【解決手段】(A)テトラカルボン酸無水物成分と、全ジアミン成分に対し、ダイマー酸の二つの末端カルボン酸基が1級のアミノメチル基又はアミノ基に置換されてなるダイマージアミンを主成分とするダイマージアミン組成物を40モル%以上含有するジアミン成分と、を反応させてなるポリアミド酸又はポリイミドを含有する不揮発性有機化合物成分、及び、(B)シリカ粒子、を含有するとともに、(B)成分が(A)成分(ただし、ポリアミド酸はイミド化されたポリイミドに換算する)及び(B)成分の合計に対し5〜60重量%の範囲内である樹脂組成物。
【発明を実施するための形態】
【0020】
以下、本発明の実施の形態について説明する。
【0021】
[樹脂組成物]
本発明の一実施の形態に係る樹脂組成物は、下記の成分(A)及び(B)、
(A)テトラカルボン酸無水物成分と、全ジアミン成分に対し、ダイマー酸の二つの末端カルボン酸基が1級のアミノメチル基又はアミノ基に置換されてなるダイマージアミンを主成分とするダイマージアミン組成物を40モル%以上含有するジアミン成分と、を反応させてなるポリアミド酸又はポリイミドを含有する不揮発性有機化合物成分、及び
(B)シリカ粒子、
を含有するとともに、前記(B)成分が前記(A)成分(ただし、ポリアミド酸はイミド化されたポリイミドに換算する)及び前記(B)成分の合計に対し5〜60重量%の範囲内である。樹脂組成物は、ポリアミド酸を含有するワニス(樹脂溶液)であってもよく、溶剤可溶性のポリイミドを含有するポリイミド溶液であってもよい。
【0022】
<(A)成分:不揮発性有機化合物成分>
(A)成分の不揮発性有機化合物成分は、樹脂組成物から溶剤及び無機固形分を除いた固形分を意味する。すなわち、不揮発性有機化合物成分は、ポリアミド酸又はポリイミドを含有し、任意成分として、ポリイミド以外の樹脂、架橋剤、有機フィラー、可塑剤、硬化促進剤、カップリング剤、有機顔料、有機系難燃剤などを含有することができる。ここで、ポリイミド以外の樹脂としては、例えば、エポキシ樹脂、フッ素樹脂、オレフィン系樹脂、マレイミド樹脂、エラストマー樹脂などを挙げることができる。架橋剤としては、後述する少なくとも2つの第1級のアミノ基を官能基として有するアミノ化合物(架橋形成用アミノ化合物)、ビスマレイミド化合物、アクリル(メタクリル)系化合物、スチレン系化合物などを挙げることができる。有機フィラーとしては、例えば、液晶ポリマー粒子、フッ素系ポリマー粒子、オレフィン系ポリマー粒子などを挙げることができる。
【0023】
(A)成分中のポリアミド酸又はポリイミドの含有率は、60重量%以上であることが好ましく、70重量%以上がより好ましく、80重量%以上が最も好ましい。(A)成分中のポリアミド酸又はポリイミドの含有率が60重量%未満であると、ポリイミドの靭性が低下し、樹脂フィルムを形成したときのフィルム保持性が低下する。なお、ポリアミド酸の場合はイミド化されたポリイミドに換算して重量比を算出するものとする。
【0024】
<ポリアミド酸又はポリイミド>
本実施の形態で用いるポリアミド酸又はポリイミドは、テトラカルボン酸無水物成分と、全ジアミン成分に対し、ダイマー酸の二つの末端カルボン酸基が1級アミノメチル基又はアミノ基に置換されてなるダイマージアミンを主成分とするダイマージアミン組成物を40モル%以上含有するジアミン成分と、を反応させて得られる前駆体のポリアミド酸、これをイミド化したポリイミドである。本実施の形態で用いるポリアミド酸又はポリイミドは、脂肪族系のポリアミド酸又はポリイミドであるため、熱可塑性ポリイミドであり、可撓性に富み、シリカ粒子を大量に添加した場合でも十分な靭性を有し、樹脂フィルムを形成した場合にその形状を保持する能力が高い。なお、「熱可塑性ポリイミド」とは、一般にガラス転移温度(Tg)が明確に確認できるポリイミドのことであるが、本発明では、動的粘弾性測定装置(DMA)を用いて測定した、30℃における貯蔵弾性率が1.0×10
8Pa以上であり、300℃における貯蔵弾性率が3.0×10
7Pa未満であるポリイミドをいう。また、「非熱可塑性ポリイミド」とは、一般に加熱しても軟化、接着性を示さないポリイミドのことであるが、本発明では、動的粘弾性測定装置(DMA)を用いて測定した、30℃における貯蔵弾性率が1.0×10
9Pa以上であり、300℃における貯蔵弾性率が3.0×10
8Pa以上であるポリイミドをいう。
【0025】
本実施の形態で用いるポリアミド酸又はポリイミドは、原料のテトラカルボン酸無水物から誘導されるテトラカルボン酸残基及び原料のジアミン化合物から誘導されるジアミン残基を含んでいる。原料であるテトラカルボン酸無水物及びジアミン化合物をほぼ等モルで反応させることによって、原料の種類と量に対して、ポリアミド酸又はポリイミド中に含まれるテトラカルボン酸残基及びジアミン残基の種類と量をほぼ対応させることができる。
【0026】
(テトラカルボン酸無水物成分)
本実施の形態で用いるポリアミド酸又はポリイミドは、原料として一般に熱可塑性ポリイミドに使用されるテトラカルボン酸無水物を特に制限なく使用できるが、全テトラカルボン酸無水物成分に対して、下記の一般式(1)及び/又は(2)で表されるテトラカルボン酸無水物を合計で90モル%以上含有することが好ましい。換言すれば、本実施の形態で用いるポリアミド酸又はポリイミドは、全テトラカルボン酸残基100モル部に対して、下記の一般式(1)及び/又は(2)で表されるテトラカルボン酸無水物から誘導されるテトラカルボン酸残基を、合計で90モル部以上含有することが好ましい。下記の一般式(1)及び/又は(2)で表されるテトラカルボン酸無水物から誘導されるテトラカルボン酸残基を、テトラカルボン酸残基100モル部に対して合計で90モル部以上含有させることによって、ポリイミドの柔軟性と耐熱性の両立が図りやすく好ましい。下記の一般式(1)及び/又は(2)で表されるテトラカルボン酸無水物から誘導されるテトラカルボン酸残基の合計が90モル部未満では、ポリイミドの溶剤溶解性が低下する傾向になる。
【0028】
一般式(1)中、Xは、単結合、または、下式から選ばれる2価の基を示し、一般式(2)中、Yで表される環状部分は、4員環、5員環、6員環、7員環又は8員環から選ばれる環状飽和炭化水素基を形成していることを示す。
【0030】
上記式において、Zは−C
6H
4−、−(CH
2)n−又は−CH
2−CH(−O−C(=O)−CH
3)−CH
2−を示すが、nは1〜20の整数を示す。
【0031】
上記一般式(1)で表されるテトラカルボン酸無水物としては、例えば、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’−オキシジフタル酸無水物(ODPA)、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、2,2−ビス〔4−(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物(BPADA)、p-フェニレンビス(トリメリット酸モノエステル酸無水物)(TAHQ)、エチレングリコール ビスアンヒドロトリメリテート(TMEG)などを挙げることができる。これらの中でも特に3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)が好ましい。BTDAを使用する場合は、カルボニル基(ケトン基)が接着性に寄与するため(B)成分のシリカ粒子の添加による剥離強度の低下を抑制し、ポリイミドの接着性を向上させることができる。また、BTDAは分子骨格に存在するケトン基と、後述する架橋形成のためのアミノ化合物のアミノ基が反応してC=N結合を形成する場合があり、耐熱性を向上させる効果を発現しやすい。このような観点から、テトラカルボン酸残基100モル部に対して、BTDAから誘導されるテトラカルボン酸残基を好ましくは50モル部以上、より好ましくは60モル部以上含有することがよい。
【0032】
また、一般式(2)で表されるテトラカルボン酸無水物としては、例えば、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、1,2,4,5−シクロヘプタンテトラカルボン酸二無水物、1,2,5,6−シクロオクタンテトラカルボン酸二無水物などを挙げることができる。
【0033】
本実施の形態のポリアミド酸又はポリイミドは、発明の効果を損なわない範囲で、上記一般式(1)及び一般式(2)で表されるテトラカルボン酸無水物以外の酸無水物から誘導されるテトラカルボン酸残基を含有することができる。そのようなテトラカルボン酸残基としては、特に制限はないが、例えば、ピロメリット酸二無水物、2,3',3,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-又は2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物等の芳香族テトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が挙げられる。
【0034】
(ジアミン成分)
本実施の形態で用いるポリアミド酸又はポリイミドは、原料として、全ジアミン成分に対して、ダイマージアミン組成物を40モル%以上、より好ましくは60モル%以上含有するジアミン成分を用いる。ダイマージアミン組成物を上記の量で含有することによって、ポリイミドの誘電特性を改善させるとともに、ポリイミドのガラス転移温度の低温化(低Tg化)による熱圧着特性の改善及び低弾性率化による内部応力を緩和することができる。
【0035】
(ダイマージアミン組成物)
ダイマージアミン組成物は、下記成分(a)を主成分として含有するとともに、成分(b)及び(c)の量が制御されているものである。
【0036】
(a)ダイマージアミン;
(a)成分のダイマージアミンとは、ダイマー酸の二つの末端カルボン酸基(−COOH)が、1級のアミノメチル基(−CH
2−NH
2)又はアミノ基(−NH
2)に置換されてなるジアミンを意味する。ダイマー酸は、不飽和脂肪酸の分子間重合反応によって得られる既知の二塩基酸であり、その工業的製造プロセスは業界でほぼ標準化されており、炭素数が11〜22の不飽和脂肪酸を粘土触媒等にて二量化して得られる。工業的に得られるダイマー酸は、オレイン酸やリノール酸、リノレン酸などの炭素数18の不飽和脂肪酸を二量化することによって得られる炭素数36の二塩基酸が主成分であるが、精製の度合いに応じ、任意量のモノマー酸(炭素数18)、トリマー酸(炭素数54)、炭素数20〜54の他の重合脂肪酸を含有する。また、ダイマー化反応後には二重結合が残存するが、本発明では、更に水素添加反応して不飽和度を低下させたものもダイマー酸に含めるものとする。(a)成分のダイマージアミンは、炭素数18〜54の範囲内、好ましくは22〜44の範囲内にある二塩基酸化合物の末端カルボン酸基を1級アミノメチル基又はアミノ基に置換して得られるジアミン化合物、と定義することができる。
【0037】
ダイマージアミンの特徴として、ダイマー酸の骨格に由来する特性を付与することができる。すなわち、ダイマージアミンは、分子量約560〜620の巨大分子の脂肪族であるので、分子のモル体積を大きくし、ポリイミドの極性基を相対的に減らすことができる。このようなダイマー酸型ジアミンの特徴は、ポリイミドの耐熱性の低下を抑制しつつ、誘電率と誘電正接を小さくして誘電特性を向上させることに寄与すると考えられる。また、2つの自由に動く炭素数7〜9の疎水鎖と、炭素数18に近い長さを持つ2つの鎖状の脂肪族アミノ基とを有するので、ポリイミドに柔軟性を与えるのみならず、ポリイミドを非対象的な化学構造や非平面的な化学構造とすることができるので、ポリイミドの低誘電率化を図ることができると考えられる。
【0038】
ダイマージアミン組成物は、分子蒸留等の精製方法によって(a)成分のダイマージアミン含有量を96重量%以上、好ましくは97重量%以上、より好ましくは98重量%以上にまで高めたものを使用することがよい。(a)成分のダイマージアミン含有量を96重量%以上とすることで、ポリイミドの分子量分布の拡がりを抑制することができる。なお、技術的に可能であれば、ダイマージアミン組成物のすべて(100重量%)が、(a)成分のダイマージアミンによって構成されていることが最もよい。
【0039】
(b)炭素数10〜40の範囲内にある一塩基酸化合物の末端カルボン酸基を1級アミノメチル基又はアミノ基に置換して得られるモノアミン化合物;
炭素数10〜40の範囲内にある一塩基酸化合物は、ダイマー酸の原料に由来する炭素数10〜20の範囲内にある一塩基性不飽和脂肪酸、及びダイマー酸の製造時の副生成物である炭素数21〜40の範囲内にある一塩基酸化合物の混合物である。モノアミン化合物は、これらの一塩基酸化合物の末端カルボン酸基を1級アミノメチル基又はアミノ基に置換して得られるものである。
【0040】
(b)成分のモノアミン化合物は、ポリイミドの分子量増加を抑制する成分である。ポリアミド酸又はポリイミドの重合時に、該モノアミン化合物の単官能のアミノ基が、ポリアミド酸又はポリイミドの末端酸無水物基と反応することで末端酸無水物基が封止され、ポリアミド酸又はポリイミドの分子量増加を抑制する。
【0041】
(c)炭素数41〜80の範囲内にある炭化水素基を有する多塩基酸化合物の末端カルボン酸基を1級アミノメチル基又はアミノ基に置換して得られるアミン化合物(但し、前記ダイマージアミンを除く);
炭素数41〜80の範囲内にある炭化水素基を有する多塩基酸化合物は、ダイマー酸の製造時の副生成物である炭素数41〜80の範囲内にある三塩基酸化合物を主成分とする多塩基酸化合物である。また、炭素数41〜80のダイマー酸以外の重合脂肪酸を含んでいてもよい。アミン化合物は、これらの多塩基酸化合物の末端カルボン酸基を1級アミノメチル基又はアミノ基に置換して得られるものである。
【0042】
(c)成分のアミン化合物は、ポリイミドの分子量増加を助長する成分である。トリマー酸を由来とするトリアミン体を主成分とする三官能以上のアミノ基が、ポリアミド酸又はポリイミドの末端酸無水物基と反応し、ポリイミドの分子量を急激に増加させる。また、炭素数41〜80のダイマー酸以外の重合脂肪酸から誘導されるアミン化合物も、ポリイミドの分子量を増加させ、ポリアミド酸又はポリイミドのゲル化の原因となる。
【0043】
上記ダイマージアミン組成物は、ゲル浸透クロマトグラフィー(GPC)を用いた測定によって各成分の定量を行う場合、ダイマージアミン組成物の各成分のピークスタート、ピークトップ及びピークエンドの確認を容易にするために、ダイマージアミン組成物を無水酢酸及びピリジンで処理したサンプルを使用し、また内部標準物質としてシクロヘキサノンを使用する。このように調製したサンプルを用いて、GPCのクロマトグラムの面積パーセントで各成分を定量する。各成分のピークスタート及びピークエンドは、各ピーク曲線の極小値とし、これを基準にクロマトグラムの面積パーセントの算出を行うことができる。
【0044】
また、本発明で用いるダイマージアミン組成物は、GPC測定によって得られるクロマトグラムの面積パーセントで、成分(b)及び(c)の合計が4%以下、好ましくは4%未満がよい。成分(b)及び(c)の合計を4%以下とすることで、ポリイミドの分子量分布の拡がりを抑制することができる。
【0045】
また、(b)成分のクロマトグラムの面積パーセントは、好ましくは3%以下、より好ましくは2%以下、更に好ましくは1%以下がよい。このような範囲にすることで、ポリイミドの分子量の低下を抑制することができ、更にテトラカルボン酸無水物成分及びジアミン成分の仕込みのモル比の範囲を広げることができる。なお、(b)成分は、ダイマージアミン組成物中に含まれていなくてもよい。
【0046】
また、(c)成分のクロマトグラムの面積パーセントは、2%以下であり、好ましくは1.8%以下、より好ましくは1.5%以下がよい。このような範囲にすることで、ポリイミドの分子量の急激な増加を抑制することができ、更に樹脂フィルムの広域の周波数での誘電正接の上昇を抑えることができる。なお、(c)成分は、ダイマージアミン組成物中に含まれていなくてもよい。
【0047】
また、成分(b)及び(c)のクロマトグラムの面積パーセントの比率(b/c)が1以上である場合、テトラカルボン酸無水物成分及びジアミン成分のモル比(テトラカルボン酸無水物成分/ジアミン成分)は、好ましくは0.97以上1.0未満とすることがよく、このようなモル比にすることで、ポリイミドの分子量の制御がより容易となる。
【0048】
また、成分(b)及び(c)の前記クロマトグラムの面積パーセントの比率(b/c)が1未満である場合、テトラカルボン酸無水物成分及びジアミン成分のモル比(テトラカルボン酸無水物成分/ジアミン成分)は、好ましくは0.97以上1.1以下とすることがよく、このようなモル比にすることで、ポリイミドの分子量の制御がより容易となる。
【0049】
本発明で用いるダイマージアミン組成物は、(a)成分のダイマージアミン以外の成分を低減する目的で精製することが好ましい。精製方法としては、特に制限されないが、蒸留法や沈殿精製等の公知の方法が好適である。精製前のダイマージアミン組成物は、市販品での入手が可能であり、例えばクローダジャパン社製のPRIAMINE1073(商品名)、同PRIAMINE1074(商品名)、同PRIAMINE1075(商品名)等が挙げられる。
【0050】
ポリイミドに使用されるダイマージアミン以外のジアミン化合物としては、芳香族ジアミン化合物、脂肪族ジアミン化合物を挙げることができる。それらの具体例としては、1,4−ジアミノベンゼン(p−PDA;パラフェニレンジアミン)、2,2’−ジメチル−4,4’−ジアミノビフェニル(m−TB)、2,2’−n−プロピル−4,4’−ジアミノビフェニル(m−NPB)、4−アミノフェニル−4’−アミノベンゾエート(APAB)、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3−アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2−ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、3,3’-ジアミノジフェニルエタン、3,3’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、3,3''-ジアミノ-p-テルフェニル、4,4'-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2'-メトキシ-4,4'-ジアミノベンズアニリド、4,4'-ジアミノベンズアニリド、1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、6-アミノ-2-(4-アミノフェノキシ)ベンゾオキサゾール、1,3-ビス(3-アミノフェノキシ)ベンゼン等のジアミン化合物が挙げられる。
【0051】
ポリイミドは、上記のテトラカルボン酸無水物成分とジアミン成分を溶媒中で反応させ、ポリアミド酸を生成したのち加熱閉環させることにより製造できる。例えば、テトラカルボン酸無水物成分とジアミン成分をほぼ等モルで有機溶媒中に溶解させて、0〜100℃の範囲内の温度で30分〜24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5〜50重量%の範囲内、好ましくは10〜40重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、2−ブタノン、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、メチルシクロヘキサン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、メタノール、エタノール、ベンジルアルコール、クレゾール等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶媒の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液の濃度が5〜50重量%程度になるような使用量に調整して用いることが好ましい。
【0052】
合成されたポリアミド酸は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、ポリアミド酸は一般に溶媒可溶性に優れるので、有利に使用される。ポリアミド酸の溶液の粘度は、500cps〜100,000cpsの範囲内であることが好ましい。この範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。
【0053】
ポリアミド酸をイミド化させてポリイミドを形成させる方法は、特に制限されず、例えば前記溶媒中で、80〜400℃の範囲内の温度条件で1〜24時間かけて加熱するといった熱処理が好適に採用される。また、温度は一定の温度条件で加熱しても良いし、工程の途中で温度を変えることもできる。
【0054】
本実施の形態のポリイミドにおいて、上記テトラカルボン酸無水物成分及びジアミン成分の種類や、2種以上のテトラカルボン酸無水物成分又はジアミン成分を適用する場合のそれぞれのモル比を選定することにより、誘電特性、熱膨張係数、引張弾性率、ガラス転移温度等を制御することができる。また、本実施の形態のポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、ランダムに存在することが好ましい。
【0055】
ポリイミドの重量平均分子量は、例えば10,000〜200,000の範囲内が好ましく、このような範囲内であれば、ポリイミドの重量平均分子量の制御が容易となる。また、例えばFPC用の接着剤として適用する場合、ポリイミドの重量平均分子量は、20,000〜150,000の範囲内がより好ましく、40,000〜150,000の範囲内が更に好ましい。FPC用の接着剤として適用する場合、ポリイミドの重量平均分子量が20,000未満である場合、フロー耐性が悪化する傾向となる。一方、ポリイミドの重量平均分子量が150,000を超えると、過度に粘度が増加して溶剤に不溶になり、塗工作業の際に接着層の厚みムラ、スジ等の不良が発生しやすい傾向になる。
【0056】
本実施の形態のポリイミドのイミド基濃度は、好ましくは22重量%以下、より好ましくは20重量%以下がよい。ここで、「イミド基濃度」は、ポリイミド中のイミド基部(−(CO)
2−N−)の分子量を、ポリイミドの構造全体の分子量で除した値を意味する。イミド基濃度が22重量%を超えると、樹脂自体の分子量が小さくなるとともに、極性基の増加によって低吸湿性も悪化し、Tg及び弾性率が上昇する。
【0057】
本実施の形態のポリイミドは、完全にイミド化された構造が最も好ましい。但し、ポリイミドの一部がアミド酸となっていてもよい。そのイミド化率は、フーリエ変換赤外分光光度計(市販品:日本分光製FT/IR620)を用い、1回反射ATR法にてポリイミド薄膜の赤外線吸収スペクトルを測定することによって、1015cm
−1付近のベンゼン環吸収体を基準とし、1780cm
−1のイミド基に由来するC=O伸縮の吸光度から算出することができる。
【0058】
<架橋形成>
(A)成分中のポリイミドがケトン基を有する場合に、該ケトン基と、少なくとも2つの第1級のアミノ基を官能基として有するアミノ化合物(以下、「架橋形成用アミノ化合物」と記すことがある)のアミノ基を反応させてC=N結合を形成させることによって、架橋構造を形成することができる。架橋構造の形成によって、接着層を形成する熱可塑性ポリイミドの耐熱性を向上させることができる。ケトン基を有する熱可塑性ポリイミドを形成するために好ましいテトラカルボン酸無水物としては、例えば3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)を、ジアミン化合物としては、例えば、4,4’―ビス(3−アミノフェノキシ)ベンゾフェノン(BABP)、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン(BABB)等の芳香族ジアミンを挙げることができる。
【0059】
架橋構造を形成させる目的において、本発明の樹脂組成物は、特に、全テトラカルボン酸残基に対して、BTDAから誘導されるBTDA残基を、好ましくは50モル%以上、より好ましくは60モル%以上含有する上記(A)成分中のポリイミド、及び架橋形成用アミノ化合物、を含むことが好ましい。なお、本発明において、「BTDA残基」とは、BTDAから誘導された4価の基のことを意味する。
【0060】
架橋形成用アミノ化合物としては、(I)ジヒドラジド化合物、(II)芳香族ジアミン、(III)脂肪族アミン等を例示することができる。これらの中でも、ジヒドラジド化合物が好ましい。ジヒドラジド化合物以外の脂肪族アミンは、室温でも架橋構造を形成しやすく、ワニスの保存安定性の懸念があり、一方、芳香族ジアミンは、架橋構造の形成のために高温にする必要がある。このように、ジヒドラジド化合物を使用した場合は、ワニスの保存安定性と硬化時間の短縮化を両立させることができる。ジヒドラジド化合物としては、例えば、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、スベリン酸ジヒドラジド、アゼライン酸ジヒドラジド、セバシン酸ジヒドラジド、ドデカン二酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、ジグリコール酸ジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、フタル酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、2,6−ナフトエ二酸ジヒドラジド、4,4−ビスベンゼンジヒドラジド、1,4−ナフトエ酸ジヒドラジド、2,6−ピリジン二酸ジヒドラジド、イタコン酸ジヒドラジド等のジヒドラジド化合物が好ましい。以上のジヒドラジド化合物は、単独でもよいし、2種類以上混合して用いることもできる。
【0061】
また、上記(I)ジヒドラジド化合物、(II)芳香族ジアミン、(III)脂肪族アミン等のアミノ化合物は、例えば(I)と(II)の組み合わせ、(I)と(III)との組み合わせ、(I)と(II)と(III)との組み合わせのように、カテゴリーを超えて2種以上組み合わせて使用することもできる。
【0062】
また、架橋形成用アミノ化合物による架橋で形成される網目状の構造をより密にするという観点から、本発明で使用する架橋形成用アミノ化合物は、その分子量(架橋形成用アミノ化合物がオリゴマーの場合は重量平均分子量)が5,000以下であることが好ましく、より好ましくは90〜2,000、更に好ましくは100〜1,500がよい。この中でも、100〜1,000の分子量をもつ架橋形成用アミノ化合物が特に好ましい。架橋形成用アミノ化合物の分子量が90未満になると、架橋形成用アミノ化合物の1つのアミノ基がポリイミド樹脂のケトン基とC=N結合を形成するにとどまり、残りのアミノ基の周辺が立体的に嵩高くなるために残りのアミノ基はC=N結合を形成しにくい傾向となる。
【0063】
(A)成分中のポリイミド中のケトン基と架橋形成用アミノ化合物とを架橋形成させる場合は、(A)成分を含む樹脂溶液に、上記架橋形成用アミノ化合物を加えて、ポリイミド中のケトン基と架橋形成用アミノ化合物の第1級アミノ基とを縮合反応させる。この縮合反応により、樹脂溶液は硬化して硬化物となる。この場合、架橋形成用アミノ化合物の添加量は、ケトン基1モルに対し、第1級アミノ基が合計で0.004モル〜1.5モル、好ましくは0.005モル〜1.2モル、より好ましくは0.03モル〜0.9モル、最も好ましくは0.04モル〜0.6モルとすることができる。ケトン基1モルに対して第1級アミノ基が合計で0.004モル未満となるような架橋形成用アミノ化合物の添加量では、架橋形成用アミノ化合物による架橋が十分ではないため、硬化後の耐熱性が発現しにくい傾向となり、架橋形成用アミノ化合物の添加量が1.5モルを超えると未反応の架橋形成用アミノ化合物が熱可塑剤として作用し、接着剤層としての耐熱性を低下させる傾向がある。
【0064】
架橋形成のための縮合反応の条件は、(A)成分中のポリイミドにおけるケトン基と上記架橋形成用アミノ化合物の第1級アミノ基が反応してイミン結合(C=N結合)を形成する条件であれば、特に制限されない。加熱縮合の温度は、縮合によって生成する水を系外へ放出させるため、又は(A)成分中のポリイミドの合成後に引き続いて加熱縮合反応を行なう場合に当該縮合工程を簡略化するため等の理由で、例えば120〜220℃の範囲内が好ましく、140〜200℃の範囲内がより好ましい。反応時間は、30分〜24時間程度が好ましい。反応の終点は、例えばフーリエ変換赤外分光光度計(市販品:日本分光製FT/IR620)を用い、赤外線吸収スペクトルを測定することによって、1670cm
−1付近のポリイミド樹脂におけるケトン基に由来する吸収ピークの減少又は消失、及び1635cm
−1付近のイミン基に由来する吸収ピークの出現により確認することができる。
【0065】
(A)成分中のポリイミドのケトン基と上記架橋形成用アミノ化合物の第1級のアミノ基との加熱縮合は、例えば、
(1)(A)成分中のポリイミドの合成(イミド化)に引き続き、架橋形成用アミノ化合物を添加して加熱する方法、
(2)ジアミン成分として予め過剰量のアミノ化合物を仕込んでおき、(A)成分中のポリイミドの合成(イミド化)に引き続き、イミド化若しくはアミド化に関与しない残りのアミノ化合物を架橋形成用アミノ化合物として利用してポリイミドとともに加熱する方法、又は、
(3)上記の架橋形成用アミノ化合物を添加した(A)成分中のポリイミドの組成物を所定の形状に加工した後(例えば任意の基材に塗布した後やフィルム状に形成した後)に加熱する方法、等によって行うことができる。
【0066】
(A)成分中のポリイミドの耐熱性付与のため、架橋構造の形成でイミン結合の形成を説明したが、これに限定されるものではなく、(A)成分中のポリイミドの硬化方法として、例えばエポキシ樹脂、エポキシ樹脂硬化剤、マレイミドや活性化エステル樹脂やスチレン骨格を有する樹脂等の不飽和結合を有する化合物等を配合し硬化することも可能である。
【0067】
<(B)成分:シリカ粒子>
(B)成分のシリカ粒子としては、結晶性シリカ粒子、非晶質シリカ粒子のいずれも使用可能であるが、結晶性シリカ粒子を含むことが好ましい。(B)成分のシリカ粒子を配合することによって、樹脂フィルムを形成したときの誘電正接を低下させることができる。樹脂フィルムを形成したときの低誘電正接化を図る観点から、結晶性シリカ粒子として、クリストバライト結晶相を有するシリカ粒子を用いることが特に好ましい。クリストバライト結晶相を有するシリカ粒子は、一般的なシリカ粒子と比較して非常に優れた誘電特性(例えば、クリストバライト結晶相を90重量%以上含有するシリカ粒子は、単体で20GHzにおける誘電正接が0.0001程度)であり、樹脂フィルムの低誘電正接化に大きく寄与することができる。
【0068】
また、シリカ粒子としては、球状シリカ粒子を用いることが好ましい。球状シリカ粒子は、形状が真球状に近いシリカ粒子で、平均長径と平均短径の比が1又は1に近いものをいう。
【0069】
また、シリカは通常の燃焼温度では熱分解しないことから、(B)成分のシリカ粒子の添加によって難燃性の向上を図ることができる。
【0070】
また、樹脂フィルムを形成したときの低誘電正接化を図る観点から、使用するシリカ粒子全体として、CuKα線によるX線回折分析スペクトルの2θ=10°〜90°の範囲におけるSiO
2に由来する全ピークの総面積に対するクリストバライト結晶相及びクオーツ結晶相に由来するピークの合計面積の割合が20重量%以上であることが好ましく、40重量%以上がより好ましく、80重量%以上が望ましい。シリカ粒子全体におけるクリストバライト結晶相及び/又はクオーツ結晶相の割合を高くすることで、ポリイミドの更なる低誘電正接化を図ることが可能となる。シリカ粒子全体におけるクリストバライト結晶相及びクオーツ結晶相に由来するピークの面積の割合が20重量%未満であると誘電特性向上の効果が不明瞭になる。なお、X線回折分析スペクトルにおける対象のピークが、非晶質のブロードなピークとの分離が困難な場合や他の結晶相ピークと重なる場合は、公知の各種解析手法、例えば内部標準法やPONKCS法等を用いることができる。
【0071】
シリカ粒子は、平均粒子径D
50が6〜20μmの範囲内であることが好ましく、8〜15μmの範囲内であることがより好ましい。ここで、平均粒子径D
50は、レーザ回折散乱法による体積基準の粒度分布測定によって得られる頻度分布曲線における累積値が50%となる値である。平均粒子径D
50がこの範囲内であれば誘電特性を効果的に改善できるとともに、樹脂組成物によって樹脂フィルムを形成したときの表面平滑性を悪化させることがなく、外観良好な低誘電フィルムが得られる。平均粒子径D
50が前記範囲を下回るとシリカ粒子の比表面積が増え、シリカ粒子表面の吸着水や極性基が誘電特性へ影響を及ぼすことがある。平均粒子径D
50が前記範囲を上回ると樹脂フィルムの表面の凹凸として現れ、フィルム表面の平滑性を悪化させることがある。
【0072】
また、粒子径が3μm以上のシリカ粒子の90重量%以上が円形度0.7以上であることが好ましく、0.9以上であることがより好ましい。シリカ粒子の円形度は、画像解析法によって、撮影された粒子と同じ投影面積を持つ円を想定し、その円の周囲長と当該粒子の周囲長の比で求めることができる。円形度が0.7未満であると、表面積が増え、誘電特性に悪影響が生じることがあり、さらに樹脂溶液へ配合した際の粘度の上昇が大きくなり、取り扱いがし難くなる。また、3次元的に求められる真球度においても前記円形度の値と実質的に対応する値が好ましい。
【0073】
また、シリカ粒子は、真比重が2.3以上であることが好ましい。真比重が2.3未満であるとシリカ粒子の結晶化度が小さいことを示唆し、誘電特性向上の効果が小さくなる。
【0074】
シリカ粒子は、市販品を適宜選定して用いることができる。例えば、球状クリストバライトシリカ粉末(日鉄ケミカル&マテリアル社製、商品名;CR10−20)、球状非晶質シリカ粉末(日鉄ケミカル&マテリアル社製、商品名;SC70−2)などを好ましく使用できる。さらに、シリカ粒子として2種以上の異なるシリカ粒子を併用してもよい。
【0075】
<配合量>
本発明の樹脂組成物における(A)成分及び(B)成分の合計に対する(B)成分の重量比は、5〜60重量%の範囲内である。ここで、ポリアミド酸の場合はポリイミドに換算して重量比を算出するものとする(以下、同様である)。(A)成分及び(B)成分の合計に対する(B)成分の重量比が5重量%未満では、誘電特性および難燃性の改善効果が不十分となる場合があり、60重量%を超えるとポリイミドの形成が困難になる場合があり、また得られるポリイミドフィルムの脆弱化が生じる場合がある。(B)成分の配合量を上記範囲内とすることで、誘電特性と難燃性を改善することができる。
また、(B)成分の含有量が(A)成分及び(B)成分の合計に対し5〜20重量%の範囲内である場合、CuKα線によるX線回折分析スペクトルの2θ=10°〜90°の範囲におけるSiO
2に由来する全ピークの総面積に対するクリストバライト結晶相及びクオーツ結晶相に由来するピークの合計面積が40重量%以上となるように結晶性シリカ粒子を配合することが好ましく、(B)成分の含有量が(A)成分及び(B)成分の合計に対し20重量%を超える場合、クリストバライト結晶相及びクオーツ結晶相に由来するピーク面積が30重量%以上となるように結晶性シリカを配合することが好ましい。
【0076】
また、樹脂フィルムを形成したときに銅箔などの金属層への接着力を高める観点から、(A)成分及び(B)成分の合計に対する(B)成分の体積比率が3〜41%の範囲内であることが好ましく、10〜35%の範囲内であることがより好ましい。なお、体積比率は、配合される(A)成分と(B)成分の密度および重量比からの算出、もしくは、走査型電子顕微鏡による断面観察によって求めることができる。
【0077】
<任意成分>
本実施の形態の樹脂組成物は、有機溶媒を含有することができる。有機溶媒としては、例えば、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、2−ブタノン、ジメチルスルホキシド(DMSO)、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの溶媒を2種以上併用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。有機溶媒の含有量としては特に制限されるものではないが、ポリアミド酸又はポリイミドの濃度が5〜30重量%程度になるような使用量に調整して用いることが好ましい。
【0078】
本発明の樹脂組成物には、さらに必要に応じて任意成分として、シリカ以外の無機フィラー、無機顔料、溶剤、無機系難燃剤などを適宜配合することができる。シリカ粒子以外の無機フィラーとしては、例えば、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等を挙げることができる。
【0079】
<粘度>
樹脂組成物の粘度は、樹脂組成物を塗工する際のハンドリング性を高め、均一な厚みの塗膜を形成しやすい粘度範囲として、例えば3000cps〜100000cpsの範囲内とすることが好ましく、5000cps〜50000cpsの範囲内とすることがより好ましい。上記の粘度範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。
【0080】
<樹脂組成物の調製>
本発明の樹脂組成物は、例えば、任意の溶剤を用いて(A)成分の溶液を作成し、そこに(B)成分を添加して均一に混合することによって調製できる。
例えばポリアミド酸又はポリイミドの樹脂溶液にシリカ粒子を直接配合してもよい。あるいは、シリカ粒子の分散性を考慮し、ポリアミド酸の原料である酸二無水物成分及びジアミン成分のいずれか片方を投入した反応溶媒に予めシリカ粒子を配合した後、攪拌下にもう片方の原料を投入して重合を進行させてもよい。
なお、(A)成分の一部分(例えば、架橋形成用アミノ化合物)を、(B)成分と同時に、あるいは、(B)成分を添加した後で配合してもよい。
いずれの方法においても、一回でシリカ粒子を全量投入してもよいし、数回分けて少しずつ添加してもよい。また、原料も一括で入れてもよいし、数回に分けて少しずつ混合してもよい。
【0081】
本発明の樹脂組成物は、これを用いて接着剤層を形成した場合に、優れた柔軟性、熱可塑性に加え、優れた誘電特性と難燃性を有するものとなる。そのため、本発明の樹脂組成物は、例えばFPC、リジッド・フレックス回路基板などの配線部を保護するカバーレイフィルム用の接着剤として好ましい特性を有している。
【0082】
[樹脂フィルム]
本実施の形態の樹脂フィルムは、ポリイミド層を含む樹脂フィルムであり、該ポリイミド層が、上記樹脂組成物の固形分(溶剤を除いた残部)を主要成分としてフィルム化してなるものである。本発明の樹脂フィルムは、可撓性、接着性に加え、優れた高周波特性及び難燃性を有することから、例えばFPC、リジッド・フレックス回路基板などの配線部を保護するカバーレイフィルム用の接着剤層や、多層FPCのボンディングシートなどの用途で好ましく利用することができる。
【0083】
本実施の形態の樹脂フィルムは、上記の樹脂組成物から形成されるポリイミド層を含む絶縁樹脂のフィルムであれば特に限定されるものではなく、絶縁樹脂からなるフィルム(シート)であってもよく、銅箔、ガラス板、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルムなどの樹脂シート等の基材に積層された状態の絶縁樹脂のフィルムであってもよい。
【0084】
<比誘電率>
本実施の形態の樹脂フィルムは、例えばFPC等の回路基板に使用した際のインピーダンス整合性を確保するため、また電気信号のロス低減のために、23℃、50%RHの恒温恒湿条件のもと24時間調湿後の20GHzにおける比誘電率(ε
1)は、好ましくは3.2以下がよく、より好ましくは3.0以下がよい。この比誘電率が3.2を超えると、例えばFPC等の回路基板に使用した際に、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。
【0085】
<誘電正接>
また、本実施の形態の樹脂フィルムは、例えばFPC等の回路基板に使用した際の電気信号のロス低減のために、23℃、50%RHの恒温恒湿条件のもと24時間調湿後の20GHzにおける誘電正接(Tanδ
1)は、好ましくは0.005未満がよく、より好ましくは0.004以下、最も好ましくは0.002以下がよい。この誘電正接が0.005以上であると、例えばFPC等の回路基板に使用した際に、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。
【0086】
<ガラス転移温度>
本実施の形態の樹脂フィルムは、ガラス転移温度(Tg)が250℃以下であることが好ましく、40℃以上200℃以下の範囲内であることがより好ましい。樹脂フィルムのTgが250℃以下であることによって、低温での熱圧着が可能になるため、積層時に発生する内部応力を緩和し、回路加工後の寸法変化を抑制できる。樹脂フィルムのTgが250℃を超えると、接着温度が高くなり、回路加工後の寸法安定性を損なう恐れがある。
【0087】
<厚み>
本実施の形態の樹脂フィルムは、厚みが、例えば15〜100μmの範囲内が好ましく、20〜50μmの範囲内であることがより好ましい。樹脂フィルムの厚みが15μmに満たないと、樹脂フィルムの製造等における搬送時にシワが入るなどの不具合が生じるおそれがあり、一方、樹脂フィルムの厚みが100μmを超えると樹脂フィルムの生産性低下の虞がある。
また、樹脂フィルムの厚みが15μm〜20μmの範囲内である場合は、樹脂フィルムの表面の凹凸を抑制し、フィルム表面の平滑性を維持するため、(B)成分のシリカ粒子として、平均粒子径D
50が9〜12μmの範囲内のものを用いることが好ましい。
【実施例】
【0088】
以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。
【0089】
[アミン価の測定方法]
約2gのダイマージアミン組成物を200〜250mLの三角フラスコに秤量し、指示薬としてフェノールフタレインを用い、溶液が薄いピンク色を呈するまで、0.1mol/Lのエタノール性水酸化カリウム溶液を滴下し、中和を行ったブタノール約100mLに溶解させる。そこに3〜7滴のフェノールフタレイン溶液を加え、サンプルの溶液が薄いピンク色に変わるまで、0.1mol/Lのエタノール性水酸化カリウム溶液で攪拌しながら滴定する。そこへブロモフェノールブルー溶液を5滴加え、サンプル溶液が黄色に変わるまで、0.2mol/Lの塩酸/イソプロパノール溶液で攪拌しながら滴定する。
アミン価は、次の式(1)により算出する。
アミン価={(V
2×C
2)−(V
1×C
1)}×M
KOH/m ・・・(1)
ここで、アミン価はmg−KOH/gで表される値であり、M
KOHは水酸化カリウムの分子量56.1である。また、V、Cはそれぞれ滴定に用いた溶液の体積と濃度であり、添え字の1、2はそれぞれ0.1mol/Lのエタノール性水酸化カリウム溶液、0.2mol/Lの塩酸/イソプロパノール溶液を表す。さらに、mはグラムで表されるサンプル重量である。
【0090】
[ポリイミドの重量平均分子量(Mw)の測定]
重量平均分子量は、ゲル浸透クロマトグラフ(東ソー株式会社製、HLC−8220GPCを使用)により測定した。標準物質としてポリスチレンを用い、展開溶媒にテトラヒドロフランを用いた。
【0091】
[GPC及びクロマトグラムの面積パーセントの算出]
GPCは、20mgのダイマージアミン組成物を200μLの無水酢酸、200μLのピリジン及び2mLのTHF(テトラヒドロフラン)で前処理した100mgの溶液を、10mLのTHF(1000ppmのシクロヘキサノンを含有)で希釈し、サンプルを調製した。調製したサンプルを東ソー株式会社製、商品名;HLC−8220GPCを用いて、カラム:TSK−gel G2000HXL,G1000HXL,G1000HXL、 フロー量:1mL/min、カラム(オーブン)温度:40℃、注入量:50μLの条件で測定した。なお、シクロヘキサノンは流出時間の補正のために標準物質として扱った。
【0092】
このとき、シクロヘキサノンのメインピークのピークトップがリテンションタイム27分から31分になるように、且つ、前記シクロヘキサノンのメインピークのピークスタートからピークエンドが2分になるように調整し、シクロヘキサノンのピークを除くメインピークのピークトップが18分から19分になるように、且つ、前記シクロヘキサノンのピークを除くメインピークのピークスタートからピークエンドまでが2分から4分30秒となる条件で、各成分(a)〜(c);
(a)メインピークで表される成分;
(b)メインピークにおけるリテンションタイムが遅い時間側の極小値を基準にし、それよりも遅い時間に検出されるGPCピークで表される成分;
(c)メインピークにおけるリテンションタイムが早い時間側の極小値を基準にし、それよりも早い時間に検出されるGPCピークで表される成分;
を検出した。
【0093】
[誘電特性の評価]
<シリカ粒子>
ベクトルネットワークアナライザ(キーサイトテクノロジー社製、商品名;ベクトルネットワークアナライザE8363C)及び空洞共振器摂動法による関東電子応用開発社製の比誘電率測定装置を用い、比誘電率測定モード;TM020に設定し、周波数10GHzにおけるシリカ粒子の比誘電率(ε1)及び誘電正接(Tanδ1)を測定した。なお、シリカ粒子は粉体状であり試料管チューブ(内径は1.68mm、外径は2.28mm、高さは8cm)へ充填し、測定した。
<樹脂フィルム>
ベクトルネットワークアナライザ(キーサイトテクノロジー社製、商品名;ベクトルネットワークアナライザE8363C)およびスプリットポスト誘電体共振器(SPDR)を用いて温度160℃、圧力3.5MPa、時間60分間の条件でプレスした接着剤シートを温度;23℃、湿度;50%の条件下で、24時間放置した後、20GHzの周波数における比誘電率および誘電正接を測定した。
【0094】
[粒子径の測定]
レーザ回折式粒度分布測定装置(マルバーン社製、商品名;Master Sizer 3000)を用いて、水を分散媒とし、粒子屈折率1.54の条件で、レーザ回折・散乱式測定方式による粒子径の測定を行った。
【0095】
[真比重の測定]
連続自動粉体真密度測定装置(セイシン企業社製、商品名;AUTO TRUE DENSERMAT‐7000)を用いて、ピクノメーター法(液相置換法)による真比重の測定を行った。
【0096】
[クリストバライト結晶相の測定]
X線回折測定装置(ブルカー社製、商品名;D2PHASER)を用いて、回折角度(Cu,Kα)2θ=10°〜90°の範囲のSiO
2に由来する全ての回折パターン(ピーク位置、ピーク幅及びピーク強度)から、SiO
2に由来する全ピークの総面積を算出する。次に、クリストバライト結晶相に由来するピーク位置を特定し、クリストバライト結晶相の全ピークの総面積を算出して、SiO
2に由来する全ピークの総面積に対する割合(重量%)を求めた。なお、各ピークの帰属は、International Centre for Diffraction Data(ICDD)のデータベースを参照した。
【0097】
[引張り弾性率及び最大伸度の測定]
テンションテスター(オリエンテック製テンシロン)を用いて、試験片(幅;12.7mm、長さ;127mm)を50mm/minの引張り試験を行い、25℃における引張り弾性率及び最大伸度を求めた。
【0098】
[ガラス転移温度(Tg)の測定]
温度;160℃、圧力;3.5MPa、時間;60分間の条件でプレスした接着剤シートを5mm×20mmのサイズの試験片に切り出し、動的粘弾性測定装置(DMA:ユー・ビー・エム社製、商品名;E4000F)を用いて、30℃から300℃まで昇温速度4℃/分、周波数11Hzで測定を行い、弾性率変化(tanδ)が最大となる温度をガラス転移温度とした。
【0099】
[フィルム保持性の評価]
フィルム保持性は、以下の手順で評価した。接着剤シートを幅20mm、長さ20mmの試験片に切り出し、対角線に沿って折り目がつくように折り曲げた後、開いてフィルムの状態を観察した。この時、折り目をつけて開いた後も試験片に亀裂がないものを「良」、一部でも亀裂が入っているものを「不可」とした。
【0100】
[半田耐熱試験(乾燥)]
両面銅張積層板(日鉄ケミカル&マテリアル社製、商品名;エスパネックスMB12−25−12UEG)の片方の銅箔をエッチング除去して、もう一方の銅箔を回路加工して、配線幅/配線間隔(L/S)=1mm/1mmの回路が形成されたプリント基板を用意した。接着剤シートをプリント基板の配線の上に置き、接着剤シートのプリント基板と接する面の反対の面にポリイミドフィルム(東レ・デュポン株式会社製、商品名;カプトン50EN−S)を積層した後、温度;160℃、圧力;3.5MPa、時間;60分間の条件でプレスした。この銅箔付きの試験片を105℃で乾燥した後、各評価温度に設定した半田浴中に10秒間浸漬し、その接着状態を観察して、発泡、ふくれ、剥離等の不具合の有無を確認した。耐熱性は不具合が生じない上限の温度で表現し、例えば「320℃」は320℃の半田浴中で評価して、不具合が認められないことを意味する。
【0101】
[半田耐熱試験(吸湿)]
両面銅張積層板(日鉄ケミカル&マテリアル社製、商品名;エスパネックスMB12−25−12UEG)の片面の銅箔をエッチング除去して、もう一方の銅箔を回路加工して、配線幅/配線間隔(L/S)=1mm/1mmの回路が形成されたプリント基板を用意した。接着剤シートをプリント基板の配線の上に置き、接着剤シートのプリント基板と接する面の反対の面にポリイミドフィルム(東レ・デュポン株式会社製、商品名;カプトン50EN−S)を積層した後、温度;160℃、圧力;3.5MPa、時間;60分間の条件でプレスした。この銅箔付きの試験片を40℃、相対湿度;80%で72時間放置した後、各評価温度に設定した半田浴中に10秒間浸漬し、その接着状態を観察して、発泡、ふくれ、剥離等の不具合の有無を確認した。耐熱性は不具合が生じない上限の温度で表現し、例えば「260℃」は260℃の半田浴中で評価して、不具合が認められないことを意味する。
【0102】
[ピール強度の測定]
両面銅張積層板(日鉄ケミカル&マテリアル社製、商品名;エスパネックスMB12−25−12UEG)を幅;50mm、長さ;100mmに切り出した後、片面の銅箔をエッチング除去したサンプルの銅箔側に接着剤シートを置き、更にこの接着剤シートの上にポリイミドフィルム(東レ・デュポン株式会社製、商品名;カプトン50EN−S)を積層し、温度;160℃、圧力;3.5MPa、時間:60分の条件でプレスした。積層体を試験片幅5mmに切り出し、引張試験機(東洋精機製作所製、商品名;ストログラフVE)を用いて、試験片の90°方向に、速度50mm/minで引っ張ったときの接着剤層と銅箔の剥離強度を測定した。
【0103】
[難燃性の評価方法]
接着剤シートの両面にポリイミドフィルム(東レ・デュポン株式会社製、商品名;カプトン50EN−S)を積層し、温度;160℃、圧力;3.5MPa、時間;60分の条件でプレスした。200±5mm×50±1mmにサンプルカットし、直径約12.7mm、長さ200±5mmの筒状になるように丸め、UL94VTM規格に準拠した試験片を作製及び燃焼試験を行い、VTM−0の判定基準を合格した場合を「良」とした。VTM−1の判定基準を合格した場合を「可」、VTM−1の判定基準を合格しなかった場合を「不可」とした。
【0104】
本実施例で用いた略号は以下の化合物を示す。
BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物
DDA:クローダジャパン株式会社製、商品名;PRIAMINE1075を蒸留精製したもの(a成分;99.2重量%、b成分:0%、c成分;0.8%、アミン価:210mg KOH/g)
N−12:ドデカン二酸ジヒドラジド
NMP:N−メチル−2−ピロリドン
フィラー1:日鉄ケミカル&マテリアル社製、商品名;CR10−20(球状クリストバライトシリカ粉末、真球状、シリカ含有率;99.4重量%、クリストバライト結晶相;93重量%、真比重;2.33、D
50;10.8μm、D
90;16.4μm、D
100;24.1μm、10GHzでの誘電率;3.16、10GHzの誘電正接;0.0008)
フィラー2:日鉄ケミカル&マテリアル社製、商品名;SC70−2(球状非晶質シリカ粉末、真球状、シリカ含有率;99.9重量%、真比重;2.21、D
50;11.7μm、D
90;16.4μm、D
100;24.1μm、10GHzでの誘電率;3.08、10GHzの誘電正接;0.0015)
なお、上記DDAにおいて、a成分、b成分及びc成分の「%」は、GPC測定におけるクロマトグラムの面積パーセントを意味する。また、DDAの分子量は下記式(1)により算出した。
分子量=56.1×2×1000/アミン価・・・(1)
【0105】
(合成例1)
1000mlのセパラブルフラスコに、55.51gのBTDA(0.1721モル)、94.49gのDDA(0.1735モル)、210gのNMP及び140gのキシレンを装入し、40℃で1時間良く混合して、ポリアミド酸溶液を調製した。このポリアミド酸溶液を190℃に昇温し、10時間加熱、攪拌し、125gのキシレンを加えてイミド化を完結したポリイミド溶液1(固形分;30重量%、重量平均分子量;80,900)を調製した。
【0106】
[実施例1]
合成例1で調製したポリイミド溶液1の100gに、1.09gのN−12及び7.50gのフィラー1を配合し、固形分が30重量%になるようにキシレンを加えて希釈し、攪拌することでポリイミドワニス1aを調製した。
【0107】
[実施例2〜8]
フィラー1及びフィラー2の配合量を表1のように変えた以外は、実施例1と同様にしてポリイミドワニス2a〜8aを調製した。
【0108】
比較例1
フィラー1を配合しなかったこと以外は、実施例1と同様にしてポリイミドワニス9aを調製した。
【0109】
【表1】
【0110】
[実施例9]
実施例1で調製したポリイミドワニス1aを離型処理されたPETフィルムの片面に塗布し、80℃で15分間乾燥を行った後、剥離することによって、接着剤シート1b(厚さ;25μm)を調製した。
接着剤シート1bの各種評価結果は以下のとおりである。
比誘電率;2.7、誘電正接;0.0015、引張り弾性率;0.6GPa、最大伸度;165%、Tg;56℃、フィルム保持性;良、ハンダ耐熱試験(乾燥);320℃、ハンダ耐熱試験(吸湿);260℃、ピール強度;1.8kN/m、難燃性;良
【0111】
[実施例10]
ポリイミドワニス2aを使用し、実施例9と同様にして接着剤シート2bを調製した。
接着剤シート2bの各種評価結果は以下のとおりである。
比誘電率;2.9、誘電正接;0.0013、引張り弾性率;0.5GPa、最大伸度;77%、Tg;56℃、フィルム保持性;良、ハンダ耐熱試験(乾燥);320℃、ハンダ耐熱試験(吸湿);260℃、ピール強度;1.8kN/m、難燃性;良
【0112】
[実施例11]
ポリイミドワニス3aを使用し、実施例9と同様にして接着剤シート3bを調製した。
接着剤シート3bの各種評価結果は以下のとおりである。
比誘電率;2.8、誘電正接;0.0012、引張り弾性率;0.6GPa、最大伸度;59%、Tg;56℃、フィルム保持性;良、ハンダ耐熱試験(乾燥);320℃、ハンダ耐熱試験(吸湿);270℃、ピール強度;1.8kN/m、難燃性;良
【0113】
[実施例12]
ポリイミドワニス4aを使用し、実施例9と同様にして接着剤シート4bを調製した。
接着剤シート4bの各種評価結果は以下のとおりである。
比誘電率;2.8、誘電正接;0.0011、引張り弾性率;0.8GPa、最大伸度;31%、Tg;56℃、フィルム保持性;良、ハンダ耐熱試験(乾燥);320℃、ハンダ耐熱試験(吸湿);280℃、ピール強度;1.9kN/m、難燃性;良
【0114】
[実施例13]
ポリイミドワニス5aを使用し、実施例9と同様にして接着剤シート5bを調製した。
接着剤シート5bの各種評価結果は以下のとおりである。
比誘電率;2.8、誘電正接;0.0016、引張り弾性率;0.8GPa、最大伸度;29%、Tg;56℃、フィルム保持性;良、ハンダ耐熱試験(乾燥);320℃、ハンダ耐熱試験(吸湿);270℃、ピール強度;1.9kN/m、難燃性;良
【0115】
[実施例14]
ポリイミドワニス6aを使用し、実施例9と同様にして接着剤シート6bを調製した。
接着剤シート6bの各種評価結果は以下のとおりである。
比誘電率;2.7、誘電正接;0.0015、引張り弾性率;0.6GPa、最大伸度;169%、Tg;56℃、フィルム保持性;良、ハンダ耐熱試験(乾燥);320℃、ハンダ耐熱試験(吸湿);260℃、ピール強度;1.7kN/m、難燃性;良
【0116】
[実施例15]
ポリイミドワニス7aを使用し、実施例9と同様にして接着剤シート7bを調製した。
接着剤シート7bの各種評価結果は以下のとおりである。
比誘電率;2.8、誘電正接;0.0012、引張り弾性率;0.7GPa、最大伸度;28%、Tg;56℃、フィルム保持性;良、ハンダ耐熱試験(乾燥);320℃、ハンダ耐熱試験(吸湿);280℃、ピール強度;1.8kN/m、難燃性;良
【0117】
[実施例16]
ポリイミドワニス8aを使用し、実施例9と同様にして接着剤シート8bを調製した。
接着剤シート8bの各種評価結果は以下のとおりである。
比誘電率;2.6、誘電正接;0.0016、引張り弾性率;0.5GPa、最大伸度;177%、Tg;56℃、フィルム保持性;良、ハンダ耐熱試験(乾燥);320℃、ハンダ耐熱試験(吸湿);260℃、ピール強度;1.7kN/m、難燃性;可
【0118】
比較例2
ポリイミドワニス9aを使用し、実施例9と同様にして接着剤シート9bを調製した。
接着剤シート9bの各種評価結果は以下のとおりである。
比誘電率;2.6、誘電正接;0.0017、引張り弾性率;0.4GPa、最大伸度;197%、Tg;56℃、フィルム保持性;良、ハンダ耐熱試験(乾燥);320℃、ハンダ耐熱試験(吸湿);220℃、ピール強度;1.6kN/m、難燃性;不可
【0119】
以上の結果をまとめて表2に示す。
【0120】
【表2】
【0121】
表2より、比較例2の接着剤シート9bと比較してフィラー1およびフィラー2を添加した実施例9〜16の接着剤シート1b〜8bは、誘電特性及び半田耐熱温度(吸湿)が改善していることが確認された。このような結果から、本実施の形態に係る樹脂フィルムとしての接着剤シートは、例えば20GHzの高周波帯における伝送損失の低減が期待できる。また、比較例2の接着剤シート9bと比較してフィラー1および2を添加した実施例9〜16の接着剤シート1b〜8bは、柔軟性やフィルム保持性を維持しつつ、吸湿半田耐熱性、ピール強度及び難燃性が向上することが確認された。
【0122】
以上、各実施例に示すように、DDA/BTDA系ポリイミドにクリストバライトシリカ粒子を添加することによって、明確な誘電正接の低減効果が見られた。
また、ポリイミドフィルム/接着剤層/ポリイミドフィルムの層構成で難燃性を評価したところ、クリストバライトシリカ粒子を含有する接着剤層は、VTM−1レベル以上の難燃性を発現することが確認された。
さらに、各実施例で得られた接着剤シートは、実用範囲のクリストバライトシリカ粒子の配合量において、フィルムとしての形状を保持しており、ポリイミド又は銅に対する接着力も向上している。接着力向上のメカニズムについて解明はできていないものの、接着剤シートの弾性率向上が寄与している可能性が推測される。
また、実施例で得られた接着剤シートの半田耐熱性(乾燥・吸湿)はクリストバライトシリカ粒子を配合しない比較例と同等以上であり、高周波多層FPC向け接着剤として好適な特性を示した。
【0123】
以上のような結果から、本実施の形態に係る樹脂フィルムは、高周波対応フレキシブルプリント基板用材料として好適に使用されることが確認された。
【0124】
以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。