【実施例】
【0040】
以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、平均分子量は、下記のGPC測定条件で測定したものである。
【0041】
[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
【0042】
(単分散ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
【0043】
(合成例1:ウレタンメタクリレート(A1−1)の合成)
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四口フラスコに数平均分子量1000のポリプロピレングリコール(以下、「PPG」と略記する。)500質量部とトリレンジイソシアネート(以下、「TDI」と略記する。)172質量部を仕込み、窒素気流下80℃で2時間反応させた。NCO当量が600とほぼ理論当量値となったので、50℃まで冷却した。空気気流下、ハイドロキノン0.07質量部を加え、2−ヒドロキシエチルメタクリレート(以下、「HEMA」と略記する。)135質量部を加え、90℃で4時間反応させた。NCO%が0.1%以下となった時点で、ターシャリーブチルカテコール(以下、「TBC」と略記する。)0.07質量部添加し、数平均分子量1582のウレタンメタクリレート(A1−1)を得た。
【0044】
(合成例2:エポキシメタクリレート(A2−1)の合成)
温度計、撹拌機、不活性ガス導入口及び還流冷却器を備えた四口フラスコにビスフェノールAとエピクロルヒドリンとの反応により得られたエポキシ樹脂(DIC株式会社製「エピクロン850」1850質量部、メタクリル酸860質量部、ハイドロキノン1.36質量部およびトリエチルアミン10.8質量部を仕込み、120℃まで昇温させ、同時間で10時間反応させ、酸価3.5のエポキシメタクリレート(A2−1)を得た。
【0045】
(合成例3:不飽和ポリエステル(1)の合成)
温度計、撹拌機、不活性ガス導入口及び還流冷却器を備えた四口フラスコに水270質量部、ジシクロペンタジエン1980質量部、ハイドロキノン0.5質量部、無水マレイン酸1370質量部を仕込み、窒素気流下80℃で4時間反応させた。酸価210となった時点でエチレングリコール450質量部を仕込み、200℃で6時間反応させ、酸価8の両末端にジシクロペンタジエニル基を有する不飽和ポリエステル(1)を得た。
【0046】
(合成例4:ウレタンプレポリマー(C−1)の合成)
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四口フラスコにポリフェニレンポリメチレンポリイソシアネート(東ソー株式会社製「ミリオネート MR−200」)200質量部、数平均分子量2000のポリプロピレングリコール110質量部、数平均分子量3000のポリプロピレングリコール50質量部を仕込み、窒素気流下80℃で5時間反応させ、NCO%が16.0%のウレタンプレポリマー(C−1)を得た。
【0047】
(合成例5:ウレタンプレポリマー(C−2)の合成)
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四口フラスコにポリフェニレンポリメチレンポリイソシアネート(東ソー株式会社製「ミリオネート MR−200」)200質量部、数平均分子量1000のポリプロピレングリコール50質量部、数平均分子量3000のポリプロピレングリコール50質量部を仕込み、窒素気流下80℃で5時間反応させ、NCO%が21.0%のウレタンプレポリマー(C−2)を得た。
【0048】
(合成例6:ウレタンプレポリマー(C−3)の合成)
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四口フラスコにポリフェニレンポリメチレンポリイソシアネート(東ソー株式会社製「ミリオネート MR−200」)200質量部、数平均分子量2000のポリプロピレングリコール80質量部、数平均分子量3000のポリプロピレングリコール80質量部を仕込み、窒素気流下80℃で5時間反応させ、NCO%が21.0%のウレタンプレポリマー(C−3)を得た。
【0049】
(実施例1:コンクリート用プライマー(1)の調製及び評価)
ウレタンメタクリレート(A1−1)15質量部、エポキシメタクリレート(A2−1)15質量部、不飽和ポリエステル(1)20質量部、メチルメタクリレート(以下、「MMA」と略記する。)45質量部、HEMA 5質量部、ウレタンプレポリマー(C−1)10質量部、N,N−ビス(2−ヒドロキシエチル)−p−トルイジン1質量部、8%オクチル酸コバルト0.5質量部、及び40%ベンゾイルパーオキサイド2質量部を混合し、コンクリート用プライマー(1)を調製した。
【0050】
[表面乾燥性の評価]
表面を研磨したコンクリート平板に、コンクリート用プライマー(1)を0.2kg/m
2塗布した。塗布後、表面に指紋が付かなくなるまでの時間(分)を測定し、下記の基準により表面乾燥性を評価した。時間が短いほど表面乾燥性は良好である。
○:60分未満
×:60分以上
【0051】
[ウレアウレタン主剤の調製]
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四口フラスコに、数平均分子量1000のポリプロピレングリコール600質量部、数平均分子量3000のポリプロピレングリコール180質量部、ジエチルトルエンジアミン200質量部、1,4−ブタンジオール10質量部を仕込み、ウレアウレタン主剤を得た。
【0052】
[ウレアウレタン硬化剤の合成]
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四口フラスコに、数平均分子量1000のポリプロピレングリコール130質量部、数平均分子量3000のエチレンオキサイド変性ポリプロピレングリコール350質量部、数平均分子量2000のポリプロピレングリコール65質量部、ジフェニルメタンジイソシアネート340質量部を仕込み、窒素気流下80℃で5時間反応させ、NCO%が13.5%のウレアウレタン硬化剤を得た。
【0053】
[ウレアウレタンシートの作製]
合成例7で得たウレアウレタン主剤50質量部と、合成例8で得たウレアウレタン硬化剤50質量部とを混合した後、スプレー塗布し、ウレアウレタンシートを作製した。
【0054】
[接着性の評価]
上記で得たウレアウレタンシートにコンクリート用プライマー(1)を塗布(0.2kg/m
2)した。その塗膜を23℃で1日養生した後、JIS K6854−1に準拠し、90°剥離強度(kgf/25mm)を測定し、下記の基準により接着性を評価した。
○:7以上
×:7未満
【0055】
(実施例2:コンクリート用プライマー(2)の調製及び評価)
実施例1で用いたウレタンプレポリマー(A1−1)10質量部を、20質量部に変更した以外は、実施例1と同様に、コンクリート用プライマー(2)を調製し、表面乾燥性及び接着性を評価した。
【0056】
(実施例3:コンクリート用プライマー(3)の調製及び評価)
実施例1で用いたウレタンプレポリマー(A1−1)10質量部を、30質量部に変更した以外は、実施例1と同様に、コンクリート用プライマー(3)を調製し、表面乾燥性及び接着性を評価した。
【0057】
(実施例4:コンクリート用プライマー(4)の調製及び評価)
実施例3で用いたウレタンプレポリマー(A1−1)10質量部を、40質量部に変更した以外は、実施例1と同様に、コンクリート用プライマー(4)を調製し、表面乾燥性及び接着性を評価した。
【0058】
(実施例5:コンクリート用プライマー(5)の調製及び評価)
実施例1で用いたウレタンプレポリマー(A1−1)10質量部を、50質量部に変更した以外は、実施例1と同様に、コンクリート用プライマー(5)を調製し、表面乾燥性及び接着性を評価した。
【0059】
(実施例6:コンクリート用プライマー(6)の調製及び評価)
実施例1で用いたウレタンプレポリマー(C−1)30質量部を、ウレタンプレポリマー(C−2)30質量部に変更した以外は、実施例1と同様に、コンクリート用プライマー(6)を調製し、表面乾燥性及び接着性を評価した。
【0060】
(実施例7:コンクリート用プライマー(7)の調製及び評価)
実施例1で用いたウレタンプレポリマー(C−1)10質量部を、ウレタンプレポリマー(C−3)30質量部に変更した以外は、実施例1と同様に、コンクリート用プライマー(7)を調製し、表面乾燥性及び接着性を評価した。
【0061】
(実施例8:コンクリート用プライマー(8)の調製及び評価)
ウレタンメタクリレート(A1−1)15質量部、エポキシメタクリレート(A1−1)15質量部、不飽和ポリエステル(1)20質量部、MMA 35質量部、HEMA 15質量部、及びウレタンプレポリマー(C−1)30質量部を混合し、コンクリート用プライマー(8)を調製した。実施例1で用いたコンクリート用プライマー(1)をコンクリート用プライマー(8)に変更した以外は、実施例1と同様に、表面乾燥性及び接着性を評価した。
【0062】
(実施例9:コンクリート用プライマー(9)の調製及び評価)
エポキシメタクリレート(A2−1)50質量部、MMA 45質量部、HEMA 5質量部、及びウレタンプレポリマー(C−1)30質量部を混合し、コンクリート用プライマー(9)を調製した。実施例1で用いたコンクリート用プライマー(1)をコンクリート用プライマー(9)に変更した以外は、実施例1と同様に、表面乾燥性及び接着性を評価した。
【0063】
(実施例10:コンクリート用プライマー(10)の調製及び評価)
ウレタンメタクリレート(A1−1)50質量部、MMA 45質量部、HEMA 5質量部、及びウレタンプレポリマー(C−1)30質量部を混合し、コンクリート用プライマー(10)を調製した。実施例1で用いたコンクリート用プライマー(1)をコンクリート用プライマー(10)に変更した以外は、実施例1と同様に、表面乾燥性及び接着性を評価した。
【0064】
(実施例11:コンクリート用プライマー(11)の調製及び評価)
ウレタンメタクリレート(A1−1)20質量部、不飽和ポリエステル(1)20質量部、MMA 45質量部、HEMA 5質量部、アクリルポリマー(1)(EVONIK社製「DEGALAN 66/02N」)10質量部、及びウレタンプレポリマー(C−1)30質量部を混合し、コンクリート用プライマー(11)を調製した。実施例1で用いたコンクリート用プライマー(1)をコンクリート用プライマー(11)に変更した以外は、実施例1と同様に、表面乾燥性及び接着性を評価した。
【0065】
(実施例12:コンクリート用プライマー(12)の調製及び評価)
ウレタンメタクリレート(A1−1)20質量部、不飽和ポリエステル(1)20質量部、MMA 45質量部、HEMA 5質量部、アクリルポリマー(2)(EVONIK社製「DEGALAN LP64/12」)10質量部、及びウレタンプレポリマー(C−1)30質量部を混合し、コンクリート用プライマー(12)を調製した。実施例1で用いたコンクリート用プライマー(1)をコンクリート用プライマー(12)に変更した以外は、実施例1と同様に、表面乾燥性及び接着性を評価した。
【0066】
(比較例1:コンクリート用プライマー(R1)の調製及び評価)
実施例1で用いたウレタンプレポリマー(C−1)10質量部を、用いなかった以外は、実施例1と同様に、コンクリート用プライマー(R1)を調製し、表面乾燥性及び接着性を評価した。
【0067】
(比較例2:コンクリート用プライマー(R2)の調製及び評価)
実施例1で用いたウレタンプレポリマー(C−1)10質量部を、70質量部に変更した以外は、実施例1と同様に、コンクリート用プライマー(R2)を調製し、表面乾燥性及び接着性を評価した。
【0068】
(比較例3:コンクリート用プライマー(R3)の調製及び評価)
実施例1で用いたウレタンプレポリマー(C−1)10質量部を、ウレタンプレポリマー(C−2)70質量部に変更した以外は、実施例1と同様に、コンクリート用プライマー(R3)を調製し、表面乾燥性及び接着性を評価した。
【0069】
(比較例4:コンクリート用プライマー(R4)の調製及び評価)
実施例1で用いたウレタンプレポリマー(C−1)10質量部を、ウレタンプレポリマー(C−3)70質量部に変更した以外は、実施例1と同様に、コンクリート用プライマー(R4)を調製し、表面乾燥性及び接着性を評価した。
【0070】
(比較例5:コンクリート用プライマー(R5)の調製及び評価)
MMA 100質量部、及びウレタンプレポリマー(C−1)30質量部を混合し、コンクリート用プライマー(R5)を調製した。実施例1で用いたコンクリート用プライマー(1)をコンクリート用プライマー(R5)に変更した以外は、実施例1と同様に、表面乾燥性及び接着性を評価した。
【0071】
(比較例6:コンクリート用プライマー(R6)の調製及び評価)
HEMA 100質量部、及びウレタンプレポリマー(C−1)30質量部を混合し、コンクリート用プライマー(R6)を調製した。実施例1で用いたコンクリート用プライマー(1)をコンクリート用プライマー(R6)に変更した以外は、実施例1と同様に、表面乾燥性及び接着性を評価した。
【0072】
(比較例7:コンクリート用プライマー(R7)の調製及び評価)
ウレタンメタクリレート(A1−1)15質量部、エポキシメタクリレート(A2−1)15質量部、不飽和ポリエステル(1)20質量部、及びMMA 50質量部を混合し、コンクリート用プライマー(R7)を調製した。実施例1で用いたコンクリート用プライマー(1)をコンクリート用プライマー(R7)に変更した以外は、実施例1と同様に、表面乾燥性及び接着性を評価した。
【0073】
(比較例8:コンクリート用プライマー(R8)の調製及び評価)
ウレタンメタクリレート(A1−1)15質量部、エポキシメタクリレート(A2−1)15質量部、不飽和ポリエステル(1)20質量部、MMA 50質量部、及びウレタンプレポリマー(C−1)30質量部を混合し、コンクリート用プライマー(R8)を調製した。実施例1で用いたコンクリート用プライマー(1)をコンクリート用プライマー(R8)に変更した以外は、実施例1と同様に、表面乾燥性及び接着性を評価した。
【0074】
上記で得られたコンクリート用プライマー(1)〜(12)、(R1)〜(R8)の組成及び評価結果を表1〜3に示す。
【0075】
【表1】
【0076】
【表2】
【0077】
【表3】
【0078】
実施例1〜12の本発明のコンクリート用プライマーは、表面乾燥性及び接着性に優れることが確認された。
【0079】
一方、比較例1は本発明の必須成分であるウレタンプレポリマー(C)を含有しない例であるが、接着性に劣ることが確認された。
【0080】
比較例2〜4は前記ウレタンプレポリマー(C)の含有率が上限である35質量%を超える例であるが、表面乾燥性が不十分であることが確認された。
【0081】
比較例5は本発明の必須成分である(メタ)アクリレート(A)及び水酸基を有するアルキル(メタ)アクリレート(B1)を含有しない例であるが、表面乾燥性及び接着性に劣ることが確認された。
【0082】
比較例6は本発明の必須成分である(メタ)アクリレート(A)を含有しない例であるが、接着性に劣ることが確認された。
【0083】
比較例7は本発明の必須成分である水酸基を有するアルキル(メタ)アクリレート(B1)及びウレタンプレポリマー(C)を含有しない例であるが、接着性が不十分であることが確認された。
【0084】
比較例8は本発明の必須成分である水酸基を有するアルキル(メタ)アクリレート(B1)を含有しない例であるが、接着性が不十分であることが確認された。