【解決手段】一実施の形態に係る発光装置(100)は、発光素子(10)と、発光素子(10)の上方に配置され、発光素子(10)の上面の直上に位置する第1領域(20a)と第1領域(20a)より側方に位置する第2領域(20b)と、からなる透光性部材(20)と、発光素子(10)の側面と透光性部材の第2領域(20b)の下面とを被覆する導光部材(30)と、導光部材(30)の外面を被覆する光反射性部材(40)とを備え、透光性部材(20)は、蛍光物質(25)と、蛍光物質ではない光散乱材(28)とを含有しており、蛍光物質(25)の濃度は、第2領域(20b)より第1領域(20a)において高く、光散乱材(28)の濃度は、第1領域(20a)より第2領域(20b)において高い。
発光素子の上方に、前記発光素子の上面の直上に位置する第1領域と、前記第1領域より側方に位置する第2領域と、を含む透光性部材を、前記発光素子の側面と前記透光性部材の第2領域の下面とを導光部材で被覆して設ける工程と、
前記導光部材の外面を光反射性部材で被覆する工程と、を備え、
前記透光性部材は、蛍光物質と、蛍光物質ではない光散乱材と、を含有しており、
前記蛍光物質の濃度は、前記第2領域より前記第1領域において高く、
前記光散乱材の濃度は、前記第1領域より前記第2領域において高い発光装置の製造方法。
【発明を実施するための形態】
【0010】
以下、発明の実施の形態について適宜図面を参照して説明する。但し、以下に説明する発光装置及びその製造方法は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、一の実施の形態において説明する内容は、他の実施の形態にも適用可能である。また、図面が示す部材の大きさ及び位置関係などは、説明を明確にするため、誇張していることがある。
【0011】
なお、各図中、発光装置における、幅方向をX方向、奥行き方向をY方向、上下(厚さ)方向をZ方向として示す。このX、Y、Z方向(軸)は其々、他の2方向(軸)と垂直な方向(軸)である。より詳細には、右方向をX+方向、左方向をX−方向、奥方向をY+方向、手前方向をY−方向、上方向をZ+方向、下方向をZ−方向としている。発光装置の主発光方向は上方向である。側方とは、例えば、幅方向と奥行き方向を含む面すなわちXY平面に平行な方向である。
【0012】
また、可視波長域は波長が380nm以上780nm以下の範囲とし、青色域は波長が420nm以上480nm以下の範囲、緑色域は波長が500nm以上560nm以下の範囲、黄色域は波長が560nmより長く590nm以下の範囲、赤色域は波長が610nm以上750nm以下の範囲とする。
【0013】
また、本明細書における「透光性」とは、発光素子の発光ピーク波長における光透過率が、60%以上であることを言い、70%以上であることが好ましく、80%以上であることがより好ましい。本明細書における「光反射性」とは、発光素子の発光ピーク波長における光反射率が、60%以上であることを言い、70%以上であることが好ましく、80%以上であることがより好ましい。
【0014】
<実施の形態1>
図1Aは、実施の形態1に係る発光装置100の概略上面図である。
図1Bは、
図1Aに示す発光装置100のA−A断面における概略断面図である。
図1Cは、
図1Aに示す発光装置100のB−B断面における概略断面図である。
【0015】
図1A〜1Cに示すように、実施の形態1の発光装置100は、発光素子10と、透光性部材20と、導光部材30と、光反射性部材40と、を備えている。透光性部材20は、発光素子10の上方に配置されている。透光性部材20は、発光素子10の上面の直上に位置する第1領域20aと、第1領域20aより側方に位置する第2領域20bと、からなっている。導光部材30は、発光素子10の側面と透光性部材の第2領域20bの下面とを被覆している。光反射性部材40は、導光部材30の外面を被覆している。透光性部材20は、蛍光物質25と、蛍光物質ではない光散乱材28と、を含有している。そして、蛍光物質25の濃度は、第2領域20bより第1領域20aにおいて高くなっている。また、光散乱材28の濃度は、第1領域20aより第2領域20bにおいて高くなっている。
【0016】
このような構成を有する発光装置100は、透光性部材20内の蛍光物質25の濃度が第2領域20bより第1領域20aにおいて高くなっていることにより、蛍光物質25が発する熱を熱伝導性の比較的高い発光素子10を介して引きやすく、第2領域20bにおける発熱と熱の停滞を抑えることができる。これにより、熱による第2領域20bの劣化を抑制することができる。また、ひいては、第2領域20bに隣接する導光部材30の劣化を抑制することができる。よって、発光装置100の信頼性を高めることができる。また、発光装置100は、透光性部材20内の光散乱材28の濃度が第1領域20aより第2領域20bにおいて高くなっていることにより、発光素子10の光が第2領域20b内において散乱されやすくなり、発光装置100の斜め上方向への発光素子10の光の指向性が弱められ、発光色度分布のむらを抑えることができる。また、光散乱材28による光散乱は発光素子10の光の蛍光物質25への入射機会を増大させるため、光散乱材28の濃度の高い第2領域20bにおいて波長変換率が相対的に高くなることも、発光色度分布のむらの抑制に寄与する。さらに、光散乱材28によって、第2領域20bの熱伝導性が高められる場合もある。なお、光散乱材28は、蛍光物質ではないため、発熱が少なく、高濃度であっても熱による第2領域20bの劣化の原因になりにくい。以上のようなことから、発光装置100は、蛍光物質25から熱を引きやすく且つ発光色度分布にむらの少ない発光装置とすることができる。
【0017】
なお、蛍光物質25及び光散乱材28の濃度は、その作用の観点において、体積濃度であることが好ましい。後述の第2の蛍光物質26の濃度についても同様である。
【0018】
また、
図1Aに示すように、本実施の形態1において、透光性部材20の上面視形状は矩形状であり、導光部材30の上面視形状は円形状である。このため、第2領域20bは、導光部材30の直上に位置する領域と、それより側方で且つ光反射性部材40の直上に位置する領域と、を有している。この導光部材30の直上に位置する領域は、高放射束の発光素子10の光が導光部材30から入射して蛍光物質25が発光しやすい。また、一般的に、光反射性部材40は、光反射性を付与するための顔料などを多量に含有しており、高い透光性を要する導光部材30よりも熱伝導性が高い。このようなことから、第2領域20bの中でも特に、導光部材30の直上に位置する領域は、高温になりやすく劣化しやすい領域となる。したがって、第2領域20b内において高温になりやすい領域は、第2領域20bの下面の導光部材30による被覆範囲に依存する。
【0019】
また、放熱及び発光色度分布の均一性の観点において、上面視における発光素子10の中心と透光性部材20の中心とは、略一致していることが好ましい。上面視における発光素子10の中心と透光性部材20の中心が離間している場合、その離間距離は、両中心が一致しているときの第2領域20bの最小幅の1/2以下であることが好ましく、1/4以下であることがより好ましい。なお、1つの透光性部材に複数の発光素子が接続される場合の発光素子の中心は、上面視における最も外側に位置する複数の発光素子の外側の輪郭を結んで形成される仮想の形状の中心で考えるものとする。
【0020】
以下、発光装置100の好ましい形態について詳述する。
【0021】
光散乱材28は、短波長光の散乱強度が飛躍的に高まるレイリー散乱を発現可能であることにより、第2領域20bにおける発光素子10の光の散乱を効果的に得られ、発光装置100の発光色度分布のむらを少なくしやすい。したがって、光散乱材28の平均粒径は、発光素子10の発光ピーク波長より小さいことが好ましく、発光素子10の発光ピーク波長の1/5以下であることがより好ましく、発光素子10の発光ピーク波長の1/10以下であることがよりいっそう好ましい。具体的な数値では、光散乱材28の平均粒径は、500nmより小さいことが好ましく、100nmより小さいことがより好ましく、50nmより小さいことがよりいっそう好ましい。光散乱材28の平均粒径の下限は、例えば1nmである。なお、この平均粒径は、1次粒子径であることが好ましいが、現実的には粒子の凝集を無視できず、2次粒子径を含むものとする。平均粒径は、D50で定義することができる。また、平均粒径は、画像解析法(走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM))、レーザ回折・散乱法、動的光散乱法、X線小角散乱法などにより測定することができる。なかでも、部材中に存在している粒子の粒径を測定することを考慮すると、画像解析法が好ましい。画像解析法は、例えば、JIS Z 8827−1:2008に準ずる。
【0022】
図1B,1Cに示すように、実施の形態1の発光装置100では、蛍光物質25の濃度は、第2領域20bの側端部において最も低く、第1領域20aの中心部において最も高くなっている。透光性部材20は、その側端すなわち側面に近づくにつれて、発光素子10からの光路長が長くなって、発光素子10の光の蛍光物質25による波長変換率が高くなりやすく、また発光素子10からの距離が大きくなるため、放熱性が低くなりやすい。したがって、蛍光物質25が、第2領域20bの側端部において低濃度に、第1領域20aの中心部において高濃度に分布していることにより、発光色度分布のむらを抑えやすく、蛍光物質25から熱を引きやすくなる。特に、
図1B,1Cに示す例では、蛍光物質25は、第1領域20aの中心部から第2領域20bの側端部にわたって含有されている。より詳細には、蛍光物質25は、第1領域20aの中心部から第2領域20bの側端部まで連続的に含有されている。そして、蛍光物質25の濃度は、第2領域20bの側端から第1領域20aの中心に近づくにつれて徐々に高くなっている。なお、第1領域20aの「中心部」とは、第1領域20aの中心から透光性部材20の最大幅(上面視矩形状であれば対角線の幅)の5%以内の範囲を含むものとする。また、第2領域20bの「側端部」とは、第2領域20bの側端から透光性部材20の最大幅(上面視矩形状であれば対角線の幅)の5%以内の範囲を含むものとする。
【0023】
図1B,1Cに示すように、実施の形態1の発光装置100では、光散乱材28の濃度は、第1領域20aの中心部において最も低く、第2領域20bの側端部において最も高くなっている。このように、光散乱材28が蛍光物質25と逆の濃度関係で透光性部材20内に分布することにより、透光性部材20内における発光素子10の光の散乱及び/若しくは波長変換率の均一性を高めることができ、発光色度分布のむらを抑えやすい。特に、
図1B,1Cに示す例では、光散乱材28は、第1領域20aの中心部及び第2領域20bの側端部に含有されている。より詳細には、光散乱材28は、第1領域20aの中心部から第2領域20bの側端部まで連続的に含有されている。そして、光散乱材28の濃度は、第1領域20aの中心から第2領域20bの側端に近づくにつれて徐々に高くなっている。
【0024】
図1B,1Cに示すように、実施の形態1の発光装置100では、導光部材30は、蛍光物質を含有していない。これにより、導光部材30内での発熱が抑えられる。したがって、蛍光物質25が発する熱、特に第2領域20bの熱を導光部材30を介して引きやすくすることができる。また、導光部材30の劣化の抑制も期待できる。
【0025】
図1B,1Cに示すように、発光素子10は、透光性の基板11と、半導体積層体15と、を有している。そして、発光素子10の上面は、基板11の面である。半導体積層体15は、発光素子10の光源と熱源であり、数μm程度と比較的薄い。このため、基板11が半導体積層体15と透光性部材20の間に介在することにより、半導体積層体15の光が基板11内を伝搬して側方へ適度に拡がり、第2領域20bを有する透光性部材20に対して好適な配光となって、発光色度分布のむらを抑えやすくなる。また、透光性部材20が半導体積層体15から遠ざかることにより、半導体積層体15が発する強い光と熱による影響が緩和され、透光性部材20の劣化を抑えることができる。
【0026】
図1B,1Cに示すように、発光素子10の下面には、電極50が設けられている。そして、電極50は、当該発光装置100の下面の一部を構成している。このような発光装置100は、例えばチップ・サイズ・パッケージ(CSP;Chip Size Package)タイプと呼ばれ、PLCC(Plastic Leaded Chip Carrier)タイプに比べて小型に形成することができる。電極50は、金属材料で構成され、発光素子10への給電用の端子であると共に、発光装置100の放熱経路の観点においても重要な要素である。発光装置100が小型であれば、発熱部から電極50までの距離が小さくなりやすく、電極50を介した放熱性を高めることができる。
【0027】
(発光装置100の製造方法)
実施の形態1の発光装置100の製造方法は、発光素子10の上方に、発光素子10の上面の直上に位置する第1領域20aと、第1領域20aより側方に位置する第2領域20bと、を含む透光性部材20を、発光素子10の側面と透光性部材の第2領域20bの下面とを導光部材30で被覆して設ける工程(第1工程)と、導光部材30の外面を光反射性部材40で被覆する工程(第2工程)と、を備える。ここで、透光性部材20は、蛍光物質25と、蛍光物質ではない光散乱材28と、を含有しており、蛍光物質25の濃度は、第2領域20bより第1領域20aにおいて高く、光散乱材28の濃度は、第1領域20aより第2領域20bにおいて高い。
【0028】
このような構成を有する発光装置100の製造方法は、蛍光物質25と光散乱材28の分布を好適な形態に制御して透光性部材20を準備し、その透光性部材20と発光素子10及び導光部材30とを好適な関係に接続することができる。したがって、蛍光物質25から熱を引きやすく且つ発光色度分布にむらの少ない発光装置100を生産性良く製造することができる。
【0029】
図2A,2B,2C,2Dは其々、実施の形態1に係る発光装置100の製造方法における第1段階、第2段階、第3段階、第4段階を示す概略断面図である。ここでは、第1工程は第1段階と第2段階を含み、第2工程は第3段階を含む。実施の形態1の発光装置100は、以下のように、発光装置の複合体150を作製し、その発光装置の複合体150を分割することにより、より生産性良く製造することができる。
【0030】
図2Aに示すように、第1段階は、透光性部材20を準備する段階である。具体的には、透光性部材20は、例えば、蛍光物質25と光散乱材28を含有するシート部材209を作製し、そのシート部材209を分割することで得られる。つまり、このシート部材209は、透光性部材20の複合体である。本実施の形態1の第1段階では、透光性部材20は、シート部材209の一部として準備される。シート部材209を作製するには、蛍光物質25を含有する第1要素シートと、光散乱材28を含有する第2要素シートと、の一方若しくは両方を予め作製することが好ましい。これにより、シート部材209内ひいては透光性部材20内の蛍光物質25と光散乱材28の分布を好適な形態に制御しやすく、透光性部材20を生産性良く準備しやすくなる。特に、要素シートは金型を用いて成形することが好ましい。これにより、シート部材209内ひいては透光性部材20内の蛍光物質25と光散乱材28の分布を好適な形態により制御しやすく、透光性部材20をより生産性良く準備しやすくなる。また、2つの要素シートを接合する場合、2つの要素シートの少なくとも一方(好ましくは両方)の主材は完全に硬化若しくは固化していない状態であることが、要素シートの接合強度及び/若しくはシート部材209内の歪み抑制の観点において好ましい。また、シート部材209における接合された2つの要素シートの境界すなわち界面は、観察されることもあるが、同観点において観察されないことが好ましい。なお、「完全に硬化若しくは固化していない状態」とは、硬化若しくは固化が途中まで進行している状態であって、例えば、半硬化、Bステージ、ゲル状、半固化などと呼ばれる状態である。また、第1及び第2要素シートは、
図2Aに示すように、起伏のある形状に限られず、接合後に蛍光物質25と光散乱材28の所定の分布が得られれば形状は適宜選択できる。
【0031】
図2Bに示すように、第2段階は、透光性部材20を発光素子10の上方に導光部材30を介して設ける段階である。具体的には、まず、導光部材の液状材料301を、発光素子10と透光性部材20(本実施の形態1ではシート部材209)の一方若しくは両方に塗布する。そして、発光素子10と透光性部材20を導光部材の液状材料301を介して接続させた後、導光部材の液状材料301を硬化若しくは固化させる。導光部材の液状材料301を透光性部材20に塗布する場合には、第1領域20aとなる透光性部材20の蛍光物質25を高濃度に含有する領域上に導光部材の液状材料301を塗布した後、その導光部材の液状材料301に発光素子10の主発光面(のちに上面となる面)を接続させる。導光部材の液状材料301を発光素子10に塗布する場合には、発光素子10の主発光面(のちに上面となる面)に導光部材の液状材料301を塗布した後、その導光部材の液状材料301に第1領域20aとなる透光性部材20の蛍光物質25を高濃度に含有する領域を接続させる。なお、このとき、導光部材の液状材料301を、第2領域20b上に至らせ、且つ発光素子10の側面に這い上がらせるようにする。導光部材の液状材料301の塗布方法は、ディスペンス方式、転写方式、ディッピング方式などを用いることができる。また、透光性部材20(本実施の形態1ではシート部材209)における2つの主面(
図2B中の上面/下面)のうち発光素子10を接続させる面は、いずれでもよいが、蛍光物質25の濃度が高い側の面とすることが好ましい。これにより、蛍光物質25が発する熱を発光素子10を介して引きやすくすることができる。また、蛍光物質25を外部環境から遠ざけて保護しやすく、例えば水分などに弱い蛍光物質25を用いた場合にも信頼性の高い発光装置とでき好ましい。
【0032】
図2Cに示すように、第3段階は、導光部材30の外面を光反射性部材40で被覆する段階である。具体的には、光反射性部材の液状材料401を導光部材30の外面に塗布して硬化若しくは固化させる。なお、本実施の形態1では、複数の発光素子10の導光部材30の外面を連続して被覆することにより、光反射性部材の複合体409として形成する。このとき、光反射性部材の液状材料401を発光素子10の主発光面とは反対側の面(のちに発光装置の下面となる面であって、正負電極は除く部分)上まで至らせることが好ましい。光反射性部材40が導光部材30の外面から発光素子10の主発光面とは反対側の面(のちに下面となる面であって、正負電極は除く部分)まで連続して被覆することにより、主発光方向への光の取り出し効率を高めることができる。光反射性部材40は、圧縮成形、トランスファ成形、射出成形、ポッティングなどにより形成することができる。電極50を光反射性部材40から露出させるには、光反射性部材40の量を少なめに調節したり、光反射性部材40を多めに形成した後に研削したり、電極50の表面をマスクした状態で光反射性部材40を形成したりする。
【0033】
図2Dに示すように、第4段階は、発光装置の複合体150を分割する段階である。具体的には、発光装置の複合体150の所定位置すなわち発光素子10間のシート部材209と光反射性部材の複合体409の積層領域を線状若しくは格子状に切断して、発光装置100を個片化する。発光装置の複合体150の切断には、例えばダイサー、超音波カッター、トムソン刃などを用いることができる。なお、発光装置100を1つずつ別個に製造する場合には、本第4段階は省略することができる。
【0034】
<実施の形態2>
図3Aは、実施の形態2に係る発光装置200の概略上面図である。
図3Bは、
図3Aに示す発光装置200のC−C断面における概略断面図である。
図3Cは、
図3Aに示す発光装置200のD−D断面における概略断面図である。以下、この発光装置200における、実施の形態1の発光装置100と異なる点について詳述し、実施の形態1の発光装置100と実質的に同様の点については適宜説明を省略する。
【0035】
図3B,3Cに示すように、実施の形態2の発光装置200では、第2領域22bは、蛍光物質含有領域22cと、蛍光物質含有領域22cより側方に位置する蛍光物質非含有領域22dとを有している。すなわち、これは、第2領域22b内における蛍光物質25の分布範囲が発光素子10側に片寄っている状態である。これにより、第2領域22b内において、蛍光物質25による発熱領域と、非発熱領域とを側方に明確に区分することができ、発熱領域から非発熱領域への熱引きの促進が期待できる。蛍光物質含有領域22cと蛍光物質非含有領域22dとの境界は、透光性部材22の厚さ方向すなわちZ方向に平行であることが最も好ましいが、製造上の加工精度などにより、内側又は外側への10°以下の傾きは含まれるものとする。なお、蛍光物質含有領域22cは、第1領域22a内に連続している。特に、
図3B,3Cに示す例では、蛍光物質含有領域22cは、第1領域22aの全域に及んでいる。また、
図3B,3Cに示す例では、蛍光物質含有領域22c中の蛍光物質25の濃度は、全域において均一であるが、場所によって変わっていてもよい。例えば、第1領域22a内における蛍光物質含有領域22c中の蛍光物質25の濃度が、第2領域22b内における蛍光物質含有領域22c中の蛍光物質25の濃度より高い場合が挙げられる。
【0036】
また、蛍光物質25は、第2領域22bに含有されていなくてもよい。これにより、第2領域22bにおける発熱が最も抑えられやすく、熱による第2領域22bの劣化をよりいっそう抑制することができる。
【0037】
図3B,3Cに示すように、実施の形態2の発光装置200では、導光部材32は、第2の蛍光物質26を含有している。これにより、第2領域22bにおける蛍光物質25の不足分を補って、発光色度分布のむらを抑えやすい。特に、第2領域22bが蛍光物質非含有領域22dを有する場合に好適である。そして、
図3B,3Cに示す例では、導光部材32中の第2の蛍光物質26の濃度は、上方側より下方側において高くなっている。これにより、導光部材32の上部すなわち第2領域22b側における発熱が抑えられ、蛍光物質25が発する熱、特に第2領域22bの熱を導光部材32へ引きやすくすることができる。また、上述のように発光素子10の上面が基板11の面である場合には、第2の蛍光物質26が発する熱を下面側、半導体積層体15側へ引きやすくすることができる。
【0038】
図3A〜3Cに示すように、実施の形態2の発光装置200では、透光性部材22の側面は、光反射性部材42に被覆されている。これにより、透光性部材22から側方への光の漏れを抑制でき、発光色度分布のむらを抑えやすい。また、第2領域22bから光反射性部材42への熱引きが期待できる。この観点において、光反射性部材42は、透光性部材22の厚さ方向に、透光性部材22の側面の面積の1/2以上を被覆することが好ましく、透光性部材22の側面の面積の3/4以上を被覆することがより好ましく、透光性部材22の側面の全域を被覆することがよりいっそう好ましい。なお、実施の形態1の発光装置100のように、透光性部材20の側面の全域が、光反射性部材40から露出されている、言い換えれば発光装置100の側面の一部を構成していてもよい。その場合は、光の取り出し効率を高めやすい。
【0039】
(発光装置200の製造方法)
図4A,4B,4C,4Dは其々、実施の形態2に係る発光装置200の製造方法における第1段階、第2段階、第3段階、第4段階を示す概略断面図である。以下、この発光装置200の製造方法における、実施の形態1の発光装置100の製造方法と異なる点について詳述し、実施の形態1の発光装置100の製造方法と実質的に同様の点については適宜説明を省略する。
【0040】
図4Aに示すように、第1段階は、透光性部材22を準備する段階である。具体的には、透光性部材22は、例えば、蛍光物質25と光散乱材28を含有するシート部材229を作製し、そのシート部材229を分割することで得られる。つまり、このシート部材229は、透光性部材22の複合体である。そして、本実施の形態2の第1段階では、透光性部材22は、シート部材229を発光素子10と接続する前にブロック状に分割することで準備される。シート部材229を作製するには、蛍光物質25を含有する複数のブロックと、光散乱材28を含有する複数の開口付きシート(例えば格子状シート)と、のいずれか一方を予め作製することが好ましい。これにより、シート部材229内の蛍光物質25と光散乱材28の分布を好適な形態に制御しやすく、ひいては透光性部材22を生産性良く準備しやすくなる。蛍光物質25含有ブロックを作製した場合には、粘着シートなどの上に、複数の蛍光物質25含有ブロックを互いに離間させて並置し、その離間領域内に光散乱材28を含有する液状材料を充填して硬化若しくは固化させることにより、シート部材229を作製することができる。光散乱材28含有開口付きシートを作製した場合には、粘着シートなどの上に、光散乱材28含有開口付きシートを置き、各開口内に蛍光物質25を含有する液状材料を充填して硬化若しくは固化させることにより、シート部材229を作製することができる。シート部材229の切断には、例えばダイサー、超音波カッター、トムソン刃などを用いることができる。
【0041】
図4Bに示すように、第2段階は、透光性部材22を発光素子10の上方に導光部材32を介して設ける段階である。具体的には、まず、導光部材の液状材料321を、発光素子10と透光性部材22の一方若しくは両方に塗布する。そして、発光素子10と透光性部材22を導光部材の液状材料321を介して接続させた後、導光部材の液状材料321を硬化若しくは固化させる。導光部材の液状材料321を透光性部材22に塗布する場合には、第1領域22aとなる透光性部材22の蛍光物質25を高濃度に含有する領域上に導光部材の液状材料321を塗布した後、その導光部材の液状材料321に発光素子10の上面を接続させる。導光部材の液状材料321を発光素子10に塗布する場合には、発光素子10の上面に導光部材の液状材料321を塗布した後、その導光部材の液状材料321に第1領域22aとなる透光性部材22の蛍光物質25を高濃度に含有する領域を接続させる。なお、このとき、導光部材の液状材料321を、第2領域22b上に至らせ、且つ発光素子10の側面に這い上がらせるようにする。また、導光部材の液状材料321を完全に硬化若しくは固化させるまでに、重力若しくは遠心力によって第2の蛍光物質26を沈降させ、第2の蛍光物質26を所望の方向に偏在させることができる。
【0042】
図4Cに示すように、第3段階は、導光部材32の外面を光反射性部材42で被覆する段階である。具体的には、光反射性部材の液状材料421を導光部材32の外面に塗布して硬化若しくは固化させる。なお、本実施の形態2では、複数の発光素子10の導光部材32の外面を連続して被覆することにより、光反射性部材の複合体429として形成する。このとき、光反射性部材の液状材料421を各透光性部材22の側面上まで至らせる。透光性部材22の主発光面を光反射性部材42から露出させるには、光反射性部材42の量を少なめに調節したり、光反射性部材42を多めに形成した後に研削したり、透光性部材22の主発光面をマスクした状態で光反射性部材42を形成したりする。
【0043】
図4Dに示すように、第4段階は、発光装置の複合体250を分割する段階である。具体的には、発光装置の複合体250の所定位置すなわち透光性部材22間の光反射性部材の複合体429で構成される領域を線状若しくは格子状に切断して、発光装置200を個片化する。
【0044】
以下、本発明の一実施の形態に係る発光装置の各構成要素について説明する。
【0045】
(発光素子10)
発光素子は、半導体発光素子が好ましいが、有機EL素子でもよい。半導体発光素子としては、例えばLED(発光ダイオード)チップが挙げられる。半導体発光素子は、少なくとも発光素子構造を構成する半導体積層体を有し、さらに基板を有していてもよい。発光素子の上面視形状は、矩形状、特に正方形状若しくは一方向に長い長方形状であることが好ましい。発光素子若しくはその基板の側面は、上面に対して、垂直であってもよいし、内側又は外側に傾斜していてもよい。発光素子は、同一面側に正負(p,n)電極を有することが好ましい。発光素子がフリップチップ(フェイスダウン)実装タイプの場合、主発光面は電極形成面とは反対側の面である。1つの発光装置に搭載される発光素子の個数は1つでも複数でもよい。複数の発光素子は、直列又は並列に接続することができる。なお、1つの透光性部材に複数の発光素子が接続される場合には、透光性部材における各発光素子の上面の直上に位置する領域をそれぞれ第1領域とし、第1領域より側方に位置する領域つまり第1領域以外の領域を第2領域として考えることができる。
【0046】
(基板11)
基板は、半導体の結晶を成長可能な結晶成長用基板が簡便で好ましいが、結晶成長用基板から分離した半導体積層体に別途接合させる接合用基板であってもよい。基板が透光性を有することにより、フリップチップ実装を採用しやすく、また光の取り出し効率を高めやすい。基板としては、サファイア、窒化ガリウム、窒化アルミニウム、シリコン、炭化珪素、ガリウム砒素、ガリウム燐、インジウム燐、硫化亜鉛、セレン化亜鉛、ガラスのうちの1つを用いることができる。なかでも、サファイアは、透光性に優れ、窒化物半導体の結晶成長用基板として比較的安価に入手しやすい点で好ましい。また、窒化ガリウムは、窒化物半導体の結晶成長用基板として好適であり、熱伝導性が比較的高い点で好ましい。基板の厚さは、適宜選択できるが、光の取り出し効率、機械的強度などの観点において、50μm以上500μm以下であることが好ましく、80μm以上300μm以下であることがより好ましい。
【0047】
(半導体積層体15)
半導体積層体は、少なくともn型半導体層とp型半導体層を含み、活性層をその間に介することが好ましい。半導体材料としては、蛍光物質を励起しやすい短波長光を効率良く発光可能な窒化物半導体を用いることが好ましい。窒化物半導体は、主として一般式InxAlyGa1−x−yN(0≦x、0≦y、x+y≦1)で表される。このほか、硫化亜鉛、セレン化亜鉛、炭化珪素などを用いることもできる。発光素子の発光ピーク波長は、発光効率、並びに蛍光物質の励起及びその発光との混色関係などの観点において、青色域にあることが好ましく、450nm以上475nm以下の範囲がより好ましい。半導体積層体の厚さは、適宜選択できるが、発光効率、結晶性などの観点において、1μm以上10μm以下であることが好ましく、3μm以上10μm以下であることがより好ましい。
【0048】
(透光性部材20,22)
透光性部材は、導光部材及び光反射性部材と共に発光素子を外気及び外力などから保護しながら、発光素子の光を装置外部に透過させる機能を有する。透光性部材は、少なくとも透光性の主材を有し、さらにその主材中に蛍光物質を含有する。透光性部材の上面視形状は、発光素子より大きい、発光素子の上面視形状と数学的相似の形状であることが、光度分布、色度分布などの点で好ましい。透光性部材の上面及び/若しくは下面は、平面であれば生産性が良く、凹凸を有する面若しくは湾曲面であれば光の取り出し効率を高めることができる。透光性部材は、その厚さ方向に、単層で構成されてもよいし、複数の層の積層体で構成されてもよい。透光性部材が積層体で構成される場合、各層に異なる種類の主材を用いてもよいし、各層に異なる種類の蛍光物質を含有させてもよい。また、最外層が蛍光物質を含有しない層であることにより、外気などによる蛍光物質の劣化を抑制することができる。透光性部材の厚さは、適宜選択できるが、光の取り出し効率、蛍光物質の含有量などの観点において、50μm以上500μm以下であることが好ましく、80μm以上300μm以下であることがより好ましい。
【0049】
(透光性部材の主材)
透光性部材の主材は、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、及びこれらの変性樹脂、並びにガラスのうちの少なくとも1つを用いることができる。なかでも、シリコーン樹脂若しくはその変性樹脂は、耐熱性及び耐光性に優れる点で好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル−メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。特に、フェニル基を含むことにより、耐熱性及びガスバリア性が強化される。シリコーン樹脂若しくはその変性樹脂中のケイ素原子に結合した全有機基のうちフェニル基の含有率は、10mol%以上70mol%以下であることが好ましく、20mol%以上60mol%以下であることがより好ましい。なお、本明細書における「変性樹脂」は、ハイブリッド樹脂を含むものとする。
【0050】
(蛍光物質25,26)
蛍光物質は、発光素子から出射される光(一次光)の少なくとも一部を吸収して、一次光とは異なる波長の光(二次光)を発する。これにより、例えば白色光など、可視波長の一次光と二次光の混色光を発する発光装置とすることができる。なお、白色発光の発光装置の場合、発光色度範囲は、ANSI C78.377規格に準拠することが好ましい。透光性部材中の蛍光物質の含有量は、所望する発光色度に応じて適宜選択できるが、例えば、40重量部以上250重量部以下であることが好ましく、70重量部以上150重量部以下であることがより好ましい。なお、「重量部」とは、主材の重量100gに対して配合される当該粒子の重量(g)を表すものである。緑色発光する蛍光物質の発光ピーク波長は、発光効率、他の光源の光との混色関係などの観点において、520nm以上560nm以下の範囲が好ましい。具体的には、緑色発光する蛍光物質としては、イットリウム・アルミニウム・ガーネット系蛍光体(例えばY
3(Al,Ga)
5O
12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えばLu
3(Al,Ga)
5O
12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えばTb
3(Al,Ga)
5O
12:Ce)系蛍光体、シリケート系蛍光体(例えば(Ba,Sr)
2SiO
4:Eu)、クロロシリケート系蛍光体(例えばCa
8Mg(SiO
4)
4C
l2:Eu)、βサイアロン系蛍光体(例えばSi
6−ZAl
ZO
ZN
8−Z:Eu(0<z<4.2))、SGS系蛍光体(例えばSrGa
2S
4:Eu)などが挙げられる。黄色発光する蛍光物質としては、αサイアロン系蛍光体(例えばMz(Si,Al)
12(O,N)
16(但し、0<z≦2であり、MはLi、Mg、Ca、Y、及びLaとCeを除くランタニド元素)などが挙げられる。このほか、上記緑色発光する蛍光物質の中には黄色発光する蛍光物質もある。また例えば、イットリウム・アルミニウム・ガーネット系蛍光体は、Yの一部をGdで置換することにより、発光ピーク波長を長波長側にシフトさせることができ、黄色発光が可能である。また、これらの中には、橙色発光が可能な蛍光物質もある。赤色発光する蛍光物質の発光ピーク波長は、発光効率、他の光源の光との混色関係などの観点において、620nm以上670nm以下の範囲が好ましい。具体的には、赤色発光する蛍光物質としては、窒素含有アルミノ珪酸カルシウム(CASN又はSCASN)系蛍光体(例えば(Sr,Ca)AlSiN
3:Eu)などが挙げられる。このほか、マンガン賦活フッ化物系蛍光体(一般式(I)A
2[M
1−aMn
aF
6]で表される蛍光体である(但し、上記一般式(I)中、Aは、K、Li、Na、Rb、Cs及びNH
4からなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、aは0<a<0.2を満たす))が挙げられる。このマンガン賦活フッ化物系蛍光体の代表例としては、マンガン賦活フッ化珪酸カリウムの蛍光体(例えばK
2SiF
6:Mn)がある。蛍光物質は、以上の具体例のうちの1種を単独で、又は2種以上を組み合わせて用いることができる。例えば、蛍光物質は、緑色光乃至黄色発光する蛍光体と、赤色発光する蛍光体と、により構成されてもよい。このような構成により、色再現性又は演色性に優れる発光が可能となる。しかし、その反面、蛍光物質の使用量が多くなり、それに伴って発熱が増大するため、本実施の形態の発光装置の構成が効果を奏しやすくなる。また、特に、赤色発光する蛍光体は、マンガン賦活フッ化物系蛍光体であることが好ましい。マンガン賦活フッ化物系蛍光体は、赤色域においてスペクトル半値幅の狭い発光が可能であるが、発光効率が比較的低いので使用量が多くなりやすく、それに伴って発熱が増大しやすいため、本実施の形態の発光装置の構成が更に効果を奏しやすくなる。
【0051】
(光散乱材28)
光散乱材は、有機物でもよいが、耐熱性及び耐光性に優れる無機物が好ましい。また、無機物であれば、透光性部材の熱伝導率、熱膨張率などを調整するフィラーとしても機能させやすい。具体的な無機物としては、酸化珪素、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、硫酸バリウムのうちの少なくとも1つが好ましい。なかでも、酸化マグネシウム、酸化亜鉛、酸化アルミニウムは、熱伝導性の点で好ましい。また、酸化珪素、酸化チタン、酸化ジルコニウムは、比較的安価で入手しやすい点で好ましい。有機物であれば、共重合などによって光学特性を調整できる利点がある。具体的な有機物としては、ポリメタクリル酸エステルとその共重合物、ポリアクリル酸エステルとその共重合物、架橋ポリメタクリル酸エステル、架橋ポリアクリル酸エステル、ポリスチレンとその共重合物、架橋ポリスチレン、シリコーン樹脂、及びこれらの変性樹脂が好ましい。光散乱材は、これらのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。透光性部材中の光散乱材の含有量は、適宜選択できるが、1重量部以上100重量部以下であることが好ましく、5重量部以上50重量部以下であることがより好ましい。光散乱材の形状は、適宜選択でき、破砕状(不定形)でもよいが、球状が充填性、凝集抑制などの点で好ましい。
【0052】
(導光部材30,32)
導光部材は、透光性を有し、発光素子の光を透光性部材に導光するほか、発光素子と透光性部材を接着させることができる。導光部材の外面すなわち光反射性部材との界面は、光の取り出し効率の観点において、発光素子の側面及び透光性部材の下面に対して傾斜又は湾曲していることが好ましい。導光部材の主材は、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、及びこれらの変性樹脂、並びにガラスのうちの少なくとも1つを用いることができる。なかでも、シリコーン樹脂若しくはその変性樹脂は、耐熱性及び耐光性に優れる点で好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル−メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。特に、フェニル基を含むことにより、耐熱性及びガスバリア性が強化される。シリコーン樹脂若しくはその変性樹脂中のケイ素原子に結合した全有機基のうちフェニル基の含有率は、10mol%以上70mol%以下であることが好ましく、20mol%以上60mol%以下であることがより好ましい。なお、導光部材は、熱伝導率、熱膨張率などの調整のため、主材中に各種のフィラーを含有してもよい。そのフィラーとしては、上記無機物の光散乱材と同じものを用いることができる。
【0053】
(光反射性部材40,42)
光反射性部材は、光取り出し効率の観点において、白色であることが好ましい。よって、光反射性部材は、主材中に白色顔料を含有してなることが好ましい。光反射性部材の主材は、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、及びこれらの変性樹脂、並びにガラスのうちの少なくとも1つを用いることができる。なかでも、シリコーン樹脂若しくはその変性樹脂は、耐熱性及び耐光性に優れる点で好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル−メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。特に、フェニル基を含むことにより、耐熱性及びガスバリア性が強化される。シリコーン樹脂若しくはその変性樹脂中のケイ素原子に結合した全有機基のうちフェニル基の含有率は、10mol%以上70mol%以下であることが好ましく、20mol%以上60mol%以下であることがより好ましい。白色顔料は、酸化チタン、酸化亜鉛、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、珪酸マグネシウム、チタン酸バリウム、硫酸バリウム、水酸化アルミニウム、酸化アルミニウム、酸化ジルコニウムのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。なかでも、酸化チタンが光反射性に優れ比較的安価に入手しやすい点で好ましい。光反射性部材中の白色顔料の含有量は、適宜選択できるが、光反射性及び液状材料時の粘度などの観点において、20重量部以上300重量部以下であることが好ましく、50重量部以上200重量部以下であることがより好ましい。
【0054】
(電極50)
電極は、発光素子の正負電極そのものでもよいし、発光素子の正負電極に接続して別途設けられてもよい。別途設けられる電極としては、バンプ、ピラー、リード電極(個片化されたリードフレーム)などが挙げられる。電極は、金属又は合金の小片で構成することができる。具体的には、金、銀、銅、鉄、錫、白金、亜鉛、ロジウム、チタン、ニッケル、パラジウム、アルミニウム、タングステン、クロム、モリブデン及びこれらの合金のうちの少なくとも1つを用いることができる。なかでも、銅は、熱伝導性に優れ、比較的安価であるため、銅又は銅合金が特に好ましい。また、金は、また化学的に安定であり表面酸化が少なく接合しやすい性質を有するため、金又は金合金も好ましい。電極は、半田接合性の観点において、表面に金又は銀の被膜を有してもよい。
【0055】
以上、実施の形態1,2の発光装置は、上面発光(トップビュー)型を例としたが、主発光方向に対する電極(端子)の配置関係によって、側面発光(サイドビュー)型にすることもできる。上面発光型の発光装置の実装方向は、主発光方向と略平行で、逆方向である。例えば、実施の形態1,2の発光装置の実装方向は下方向である。一方、側面発光型の発光装置の実装方向は、主発光方向に対して略垂直である。また、実施の形態1,2の発光装置は、発光素子が実装される実装基板を備えていない発光装置を例としたが、これに限られず、発光素子が実装基板に実装されて構成された発光装置であってもよい。その場合、第2段階(
図2B,
図4B)において実装基板の配線上に半田などで接合させた発光素子を用い、第3段階(
図2C,
図4C)において実装基板上に光反射性部材を形成する。その後、実装基板が複合体の形態であれば、第4段階(
図2D,
図4D)において、シート部材及び光反射性部材などと共に実装基板も切断すればよい。
【実施例】
【0056】
以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。
【0057】
<実施例1>
実施例1の発光装置は、
図1A〜1Cに示す例の発光装置100の構造を有する、幅1.7mm、奥行き1.7mm、厚さ0.28mmの直方体状の上面発光・CSPタイプのLED装置である。発光素子10は、発光ピーク波長455nmで青色発光可能な、幅1mm、奥行き1mm、厚さ0.155mmの上面視正方形状のLEDチップである。発光素子10は、サファイアの基板11と、その基板11の下面に接して窒化物半導体のn型半導体層、活性層、p型半導体層が順次積層された半導体積層体15と、を有している。透光性部材20は、発光素子10の上方に導光部材30を介して接続している。透光性部材20は、幅1.7mm、奥行き1.7mm、厚さ0.1mmの上面視正方形状の蛍光体含有樹脂シートの小片である。上面視における発光素子10と透光性部材20の中心及び向きは、一致している(但し、製造上の誤差は含む)とする。透光性部材20は、以下のような上層と下層の2層により構成されている。但し、上層と下層の境界は観察されない。下層は、蛍光物質25としてβサイアロン系蛍光体とマンガン賦活フッ化物系蛍光体を含有するフェニル−メチルシリコーン樹脂の硬化物である。上層は、光散乱材28として平均粒径20〜25nmの酸化アルミニウムの球状粒子を含有するフェニル−メチルシリコーン樹脂の硬化物である。下層は、第2領域20bの側端から第1領域20aの中心に近づくにつれて徐々に厚くなっている。そして、蛍光物質25は、下層の全域に同等の濃度(体積濃度25%)で分布している。よって、透光性部材20内の蛍光物質25の濃度は、第2領域20bの側端部において最も低く、第1領域20aの中心部において最も高くなっている。一方、上層は、第1領域20aの中心から第2領域20bの側端に近づくにつれて徐々に厚くなっている。そして、光散乱材28は、上層の全域に同等な濃度(体積濃度4.5%)で分布している。よって、透光性部材20内の光散乱材28の濃度は、第1領域20aの中心部において最も低く、第2領域20bの側端部において最も高くなっている。導光部材30は、発光素子10の上面と透光性部材の第1領域20aの下面、並びに発光素子10の4つの側面と透光性部材の第2領域20bの下面を被覆している。導光部材30の外面は、発光素子10の側面及び透光性部材の第2領域20bの下面に対して傾斜乃至湾曲している。導光部材30は、蛍光物質を含有していないフェニル−メチルシリコーン樹脂の硬化物である。光反射性部材40は、発光素子10の側方においては導光部材30の外面を被覆し、発光素子10の下方においては発光素子10の下面の正負電極を除く領域を被覆している。なお、導光部材30が発光素子10の側面の一部(下部)を被覆していなければ、光反射性部材40がその発光素子10の側面の一部(下部)を被覆している。光反射性部材40は、150重量部の酸化チタンを含有するフェニル−メチルシリコーン樹脂の硬化物である。発光素子の半導体積層体15の下面に形成された正負電極には其々、電極50が接続している。電極50は、ニッケル/金の被膜付きの厚さ0.025mmの銅の小片である。一対の電極50の下面すなわち金の被膜の表面は、光反射性部材40から露出されている。より詳細には、本発光装置の下面は、光反射性部材40の下面と一対の電極50の下面で構成されている。
【0058】
本実施例1の発光装置は、以下のように、発光装置の複合体150を作製し、その発光装置の複合体150をダイシング装置で分割することで製造される。まず、上記下層の蛍光物質25と厚さの分布に近似する分布を縦横に周期的に含む半硬化状態の第1要素シートと、上記上層の光散乱材28と厚さの分布に近似する分布を縦横に周期的に含む半硬化状態の第2要素シートと、を圧着して完全硬化させることにより、シート部材209を作製する。次に、そのシート部材209の蛍光物質25を高濃度に含有する領域上に各々、導光部材の液状材料301をピン転写で塗布する。次に、正負電極に銅の小片を各々接続した発光素子10の基板11側を、シート部材209に塗布した各導光部材の液状材料301の上に載置する。このとき、発光素子10の押し込み量を調節して、導光部材の液状材料301を、シート部材209上で濡れ広がらせると共に、発光素子10の4つの側面に這い上がらせる。そして、導光部材の液状材料301をオーブンで硬化させる。次に、光反射性部材の液状材料401を、全ての発光素子10を埋め込むように圧縮成形法で充填し硬化させる。そして、得られた光反射性部材の複合体409を研削して銅の小片を露出させる。その後、各銅の小片の露出面の上にニッケル/金の被膜をスパッタ装置で成膜して電極50とする。最後に、以上により得られた発光装置の複合体150を格子状に切断する。
【0059】
以上のように構成された実施例1の発光装置は、実施の形態1の発光装置100と同様の効果を奏することができる。
発光素子の上方に、前記発光素子の上面の直上に位置する第1領域と、前記第1領域より側方に位置する第2領域と、を含む透光性部材を、前記発光素子の側面と前記透光性部材の第2領域の下面の内側を導光部材で被覆するように、設ける第1工程と、
前記導光部材の外面を光反射性部材で被覆する第2工程と、を備え、
前記透光性部材は、蛍光物質と、蛍光物質ではない光散乱材と、を含有しており、
前記蛍光物質の濃度は、前記第2領域より前記第1領域において高く、
前記光散乱材の濃度は、前記第1領域より前記第2領域において高い発光装置の製造方法。