【解決手段】物体側から順に、正の第1レンズ群G1と、負の第2レンズ群G2と、正の第3レンズ群G3と、正の第4レンズ群G4とを有し、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、及び第3レンズ群G3と第4レンズ群G4との間隔が変化し、所定の条件式を満足するレンズを少なくとも1つ有する。
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、
以下の条件式を満足するレンズを少なくとも1つ有することを特徴とする変倍光学系。
1.928 < ndh
28.60 < νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することを特徴とする請求項1から請求項15のいずれか一項に記載の変倍光学系。
広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することを特徴とする請求項1から請求項16のいずれか一項に記載の変倍光学系。
広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第4レンズ群との間隔が増加することを特徴とする請求項1から請求項17のいずれか一項に記載の変倍光学系。
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、
以下の条件式を満足するレンズを少なくとも1つ有するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにすることを特徴とする変倍光学系の製造方法。
1.928 < ndh
28.60 < νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
【発明を実施するための形態】
【0011】
以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差の変動を抑えることができる。
【0012】
また、本願の変倍光学系は、以下の条件式(1)、(2)を満足するレンズを少なくとも1つ有することを特徴としている。
(1) 1.928 < ndh
(2) 28.60 < νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
【0013】
条件式(1)は、前記レンズの最適な屈折率を規定するものである。本願の変倍光学系は、条件式(1)を満足することにより、小型化を達成しつつ、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、変倍時に球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の下限値を1.940とすることがより好ましい。
なお、本願の効果をより確実にするために、条件式(1)の上限値を2.800とすることがより好ましい。本願の変倍光学系の条件式(1)の対応値が2.800より小さくなることにより、前記レンズの材料に対する可視光線の透過率を十分に確保することができる。
【0014】
条件式(2)は、前記レンズの最適なアッベ数を規定するものである。本願の変倍光学系は、条件式(2)を満足することにより、小型化を達成しつつ、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることができる。
本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の下限値を29.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の下限値を30.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の下限値を32.00とすることがより好ましい。
なお、本願の効果をより確実にするために、条件式(2)の上限値を50.00とすることがより好ましい。本願の変倍光学系の条件式(2)の対応値が50.00より小さくなることにより、変倍時に前記レンズ以外のレンズで発生する軸上色収差の変動や倍率色収差の変動を抑えることができ、高い光学性能を実現することができる。
以上の構成により、小型で、高い光学性能を有する変倍光学系を実現することができる。
【0015】
また本願の変倍光学系は、前記第1レンズ群が前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第1レンズ群で発生する球面収差、非点収差、軸上色収差、及び倍率色収差のそれぞれの変動を抑えることができる。
【0016】
また本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 5.50 < f1/(−f2) < 15.00
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
【0017】
条件式(3)は、第1レンズ群と第2レンズ群の焦点距離比の適切な範囲を規定するものである。本願の変倍光学系は、条件式(3)を満足することにより、高変倍比を維持しつつ変倍時に非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、広角端状態において非点収差が大きく発生し、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の下限値を5.60とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の下限値を5.90とすることがより好ましい。
一方、本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、変倍時に第2レンズ群で発生する非点収差の変動を抑えることが困難になってしまう。なお、本願の効果をより確実にするために、条件式(3)の上限値を11.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の上限値を10.20とすることがより好ましい。
【0018】
また本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.220 < (−f2)/f3 < 0.530
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
【0019】
条件式(4)は、第2レンズ群と第3レンズ群の焦点距離比の適切な範囲を規定するものである。本願の変倍光学系は、条件式(4)を満足することにより、高変倍比を維持しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、変倍時に第2レンズ群で発生する非点収差の変動を抑えることが困難になってしまう。なお、本願の効果をより確実にするために、条件式(4)の下限値を0.270とすることがより好ましい。
一方、本願の変倍光学系の条件式(4)の対応値が上限値を上回ると、変倍時に第3レンズ群で発生する球面収差の変動を抑えることが困難になってしまう。なお、本願の効果をより確実にするために、条件式(4)の上限値を0.490とすることがより好ましい。さらに、本願の効果をより確実にするために、条件式(4)の上限値を0.450とすることがより好ましい。
【0020】
また本願の変倍光学系は、前記第1レンズ群が以下の条件式(5)を満足する前記レンズを少なくとも1つ有することが望ましい。
(5) 0.450 < |fh/f1| < 1.400
但し、
fh:前記第1レンズ群中の前記レンズの焦点距離
f1:前記第1レンズ群の焦点距離
【0021】
条件式(5)は、第1レンズ群中の前記レンズの最適な焦点距離範囲を規定するものである。なお、前記レンズが他のレンズと接合されている場合、fhは前記レンズ単体の焦点距離を表す。本願の変倍光学系は、条件式(5)を満足することにより、変倍時に球面収差、非点収差、軸上色収差、及び倍率色収差のそれぞれの変動を抑えることができる。
【0022】
ここで、条件式(5)について、前記レンズが正の屈折力を有する場合と負の屈折力を有する場合に分けて説明する。
前記レンズが正の屈折力を有する場合、本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、変倍時に前記レンズで発生する軸上色収差の変動や倍率色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。一方、本願の変倍光学系の条件式(5)の対応値が上限値を上回ると、望遠端状態において第2レンズ群で発生する正の球面収差を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
【0023】
前記レンズが負の屈折力を有する場合、本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、変倍時に前記レンズで発生する非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。一方、本願の変倍光学系の条件式(5)の対応値が上限値を上回ると、変倍時に前記レンズ以外のレンズで発生する軸上色収差の変動や倍率色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
なお、本願の効果をより確実にするために、条件式(5)の下限値を0.620とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5)の上限値を1.290とすることがより好ましい。
【0024】
また本願の変倍光学系は、前記第4レンズ群が前記レンズを少なくとも1つ有することが望ましい。この構成により、第4レンズ群で発生する球面収差、非点収差、軸上色収差、及び倍率色収差を広角端状態から望遠端状態にわたって抑えることができる。
【0025】
また本願の変倍光学系は、前記第2レンズ群が前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第2レンズ群で発生する球面収差、非点収差、軸上色収差、及び倍率色収差のそれぞれの変動を広角端状態から望遠端状態にわたって抑えることができる。
【0026】
また本願の変倍光学系は、前記第3レンズ群が前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第3レンズ群で発生する球面収差、非点収差、軸上色収差、及び倍率色収差のそれぞれの変動を広角端状態から望遠端状態にわたって抑えることができる。
【0027】
また本願の変倍光学系は、前記第1レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第1レンズ群で発生する非点収差の変動や球面収差の変動、倍率色収差の変動、特に2次色収差の変動を抑えることができ、高い光学性能を実現することができる。
【0028】
また本願の変倍光学系は、前記第4レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第4レンズ群で発生する非点収差の変動や球面収差の変動、軸上色収差の変動を抑えることができ、高い光学性能を実現することができる。
【0029】
また本願の変倍光学系は、前記第4レンズ群が以下の条件式(6)を満足する前記レンズを少なくとも1つ有することが望ましい。
(6) 31.60 < νdh4
但し、
νdh4:前記第4レンズ群中の前記レンズのd線(波長587.6nm)に対するアッベ数
【0030】
条件式(6)は、第4レンズ群中の前記レンズの最適なアッベ数を規定するものである。本願の変倍光学系は、条件式(6)を満足することにより、軸上色収差や倍率色収差を抑えることができる。
本願の変倍光学系の条件式(6)の対応値が下限値を下回ると、第4レンズ群において、前記レンズ以外のレンズで発生する軸上色収差や倍率色収差を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
【0031】
また本願の変倍光学系は、前記第2レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することが望ましい。この構成により、第2レンズ群で発生する軸上色収差や倍率色収差、特に2次色収差を抑えることができ、高い光学性能を実現することができる。
【0032】
また本願の変倍光学系は、前記第3レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することが望ましい。この構成により、第3レンズ群で発生する軸上色収差、特に2次色収差を抑えることができ、高い光学性能を実現することができる。
【0033】
また本願の変倍光学系は、前記第1レンズ群が以下の条件式(7)を満足する正レンズを有することが望ましい。
(7) 75.00 < νdp1
但し、
νdp1:前記第1レンズ群中の前記正レンズのd線(波長587.6nm)に対するアッベ数
【0034】
条件式(7)は、第1レンズ群中の前記正レンズの最適なアッベ数を規定するものである。本願の変倍光学系は、条件式(7)を満足することにより、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることができる。
本願の変倍光学系の条件式(7)の対応値が下限値を下回ると、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
なお、本願の効果をより確実にするために、条件式(7)の上限値を99.00とすることがより好ましい。本願の変倍光学系の条件式(7)の対応値が99.00より小さくなることにより、変倍時に前記正レンズ以外のレンズで発生する軸上色収差の変動や倍率色収差の変動を抑えることができ、高い光学性能を実現することができる。
【0035】
また本願の変倍光学系は、前記第4レンズ群が以下の条件式(8)を満足する正レンズを有することが望ましい。
(8) 75.00 < νdp4
但し、
νdp4:前記第4レンズ群中の前記正レンズのd線(波長587.6nm)に対するアッベ数
【0036】
条件式(8)は、第4レンズ群中の前記正レンズの最適なアッベ数を規定するものである。本願の変倍光学系は、条件式(8)を満足することにより、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることができる。
本願の変倍光学系の条件式(8)の対応値が下限値を下回ると、変倍時に軸上色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
なお、本願の効果をより確実にするために、条件式(8)の上限値を99.00とすることがより好ましい。本願の変倍光学系の条件式(8)の対応値が99.00より小さくなることにより、前記正レンズ以外のレンズで発生する軸上色収差を抑えることができ、高い光学性能を実現することができる。
【0037】
また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第1レンズ群の焦点距離と第2レンズ群の焦点距離を適切なものにすることができる。そして、各レンズ群で発生する球面収差や非点収差を抑え、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
【0038】
また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、第2レンズ群の焦点距離と第3レンズ群の焦点距離を適切なものにすることができる。そして、各レンズ群で発生する球面収差や非点収差を抑え、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
【0039】
また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第4レンズ群との間隔が増加することが望ましい。この構成により、変倍時に第3レンズ群及び第4レンズ群で発生する球面収差の変動や非点収差の変動を抑えることができる。
【0040】
本願の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、小型で、高い光学性能を有する光学装置を実現することができる。
【0041】
本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下の条件式(1)、(2)を満足するレンズを少なくとも1つ有するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにすることを特徴としている。これにより、小型で、高い光学性能を有する変倍光学系を製造することができる。
(1) 1.928 < ndh
(2) 28.60 < νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
【0042】
以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1(a)、
図1(b)、及び
図1(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
【0043】
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
【0044】
第4レンズ群G4は、物体側から順に、負の屈折力を有する前群G4Fと、正の屈折力を有する後群G4Rとからなる。
前群G4Fは、物体側から順に、両凸形状の正レンズL401と両凹形状の負レンズL402との接合レンズと、両凹形状の負レンズL403と物体側に凸面を向けた正メニスカスレンズL404との接合レンズとからなる。なお、負レンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
後群G4Rは、物体側から順に、両凸形状の正レンズL405と、両凸形状の正レンズL406と物体側に凹面を向けた負メニスカスレンズL407との接合レンズと、物体側に凸面を向けた負メニスカスレンズL408と両凸形状の正レンズL409との接合レンズと、像側に凸面を向けた負メニスカスレンズL410とからなる。なお、負メニスカスレンズL410は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
【0045】
以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、開口絞りSと第3レンズ群G3との空気間隔が減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4の前群G4Fと一体的に移動する。詳細には、第1レンズ群G1と第3レンズ群G3は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。第4レンズ群G4においては、広角端状態から望遠端状態への変倍時に、前群G4Fと後群G4Rとの空気間隔が減少するように、前群G4Fと後群G4Rが、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。
【0046】
以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000000の記載は省略している。
【0047】
[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h
2/r)/[1+{1−κ(h/r)
2}
1/2]
+A4h
4+A6h
6+A8h
8+A10h
10
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10
−n」を示し、例えば「1.234E-05」は「1.234×10
−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
【0048】
[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔、φは開口絞りSの絞り径をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
【0049】
ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
【0050】
(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 104.5118 1.6000 2.003300 28.27
2 39.3751 7.4000 1.497820 82.57
3 -463.5701 0.1000
4 40.3116 5.4000 1.834810 42.73
5 241.9089 可変
*6 79.9711 1.0000 1.851350 40.10
7 8.1252 4.8500
8 -14.2116 1.0000 1.883000 40.66
9 124.9279 0.1000
10 30.8124 3.3500 1.808090 22.74
11 -15.1873 0.3000
12 -13.2222 1.0000 1.883000 40.66
13 -23.0302 可変
14(絞りS) ∞ 可変
15 26.1923 1.0000 1.954000 33.46
16 12.2483 2.8500 1.719990 50.27
17 -43.5073 可変
18 14.5527 2.8500 1.497820 82.57
19 -40.3302 1.0000 1.950000 29.37
20 173.4596 2.1500
*21 -105.0156 1.0000 1.806100 40.71
22 10.9037 2.2000 1.808090 22.74
23 28.6084 可変
24 30.6882 2.8500 1.579570 53.74
25 -18.3905 0.1000
26 18.8919 3.6000 1.518230 58.82
27 -13.1344 1.0000 2.000690 25.46
28 -2198.5412 0.7500
29 412.2295 1.0000 1.954000 33.46
30 12.8823 3.5000 1.755200 27.57
31 -23.7185 1.1500
32 -16.1296 1.0000 1.806100 40.71
*33 -97.3104 BF
像面 ∞
[非球面データ]
第6面
κ -8.7294
A4 4.64796E-05
A6 -4.09659E-07
A8 2.44519E-09
A10 -9.90503E-12
第21面
κ -1.5760
A4 1.72590E-05
A6 9.45415E-08
A8 -1.00397E-09
A10 0.00000E+00
第33面
κ -19.8082
A4 -1.67719E-05
A6 -2.11776E-07
A8 -4.15932E-10
A10 -1.15008E-11
[各種データ]
変倍比 9.42
W T
f 10.30 〜 97.00
FNO 4.09 〜 5.81
ω 40.21 〜 4.76°
Y 8.19 〜 8.19
W M T
f 10.30000 50.00013 97.00039
ω 40.21337 9.15519 4.75685
FNO 4.09 5.78 5.81
φ 7.68 8.50 9.20
TL 100.29944 130.25093 139.59967
d5 2.10000 28.50000 39.66696
d13 17.38897 3.31447 2.00000
d14 4.87082 3.98262 1.60000
d17 2.59389 3.48209 5.86471
d23 5.29632 3.42829 3.30000
BF 13.94944 33.44346 33.06800
[レンズ群データ]
群 始面 f
1 1 64.38705
2 6 -9.57903
3 15 29.91408
4 18 58.41425(W)、61.26584(M)、61.47193(T)
4F 18 -81.48313
4R 24 28.77173
[条件式対応値]
(1) ndh = 1.954(L31)、1.950(L402)、1.954(L408)
(2) νdh = 33.46(L31)、29.37(L402)、33.46(L408)
(3) f1/(−f2) = 6.72
(4) (−f2)/f3 = 0.320
(6) νdh4 = 33.46(L408)
(7) νdp1 = 82.57(L12)
(8) νdp4 = 82.57(L401)
【0051】
図2(a)、
図2(b)、及び
図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
【0052】
各収差図において、FNOはFナンバー、Aは光線入射角即ち半画角(単位は「°」)をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
【0053】
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。
【0054】
(第2実施例)
図3(a)、
図3(b)、及び
図3(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
【0055】
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
【0056】
第4レンズ群G4は、物体側から順に、負の屈折力を有する前群G4Fと、正の屈折力を有する後群G4Rとからなる。
前群G4Fは、物体側から順に、両凸形状の正レンズL401と両凹形状の負レンズL402との接合レンズと、両凹形状の負レンズL403と物体側に凸面を向けた正メニスカスレンズL404との接合レンズとからなる。なお、負レンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
後群G4Rは、物体側から順に、両凸形状の正レンズL405と、物体側に凹面を向けた正メニスカスレンズL406と物体側に凹面を向けた負メニスカスレンズL407との接合レンズとからなる。なお、正レンズL405は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
【0057】
以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、開口絞りSと第3レンズ群G3との空気間隔が減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4の前群G4Fと一体的に移動する。詳細には、第1レンズ群G1と第3レンズ群G3は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。第4レンズ群G4においては、広角端状態から望遠端状態への変倍時に、前群G4Fと後群G4Rとの空気間隔が減少するように、前群G4Fと後群G4Rが物体側へ移動する。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
【0058】
(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 251.8446 1.6000 1.950000 29.37
2 36.8495 7.9000 1.497820 82.57
3 -162.8867 0.1000
4 41.6898 5.7500 1.883000 40.66
5 7827.2710 可変
6 -808.8261 1.0000 1.883000 40.66
7 9.5148 3.6000
8 -15.5435 1.0000 1.883000 40.66
9 143.0303 0.1000
10 28.6318 3.0500 1.808090 22.74
11 -13.3111 0.2500
12 -12.1771 1.0000 1.834810 42.73
13 -36.4394 可変
14(絞りS) ∞ 可変
15 27.0772 1.0000 2.000690 25.46
16 15.7705 2.5000 1.744000 44.80
17 -35.2142 可変
18 12.6941 2.9500 1.497820 82.57
19 -24.8876 1.0000 1.846660 23.80
20 775.1758 2.1500
*21 -227.6550 1.0000 1.806100 40.97
22 8.8217 2.2000 1.846660 23.80
23 19.5840 可変
*24 15.0000 3.1500 1.583130 59.42
25 -23.9888 0.1000
26 -509.6518 4.2000 1.581440 40.98
27 -7.8594 1.0000 1.954000 33.46
28 -200.0000 BF
像面 ∞
[非球面データ]
第21面
κ -20.0000
A4 1.61374E-05
A6 -2.79859E-08
A8 -1.22068E-09
A10 0.00000E+00
第24面
κ 3.6281
A4 -1.21377E-04
A6 -7.10924E-07
A8 1.36403E-08
A10 -4.10781E-10
[各種データ]
変倍比 9.42
W T
f 10.30 〜 97.00
FNO 4.12 〜 6.48
ω 43.07 〜 4.70°
Y 8.19 〜 8.19
W M T
f 10.30000 50.00001 96.99995
ω 43.07103 9.11914 4.70123
FNO 4.12 5.81 6.48
φ 6.80 7.90 7.90
TL 90.80323 122.13334 131.09941
d5 2.28937 28.97477 38.62002
d13 13.12572 3.71901 2.00000
d14 6.29895 3.32684 1.40000
d17 2.43367 5.40578 7.33262
d23 6.60623 3.30000 3.30000
BF 13.44928 30.80693 31.84677
[レンズ群データ]
群 始面 f
1 1 59.94630
2 6 -8.99248
3 15 24.34092
4 18 71.07089(W)、75.48860(M)、75.48860(T)
4F 18 -112.21259
4R 24 35.78226
[条件式対応値]
(1) ndh = 1.950(L11)、1.954(L407)
(2) νdh = 29.37(L11)、33.46(L407)
(3) f1/(−f2) = 6.67
(4) (−f2)/f3 = 0.369
(5) |fh/f1| = 0.761(L11)
(6) νdh4 = 33.46(L407)
(7) νdp1 = 82.57(L12)
(8) νdp4 = 82.57(L401)
【0059】
図4(a)、
図4(b)、及び
図4(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
【0060】
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。
【0061】
(第3実施例)
図5(a)、
図5(b)、及び
図5(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
【0062】
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
【0063】
第4レンズ群G4は、物体側から順に、負の屈折力を有する前群G4Fと、正の屈折力を有する後群G4Rとからなる。
前群G4Fは、物体側から順に、両凸形状の正レンズL401と像側に凸面を向けた負メニスカスレンズL402との接合レンズと、両凹形状の負レンズL403と物体側に凸面を向けた正メニスカスレンズL404との接合レンズとからなる。なお、負レンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
後群G4Rは、物体側から順に、両凸形状の正レンズL405と、両凸形状の正レンズL406と物体側に凹面を向けた負メニスカスレンズL407との接合レンズとからなる。なお、正レンズL405は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
【0064】
以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、開口絞りSと第3レンズ群G3との空気間隔が減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4の前群G4Fと一体的に移動する。詳細には、第1レンズ群G1と第3レンズ群G3は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。第4レンズ群G4においては、広角端状態から望遠端状態への変倍時に、前群G4Fと後群G4Rとの空気間隔が減少するように、前群G4Fと後群G4Rが物体側へ移動する。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
【0065】
(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 149.8692 1.6000 1.949665 27.56
2 44.3736 6.8398 1.497820 82.51
3 -243.5058 0.1000
4 45.3756 5.3508 1.867900 41.78
5 311.4136 可変
*6 89.0243 1.2000 1.834810 42.73
7 8.4900 3.7581
8 -15.7255 1.0000 1.834810 42.73
9 250.0000 0.1000
10 25.2749 3.2925 1.808090 22.74
11 -17.4750 0.5480
12 -12.6196 1.0000 1.816000 46.59
13 -33.4252 可変
14(絞りS) ∞ 可変
15 29.1681 1.0000 1.889044 39.77
16 18.2404 3.2071 1.593125 66.16
17 -26.5261 可変
18 14.2857 3.5654 1.497820 82.51
19 -21.9776 1.0000 1.902000 25.23
20 -82.8398 2.2052
*21 -52.3071 1.0000 1.848976 43.01
22 9.1414 2.6915 1.950000 29.37
23 25.8642 可変
*24 35.4414 3.3350 1.589130 61.22
25 -21.3191 0.3000
26 42.3100 4.4029 1.581440 40.98
27 -10.1979 1.2000 1.954000 33.46
28 -300.4717 BF
像面 ∞
[非球面データ]
第6面
κ 1.0000
A4 3.45801E-05
A6 -1.38520E-07
A8 -5.59965E-11
A10 1.26030E-11
第21面
κ 1.0000
A4 1.74477E-06
A6 1.28096E-07
A8 -2.63692E-09
A10 0.00000E+00
第24面
κ 1.0000
A4 -1.22983E-05
A6 1.47314E-07
A8 -5.48742E-10
A10 0.00000E+00
[各種データ]
変倍比 9.42
W T
f 10.30 〜 97.00
FNO 3.50 〜 5.62
ω 39.90 〜 4.69°
Y 8.19 〜 8.19
W M T
f 10.30001 49.99971 96.99932
ω 39.90076 9.01930 4.68610
FNO 3.50 5.20 5.62
φ 8.99 8.81 9.00
TL 99.25773 129.21001 139.67596
d5 1.99991 30.68218 41.26022
d13 18.53440 4.14191 2.00000
d14 3.76478 2.96318 1.40000
d17 3.54181 4.34341 5.90655
d23 8.01786 3.30678 3.30001
BF 14.70262 35.07621 37.11281
[レンズ群データ]
群 始面 f
1 1 66.85483
2 6 -9.36043
3 15 27.88295
4 18 53.04244(W)、55.61603(M)、55.61991(T)
4F 18 -160.91663
4R 24 33.55859
[条件式対応値]
(1) ndh = 1.950(L404)、1.954(L407)
(2) νdh = 29.37(L404)、33.46(L407)
(3) f1/(−f2) = 7.14
(4) (−f2)/f3 = 0.336
(6) νdh4 = 33.46(L407)
(7) νdp1 = 82.51(L12)
(8) νdp4 = 82.51(L401)
【0066】
図6(a)、
図6(b)、及び
図6(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
【0067】
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。
【0068】
(第4実施例)
図7(a)、
図7(b)、及び
図7(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
【0069】
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
【0070】
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL401と像側に凸面を向けた負メニスカスレンズL402との接合レンズと、物体側に凹面を向けた正メニスカスレンズL403と両凹形状の負レンズL404との接合レンズと、両凸形状の正レンズL405と、物体側に凹面を向けた正メニスカスレンズL406と両凹形状の負レンズL407との接合レンズと、物体側に凸面を向けた負メニスカスレンズL408と両凸形状の正レンズL409との接合レンズと、物体側に凹面を向けた負メニスカスレンズL410とからなる。なお、正メニスカスレンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL410は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
【0071】
以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、開口絞りSと第3レンズ群G3との空気間隔が減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4と一体的に移動する。詳細には、第1レンズ群G1、第3レンズ群G3、及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。
以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
【0072】
(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 134.9416 1.6000 2.001000 29.14
2 37.4620 7.6500 1.497820 82.57
3 -339.5674 0.1000
4 41.6639 5.5500 1.883000 40.66
5 520.6025 可変
*6 2429.7649 1.0000 1.851350 40.10
7 8.6673 5.7500
8 -10.8429 1.0000 1.487490 70.31
9 -45.5363 0.8500
10 52.5147 3.1000 1.808090 22.74
11 -17.4657 0.3000
12 -16.1357 1.0000 1.954000 33.46
13 -39.2793 可変
14(絞りS) ∞ 可変
15 29.3843 1.0000 1.902650 35.73
16 14.8567 2.8000 1.719990 50.27
17 -55.5590 可変
18 13.5564 3.3500 1.497820 82.57
19 -24.9755 1.0000 1.950000 29.37
20 -183.0794 2.1500
*21 -145.2052 2.2500 1.802440 25.55
22 -14.7800 1.0000 1.766840 46.78
23 23.7425 2.8000
24 25.8106 3.0000 1.516800 63.88
25 -15.0644 0.1000
26 -568.8377 3.0000 1.568830 56.00
27 -9.3137 1.0000 1.954000 33.46
28 98.3635 0.1000
29 15.0059 1.0000 1.950000 29.37
30 7.0809 4.2500 1.647690 33.73
31 -21.2496 1.4500
32 -11.4669 1.0000 1.743300 49.32
*33 -29.8012 BF
像面 ∞
[非球面データ]
第6面
κ -20.0000
A4 9.19258E-05
A6 -6.71049E-07
A8 3.76181E-09
A10 -1.11659E-11
第21面
κ -13.2727
A4 1.25451E-05
A6 1.56196E-07
A8 -2.20815E-09
A10 0.00000E+00
第33面
κ -0.9208
A4 -8.91367E-05
A6 -1.72158E-06
A8 2.40673E-08
A10 -6.77013E-10
[各種データ]
変倍比 9.42
W T
f 10.30 〜 97.00
FNO 4.08 〜 5.83
ω 40.21 〜 4.78°
Y 8.19 〜 8.19
W M T
f 10.30000 50.00021 97.00042
ω 40.21108 9.16962 4.78008
FNO 4.08 5.79 5.83
φ 8.40 9.20 10.10
TL 102.69006 133.09448 142.59913
d5 2.10000 29.30442 39.87067
d13 19.87565 4.17251 2.00000
d14 4.49060 3.80672 1.60000
d17 3.02442 3.70831 5.91502
BF 14.04941 32.95254 34.06346
[レンズ群データ]
群 始面 f
1 1 63.95755
2 6 -10.21809
3 15 32.27954
4 18 70.96006
[条件式対応値]
(1) ndh = 2.001(L11)、1.954(L24)、1.950(L402)、1.954(L407)、1.950(L408)
(2) νdh = 29.14(L11)、33.46(L24)、29.37(L402)、33.46(L407)、29.37(L408)
(3) f1/(−f2) = 6.26
(4) (−f2)/f3 = 0.317
(5) |fh/f1| = 0.817(L11)
(6) νdh4 = 33.46(L407)
(7) νdp1 = 82.57(L12)
(8) νdp4 = 82.57(L401)
【0073】
図8(a)、
図8(b)、及び
図8(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
【0074】
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。
【0075】
(第5実施例)
図9(a)、
図9(b)、及び
図9(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
【0076】
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた平凸形状の正レンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる複合型非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。
【0077】
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL401と像側に凸面を向けた負メニスカスレンズL402との接合レンズと、物体側に凹面を向けた正メニスカスレンズL403と両凹形状の負レンズL404との接合レンズと、両凸形状の正レンズL405と、両凸形状の正レンズL406と両凹形状の負レンズL407との接合レンズと、両凸形状の正レンズL408と像側に凸面を向けた負メニスカスレンズL409との接合レンズと、物体側に凹面を向けた負メニスカスレンズL410とからなる。なお、負レンズL404は像側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL410は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
【0078】
以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が広角端状態から中間焦点距離状態まで減少し中間焦点距離状態から望遠端状態まで増加し、開口絞りSと第3レンズ群G3との空気間隔が広角端状態から中間焦点距離状態まで増加し中間焦点距離状態から望遠端状態まで減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って物体側へそれぞれ移動し、開口絞りSは第4レンズ群G4と一体的に移動する。
以下の表5に、本実施例に係る変倍光学系の諸元の値を掲げる。
【0079】
(表5)第5実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 145.1831 1.7000 2.001000 29.14
2 36.6390 8.1000 1.497820 82.57
3 -399.3519 0.1000
4 43.2076 6.0000 1.883000 40.66
5 ∞ 可変
*6 436.5967 0.1000 1.553890 38.09
7 87.0031 1.1000 1.834810 42.73
8 8.3001 5.3500
9 -12.6073 1.0000 1.755000 52.34
10 -32.7993 0.8000
11 41.1197 2.9500 1.808090 22.74
12 -19.6043 0.9000 1.883000 40.66
13 -73.1316 可変
14(絞りS) ∞ 可変
15 22.3725 0.9000 1.902650 35.73
16 12.2299 3.4500 1.670030 47.14
17 -59.6992 可変
18 13.7390 3.6000 1.497820 82.57
19 -24.8201 0.9000 2.000690 25.46
20 -270.0138 2.2000
21 -117.0547 2.0500 1.846660 23.80
22 -15.9850 1.0000 1.773770 47.25
*23 24.1750 2.0836
24 66.3654 2.8000 1.568830 56.00
25 -15.4473 0.1000
26 44.9939 2.7500 1.517420 52.20
27 -15.2012 0.9000 1.903660 31.27
28 29.9926 0.3000
29 14.6093 5.0500 1.672700 32.19
30 -9.1997 0.9000 2.000690 25.46
31 -24.3892 1.4000
32 -12.8617 1.0000 1.851350 40.10
*33 -27.4946 BF
像面 ∞
[非球面データ]
第6面
κ 20.0000
A4 9.17458E-05
A6 -6.51986E-07
A8 2.69890E-09
A10 -1.23751E-11
第23面
κ 0.4823
A4 -7.24815E-06
A6 -3.60139E-07
A8 4.05630E-09
A10 0.00000E+00
第33面
κ -20.0000
A4 -1.22780E-04
A6 8.28360E-07
A8 -6.05245E-09
A10 -9.88805E-11
[各種データ]
変倍比 9.42
W T
f 10.30 〜 96.99
FNO 4.12 〜 5.81
ω 40.44 〜 4.73°
Y 8.19 〜 8.19
W M T
f 10.30260 30.00000 96.99284
ω 40.44283 14.85841 4.72723
FNO 4.12 5.48 5.81
φ 8.12 8.12 9.70
TL 103.02710 121.37977 143.32397
d5 2.10606 20.13084 40.20889
d13 19.66416 6.24359 1.80000
d14 4.27874 4.97381 1.80000
d17 3.43763 2.74256 5.91637
BF 14.05688 27.80535 34.11509
[レンズ群データ]
群 始面 f
1 1 64.09778
2 6 -10.16794
3 15 31.06055
4 18 67.05869
[条件式対応値]
(1) ndh = 2.001(L11)
(2) νdh = 29.14(L11)
(3) f1/(−f2) = 6.31
(4) (−f2)/f3 = 0.327
(5) |fh/f1| = 0.770(L11)
(7) νdp1 = 82.57(L12)
(8) νdp4 = 82.57(L401)
【0080】
図10(a)、
図10(b)、及び
図10(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
【0081】
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。
【0082】
上記各実施例によれば、小型で、高い光学性能を有する変倍光学系を実現することができる。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
【0083】
本願の変倍光学系の数値実施例として4群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、5群、6群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
【0084】
また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部又は第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
【0085】
また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
【0086】
また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
【0087】
また、本願の変倍光学系において開口絞りは第3レンズ群中又は第3レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
【0088】
次に、本願の変倍光学系を備えたカメラを
図11に基づいて説明する。
図11は、本願の変倍光学系を備えたカメラの構成を示す図である。
図11に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
【0089】
ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、小型で、高い光学性能を有する変倍光学系である。したがって本カメラ1は、小型化を図りながら、高い光学性能を実現することができる。なお、上記第2〜第5実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
【0090】
最後に、本願の変倍光学系の製造方法の概略を
図12に基づいて説明する。
図12に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1、S2を含むものである。
【0091】
ステップS1:以下の条件式(1)、(2)を満足するレンズを変倍光学系が少なくとも1つ有するようにし、各レンズ群をレンズ鏡筒内に物体側から順に配置する。
(1) 1.928 < ndh
(2) 28.60 < νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
【0092】
ステップS2:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、及び第3レンズ群と第4レンズ群との間隔が変化するようにする。
【0093】
斯かる本願の変倍光学系の製造方法によれば、小型で、高い光学性能を有する変倍光学系を製造することができる。