該切削機械により支持されて回転可能に設けられ、同切削機械に配置された被加工材に対して先端側が接触する。刃部2は、軸部1の円柱形状の側面(周面)であって先端側の側面に設けられている。
【0037】
刃部2は、切刃21を有している。切刃21は、軸部1の側面11に周方向に沿って複数列配置され、かつ各列において軸部1の回転の軸心Cの延在方向(以下、軸心方向という)に複数段配置されている。切刃21の列は、軸心方向に対して平行ではなく、図1に示すように、軸心方向に対して傾いて配置されている。切刃21の列数は、切削する被切削材に応じて適宜設定されるが、本実施形態では、図2に示すように周方向に沿って24列配置されている。そして、切刃21は、各列において、軸部1の軸心方向に複数段配置されている。段数は切削する被切削材に応じて適宜設定される。
【0038】
各切刃21は、図3に示すように、軸部1の側面11の接線T(接線Tに平行な仮想線T1)に対して刃先21aから径方向内側に傾く径方向逃げ角αを有する。この径方向逃げ角αをなす面を径方向逃げ面21bという。なお、径方向とは、軸部1の軸心Cと直交する方向をいい、径方向内側とは径方向において軸心Cに向かう側であり、径方向外側とは軸心Cから離れる側である。なお、径方向逃げ面21bにおいて刃先21aと相反する端から軸部1の側面11に向かう面を、背面21cという。背面21cは切削に寄与しない面である。
【0039】
また、各切刃21は、図3に示すように、径方向線D(軸部1の径方向に延在する線)に対して傾くすくい角βを有する。すくい角βをなす面をすくい面21dという。すくい面21dは、刃先21aから軸部1の側面11に向かう面であり、切削時の軸部1の回転に際して回転方向に向く面である。
【0040】
また、各切刃21は、図4に示すように、軸心方向の先端側に向く先端側面21eが周方向に対して刃先21aから基端側に傾く先端側逃げ角θ1を有する。また、各切刃21は、図4に示すように、軸心方向の基端側に向く基端側面21fが周方向に対して刃先21aから先端側に傾く基端側逃げ角θ2を有する。
【0041】
また、各切刃21は、図4に示すように、刃先21a(すくい面21d)が軸心方向に対して先端側から基端側に至り回転方向と相反する方向に傾くねじれ角(リード角)γを有する。なお、切刃21の列が軸心方向に対して傾いて配置されていると上述したが、この傾きがねじれ角γに相当する。なお、図4に示すように、刃先21aにおいて、先端側面21eから基端側面21fに至る軸心方向の長さを刃長L1とする。
【0042】
図6に示すように、本実施形態の切削工具は、被加工材100を切削する高さである設定加工高さHが定められる。設定加工高さHは、切削工具を図中の送り方向に送った際に切削可能とする設定値であり、被加工材100の硬さや、切削機械の性能などに基づいて設定される。本実施形態の切削工具は、この設定加工高さHの範囲内に切刃21が複数段設けられる。
【0043】
このように、本実施形態の切削工具は、軸部1と、軸部1の側面11に設けられた刃部2と、を備え、刃部2は、軸部1の側面11に周方向に沿って複数列配置され、かつ各列において軸部1の軸心方向に複数段配置された切刃21を有している。そして、切刃21は、軸部1の側面11の接線Tに対して刃先21aから径方向内側に傾く径方向逃げ角αと、軸心方向の先端側に向く先端側面21eが周方向に対して刃先21aから基端側に傾く先端側逃げ角θ1と、軸心方向の基端側に向く基端側面21fが周方向に対して刃先21aから先端側に傾く基端側逃げ角θ2と、を有する。
【0044】
この切削工具によれば、径方向逃げ角αと、先端側逃げ角θ1と、基端側逃げ角θ2と、を有する切刃21を、軸部1の側面11に周方向に沿って複数列配置し、かつ各列において軸部1の軸心方向に複数段配置して、被加工材100の設定加工高さHの範囲内に複数段設けるため、切削加工に際して切刃21による切削量を増加させることができ、かつ逃げ角α,θ1,θ2を有することで切刃21に生じる熱的摩耗や抵抗を低減することができる。加えて、微小な切刃21が独立して軸部1に配置されることから切刃21周辺より切削液による冷却および潤滑が促進される。この結果、難削材を加工するにあたり、加工能率を向上しつつ工具寿命を向上することができる。
【0045】
また、本実施形態の切削工具では、被加工材100の設定加工高さH、切刃21の刃長L1、ねじれ角γ、同一ねじれ線上の刃溝幅dであるとして、切刃21の単位長さあたりの段数Aは、A={(L1+d)×Cosγ}/H=0.3段/mm以上7.0段/mm以下の範囲であることが好ましい。
【0046】
なお、刃溝幅dは、図4に示すように、軸心方向で隣接する他の切刃21との間で同一ねじれ線上(ねじれ角γと平行な線上)での他の切刃21との間の溝幅である。
【0047】
この切削工具によれば、被加工材100の設定加工高さHに対して切刃21の段数Aを規定することで、設定加工高さHの被加工材100を切削加工するにあたり、切刃21による切削量を増加させ、かつ切刃21に生じる熱的摩耗や抵抗を低減する効果を顕著に得るための切刃21の段数Aを設定することができる。
【0048】
また、本実施形態の切削工具では、軸部1の切削速度V、一刃の切削弧長長さL2、L2/V<1.0×10−3とした際の前記軸部の回転がなす角度がθであるとして、前記切刃の列数Bは、B=360/θ以上の範囲であることが好ましい。
【0049】
角度θは、切削速度V(m/s)、一刃の切削弧長長さL2(m)とした際に、l/V<1.0×10−3(s:秒)が成り立つときの軸部1の回転角度であって、図5に示すように、1つの切刃21で被加工材100を切削加工するのに確保する必要がある角度である。切刃21の列数Bは、軸部1の全周角度360°を角度θで割ることにより算出する。
【0050】
この切削工具によれば、軸部1の回転速度Vおよび一刃の切削弧長長さL2に対して切刃21の列数Bを規定することで、軸部1の回転速度Vおよび一刃の切削弧長長さL2で被加工材100を切削加工するにあたり、切刃21に生じる熱的摩耗や抵抗を低減する効果を顕著に得るための切刃21の列数Bを設定することができる。
【0051】
また、本実施形態の切削工具では、切刃21は、径方向逃げ角αが3度以上30度以下であり、先端側逃げ角θ1が3度以上15度以下であり、基端側逃げ角θ2が3度以上15度以下であることが好ましい。
【0052】
この切削工具によれば、径方向逃げ角α、先端側逃げ角θ1、および基端側逃げ角θ2を規定することで、被加工材100を切削加工するにあたり、切刃21に生じる熱的摩耗や抵抗を低減する効果を顕著に得ることができる。
【0053】
また、本実施形態の切削工具では、切刃21は、刃先21aの刃長L1が0.1mm以上3.0mm以下であることが好ましい。
【0054】
この切削工具によれば、切刃21の刃長L1を規定することで、切刃21に生じる熱的摩耗や抵抗を低減する効果を顕著に得ることができる。また、切削加工時の刃先21aにおける刃長L1の中心部の静水圧を刃部2の母材強度以下にすることができ、切刃21中心より生じる損傷を低減する効果を顕著に得ることができる。
【0055】
また、本実施形態の切削工具では、有効すくい角αeが20度以上40度以下であることが好ましい。
【0056】
有効すくい角αeは、図7に示すように、設定される。切刃21は、すくい角βを有する。図7におけるすくい角βは、すくい面21dにおいて点Oを基準とした径方向線D(軸部1の径方向に延在する線)とがなす角度であり、線分Sは、点Oを基準としてすくい面21dに沿うものである。また、切刃21は、刃先21aにねじれ角γを有する。この形態で、切刃21の刃先21aが被加工材100を切削加工する場合に、刃先21aの所定点Oに対して送り方向とは反対方向に反力Vcが生じる。この反力VcをベクトルG−Oで示す。そして、切刃21は、すくい面21dに反力Vcにより外力Vfが生じる。反力VfをベクトルO−Eで示す。反力Vfは、切刃21の刃先21aにねじれ角γを有することから。すくい面21dの線分Sに対してねじれ角γの影響分ずれて生じる。これら、反力Vcおよび外力Vfに平行な線分E−Fおよび線分F−Gが得られる。これらのうち反力Vcに平行な線分E−Fに対し、点Oからの垂線O−Kが得られ、この垂線O−Kと反力Vfとがなす角が有効すくい角αeである。有効すくい角αeは、すくい角βとねじれ角γより、sinαe=sinγ+cosγ×sinβの式から得られる。このように、有効すくい角αeは、すくい角βとねじれ角γより形成される。
【0057】
難削材を加工する場合に、切れ味を担保しつつ切削抵抗によって刃先が欠損することを防ぐ必要がある。前記を解決する手段として本実施形態の切削工具によれば、すくい角βとねじれ角γより形成される有効すくい角αeを20度以上40度以下の範囲に設定することにより切れ味と刃先強度を両立することができる。
【0058】
また、本実施形態の切削工具では、一刃の切削弧長長さL2(m)と、軸部1の回転速度V(m/s)との比が、L2/V=1.0×10−3(s)以下であることが好ましい。
【0059】
図8は、びびり振動における切削工具の回転数×切刃列数と切り込み深さの関係を示す図である。図8に示すように、回転数×切刃列数と切り込み深さの関係において、切り込み深さに対して安定限界曲線の下側はびびり振動の発生の無い安定領域であり、安定限界曲線の上側はびびり振動が発生する領域である。切削工具の切刃21を被加工材100に対して深く切り込ませると、びびり振動が発生し易くなるため、一般の切削工具では、工具切込み深さを大きく設定することができず、加工能率が高くない。一方、本実施形態(本発明)の切削工具((切刃21が一般工具と比して多数の列で設けられている構成)によれば、切削速度を変更させることなく、広い安定領域を活用して切刃21による切削量を増加させ、かつ切刃21に生じる熱的摩耗や抵抗を低減することが可能であるため、一刃の切削弧長長さL2と軸部1の回転速度Vとの関係を規定することで、切込みを深くしてもびびり振動の発生の無い安定領域で加工することができる。この結果、難削材を加工するにあたり、加工能率を向上しつつ工具寿命を向上する効果をより顕著に得ることができる。
【0060】
また、本実施形態の切削工具では、図1に示すように、軸部1の周方向に沿って配置される切刃21の各列において、切刃21の段が軸心方向でずれて配置されていることが好ましい。
【0061】
この切削工具によれば、1つの列で切刃21を複数段設けると、各段間で軸心方向に隙間が発生する。この隙間は切刃21に生じる熱的摩耗や抵抗を低減するため工具寿命を向上することに寄与するが、隙間の部分は加工を行うことができない。そこで、各列で切刃21の段を軸心方向でずれて配置することにより周方向において他列の切刃21を上記隙間の位置に設けることができる。この結果、軸部1の回転により軸心方向で連続して切削加工を行うことが可能になるため、加工能率を向上することができる。
【符号の説明】
【0062】
1 軸部
11 側面
2 刃部
21 切刃
21a 刃先
21b 径方向逃げ面
21c 背面
21d すくい面
21e 先端側面
21f 基端側面
100 被加工材
C 軸心
L1 刃長
L2 一刃の切削弧長
T 接線
V 回転速度
α 径方向逃げ角
αe 有効すくい角
β すくい角
γ ねじれ角
θ 軸部の回転角度
θ1 先端側逃げ角
θ2 基端側逃げ角
図1
図2
図3
図4
図5
図6
図7
図8