【実施例】
【0060】
次に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。以下の実施例、比較例において特にことわりのない限り、各種測定、評価は下記によるものである。
【0061】
<樹脂複合体粒子の吸光度測定>
樹脂複合体粒子の吸光度は、光学用白板ガラス製セル(光路長10mm)に0.01wt%に調製した樹脂複合体粒子分散液(分散媒:水)を入れ、瞬間マルチ測光システム(大塚電子社製、MCPD−3700)を用いて、金の場合570nm、白金の場合400nmの吸光度を測定した。
【0062】
<固形分濃度測定及び金属担持量の測定>
磁製るつぼに濃度調整前の分散液1gを入れ、70℃、3時間熱処理を行った。熱処理前後の重量を測定し、下記式により固形分濃度を算出した。
【0063】
固形分濃度(wt%)=[乾燥後の重量(g)/ 乾燥前の重量(g)]× 100
【0064】
また、上記熱処理後のサンプルを、さらに500℃、5時間加熱処理を行い、加熱処理前後の重量を測定し、下記式より金属担持量を算出した。
金属担持量(wt%)=
[500℃加熱処理後の重量(g)/500℃加熱処理前の重量(g)]×100
【0065】
<樹脂複合体粒子の平均粒子径の測定>
ディスク遠心式粒度分布測定装置(CPS Disc Centrifuge DC24000 UHR、CPS instruments, Inc.社製)を用いて測定した。測定は、樹脂複合体粒子を水に分散させた状態で行った。
【0066】
<金属粒子の平均粒子径の測定>
樹脂複合体粒子分散液をカーボン支持膜付き金属性メッシュへ滴下して作成した基板を、電界放出形走査電子顕微鏡(FE−SEM;日立ハイテクノロジーズ社製、SU−9000)により観測した画像から、任意の100個の金属粒子の面積平均径を測定した。
【0067】
<イムノクロマト法による評価>
各実施例で作製した樹脂複合体粒子標識抗体分散液を用いて、下記に示すイムノクロマト法での測定を行い、樹脂複合体粒子分散液の性能を評価した。
(評価方法)
評価は、インフルエンザA型評価用モノクロスクリーン(アドテック社製)を用い、5分後、10分後、15分後の発色レベルを比較した。性能評価において、抗原はインフルエンザA型陽性コントロール(APC)の2倍希釈列(1倍〜1024倍)を用いた(APC希釈前のウィルスの濃度は5000FFU/ml)。
(評価手順)
96ウェルプレートの各ウェルに、樹脂複合体粒子標識抗体分散液を3μlずつ入れ、APCの2倍希釈列(1倍〜1024倍)及び陰性コントロールを、それぞれ100μl混和した。次に、インフルエンザA型評価用モノクロスクリーンに、この混和した分散液を50μl添加し、5分後、10分後、15分後の発色レベルを評価した。15分後の発色レベルが0.5以上のものを「良好」と判定した。発色レベルは、金コロイド判定用色見本(アドテック社製)を用いて判定した。
【0068】
[作製例1]
<樹脂粒子の合成>
トリオクチルアンモニウムクロリド(1.20g)及びポリエチレングリコールメチルエチルエーテルメタクリレート(10.00g)を300gの純水に溶解した後、2−ビニルピリジン(48.00g)及びジビニルベンゼン(2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(0.250g)を約2分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径377nmの樹脂粒子A−1を得た。遠心分離(9000rpm、40分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液B−1を得た。
<樹脂複合体粒子の合成>
作製例1で作製した10wt%樹脂粒子分散液B−1(92.0g)に純水255gを加えた後、400mM塩化金酸水溶液(147g)を加え、室温で3時間撹拌した。この混合液を24時間静置した後、遠心分離(3000rpm、30分)により樹脂粒子A−1を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液C−1を調製した。
【0069】
次に、純水1580gに前記2.5wt%金イオン吸着樹脂粒子分散液C−1(43.3g)を加え、150rpm、3℃で撹拌しながら、528mMのジメチルアミンボラン水溶液(10.0g)を2分かけて滴下した後、3℃で3時間、室温で2時間撹拌することで、平均粒子径399nmの樹脂複合体粒子D−1を得た。樹脂複合体粒子D−1を遠心分離(3000rpm、30分)により沈殿させ、上澄みを除去した後、1620gの純水に再度分散させる作業を3回繰り返した後、透析処理により精製し、濃度調整することで1wt%の樹脂複合体粒子分散液E−1を得た。樹脂複合体粒子分散液E−1中の樹脂複合体粒子F−1の吸光度は上記方法に従って測定した結果、0.96であった。また、樹脂複合体粒子F−1における金粒子の平均粒子径は25.5nm、金の担持量は53.3wt%であった。
【0070】
[作製例2]
<樹脂粒子の合成>
トリオクチルアンモニウムクロリド(1.00g)及びポリエチレングリコールメチルエチルエーテルメタクリレート(10.00g)を300gの純水に溶解した後、2−ビニルピリジン(48.00g)及びジビニルベンゼン(2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(0.50g)を約2分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径433nmの樹脂粒子A−2を得た。遠心分離(9000rpm、40分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液B−2を得た。
【0071】
<樹脂複合体粒子の合成>
樹脂粒子分散液B−1の代わりに樹脂粒子分散液B−2を用いる以外は、作製例1と同様にして、金イオン吸着樹脂粒子分散液C−2、樹脂複合体粒子D−2、樹脂複合体粒子分散液E−2および樹脂複合体粒子F−2を作製した。
【0072】
樹脂複合体粒子D−2の平均粒子径438nmであり、樹脂複合体粒子F−2の吸光度は0.99であった。また、樹脂複合体粒子F−2における金粒子の平均粒子径は24.0nm、金の担持量は51.1wt%であった。
【0073】
[作製例3]
<樹脂複合体粒子の合成>
作製例1で作製した10wt%樹脂粒子分散液B−1(18.2g)に純水54gを加えた後、400mM塩化白金酸水溶液(20g)を加え、30℃で3時間撹拌した。この混合液を24時間静置した後、遠心分離(3000rpm、30分)により樹脂粒子A−1を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化白金酸を除去した。その後、濃度調整を行い、5wt%白金イオン吸着樹脂粒子分散液C−3を調製した。
【0074】
次に、純水1392gに5wt%白金イオン吸着樹脂粒子分散液C−3(20.6g)を加え、150rpm、3℃で撹拌しながら、132mMのジメチルアミンボラン水溶液(40g)を20分かけて滴下した後、3℃で3時間、室温で2時間撹拌することで、平均粒子径408nmの樹脂複合体粒子D−3を得た。樹脂複合体粒子D−3を遠心分離(3000rpm、10分)により沈殿させ、上澄みを除去した後、1400gの純水に再度分散させる作業を3回繰り返した後、透析処理により精製し、濃度調整することで1wt%の樹脂複合体粒子分散液E−3を得た。樹脂複合体粒子分散液E−3中の樹脂複合体粒子F−3の吸光度は上記方法に従って測定した結果、1.61であった。また、樹脂複合体粒子F−3における白金粒子の平均粒子径は5.0nm未満、白金の担持量は37.4wt%であった。
【0075】
[作製例4]
<樹脂複合体粒子の合成>
樹脂粒子分散液B−1の代わりに樹脂粒子分散液B−2を用いる以外は、作製例3と同様にして、白金イオン吸着樹脂粒子分散液C−4、樹脂複合体粒子D−4、樹脂複合体粒子分散液E−4および樹脂複合体粒子F−4を作製した。
【0076】
樹脂複合体粒子D−4の平均粒子径459nmであり、樹脂複合体粒子F−4の吸光度は1.66であった。また、樹脂複合体粒子F−4における白金粒子の平均粒子径は5nm未満、白金の担持量は37.8wt%であった。
【0077】
[試薬等]
実施例、比較例では以下の試薬等を使用した。
抗インフルエンザA型モノクローナル抗体(7.15mg/mL/PBS):アドテック株式会社製
結合用緩衝液a:100mM ホウ酸溶液をHClでpH≒3に調整した。
結合用緩衝液b:100mM ホウ酸溶液をNaOHでpH≒8.5に調整した。
ブロック用緩衝液a:1重量%牛血清アルブミン溶液をHClでpH≒5に調整した。
ブロック用緩衝液b:1重量%牛血清アルブミン溶液をHClでpH≒8.5に調整した。
洗浄用緩衝液:5mMトリス溶液をHClでpH≒8.5に調整した。
保存用緩衝液:洗浄用緩衝液に、スクロースを10重量%濃度になるように添加した。
インフルエンザA型陽性コントロール(APC):インフルエンザA型ウィルス不活化抗原(アドテック株式会社製)を、検体処理液(アドテック株式会社製)を用いて100倍希釈して調製した。APCの抗原濃度は、5000FFU/mlに相当する。
陰性コントロール:検体処理液(アドテック株式会社製)
【0078】
[実施例1]
(結合工程)
マイクロチューブ[アイビス(登録商標;アズワン社製)2mL;以下同様である]に、抗インフルエンザA型モノクローナル抗体100μgを投入し、結合用緩衝液aを0.9mL添加した。転倒混和によって十分に混合した後、樹脂複合体粒子分散液E−1を0.1mL添加し、室温で3時間かけて転倒撹拌を行い、樹脂複合体粒子で標識した抗インフルエンザA型モノクローナル抗体を含む標準抗体分散液G−1を得た。
【0079】
(ブロック工程)
次に、標準抗体分散液G−1を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣にブロック用緩衝液aを1mL添加し、10〜20秒間かけて超音波分散処理を行い、さらに、室温で2時間かけて転倒撹拌を行い、標準抗体分散液H−1を得た。
【0080】
(洗浄処理)
次に、標準抗体分散液H−1を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に洗浄用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行った。この操作を3回繰り返し、洗浄処理とした。
【0081】
(保存処理)
次に、氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に保存用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行うことによって、標準抗体分散液I−1を得た。
【0082】
(イムノクロマト法による評価)
作製した標識抗体分散液I−1を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表1に示した。
【0083】
【表1】
【0084】
上記表1から、標識抗体分散液I−1は、512倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
【0085】
[実施例2]
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−2を用いる以外は、実施例1と同様にして、標準抗体分散液G−2,H−2、I−2を得た。
【0086】
(イムノクロマト法による評価)
作製した標識抗体分散液I−2を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表2に示した。
【0087】
【表2】
【0088】
上記表2から、標識抗体分散液I−2は、512倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
【0089】
[実施例3]
結合工程において結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、実施例1と同様にして、標準抗体分散液G−3,H−3、I−3を得た。
【0090】
(イムノクロマト法による評価)
作製した標識抗体分散液I−3を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表3に示した。
【0091】
【表3】
【0092】
上記表3から、標識抗体分散液I−3は、1024倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
【0093】
[実施例4]
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−2を用い、結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、実施例1と同様にして、標準抗体分散液G−4,H−4、I−4を得た。
【0094】
(イムノクロマト法による評価)
作製した標識抗体分散液I−4を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表4に示した。
【0095】
【表4】
【0096】
上記表4から、標識抗体分散液I−4は、1024倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
【0097】
[比較例1]
(結合工程)
マイクロチューブに、樹脂複合体粒子分散液E−1を0.1mL投入し、結合用緩衝液aを0.9mL添加した。転倒混和によって十分に混合した後、抗インフルエンザA型モノクローナル抗体100μgを添加し、室温で3時間かけて転倒撹拌を行い、樹脂複合体粒子で標識した抗インフルエンザA型モノクローナル抗体を含む標準抗体分散液G−5を得た。
【0098】
(ブロック工程)
次に、標準抗体分散液G−5を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣にブロック用緩衝液aを1mL添加し、10〜20秒間かけて超音波分散処理を行い、さらに、室温で2時間かけて転倒撹拌を行い、標準抗体分散液H−5を得た。
【0099】
(洗浄処理)
次に、標準抗体分散液H−5を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に洗浄用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行った。この操作を3回繰り返し、洗浄処理とした。
【0100】
(保存処理)
次に、氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に保存用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行うことによって、標準抗体分散液I−5を得た。
【0101】
(イムノクロマト法による評価)
作製した標識抗体分散液I−5を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表5に示した。
【0102】
【表5】
【0103】
上記表5から、標識抗体分散液I−5は、256倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
【0104】
[比較例2]
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−2を用いる以外は、比較例1と同様にして、標準抗体分散液G−6,H−6、I−6を得た。
【0105】
(イムノクロマト法による評価)
作製した標識抗体分散液I−6を用いて、イムノクロマト法での測定を行い性能を評価した。その結果を表6に示した。
【0106】
【表6】
【0107】
上記表6から、標識抗体分散液I−6は、256倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
【0108】
[比較例3]
結合工程において結合用緩衝液aの代わりに結合用緩衝液bを用いる以外は、比較例1と同様にして、標準抗体分散液を作製しようとしたところ、結合工程において樹脂複合体粒子が凝集してしまい、標準抗体分散液を得ることが困難であった。
【0109】
[比較例4]
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−2を用い、結合用緩衝液aの代わりに結合用緩衝液bを用いる以外は、比較例1と同様にして、標準抗体分散液を作製しようとしたところ、結合工程において樹脂複合体粒子が凝集してしまうため、標準抗体分散液を得ることが困難であった。
【0110】
[実施例5]
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−3を用い、結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、実施例1と同様にして、標準抗体分散液G−7,H−7、I−7を得た。
【0111】
(イムノクロマト法による評価)
作製した標識抗体分散液I−7を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表7に示した。
【0112】
【表7】
【0113】
上記表7から、標識抗体分散液I−7は、1024倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
【0114】
[実施例6]
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−4を用い、結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、実施例1と同様にして、標準抗体分散液G−8,H−8、I−8を得た。
【0115】
(イムノクロマト法による評価)
作製した標識抗体分散液I−8を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表8に示した。
【0116】
【表8】
【0117】
上記表8から、標識抗体分散液I−8は、1024倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
【0118】
[比較例5]
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−3を用い、結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、比較例1と同様にして、標準抗体分散液G−9,H−9、I−9を得た。
【0119】
(イムノクロマト法による評価)
作製した標識抗体分散液I−9を用いて、イムノクロマト法での測定を行い性能を評価した。その結果を表9に示した。
【0120】
【表9】
【0121】
上記表9から、標識抗体分散液I−9は、512倍希釈の抗原に対して、15分後の発色レベルが0.5以上となり、良好な発色を示すことが確認された。
【0122】
以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。