【解決手段】暫定基準電圧Vmに応じた大きさの電流を第1のラインL1に送出する第1のトランジスタMNiと、ドレイン端及びソース端のうちの一端がゲート端に接続されており、第1のトランジスタに流れた電流に応じた大きさの電流を第2のラインL2に送出すると共に自身のゲート端の電圧を基準電圧Vrefとして生成する第2のトランジスタMNoと、当該第1のライン及び第2のライン間に接続された抵抗部303と、を有する。
前記複数の抵抗素子の各々は、ゲート端が前記第2のトランジスタの前記ゲート端に接続されているトランジスタであることを特徴とする請求項2記載の基準電圧生成回路。
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、上記した基準電圧源回路で温度依存のない基準電圧を生成する為には、差動対で付加される正の温度特性の温度勾配を、バンドギャップ電圧の負の温度特性による温度勾配とは反比例の形態にする必要がある。
【0006】
しかしながら、温度勾配は熱電圧に依存している為、その勾配自体を制御するのは困難であった。
【0007】
また、差動対によって正の温度特性を有する付加電圧を生成するにあたり、温度上昇に伴う電圧の増加率を高める為には、差動対を構成するトランジスタのサイズを大きくする、或いは特許文献1の
図5に示されるように複数の差動対を直列に接続することが考えられる。しかしながら、トランジスタのサイズを大きくすると、基準電圧源回路の面積が増大するという問題が生じる。また、複数の差動対を直列に接続する構成を採用した場合には、差動対の数が増える分だけ電流を流す経路が増えるので、消費電力の増加を招くという問題が生じる。
【0008】
そこで、本発明は、回路規模及び消費電力を増大させることなく、所望の温度勾配の温度特性を有する基準電圧を生成することが可能な基準電圧生成回路及び半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明に係る基準電圧生成回路は、基準電圧を生成する基準電圧生成回路であって、負の温度特性を有する暫定基準電圧を生成する電圧発生部と、正の温度特性を有する補正電圧を前記暫定基準電圧に加えた電圧を前記基準電圧として生成する温度特性制御部と、を有し、前記温度特性制御部は、前記暫定基準電圧に応じた大きさの電流を第1のラインに送出する第1のトランジスタと、ドレイン端及びソース端のうちの一端がゲート端に接続されており、前記第1のトランジスタから送出された電流に応じた大きさの電流を第2のラインに送出すると共に前記一端の電圧を前記基準電圧として出力する第2のトランジスタと、を含む差動対と、一端が前記第2のラインに接続されており、他端が前記第1のラインに接続されている抵抗部と、を有する。
【0010】
また、本発明に係る半導体装置は、基準電圧を生成する基準電圧生成回路が形成されている半導体装置であって、前記基準電圧生成回路は、負の温度特性を有する暫定基準電圧を生成する電圧発生部と、正の温度特性を有する補正電圧を前記暫定基準電圧に加えた電圧を前記基準電圧として生成する温度特性制御部と、を有し、前記温度特性制御部は、前記暫定基準電圧に応じた大きさの電流を第1のラインに送出する第1のトランジスタと、ドレイン端及びソース端のうちの一端がゲート端に接続されており、前記第1のトランジスタから送出された電流に応じた大きさの電流を第2のラインに送出すると共に前記一端の電圧を前記基準電圧として出力する第2のトランジスタと、を含む差動対と、一端が前記第2のラインに接続されており、他端が前記第1のラインに接続されている抵抗部と、を有する。
【発明の効果】
【0011】
本発明は、以下の差動対及び抵抗部により、負の温度特性を有する暫定基準電圧に、正の温度特性を有する補正電圧を加えた電圧を基準電圧として生成するようにしている。つまり、差動対を構成する第1及び第2のトランジスタのうちの第1のトランジスタが、暫定基準電圧に応じた大きさの電流を第1のラインに送出する。そして、ドレイン端及びソース端のうちの一端がゲート端に接続されている第2のトランジスタが、第1のトランジスタが送出した電流に応じた大きさの電流を第2のラインを介して抵抗部に送出すると共に、自身のゲート端の電圧を基準電圧として出力する。
【0012】
かかる構成によれば、差動対で得られた第1の正温度特性を有する電圧に、抵抗部で得られた第2の正温度特性を有する電圧を加算した電圧が第3の正温度特性を有する電圧として、負の温度特性を有する暫定基準電圧に加えられる。つまり、差動対で得られた第1の正温度特性と、抵抗部で得られた第2の正温度特性との組み合わせによって、様々な温度勾配を有する正温度特性の電圧を生成することができるようになり、その結果、基準電圧の温度特性の勾配を任意の勾配に設定することが可能となる。
【0013】
尚、抵抗部では、差動対のトランジスタよりも小さなサイズで、差動対で得られる電圧よりも高い電圧を第2の正温度特性を有する電圧として得ることができる。また、抵抗部を設けることにより、単一の差動対だけでも、温度勾配の急峻な正温度特性を有する電圧を生成することができるので、複数の差動対を縦続接続した構成を採用した場合に比して、電力消費量を抑えることが可能となる。
【0014】
従って、本発明によれば、回路規模及び消費電力を増大させることなく、所望の温度特性を有する基準電圧を生成することが可能となる。
【発明を実施するための形態】
【0016】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
【0017】
図1は、本発明に係る基準電圧生成回路100を含む電源装置400の構成を示すブロック図である。基準電圧生成回路100は、半導体装置としての半導体チップに形成されている。電源装置400は、この半導体チップに形成されているMOS(metal oxide semiconductor)トランジスタからなるロジック回路網を動作させる為の電源電圧として、ロジック回路のPVT(process voltage temperature)バラツキを補正した電源電圧VLを生成する。
【0018】
図1に示すように、電源装置400は、電流源10、電圧発生部20及び温度特性制御部30を含む基準電圧生成回路100と、アンプ200と、を有する。
【0019】
電流源10は、電源電圧Vddを受けてナノアンペアレベルの微小電流を生成し、電圧発生部20及び温度特性制御部30の各々に供給する。
【0020】
電圧発生部20は、電流源10から供給された微小電流を自身のゲート端に受けるpチャネルMOS形のトランジスタMP1と、製造バラツキモニタ部PVMと、を有する。トランジスタMP1のソース端には電源電位Vddが印加されており、そのドレイン端はラインLQを介して製造バラツキモニタ部PVMに接続されている。トランジスタMP1は、電流源10から供給された微小電流に対応したナノアンペアレベルの動作電流IbをラインLQを介して製造バラツキモニタ部PVMに供給する。
【0021】
製造バラツキモニタ部PVMは、pチャネルMOS型のトランジスタMP
L及びnチャネルMOS型のトランジスタMN
Lを含む。トランジスタMP
Lのソース端及びバックゲートにはラインLQが接続されており、そのゲート端には接地電位GNDが印加されている。トランジスタMN
Lのソース端には接地電位GNDが印加されており、ドレイン端がトランジスタMP
Lのドレイン端に接続されている。トランジスタMN
Lのゲート端はラインLQに接続されている。
【0022】
製造バラツキモニタ部PVMは、ラインLQの電圧を暫定基準電圧Vmとして温度特性制御部30に供給する。尚、ラインLQに流れる電流は、ナノアンペアレベルの動作電流Ibであるので、トランジスタMN
L及びMP
Lは共に弱反転領域で動作することになる。ここで、トランジスタMN
L及びMP
LのようなMOS型のトランジスタは、ゲート電圧が閾値電圧より高い場合には、当該ゲート電圧に比例した大きさのドレイン電流を流す、いわゆる強反転領域で動作する。一方、ゲート電圧が閾値電圧より低い場合には、MOS型のトランジスタは弱反転領域で動作し、この際、ドレイン電流はほぼ流れない。
よって、ラインLQの電圧、つまり暫定基準電圧Vmの電圧値は、トランジスタMN
L及びMP
Lのうちで、閾値電圧の高い方のトランジスタのゲート・ソース間電圧となる。これにより、製造バラツキモニタ部PVMは、負の温度特性を有するトランジスタのゲート・ソース間電圧を暫定基準電圧Vmとして温度特性制御部30に供給する。
【0023】
温度特性制御部30は、カレントミラー部301、差動対302、抵抗部303及び電流源304を有する。
【0024】
カレントミラー部301は、pチャネルMOS形のトランジスタMP2及びMP3を含む。トランジスタMP2及びMP3各々のソース端には電源電位Vddが印加されている。トランジスタMP2のゲート端は、自身のドレイン端とトランジスタMP3のゲート端とに接続されている。
【0025】
差動対302は、nチャネルMOS形の一対のトランジスタMNi及びMNoを含む。尚、トランジスタMNi及びMNoのうちのMNiは、暫定基準電圧Vmを自身のゲート端で受ける入力側のトランジスタである。トランジスタMNiのドレイン端はラインL1に接続されており、ソース端はトランジスタMP2のドレイン端及びゲート端に接続されている。トランジスタMNoは、入力された暫定基準電圧Vmに対応した電圧を自身のソース端に生成する出力側のトランジスタである。トランジスタMNoのソース端は自身のゲート端と共にトランジスタMP3のドレイン端に接続されている。更に、トランジスタMNoのソース端及びゲート端はラインLOに接続されている。かかる構成により、差動対302は、トランジスタMNi及びMNo各々のサイズ(チャネルW/チャネル長L)によって決まる電圧値を有する電圧を、暫定基準電圧Vmに加えた電圧を生成する。
【0026】
抵抗部303は、直列に接続された、夫々がnチャネルMOS形のトランジスタMN
r1〜MN
rn(nは自然数)を有する。尚、トランジスタMN
r1〜MN
rn各々のゲート端は共にラインLOに接続されている。トランジスタMN
r1〜MN
rnのうちの先頭のトランジスタMN
r1は、自身のソース端がラインL2を介して差動対302のトランジスタMNoのドレイン端に接続されている。また、トランジスタMN
r1のドレイン端は、次段のトランジスタMN
r2のソース端に接続されている。以下、同様にしてトランジスタMN
r2〜MN
r(n-1)各々のドレイン端は、次段のトランジスタのソース端に接続されている。そして、最後尾のトランジスタMN
rnのドレイン端は、ラインL1及び電流源304に接続されている。かかる構成により、トランジスタMN
r1〜MN
rnは、n個の抵抗素子が直列に接続されたラダー抵抗として機能する。
【0027】
電流源304は、nチャネルMOS型のトランジスタMN1を含む。トランジスタMN1のドレイン端には、抵抗部303の最後尾のトランジスタMN
rnのドレイン端が接続されている。また、トランジスタMN1のソース端には接地電位GNDが印加されており、ゲート端には、電流源10から供給された微小電流が供給されている。よって、トランジスタMN1は、当該微小電流に対応したナノアンペアレベルの動作電流Ibをドレイン・ソース間に流す。
【0028】
上記した構成により、温度特性制御部30では、差動対302のトランジスタMNiが暫定基準電圧Vmに応じた大きさの電流をラインL1に送出する。差動対302のトランジスタMNoは、自身のソース端がゲート端と接続されており、トランジスタMNiから送出された電流に応じた大きさの電流をラインL2を介して抵抗部303に送出しつつ、ドレイン端及びゲート端の電圧を基準電圧Vrefとして出力する。これにより、負の温度特性を有する暫定基準電圧Vmに、正の温度特性を有する補正電圧(以下、補正電圧Vpvと称する)を加えた電圧を生成し、基準電圧Vrefとしてアンプ200に供給する。
【0029】
尚、補正電圧Vpvは、差動対302で暫定基準電圧Vmに加えられた電圧(以下、電圧V1と称する)に、抵抗部303での電圧降下分の電圧(以下、電圧V2と称する)を加えた電圧である。
【0030】
ここで、電圧V1の電圧値は、差動対302が弱反転領域で動作することから、差動対302を為す一対のトランジスタ各々のサイズ、つまりトランジスタMNiのサイズ(以下、サイズKiと称する)及びトランジスタMNoのサイズ(以下、サイズKoと称する)と、環境温度によって定まり、当該サイズが大きいほど高くなる。
【0031】
一方、電圧V2の電圧値は、抵抗部303のトランジスタMN
r1〜MN
rn各々のサイズ(以下、サイズK
r1〜K
rnと称する)によって決定する。電圧V2は、抵抗部303の抵抗値、つまりトランジスタMN
r1〜MN
rnによる合成抵抗値が低いほど高くなる。すなわち、トランジスタMN
r1〜MN
rnの各サイズK
r1〜K
rnが小さいほど、電圧V2の電圧値が高くなる。
【0032】
よって、抵抗部303によれば、差動対302に比べて小さい素子面積で高い電圧値を有する電圧V2を得ることができる。
【0033】
ここで、電圧V1及びV2の各々は、MOSトランジスタのオン抵抗に基づくものであるから、温度上昇に伴いその電圧値が増加する、いわゆる正の温度特性を有する。尚、温度上昇に伴う電圧値の増加率は、電圧V1(V2)の電圧値が高いほど高くなる。
【0034】
従って、例えばトランジスタMNi、MNo、及びMN
r1〜MN
rnを同一のサイズとした場合には、電圧V1の正の温度特性(以下、第1の正温度特性と称する)よりも電圧V2の正の温度特性(以下、第2の正温度特性と称する)の方が、温度増加に伴う電圧値の増加率が高い温度勾配を有することになる。
【0035】
つまり、温度特性制御部30は、互いに温度勾配が異なる第1及び第2の正温度特性を夫々が有する電圧V1に電圧V2を加えることにより、第1及び第2の正温度特性とは異なる第3の正温度特性を有する補正電圧Vpvを生成する。
【0036】
そして、温度特性制御部30は、以下のように、この第3の正温度特性を有する補正電圧Vpvを、負の温度特性を有する暫定基準電圧Vmに加えることにより、温度勾配を緩やかにした温度特性を有する基準電圧Vrefを生成し、これをアンプ200に供給する。
Vref=Vm+Vpv
アンプ200は、自身の出力端子が自身の反転入力端子に接続されている、いわゆるボルテージフォロワであり、温度特性制御部30から供給された基準電圧V
refを利得1で増幅した電圧を、ロジック回路を動作させる為の電源電圧VLとして出力する。
【0037】
以下に、
図1に示す基準電圧生成回路100によって生成される基準電圧Vrefの温度特性について説明する。
【0038】
図2は、抵抗部303のトランジスタの数を7つに限定、つまり抵抗部303をトランジスタMN
r1〜MN
r7で構成し、以下の条件で基準電圧生成回路100を動作させた際に生成される暫定基準電圧Vm及び基準電圧Vref各々の温度特性の一例を表す温度特性図である。
Vdd=3.0ボルト
Ib=10ナノアンペア
Ko、Ki=1
Kr1〜Kr7=0.1
このように、基準電圧生成回路100では、差動対302の出力側のトランジスタMNoに抵抗部303を接続した構成を採用することにより、
図2に示すように、暫定基準電圧Vmの電圧値を増加した基準電圧Vrefが得られる。この際、抵抗部303を構成するトランジスタMN
r1〜MN
r7のサイズは、差動対302のトランジスタMNi及びMNoに比べて小である。
【0039】
以上のことから、基準電圧生成回路100によれば、回路面積を大幅に大きくすることなく、基準電圧の電圧値の高電圧化を図ることが可能となる。
【0040】
更に、基準電圧生成回路100によれば、負温度特性を有する暫定基準電圧Vmに、正温度特性を有する補正電圧Vpvを加えることにより、温度増加につれて低下する暫定基準電圧Vmの電圧値の低下分を抑制した、温度勾配が緩やかな基準電圧Vrefが得られる。例えば
図2に示すように、−20度〜80度の温度範囲での電圧の変動量は、暫定基準電圧Vmでは変動量G1であるのに対して、基準電圧Vrefでは、当該変動量G1よりも小さい変動量G2となる。
【0041】
尚、基準電圧生成回路100では、基準電圧Vrefの温度特性を、差動対302のトランジスタ(MNi、MNo)及び抵抗部303のトランジスタ(MN
r1〜MN
rn)のサイズを変更することによって他の特性に変更させることが可能である。
【0042】
図3は、以下の第1〜第3のサイズ設定の各々毎に、基準電圧Vrefの温度特性を表す温度特性図である。尚、
図3では、第1のサイズ設定での温度特性を実線、第2のサイズ設定での温度特性を破線、第3のサイズ設定での温度特性を一点破線にて表している。
【0043】
[第1のサイズ設定]
Ko=1
Ki=1
MN
r1〜MN
rn=0.1
[第2のサイズ設定]
Ko=1
Ki=8
MN
r1〜MN
rn=0.165
[第3のサイズ設定]
Ko=1
Ki=16
MN
r1〜MN
rn=0.2
図3に示すように、基準電圧生成回路100によれば、差動対302及び抵抗部303を構成する各トランジスタ(MNi、MNo、MN
r1〜MN
rn)のサイズを変更することにより、基準電圧Vrefの温度特性の勾配を変更することが可能となる。
【0044】
次に、基準電圧生成回路100が生成した基準電圧Vrefに基づく電源電圧VLで実際のロジック回路を動作させた際に、当該ロジック回路における製造バラツキや温度特性を補正できるか否かを評価する評価試験について説明する。
【0045】
かかる評価試験では、先ず、ロジック回路として例えばインバータを直列に9段接続してなるリング発振回路を想定する。次に、このリング発振回路を夫々異なる製造プロセスで製造した複数の半導体デバイス、例えば、高速で動作する高速デバイス、低速で動作する低速デバイス、中速で動作する中速デバイスを用意する。そして、半導体デバイス毎に、環境温度を変化させつつ、電源電圧VLによってリング発振回路を動作させ、リング発振回路の発振周波数の変動を計測する。この計測により、温度変化に対する発振周波数の変動量が小さいほど、製造バラツキ及び温度変化に対する補正の精度が高いことを確認できる。
【0046】
図4は、特許文献1の
図2に示される従来の回路で生成された電圧によって上記したリング発振回路を動作させた際の温度変化に対するリング発振回路の発振周波数の変化を表す温度周波数特性図である。また、
図5は、基準電圧生成回路100で生成された電源電圧VLによって上記したリング発振回路を動作させた際の温度変化に対するリング発振回路の発振周波数の変化を表す温度周波数特性図である。
【0047】
尚、
図4及び
図5では、夫々にリング発振回路が形成されている高速デバイス、中速デバイス及び低速デバイスの各々毎に、環境温度を−20℃、25℃、80℃の3点で変化させた際に各温度で得られた、リング発振回路の発振周波数を表している。この際、三角印のプロットは高速デバイスでの温度周波数特性を表し、四角印のプロットは中速デバイスでの温度周波数特性を表し、丸印のプロットは低速デバイスでの温度周波数特性を表す。尚、リング発振回路の発振周波数の初期値を揃える為に、初期状態(中速デバイス、25℃)での電源電位VLが、基準電圧生成回路100と特許文献1の
図4に示される回路とで等しくなるように、夫々の回路内に含まれるトランジスタのサイズが設定されている。
【0048】
図4に示すように、特許文献1に記載の従来の回路では、環境温度が−20℃〜80℃の範囲内での周波数の変動量はH1となる。一方、本発明に係る基準電圧生成回路100では、
図5に示すように環境温度が−20℃〜80℃の範囲内での周波数の変動量は
図4に示す変動量H1よりも小さい変動量H2となる。
【0049】
以上のように、基準電圧生成回路100では、差動対302で得られる第1の正温度特性と、抵抗部303で得られる第2の正温度特性とを組み合わせることにより、暫定基準電圧Vmに加える補正電圧Vpvの温度勾配を調整できるようにしている。更に、抵抗部303によれば、差動対302のトランジスタMNi及びMNoよりも小さなサイズで、この差動対302で得られる電圧よりも高い電圧を、第2の正温度特性を有する電圧として暫定基準電圧Vmに加えることができる。よって、本発明によれば、回路規模及び消費電力を増大させることなく、従来回路よりも電圧値の温度変動量を抑えた基準電圧を生成することが可能となる。
【0050】
尚、
図1に示す実施例では、抵抗部303として、nチャネルMOS型のトランジスタMN
r1〜MN
rnを縦続に接続し、トランジスタMN
r1〜MN
rn各々のゲート端を、ラインLOを介して差動対302のトランジスタMNoのゲート端に共通に接続するようにしている。しかしながら、抵抗部303としては、トランジスタMN
r1〜MN
rnに代えてn個の抵抗素子が直列に接続された構成を採用しても良い。また、抵抗部303としては、その一端がラインL2を介して差動対302のトランジスタMNoのドレイン端に接続されており、他端がラインL1を介して差動対302のトランジスタMNiのドレイン端に接続された単一の抵抗素子であっても良い。
【0051】
また、
図1に示す実施例では、差動対302の第2のトランジスタとしてのトランジスタMNoのソース端をゲート端に接続し、ドレイン端を抵抗部303の一端に接続しているが、トランジスタMNoのドレイン端をゲート端に接続し、ソース端を抵抗部303に接続するようにしても良い。また、
図1に示す実施例では、差動対302の第1のトランジスタとしてのトランジスタMNiのゲート端で暫定基準電圧Vmを受け、そのドレイン端をラインL1を介して抵抗部303の他端に接続しているが、トランジスタMNiのソース端をラインL1を介して抵抗部303の他端に接続するようにしても良い。
【0052】
要するに、基準電圧生成回路100は、負の温度特性を有する暫定基準電圧(Vm)を生成する電圧発生部(20)と、正の温度特性を有する補正電圧を暫定基準電圧に加えた電圧を基準電圧(Vref)として生成する温度特性制御部(30)と、を有し、この温度特性制御部として、以下の差動対及び抵抗部を含むものであれば良いのである。つまり、差動対(302)は、暫定基準電圧に応じた大きさの電流を第1のライン(L1)に送出する第1のトランジスタ(MNi)と、ドレイン端及びソース端のうちの一端がゲート端に接続されており、第1のトランジスタから送出された電流に応じた大きさの電流を第2のライン(L2)に送出すると共に上記一端の電圧を基準電圧として出力する第2のトランジスタ(MNo)と、を含む。そして、抵抗部(303)の一端が第2のラインに接続されており、他端が第1のラインに接続されている。
【0053】
尚、かかる構成によれば、所望の温度特性を有する基準電圧を生成することができるので、基準電圧生成回路100を温度センサとして利用することも可能となる。