【実施例1】
【0011】
図1は本発明の実施例1としてディスプレイ駆動装置の構成を示している。なお、
図1においては回路の配線として電源ライン及び駆動出力ラインだけを示しており、回路間の制御ラインや信号供給ラインは省略されている。
【0012】
この駆動装置は、有機ELディスプレイパネル11を駆動するドライバ部12と、ドライバ部12に電源電圧を供給する2つの電源部13、14とを備えている。
【0013】
有機ELディスプレイパネル11は例えば、複数の有機EL素子を各々画素としてマトリックス状に配置して表示パネルを構成したものである。電源部13は電源電圧として中電圧MV(中電源電圧)を生成し、電源部14は中電圧MVより高い電源電圧である高電圧HV(高電源電圧)を生成する。
【0014】
ドライバ部12は、中電圧MVが電源電圧として印加されるMV回路21と、中電圧MVより低い電源電圧である低電圧LV(低電源電圧)が印加されるLV回路22(低電圧動作部)と、高電圧HVが電源電圧として印加されるHV回路23(高電圧動作部)と、LV回路22に低電圧LVを供給するために再利用回路24とを備えている。HV回路23はドライバ部12の出力段に相当し、有機ELディスプレイパネル11に駆動電圧VOUTを出力する部分である。MV回路21は例えば、入力画像信号を受けて入力画像信号に応じて有機ELディスプレイパネル11の表示ライン毎の各画素の輝度データを生成する部分である。LV回路22はドライバ部12の出力段より前段を担う、論理回路からなる制御回路であり、入力画像信号の同期信号に基づいてMV回路21及びHV回路23を制御する。
【0015】
高電圧HV、中電圧MV及び低電圧LVはいずれも正の電圧であり、上述したようにHV>MV>LVの関係がある。この実施例では、HV=7[V]、MV=1.8[V]、LV=1.2[V]である。
【0016】
HV回路23が有機ELディスプレイパネル11に対して出力する駆動電圧VOUTはいわゆるソースドライバ出力であり、
図2に示すように低電圧LVより十分に高い電圧VOUT
L、例えば、3[V]以上で、高電圧HVより低い電圧VOUT
H、例えば、5[V]以下の電圧範囲である。
【0017】
MV回路21及び再利用回路24の各々には電圧印加ライン31とグランドライン32とが個別に接続されている。電圧印加ライン31は電源部13の出力端に接続された中電圧MVの印加ラインである。グランドライン32は接地ラインであり、電源部13、14の接地ラインと共通のラインである。MV回路21及び再利用回路24には電圧印加ライン31を介して供給される中電圧MVによる電流IMVが動作電流として流れ込み、そして、その電流IMVはそれらの回路からグランドライン32に流れ出るようになっている。
【0018】
HV回路23には電圧印加ライン33と中継接続ライン34とが接続されている。電圧印加ライン33は電源部14の出力端に接続された高電圧HVの印加ラインである。中継接続ライン34はHV回路23専用のグランドラインでもある。HV回路23には電圧印加ライン33を介して供給される高電圧HVによる電流IHVが動作電流として流れ込み、そして、その電流IHVはHV回路23から中継接続ライン34に流れ出るようになっている。
【0019】
また、中継接続ライン34は再利用回路24に接続されている。再利用回路24は電圧印加ライン35(第2の電圧印加ライン)に接続され、低電圧LVを電圧印加ライン35に出力する。LV回路22には中継接続ライン34とグランドライン32とが接続されている。LV回路22には再利用回路24から中継接続ライン35を介して供給される低電圧LVによる電流ILVが動作電流として流れ込み、そして、その電流ILVはLV回路22からグランドライン32に流れ出るようになっている。
【0020】
なお、ドライバ部12は
図1に示したように、外部接続端子16〜19を有し、上記した有機ELディスプレイパネル11、電源部13、14及び外部接地との接続は外部接続端子16〜19を介して行われている。
【0021】
再利用回路24は、具体的には
図3に示すように基準電圧生成回路41、オペアンプ42と、スイッチ素子としての電界効果トランジスタ(PMOS FET)43、44と、スタートアップ回路45、46と、クランプ回路47と、パスコン(バイパスコンデンサ)48とを備えている。
【0022】
基準電圧生成回路41及びオペアンプ42の各々には電圧印加ライン31(第1の電圧印加ライン)とグランドライン32とが個別に接続されており、中電圧MVが電源電圧として印加される。基準電圧生成回路41は、中電圧MVに基づいて低電圧LVを基準電圧として生成する基準電圧生成部である。基準電圧生成回路41は、中電圧MVから低電圧LVを得るために例えば、ツェナーダイオードと抵抗とを用いた簡単な定電圧回路、或いは直列接続の2つの抵抗による分圧回路と、ボルテージフォロワとを備えている。
【0023】
基準電圧生成回路41のボルテージフォロワは上記した定電圧回路又は分圧回路から供給される低電圧LVを入力電圧とし、低インピーダンスで低電圧LVを出力する。
【0024】
オペアンプ42は電界効果トランジスタ43、44各々をオンオフ駆動するスイッチ駆動手段である。オペアンプ42の正入力端は基準電圧生成回路41の出力端に接続され、負入力端は電界効果トランジスタ43、44各々のドレインに接続されている。オペアンプ42の出力端は電界効果トランジスタ43、44各々のゲートに接続されている。第1のスイッチ素子である電界効果トランジスタ43のソースは電圧印加ライン31に接続されている。第2のスイッチ素子である電界効果トランジスタ44のソースは中継接続ライン34に接続されている。また、電界効果トランジスタ43、44各々のドレインは電圧印加ライン35に接続されている。
【0025】
スタートアップ回路45は電圧印加ライン35とグランドライン32とに接続され、電源投入時に電圧印加ライン35に一時的に低電圧LVにほぼ等しいスタートアップ電圧SV1を印加する。スタートアップ回路45は図示しないが、電圧印加ライン31に接続されており、例えば、中電圧MVに基づいてスタートアップ電圧SV1を生成する。スタートアップ電圧SV1は電源投入後、LV回路22の動作が安定するまでの時間だけ生成される。
【0026】
スタートアップ回路46は中継接続ライン34とグランドライン32とに接続され、電源投入時に中継接続ライン34に一時的に中電圧MVより若干高いスタートアップ電圧SV2、例えば、2.0〜2.5[V]を印加する。スタートアップ回路46は図示しないが、電圧印加ライン33に接続されており、例えば、高電圧HVに基づいてスタートアップ電圧SV2を降圧生成する。スタートアップ電圧SV2は電源投入後、HV回路23の動作が安定するまでの時間だけ生成される。
【0027】
クランプ回路47は中継接続ライン34とグランドライン32との間に設けられ、中継接続ライン34の電圧が、例えば、3[V]以上に過上昇することを防止するためのものである。パスコン48は中継接続ライン34とグランドライン32との間に設けられたキャパシタであり、中継接続ライン34の電圧のリップルを防止するためのものである。
【0028】
このような構成を備えた駆動装置においては、電源部13、14が共に動作を開始して電源電圧が投入されると、先ず、スタートアップ回路45、46が直ちに動作する。これにより、電圧印加ライン35のレベルがスタートアップ電圧SV1まで上昇し、また中継接続ライン34のレベルがスタートアップ電圧SV2まで上昇する。
【0029】
基準電圧生成回路41が低電圧LVの基準電圧を生成する。その基準電圧はオペアンプ42の正入力端に供給され、オペアンプ42はその負入力端の電圧と比較する。オペアンプ42と電界効果トランジスタ43とは電圧レギュレータとして動作する。すなわち、電界効果トランジスタ43は正入力端の電圧と負入力端の電圧とが等しくなるように電圧印加ライン31から電界効果トランジスタ43のソース・ドレイン間を介して電圧印加ライン35へ電流が流れ込むので、この結果、電圧印加ライン35の電圧は低電圧LVに安定化され、LV回路22に印加される。
【0030】
一方、電源部14の出力電圧である高電圧HVが電圧印加ライン34を介してHV回路23に印加されるので、HV回路23が動作する。HV回路23の動作電流IHVは中継接続ライン34を介して再利用回路24に流れる。更に電界効果トランジスタ44のソース・ドレイン間を介して電圧印加ライン35へ流れ出す。電圧印加ライン35の電圧は低電圧LVに安定化され、LV回路22に印加される。よって、LV回路22には電流IMVの一部と電流IHVとの合成電流が電流ILVとして流れる。
【0031】
電界効果トランジスタ44は電界効果トランジスタ43と共にオペアンプ42の出力電圧に応じてオンオフ動作するので、HV回路23の動作電流IHVの電圧印加ライン35へ流れ込みは、電圧印加ライン35の電圧を低電圧LVに安定化するように電界効果トランジスタ44のソース・ドレイン間によって制御される。電界効果トランジスタ44のソース・ドレイン間を流れる電流と電界効果トランジスタ44のゲート電位とによって電界効果トランジスタ44のソース・ドレイン間の電圧Vdsが決まるので、その電圧によって中継接続ライン34の電位も決まる。
【0032】
HV回路23の動作により電流IHVが変化した場合には、中継接続ライン34の電圧も変動する。このような中継接続ライン34の電圧変動に対してクランプ回路47がその変動を抑制する。また、パスコン48は中継接続ライン34のリップル電圧を抑える。
【0033】
なお、電流IHVと電流ILVとのバランスによっては、電圧印加ライン31と中継接続ライン34との間で電界効果トランジスタ43、44を介して双方向に電流が流れる可能性があるため、それを防止するように電界効果トランジスタ43、44のサイズ比が設定され、電界効果トランジスタ43、44それぞれに流れる電流の最適化が図られている。
【0034】
図1に示した実施例1の駆動装置の消費電力Aは、次のように計算することができる。
【0035】
消費電力A=中電圧MV×(電流IMV−電流IHV)
+(高電圧HV−低電圧LV)×電流IHV ・・・(1)
この消費電力Aと比較するために、かかる実施例1に備えられたような再利用回路24を用いないで、上記した特許文献1に示されたようにレギュレータで降下生成された低電圧を使用する駆動装置の例を
図4に示す。この
図4に示した駆動装置では、電源部13の出力電圧である中電圧MVを低電圧LVに変換するレギュレータ51が備えられ、レギュレータ51の出力電圧である低電圧LVがLV回路22に印加される一方、電源部14の出力電圧である高電圧HVはそのままHV回路23に印加され、その動作電流IHVはHV回路23からグランドライン36を介して流れ出るようになっている。グランドライン36は接地された外部接続端子20に接続されている。
【0036】
図4に示した駆動装置の消費電力Bは、次のように計算することができる。
【0037】
消費電力B=中電圧MV×電流IMV+高電圧HV×電流IHV ・・・(2)
電流IMVを40[mA]とし、電流IHVを35[mA]とすると、上述したようにHV=7[V]、MV=1.8[V]、LV=1.2[V]であるので、消費電力Bは式(2)から、
消費電力B=1.8[V]×40[mA]+7[V]×35[mA]=317[mW]
となる。
【0038】
一方、各回路の消費電流が変わらないとして式(1)から消費電力Aを計算すると、
消費電力A=1.8[V]×(40[mA]−35[mA])
+(7[V]−1.2[V])×35[mA]=212[mW]
となる。
図1に示した実施例1の駆動装置では、消費電力Aは消費電力Bより33%ほど低下していることが分かる。すなわち、HV回路23からの電流IHVをLV回路22で再利用する場合には消費電力を削減することができる。また、駆動電圧VOUTの電圧範囲は低電圧LVより高いので、HV回路23からの電流IHVをLV回路22で再利用しても駆動電圧VOUTを
図2に示したような所望の電圧範囲VOUT
L〜VOUT
Hで変動させることができる。
【0039】
なお、上記した実施例1では、スタートアップ回路45、46を設け、電源投入直後に電圧印加ライン35の電圧を低電圧LVに収束させているが、電圧印加ライン35の電圧が電源投入時から若干遅れて低電圧LVに達してもLV回路22の動作として問題ないならば、スタートアップ回路45、46は設けなくても良い。
【0040】
上記した実施例1では、駆動装置の高電圧HVが印加される回路はHV回路23とLV回路22の直列回路であり、そのHV回路23を流れる電流IHVの全てがLV回路22に流れる。HV回路23の中に高電圧HVを接地レベル(例えば、0[V])からの電圧レベル範囲として必要とする回路部分も有る場合には、駆動装置を
図5に示すようにHV回路23を分割して一部を再利用しない構成することができる。この駆動装置について以下に、実施例2として説明する。
【実施例2】
【0041】
図5に示した実施例2では、HV回路はドライバ部12のHV回路61、62及びHV出力回路63からなる。HV回路61はHV回路制御用の論理回路やレベルシフターであり、電圧範囲として接地レベルからの高電圧HVまでを必要とする回路である。HV回路61には電圧印加ライン33とグランドライン36とが各々接続されている。グランドライン36はグランドライン32に接続されていても良い。HV回路61には電圧印加ライン33を介して供給される高電圧HVによる電流IHVAが動作電流として流れ込み、そして、その電流IHVAはHV回路61からグランドライン36に流れ出るようになっている。
【0042】
HV回路62は例えば、バイアス回路であり、HV出力回路63は例えば、出力アンプ回路である。HV回路62及びHV出力回路63は接地側の電位が低電圧LV以上でも動作し、高電圧HVの正電位の印加が必要な又は望ましい回路である。
【0043】
HV回路62及びHV出力回路63には電圧印加ライン33と中継接続ライン34とが個別に接続されている。HV回路62には電圧印加ライン33を介して供給される高電圧HVによる電流IHV2が動作電流として流れ込み、HV出力回路63には電圧印加ライン33を介して供給される高電圧HVによる電流IHV3が動作電流として流れ込み、そして、その電流IHV2及びIHV3はHV回路62及びHV出力回路63から中継接続ライン34に合成電流IHVBとして流れ出るようになっている。更に、中継接続ライン34とグランドライン36との間にはパスコン64が接続されている。
【0044】
図5の実施例2のその他の構成は
図1に示した構成と同一である。電源部14の出力電圧である高電圧HVが電圧印加ライン33を介してHV回路61、62及びHV出力回路63に印加されると、HV回路61、62及びHV出力回路63は各々動作する。HV回路61の動作電流IHVAはグランドライン36に流れ出る。一方、HV回路62及びHV出力回路63の動作電流IHV2及びIHV3は電流IHVBとして中継接続ライン34を介して再利用回路24に流れる。更に電界効果トランジスタ44のソース・ドレイン間を介して電圧印加ライン35へ流れ出る。電圧印加ライン35の電圧は低電圧LVに安定化され、LV回路22に印加される。よって、LV回路22には電流IMVの一部と電流IHVBの合成電流が電流ILVとして流れる。IHVB=IHV−IHVAである。
【0045】
図5に示した実施例2の駆動装置の消費電力Cは、次のように計算することができる。
【0046】
消費電力C=中電圧MV×(電流IMV−電流IHVB)+高電圧HV×電流IHVA
+(高電圧HV−低電圧LV)×電流IHVB ・・・(3)
HV回路61を流れる電流IHVAが5[mA]、HV回路61、62を流れる電流IHV2及びIHV3の合成電流IHVBが30[mA]であるとし、その他の電圧値及び電流値は上記した消費電力Aの計算の際の値と等しいとすると、式(3)から消費電力Cを計算すると、
消費電力C=1.8[V]×(40[mA]−30[mA])+7[V]×5[mA]
+(7[V]−1.2[V])×30[mA]=227[mW]
となる。
図5に示した実施例2の駆動装置では、消費電力Cは、
図4の駆動装置例の消費電力Bより28%ほど低下していることが分かる。このように、HV回路61には高電圧HVを0[V]のレベルからの電圧レベル範囲が得られるようにその動作電流IHVAをグランドライン36に流し、0[V]のレベルを必要としないHV回路62、63を流れる電流IHVBをLV回路22で再利用するので、駆動装置の消費電力を削減することができる。
【0047】
図6は、
図5に示した駆動装置の回路(MV回路を除く)をIC化した際の配置及び配線例を示している。
図6に示したように、IC70内ではLV回路22、HV回路61、62及びHV出力回路63の各々は複数の回路に分散されて配置されている。分散配置されたLV回路22と再利用回路24とは電圧印加ライン35で互いに接続されている。分散配置されたHV回路61はグランドライン36で互いに接続されている。グランドライン36はパッド71〜77を介してIC70の外部にも配線されている。分散配置されたHV回路62は接続ライン37で互いに接続され、更に再利用回路24及びパッド75にも接続されている。分散配置されたHV出力回路63は接続ライン38で互いに接続され、更にパッド74にも接続されている。パッド74と75とは中継接続ライン34で接続されている。パスコン64はパッド73と74との間に外部接続されている。
【0048】
なお、上記した各実施例においては、ディスプレイパネルとして有機ELディスプレイパネルを駆動する駆動装置の例を示したが、本発明はこれに限定されず、他のディスプレイパネルを駆動し、その際に複数の異なる電圧レベルの電源電圧が印加されることにより動作するディスプレイ駆動装置にも適用することができる。