【解決手段】1つの態様において、該方法は、反応チャンバ内に基材を提供すること、反応チャンバに気体試薬を導入すること、ここで、該気体試薬は、アルキルアルコキシシラ環状化合物を含む少なくとも1種の構造形成性前駆体、及び、ポロゲンを含む、反応チャンバ中の気体試薬にエネルギーを加え、気体試薬の反応を誘導して、基材上に予備膜を堆積させること、ここで、予備膜はポロゲンを含み、予備膜は堆積されている、及び、予備膜から、その中に含まれるポロゲンの少なくとも一部を除去し、細孔を含みそして約2.7以下の誘電率を有する膜を提供することの工程を含む。特定の実施形態において、構造形成性前駆体は硬化剤をさらに含む。
前記アルキルアルコキシシラ環状化合物は1−メチル−1−メトキシ−1−シラシクロペンタン、1−メチル−1−エトキシ−1−シラシクロペンタン、1−メチル−1−イソプロポキシ−1−シラシクロペンタン、1−メチル−1−プロポキシ−1−シラシクロペンタン、1−メトキシ−1−シラシクロペンタン、1−エトキシ−1−シラシクロペンタン、1−メチル−1−メトキシ−1−シラシクロブタン、1−メチル−1−エトキシ−1−シラシクロブタン、1−メトキシ−1−シラシクロブタン、1−エトキシ−1−シラシクロブタン、1−メチル−1−メトキシ−1−シラシクロヘキサン、1−メチル−1−エトキシ−1−シラシクロヘキサン、1−メチル−1−メトキシ−1−シラシクロヘキサン、1−メチル−1−エトキシ−1−シラシクロヘキサン、1−メチル−1−イソプロポキシ−1−シラシクロペンタン、1−メチル−1−イソプロポキシ−1−シラシクロブタン、1−メチル−1−イソプロポキシ−1−シラシクロヘキサン、1−イソプロポキシ−1−シラシクロペンタン、1−イソプロポキシ−1−シラシクロブタン、1−イソプロポキシ−1−シラシクロヘキサン及びそれらの組み合わせからなる群より選ばれる少なくとも1種を含む、請求項3記載の方法。
請求項17記載のポロゲン前駆体は、シクロヘキサン、1,2,4−トリメチルシクロヘキサン、1−メチル−4−(1−メチルエチル)シクロヘキサン、シクロオクタン、メチルシクロオクタン、エチレン、プロピレン、アセチレン、ネオヘキサン、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−2,3−ブタジエン、置換ジエン、パラ−シメン、シクロオクテン、1,5−シクロオクタジエン、シクロヘキセン、ビニルシクロヘキサン、ジメチルシクロヘキセン、α-テルピネン、ピネン、リモネン、ビニルシクロヘキセン、ノルボルナン、スピロ−ノナン、カンフェン、ノルボルネン、ノルボルナジエン、5−エチリデン−2−ノルボルネン、デカヒドロナフタレン、アダマンタン及びそれらの組み合わせからなる群より選ばれる少なくとも1種を含む、請求項1記載の方法。
前記アルキルアルコキシシラ環状化合物は1−メチル−1−メトキシ−1−シラシクロペンタン、1−メチル−1−エトキシ−1−シラシクロペンタン、1−メチル−1−イソプロポキシ−1−シラシクロペンタン、1−メチル−1−プロポキシ−1−シラシクロペンタン、1−メトキシ−1−シラシクロペンタン、1−エトキシ−1−シラシクロペンタン、1−メチル−1−メトキシ−1−シラシクロブタン、1−メチル−1−エトキシ−1−シラシクロブタン、1−メトキシ−1−シラシクロブタン、1−エトキシ−1−シラシクロブタン、1−メチル−1−メトキシ−1−シラシクロヘキサン、1−メチル−1−エトキシ−1−シラシクロヘキサン、1−メチル−1−メトキシ−1−シラシクロヘキサン、1−メチル−1−エトキシ−1−シラシクロヘキサン、1−メチル−1−イソプロポキシ−1−シラシクロペンタン、1−メチル−1−イソプロポキシ−1−シラシクロブタン、1−メチル−1−イソプロポキシ−1−シラシクロヘキサン、1−イソプロポキシ−1−シラシクロペンタン、1−イソプロポキシ−1−シラシクロブタン、1−イソプロポキシ−1−シラシクロヘキサン及びそれらの組み合わせからなる群より選ばれる少なくとも1種を含む、請求項19記載の組成物。
【背景技術】
【0002】
アルキルアルコキシシラ環状化合物を構造形成剤前駆体として用いた誘電体膜の形成のための組成物及び方法は本明細書に記載される。より具体的には多孔質の低誘電率の膜(「低k」膜、又は、約2.7以下の誘電率を有する膜)の形成のための組成物及び方法であって、膜を堆積するために使用される方法が化学蒸着(CVD)法である組成物及び方法は本明細書中に記載される。本明細書中に記載される組成物及び方法によって製造される誘電体膜は、例えば、電子デバイス中で絶縁層として使用することができる。
【0003】
エレクトロニクス産業は、回路及び集積回路(IC)部品及び関連する電子デバイスの間の絶縁層として誘電性材料を使用する。線寸法はマイクロエレクトロニクスデバイス(例えば、コンピュータチップ)の速度及びメモリ記憶容量を増加させるために低減され続けている。線寸法が減少するときに、層間絶縁膜(ILD)の絶縁要件はより一層厳しくなる。間隔の縮小は、RC時定数を最小化するために、より低い誘電率を要求し、ここで、Rは導線の抵抗であり、Cは絶縁誘電性中間層のキャパシタンスである。キャパシタンス(C)は間隔に反比例し、層間絶縁膜(ILD)の誘電率(k)に比例する。SiH
4又はTEOS(Si(OCH
2CH
3)
4、テトラエチルオルトシリケート)及びO
2から製造される従来のシリカ(SiO
2)CVD誘電体膜は4.0よりも大きい誘電率kを有する。産業界には、より低い誘電率を有するシリカ系CVD膜を製造しようと試みる幾つかの方法があり、最も成功しているのは、約2.7〜約3.5の範囲の誘電率を提供する有機基を有する絶縁性酸化シリコン膜のドーピングである。この有機シリカガラスは、典型的には、メチルシラン又はシロキサンなどの有機ケイ素前駆体、及び、O
2又はN
2Oなどの酸化剤から緻密な膜(密度が約1.5g/cm
3)として堆積される。有機シリカガラスは、本明細書においてOSGと呼ぶことにする。より高いデバイス密度及びより小さい寸法では誘電率又は「k」値が2.7未満に低下するので、産業界は緻密膜のための適切な低k組成物のほとんどを使い果たしており、改良された絶縁性のためには様々な多孔性材料に目が向けられている。
【0004】
CVD法の分野による多孔性ILDの分野での特許、公開出願及び刊行物としては、N
2O及び場合により過酸化物などの酸化剤の存在下に不安定基を含む有機ケイ素前駆体からOSG膜を堆積し、次いで、熱アニールにより該不安定基を除去して、多孔性OSGを提供する方法を記載しているEP 1 119 035 A2及び米国特許第6,171,945号明細書、酸化性アニールにより、堆積されたOSGから本質的にすべての有機基を除去し、多孔性無機SiO
2を得ることを教示している米国特許第6,054,206号及び同第6,238,751号明細書、水素化シリコンカーバイド膜を堆積し、酸化性プラズマで後処理することにより、多孔性無機SiO
2へと転化させることを記載しているEP 1 037 275、及び、有機ケイ素前駆体及び有機化合物から膜を同時堆積させ、次いで、熱アニールして、重合有機成分の部分が残存している多相OSG/有機膜を提供することをどれも教示している、米国特許第6,312,793号(B1)、WO00/24050及び文献、Grill, A. Patel, V. Appl. Phys. Lett. (2001), 79(6), pp. 803-805が挙げられる。それらの文献では、膜の究極の最終組成物は残留ポロゲン、及び、約80〜90原子%の高い炭化水素膜含有分を示す。また、最終的な膜は、有機基を酸素原子の一部の置換で、SiO
2のようなネットワークを保持する。
【0005】
産業界で認識されている課題は、より低い誘電率を有する膜は、通常、より高い気孔率を有し、膜中への化学種の拡散を促進し、特に気相拡散を促進することになることである。この増加した拡散は、膜のエッチング、フォトレジストのプラズマアッシング及び銅表面のNH
3プラズマ処理などのプロセスによる、多孔性OSG膜からの炭素の除去を増加することにつながる可能性がある。OSG膜中の炭素の枯渇は以下の問題の1つ以上をもたらすことがある:膜の誘電率の増加、湿式洗浄工程の間の膜エッチング及び形態反り、疎水性損失による膜中の湿分吸収、パターンエッチング後の湿式洗浄工程の間の微細形態のパターン崩壊、及び/又は、Ta/TaN又はアドバンストCo又はMnNバリア層などの銅拡散バリアなど(限定するわけではない)の次の層を堆積させるときの集積化の問題。
【0006】
これらの問題の1つ以上の可能な解決策は炭素含有量を増加させた多孔性OSG膜を使用することである。最初のアプローチは、多孔性OSG層中のSi−メチル(Me)基のより高い保持をもたらすポロゲンを使用することである。残念ながら、
図1に示すように、Si−Meの含有量の増加の関係は、通常、機械特性の低下をもたらし、このため、より多量のSi−Meを含む膜は集積化にとって重要である機械的強度に対して悪影響を与えるであろう。第二のアプローチは、米国特許第8,753,985号明細書に開示されているポロゲンなどの損傷耐性ポロゲン(DRP)を使用することであり、UV硬化後に膜中に追加のアモルファスカーボンを残す。特定の場合、この残留炭素は誘電率にも機械的強度にも悪影響を与えない。しかしながら、DRPを使用してこれらの膜中に有意に高い炭素含有量を得ることは困難である。
【0007】
提案されるなおも別の解決法は、一般式R
x(RO)
3-xSi(CH
2)
ySiR
z(OR)
3-z (式中、x = 0〜3であり、y = 1又は2であり、z = 0〜3である)のエチレン又はメチレン橋掛けジシロキサンを使用することであった。橋掛け種の使用は、ネットワーク接続が同じままであろうため、橋掛け酸素を橋掛け炭素鎖で置換することによって、機械特性への悪影響を回避するものと考えられる。これは、橋掛け酸素を末端メチル基で置換することが、ネットワークの接続性を低下させることにより機械的強度を低下させるであろうという考えから生じる。このように、機械的強度を低下させることなく、原子質量パーセント(%)Cを増加させるために、1〜2個の炭素原子で酸素原子を置換することができる。これらの橋掛け前駆体は、しかしながら、一般的に、2つのケイ素基を有するものから分子量が増加することに起因する非常に高い沸点を有する。増加した沸点は、化学前駆体を蒸気輸送ライン又はプロセスポンプ排気口で凝縮することなく、気相試薬として反応チャンバ中に輸送することが困難になることから、製造プロセスに悪影響を及ぼすことがある。
【発明を実施するための形態】
【0014】
多孔性低k誘電体膜を製造するための化学蒸着(CVD)法は本明細書に記載され、該方法は、反応チャンバ内に基材を提供すること、1−メチル−1−エトキシ−1−シラシクロペンタンなどのアルキルアルコキシシラ環状化合物を含む、少なくとも1種の構造形成性前駆体、及び、ポロゲンを含む気体試薬を反応チャンバに導入すること、反応チャンバ中の気体試薬にエネルギーを加え、気体試薬の反応を誘導して、基材上に予備膜を堆積させること、ここで、予備膜はポロゲン及びオルガノシリケートガラスを含む、及び、予備膜から実質的にすべてのポロゲンを除去し、細孔を有しそして2.7より低い誘電率を有する多孔性膜を提供することを含む。
【0015】
本明細書に記載されるアルキルアルコキシシラ環状化合物は、ジエトキシメチルシラン(DEMS)などの従来技術の構造形成剤前駆体と比較して、誘電体膜の機械特性に対する影響を少なくして、誘電体膜中により多くの炭素含有分を取り込むことを可能にするというユニークな属性を提供する。例えば、DEMSはDEMS中に混合リガンド系を提供し、2つのアルコキシ基、1つのメチル基及び1つのヒドリドを含み、それが反応性部位のバランスを提供し、所望の誘電率を保持しながら、より機械的に堅牢な膜の形成を可能にする。理論に拘束されるつもりはないが、本明細書に記載されるアルキルアルコキシシラ環状前駆体、例えば、1−メチル−1−エトキシ−1−シラシクロペンタンは生来的に非対称であり、そしてこれまで提案されている1,1−ジメチル−1−シラシクロペンタン又は1,1−ジエトキシ−1−シラシクロペント−3−エンなどのより対称な前駆体よりも利点を提供しうる。本明細書に記載される構造形成性前駆体の1つのアルキル基及び1つのアルコキシ基の取り込みにより、2.7以下の誘電率での機械強度及び炭素取り込みをバランスさせることができる。
【0016】
低k誘電体膜は有機シリカガラス(OSG)膜又は材料である。オルガノシリケートは低k材料の候補であるが、これらの材料に細孔を加えるためのポロゲンを含まないと、その生来の誘電率は2.7までの低さに限定される。ボイド空間が生来の誘電率1.0である細孔を添加することにより、一般に機械特性を犠牲にして膜全体の誘電率が低減される。材料特性は膜の化学組成及び構造に依存する。有機ケイ素前駆体のタイプは膜構造及び組成に対して強い効果を有するので、所望の誘電率を達成するために必要な量の細孔を添加することが機械的に健全でない膜を生じさせることがないような要求膜特性を提供する前駆体を使用することが有利である。本明細書に記載される方法及び組成物は電気特性及び機械特性の望ましいバランスを有し、また、改良された集積化プラズマ耐性を提供するための高い炭素含有分などの他の有利な膜特性を有する、低k誘電体膜を生成するための手段を提供する。
【0017】
本明細書に記載される方法及び組成物の特定の実施形態において、ケイ素含有誘電性材料の層を、反応チャンバを用いた化学蒸着(CVD)法により基材の少なくとも一部分の上に堆積させる。適切な基材としては、限定するわけではないが、半導体材料、例えば、ガリウムヒ素("GaAs")、シリコン、及び、結晶性シリコン、ポリシリコン、アモルファスシリコン、エピタキシャルシリコン、二酸化ケイ素("SiO
2")、シリコンガラス、窒化ケイ素、溶融シリカ、ガラス、石英、ホウケイ酸ガラスなどのケイ素含有組成物、ならびに、それらの組み合わせが挙げられる。他の適切な材料としては、クロム、モリブデン、及び、半導体、集積回路、フラットパネルディスプレイ及びフレキシブルディスプレイ用途に一般に用いられる他の金属が挙げられる。基材は、シリコン、SiO
2、オルガノシリケートガラス(OSG)、フッ素化ケイ酸塩ガラス(FSG)、炭窒化ホウ素、炭化ケイ素、水素化炭化ケイ素、窒化ケイ素、水素化窒化ケイ素、炭窒化ケイ素、水素化炭窒化ケイ素、窒化ホウ素、有機−無機複合材料、フォトレジスト、有機ポリマー、多孔性有機及び無機材料及び複合材、酸化アルミニウム及び酸化ゲルマニウムなどの金属酸化物などの追加の層を有することができる。なおもさらなる層は、また、ゲルマノシリケート、アルミノシリケート、銅及びアルミニウム及び拡散バリア材料であることができ、例えば、限定するわけではないが、TiN, Ti(C)N, TaN, Ta(C)N, Ta, W又はWNなどである。
【0018】
本明細書に記載される方法及び組成物の特定の実施形態において、ケイ素含有誘電性材料の層は、アルキルアルコキシシラ環状化合物を含む少なくとも1種の構造形成性前駆体及びポロゲン前駆体を含む気体試薬を反応チャンバに導入することにより、基材の少なくとも一部分の上に堆積される。
【0019】
本明細書に記載される方法及び組成物は構造形成性前駆体として式(I)の下記構造を有するアルキルアルコキシシラ環状化合物を使用する。
【化3】
(上式中、R
1は、独立して、水素、直鎖もしくは枝分かれC
1 〜C
10 アルキル基、直鎖もしくは枝分かれC
2 〜C
10 アルケニル基、直鎖もしくは枝分かれC
2 〜C
10 アルキニル基、C
3 〜C
10 環状アルキル基、C
3 〜C
10 複素環式アルキル基、C
5 〜C
10 アリール基、及び、C
3 〜C
10 ヘテロアリール基から選ばれ、R
2 は水素、直鎖もしくは枝分かれC
1 〜C
10 アルキル基、直鎖もしくは枝分かれC
2 〜C
10 アルケニル基、直鎖もしくは枝分かれC
2 〜C
10 アルキニル基、C
3 〜C
10 環状アルキル基、C
3 〜C
10 複素環式アルキル基、C
5 〜C
10 アリール基、及び、C
3 〜C
10 ヘテロアリール基から選ばれ、そしてR
3 はSi原子と四員、五員又は六員環を形成するC
3 〜C
10 アルキル二価基から選ばれる)。
【0020】
上記式及び本記載全体にわたって、用語「アルキル」は1〜10個の炭素原子を有する直鎖もしくは枝分かれ官能基を表す。例示の直鎖アルキル基としては、限定するわけではないが、メチル、エチル、n−プロピル、ブチル、ペンチル及びヘキシル基が挙げられる。例示の枝分かれアルキル基としては、限定するわけではないが、イソ−プロピル、イソ−ブチル、sec−ブチル、tert−ブチル、イソ−ペンチル、tert−ペンチル、イソ−ヘキシル及びネオ−ヘキシルが挙げられる。特定の実施形態において、アルキル基はそれに結合した1個以上の官能基を有することができ、例えば、限定するわけではないが、それに結合したメトキシ、エトキシ、イソ−プロポキシ及びn−プロポキシなどのアルコキシ基、ジメチルアミノ基などのジアルキルアミノ基又はそれらの組み合わせである。他の実施形態において、アルキル基はそれに結合した1個以上の官能基を有しない。アルキル基は飽和であることができ、又は、不飽和であることができる。
【0021】
上記の式I及び本記載の全体にわたって、用語「環状アルキル」は3〜10個の炭素原子を有する環状官能基を表す。例示の環状アルキル基としては、限定するわけではないが、シクロブチル、シクロペンチル、シクロヘキシル及びシクロオクチル基が挙げられる。
【0022】
上記の式I及び本記載の全体にわたって、用語「複素環式」はC
3 〜C
10 複素環式アルキル基、例えば、エポキシ基を表す。
【0023】
上記の式I及び本記載の全体にわたって、用語「アルケニル基」は1個以上の炭素−炭素二重結合を有しかつ2〜10個又は2〜10個又は2〜6個の炭素原子を有する基を表す。
【0024】
上記の式I及び本記載の全体にわたって、用語「アルキニル基」は1個以上の炭素−炭素三重結合を有しかつ3〜10個又は2〜10個又は2〜6個の炭素原子を有する基を表す。
【0025】
上記の式I及び本記載の全体にわたって、用語「アリール」は5〜10個炭素原子又は6〜10個の炭素原子を有する芳香環官能基を表す。例示のアリール基としては、限定するわけではないが、フェニル、ベンジル、クロロベンジル、トリル及びo-キシリルが挙げられる。
【0026】
上記の式I及び本記載の全体にわたって、用語「ヘテロアリール」はC
3 〜C
10 複素環式アリール基、1,2,3−トリアゾリル、ピロリル及びフラニルを表す。
【0027】
上記の式Iにおいて、置換基R
3 はSi原子と四員、五員又は六員環を形成するC
3 〜C
10 アルキル二価基である。当業者に理解されるであろうとおり、R
3 はSi原子と結合して式I中の環を一緒に形成する、置換又は非置換炭化水素鎖であり、ここで、その環は四員、5員又は六員環である。これらの実施形態において、環構造は不飽和であることができ、例えば、環状アルキル環、又は、飽和であることができ、例えば、アリール環である。
【0028】
式Iの特定の実施形態において、R
1 は水素、メチル及びエチルからなる群より選ばれ、R
2はメチル、エチル及びイソプロピルからなる群より選択ばれ、R
3はSi原子と四員、五員又は六員環を形成する。これらの実施形態の例は以下のとおりである。
【化4】
【0029】
1つの特定の実施形態において、本明細書に記載される組成物及び方法は下記の構造を有する1−メチル−1−エトキシシラシクロペンタン(MESCAP)を構造形成性前駆体として使用する。
【化5】
【0030】
本明細書に記載されるアルコキシシラ環状化合物ならびにそれを含む方法及び組成物は、好ましくは、1種以上の不純物を実質的に含まず、該不純物は、例えば、限定するわけではないが、ハロゲン化物イオン及び水である。本明細書に使用されるときに、用語「実質的に含まない」は、不純物に関する場合には、100百万分率(ppm)以下、50ppm以下、10ppm以下及び5ppm以下の不純物を意味する。
【0031】
1つの特定の実施形態において、ハロゲン化物イオン(又はハロゲン化物)、例えば、塩化物及びフッ化物、臭化物及びヨウ化物を含むアルキルアルコキシシラ環状化合物は、100百万分率(ppm)以下、50ppm以下、10ppm以下及び5ppm以下の不純物、又は、0ppmを意味する。塩化物はアルキルアルコキシシラ環状化合物の分解触媒として作用することが知られており、また、電子デバイスの性能に悪影響を及ぼす潜在的な汚染物として作用することが知られている。アルキルアルコキシシラ環状化合物の徐々の分解は膜分解プロセスに直接的に影響を及ぼすことがあり、半導体製造者にとって膜仕様を満たすのが困難になる。さらに、貯蔵寿命又は安定性はアルキルアルコキシシラ環状化合物の分解速度がより高くなることにより悪影響を受け、1〜2年の貯蔵寿命を保証するのが困難になる。それゆえ、アルキルアルコキシシラ環状化合物の加速分解はこれらの可燃性及び/又は自然発火性ガス副生成物の生成に関する安全上及び性能上の懸念を呈する。
【0032】
ハロゲン化物を実質的に含まない本発明に係る組成物は(1)化学合成の間に塩素源を低減し又は無くすこと、及び/又は、(2)最終精製生成物が実質的に塩化物を含まないように、粗製生成物から塩化物を除去するための有効な精製プロセスを実施することにより得ることができる。塩素源は、クロロジシラン、ブロモジシラン又はヨードジシランなどのハロゲン化物を含まない試薬を使用し、それにより、ハロゲン化物イオンを含む副生成物の生成を回避することにより合成の間に低減されうる。さらに、上記の試薬は、得られる粗製生成物が塩化物不純物を実質的に含まないように、塩化物不純物を実質的に含まないべきである。同様に、合成は、ハロゲン化物をベースとする溶媒、触媒、又は、許容されないほと高いレベルのハロゲン化物汚染物を含む溶媒を使用すべきでない。粗製生成物は、また、最終生成物が塩化物などのハロゲン化物を実質的に含まないものとするために種々の精製方法により処理されることができる。このような方法は従来技術でよく記載されており、限定するわけではないが、蒸留又は吸着などの精製方法が挙げられる。蒸留は沸点の差異を利用することにより、所望の生成物から不純物を分離するために一般に使用されている。吸着は、また、最終生成物が実質的にハロゲン化物を含まないように、分離を行う成分の異なる吸着特性を利用するのに使用されうる。吸着剤、例えば、市販のMgO-Al
2O
3 ブレンドは塩化物などのハロゲン化物を除去するために使用されうる。
【0033】
従来技術のケイ素含有構造形成性前駆体、例えば、DEMSは、反応チャンバ内でエネルギー添加されると、重合して、ポリマー主鎖中に-O-結合 (例えば、-Si-O-Si-又は-Si-O-C-)を有する構造を形成するけれども、アルキルアルコキシシラ環状化合物、例えば、は、MESCAP分子は、重合して、主鎖中の-O-橋掛けの一部分が-CH
2- メチレン又は-CH
2CH
2- エチレン橋掛けにより置換されている構造を形成するものと考えられる。炭素が主に末端Si−Me基の形態で存在している、DEMSを構造形成性前駆体として使用して堆積された膜において、%Si−Me (%Cに直接的に関係) vs.機械強度に関係があり(例えば、
図1に示されるモデリングワークを参照されたい)、ここで、橋掛けSi-O-Si基を2つの末端Si-Me基による置換は、ネットワーク構造が破壊されることから、機械特性を低減する。アルキルアルコキシシラ環状化合物の場合には、環状構造は膜堆積又は硬化プロセス(堆積されたままの膜中に含まれるポロゲン前駆体の少なくとも一部分又は実質的にすべてを除去する)のいずれかの間に破壊し、SiCH
2Si又はSiCH
2CH
2Si 橋掛け基を形成するものと考えられる。このように、橋掛け基の形態で炭素を取り込むことができ、それにより、機械強度の観点から、ネットワーク構造は炭素含有分を増加させることにより攪乱されない。理論に束縛されないが、この属性は膜に炭素を添加し、それにより、膜のエッチング、フォトレジストのプラズマアッシング、及び、銅表面のNH
3プラズマ処理などのプロセスからの多孔性OSG膜の炭素枯渇に対してより耐性のある膜とすることが可能である。OSG膜中の炭素枯渇は、膜の不良誘電率の増加、湿式洗浄工程の間の膜エッチング及び形態反りの問題、及び/又は、銅拡散バリアを堆積させるときの集積化の問題を生じさせることがある。
【0034】
本明細書に記載される誘電体膜を堆積させるための組成物は約5〜約60質量%の、式Iを有するアルキルアルコキシシラ環状化合物を含む構造形成性前駆体、及び、約40〜95質量%のポロゲン前駆体を、ポロゲン前駆体の性質に依存して含む。
【0035】
本明細書に含まれる方法及び組成物の特定の実施形態において、構造形成性前駆体は、機械強度を増加する硬化剤をさらに含み、硬化剤の例はテトラアルコキシシラン、例えば、テトラエトキシシラン(TEOS)又はテトラメトキシシラン(TMOS)である。硬化剤が使用される実施形態において、構造形成剤部分の組成物は約30〜約95質量%の、式Iを有するアルキルアルコキシシラ環状化合物を含む構造形成性前駆体、約5〜約70質量%の硬化剤を含み、そして、合計前駆体流の約40〜約95質量%のポロゲン前駆体を含む。
【0036】
上述のとおり、気体試薬は1種以上のポロゲン前駆体をさらに含み、それは1−メチル−1−エトキシシラシクロペンタンなどのアルキルアルコキシシラ環状化合物を含む少なくとも1種の構造形成性前駆体とともに反応チャンバ中に導入される。以下は本発明により使用されるポロゲンとしての使用に適する材料の非限定的な例である。
【0037】
1) 一般式C
nH
2n の環式炭化水素(式中、n = 4〜14であり、環式構造中の炭素数は4〜10であり、環式構造上に置換された複数の単純な又は枝分かれした炭化水素が存在してよい)
例としては、シクロヘキサン、1,2,4−トリメチルシクロヘキサン、1−メチル−4−(1−メチルエチル)シクロヘキサン、シクロオクタン、メチルシクロオクタン、メチルシクロヘキサンなどが挙げられる。
【0038】
2)一般式C
nH
(2n+2)-2y の直鎖もしくは枝分かれの飽和、単一もしくは複数の不飽和の炭化水素(式中、n = 2〜20であり、y = 0〜nである)
例としては、エチレン、プロピレン、アセチレン、ネオヘキサン、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−2,3−ブタジエン、置換ジエンなどが挙げられる。
【0039】
3)一般式C
nH
2n-2x の単一もしくは複数の不飽和の環式炭化水素(式中、xは分子中の不飽和部位の数であり、n = 4〜14であり、環式構造中の炭素数は4〜10であり、そして環式構造上に置換された複数の単純なもしくは枝分かれの炭化水素が存在してよい)。不飽和は環内にあっても、又は、環状構造への炭化水素置換基の1つにあってもよい。
例としては、パラ−シメン、シクロオクテン、1,5−シクロオクタジエン、ジメチルシクロオクタジエン、シクロヘキセン、ビニルシクロヘキサン、ジメチルシクロヘキセン、α-テルピネン、ピネン、リモネン、ビニルシクロヘキセンなどが挙げられる。
【0040】
4)一般式C
nH
2n-2 の二環式炭化水素(式中、n = 4〜14であり、二環式構造中の炭素数は4〜12であり、環状構造上に置換された複数の単純なもしくは枝分かれの炭化水素が存在してよい)
例としては、ノルボルナン、スピロ−ノナン、デカヒドロナフタレンなどが挙げられる。
【0041】
5)一般式C
nH
2n-(2+2x) の複数不飽和の二環式炭化水素(式中、xは分子中の不飽和部位の数であり、n = 4〜14であり、二環式構造中の炭素数は4〜12であり、環状構造上に置換された複数の単純なもしくは枝分かれの炭化水素が存在してよい)。不飽和は環内にあっても、又は、環状構造への炭化水素置換基の1つにあってもよい。
例としては、カンフェン、ノルボルネン、ノルボルナジエン、5−エチリデン−2−ノルボルネンなどが挙げられる。
【0042】
6)一般式C
nH
2n-4 の三環式炭化水素(式中、n = 4〜14であり、三環構造中の炭素数は4〜12であり、環状構造上に置換された複数の単純なもしくは枝分かれの炭化水素が存在してよい)。
例としては、アダマンタンが挙げられる。
【0043】
試薬を説明するために本明細書中で用語「気体試薬」がしばしば使用されているが、その用語は反応器に気体として輸送され、蒸発液体、昇華固体として輸送され、及び/又は反応器中に不活性キャリアガスにより輸送される試薬を包含することが意図される。
【0044】
さらに、試薬は区別される源と別個に、又は、混合物として反応器中に輸送されうる。試薬は任意の数の手段により、好ましくは、適切なバルブ及び取り付け具を備えた加圧可能なステンレススチール容器を用いて、反応器系に輸送されることができ、それにより、プロセス反応器に液体の輸送が可能になる。
【0045】
構造形成性種及び細孔形成性種に加えて、堆積反応の前、間及び/又は後に、追加の材料を反応チャンバに導入することができる。このような材料としては、例えば、不活性ガス(例えば、He, Ar, N
2, Kr, Xeなどで、より低い揮発性の前駆体のためのキャリアガスとして使用でき、及び/又は、堆積されたままの材料の硬化を促進することができ、そしてより安定な最終膜を提供することができる)、及び、反応性物質、例えば、酸素含有種、例えば、O
2, O
3及びN
2O、気体もしくは液体有機物質、NH
3, H
2, CO
2又はCOが挙げられる。1つの特定の実施形態において、反応チャンバに導入される反応混合物はO
2, N
2O, NO, NO
2, CO
2, 水、H
2O
2, オゾン及びそれらの組み合わせからなる群より選ばれる少なくとも1種の酸化剤を含む。別の実施形態において、反応混合物は酸化剤を含まない。
【0046】
気体を反応させるのを誘導し、そして基材上の膜を形成させるために、気体試薬にエネルギーを加える。このようなエネルギーは、例えば、プラズマ、パルスプラズマ、ヘリコンプラズマ、高密度プラズマ、誘導結合プラズマ、遠隔プラズマ、熱フィラメント、熱(すなわち、非フィラメント)及び各種方法により提供されうる。二次RF周波数源は基材表面でプラズマ特性を変更するために使用することができる。好ましくは、膜はプラズマ増強化学蒸着(「PECVD」)によって形成される。
【0047】
気体試薬の各々の流速は単一の200mmウエハ当たりに10〜5000 sccmであり、より好ましくは30〜1000 sccmである。個別の速度は膜中に所望の量の構造形成剤及びポロゲンを提供するように選択される。必要とされる実際の流速はウエハサイズ及びチャンバ構成によって決まることができ、200mmウエハ又は単一ウエハチャンバに決して限定されない。
【0048】
特定の実施形態において、膜は約50ナノメートル(nm)/分の堆積速度で堆積される。
【0049】
堆積の間の反応チャンバ内の圧力は約0.01〜約600トル、又は、約1〜15トルである。
【0050】
膜は、好ましくは、0.002〜10ミクロンの厚さに堆積されるが、厚さは必要に応じて変更可能である。非パターン化表面上に堆積されるブランケット膜は優れた均一性を有し、合理的に縁を除外した基材を横切って1標準偏差にわたって2%未満の厚さのばらつきがあり、ここで、例えば、基材の5mm最外縁は均一性の統計的計算に含まれない。
【0051】
膜の多孔性を増加することができ、それとともに、バルク密度が対応して低下し、材料の誘電率のさらなる低減をもたらし、この材料の将来世代への応用性を広げる(例えば、k<2.0)。
【0052】
上述のとおり、堆積されたままの膜中に含まれるポロゲン前駆体の少なくとも一部分からポロゲン前駆体の実質的にすべては続く除去工程において除去される。ポロゲン前駆体の除去は1つ以上の下記の処理により行われる:熱処理、紫外線処理、電子線処理、ガンマ線処理及びそれらの組み合わせ。1つの特定の実施形態において、ポロゲン除去工程はUV処理工程、熱処理工程又はそれらの組み合わせにより行われる。その実施形態において、UV処理工程は熱処理の少なくとも一部の間に行う。
【0053】
アニール処理された多孔性OSGと、添加ポロゲンを含まない類似のOSGとの間に原子組成の統計的に有意な測定差異が存在しないならば、堆積されたままの膜中に含まれる少なくとも一部分から実質的にすべてのポロゲンまでの除去が仮定される。本明細書に使用されるときに、用語「実質的に含まない」は、それが堆積されたままの膜中のポロゲン前駆体の除去に関するときに、XPS又は他の手段により測定して、約2%以下、又は、約1%以下、又は、約50ppm以下、又は、約10ppm以下、又はm約5ppm以下、のポロゲンを含むことを意味する。組成の分析法の生来的な測定誤差(例えば、X−線光分子分光(XPS)、ラザフォード後方散乱/水素前方散乱(RBS/HFS))及びプロセス変動性はともにデータの範囲に寄与する。XPSでは、生来的な測定誤差は約+/−2原子%であり、一方、RBS/HFSでは、これはより大きく、化学種により、+/−2〜5原子%の範囲であることが期待される。プロセス変動性はデータの最終範囲に対してさらに+/−2原子%で寄与するであろう。
【0054】
本発明の好ましい実施形態は、当該技術において知られている他の構造形成性前駆体を使用して堆積された他の多孔性低k誘電体膜と比較して、低い誘電率及び改良された機械特性、熱安定性及び化学物質耐性(酸素、水性酸化性環境などに対する)を有する薄膜材料を提供する。式Iを有するアルキルアルコキシシラ環状化合物を含む、本明細書に記載される構造形成性前駆体は膜中へのより高い炭素の取り込みを提供し(好ましくは、主として有機炭素-CH
x(式中、xは1〜3である)の形態で)、特定の前駆体又はネットワーク形成性化学物質を使用して、膜を堆積する。特定の実施形態において、膜中の水素の主要部分は炭素に結合されている。
【0055】
本明細書に記載される組成物及び方法を用いて堆積される低k誘電体膜は(a)約10〜約35原子%、より好ましくは約20〜約30原子%のケイ素、(b)約10〜約65原子%、より好ましくは約20〜約45原子%の酸素、(c)約10〜約50原子%、より好ましくは約15〜約40原子%の水素、(d)約5〜約40原子%、より好ましくは約10〜約45原子%の炭素を含む。膜は、また、約0.1〜約15原子%、より好ましくは約0.5〜約7.0原子%のフッ素を含み、それにより、1種以上の材料特性を改良する。より少量の他の元素も本発明の特定の膜中に存在してよい。OSG材料はその誘電率が産業界で伝統的に使用されている標準的な材料−シリカガラスよりも低いときに低k材料と考えられる。本発明の材料は、堆積手順に孔形成性種又はポロゲンを添加し、堆積されたままの(すなわち、予備)OSG膜中にポロゲンを取り込み、そして予備膜から実質的にすべてのポロゲンを除去する一方で、予備膜の末端Si-CH
3基又は橋掛け-(CH
2)
x-を実質的に保持して、製品膜を提供することにより提供されうる。製品膜は多孔性OSGであり、そして予備膜の誘電率から、また、ポロゲンを用いずに堆積された類似の膜の誘電率から低減された誘電率を有する。OSG中の有機基により提供される疎水性を欠く、多孔性無機SiO
2とは対照的に、多孔性OSGとして本発明の膜を区別することが重要である。
【0056】
例えば、CVD TEOSにより製造されるシリカは、陽電子消滅寿命分光分析(positron annihilation lifetime spectroscopy) (PALS) により決定される生来自由体積孔サイズが等価球状直径で約0.6nmである。小角中性子線散乱(SANS)又はPALSにより決定される本発明の膜の孔サイズは、好ましくは等価球状直径で5nm未満、より好ましくは等価球状直径で2.5nm未満である。
【0057】
膜の合計気孔度はプロセス条件及び所望の最終膜特性により5〜75%であることができる。本発明の膜は、好ましくは、密度が2.0 g/ml未満であり、又は、別には、1.5 g/ml未満又は1.25 g/ml未満である。好ましくは、本発明の膜はポロゲンを用いずに製造された類似のOSG膜よりも密度が少なくとも10%低く、より好ましくは少なくとも20%低い。
【0058】
膜の気孔度は膜全体を通して均一である必要はない。特定の実施形態において、気孔度勾配及び/又は種々の気孔度の層が存在する。このような膜は、堆積の間にポロゲン/前駆体比を調節するなどにより提供されうる。
【0059】
本発明の膜は一般的なOSG材料と比較して低い誘電率を有する。好ましくは、本発明の膜はポロゲンを用いずに製造した類似のOSG膜よりも誘電率が少なくとも0.3低く、より好ましくは少なくとも0.5低い。好ましくは、本発明の多孔性膜のフーリエ変換赤外(FTIR)スペクトルはポロゲンを含まないこと以外は実質的に同一の方法により調製された参照膜の参照FTIRと実質的に同一である。
【0060】
本発明の膜は、また、フッ素を、無機フッ素(例えば、Si-F)の形態で含む。存在するときには、フッ素は、好ましくは、0.5〜7原子%の範囲の量で含まれる。
【0061】
本発明の膜は、良好な化学物質耐性を有するともに熱的に安定である。特に、アニール後の好ましい膜はN
2下に425℃の等温で平均質量損失が1.0wt%/hr未満である。さらに、膜は、好ましくは、空気下に425℃の等温で平均質量損失が1.0wt%/hr未満である。
【0062】
膜は種々の用途に適する。膜は、半導体基板上の堆積に特に適し、例えば、絶縁層、層間誘電体層及び/又は金属間誘電体層としての使用に特に適する。膜は形態追従性コーティングを形成することができる。これらの膜により示される機械特性は、Alサブトラクティブ技術及びCuダマシン又はデュアルダマシン技術における使用に特に適なものとする。
【0063】
膜は化学機械平坦化(CMP)及び異方性エッチングと適合性があり、シリコン、SiO
2, Si
3N
4,、OSG、FSG、炭化ケイ素、水素化炭化ケイ素、窒化ケイ素、水素化窒化ケイ素、炭窒化ケイ素、水素化炭窒化ケイ素、窒化ホウ素、反射防止コーティング、フォトレジスト、有機ポリマー、多孔性有機及び無機材料、銅及びアルミニウムなどの金属、及び、拡散バリア層(例えば、限定するわけではないが、TiN, Ti(C)N TaN, Ta(C)N, Ta, W, WN又はW(C)N)などの種々の材料に接着することができる。膜は、好ましくは、ASTM D3359-95a テープ引張試験などの従来の引張試験に合格するのに十分な上記の材料の少なくとも1つに接着することができる。サンプルは膜の明確な除去がなければ試験に合格したものと考えられる。
【0064】
このように、特定の実施形態において、膜は、集積回路における絶縁層、層間誘電体層、金属間誘電体層、キャッピング層、化学機械平坦化(CMP)もしくはエッチ停止層、バリア層又は接着層である。
【0065】
本明細書に記載される膜は均一に堆積される誘電体膜であるが、完全集積化構造において使用される膜は、実際に、幾つかのサンドイッチ層からなることができ、例えば、ボトム又はトップでほとんど又は全くポロゲンを含まない薄い層が堆積され、又は、層はより低いポロゲン前駆体流比である条件下に堆積されることができ、又は、例えば、層はすべてのポロゲン前駆体がUV処理により除去されることのないように、より高いプラズマ出力で堆積されてよい。これらのサンドイッチ層は、例えば、接着性、エッチ選択性又はエレクトロマイグレーション性能などの二次集積化特性を向上させるために使用されうる。
【0066】
本発明は膜として本明細書に概して記載される本発明の膜及び製品を提供するのに特に適するが、本発明はそれに限定されない。本発明の製品は、コーティング、多層層状アセンブリ及び、必ずしも平坦でない又は薄くない他のタイプの物品、ならびに、必ずしも集積回路に使用されない多数の物品などの、CVDにより堆積されうる任意の形態で提供される。好ましくは、基材は半導体である。
【0067】
本発明のOSG製品に加えて、本発明は、製品が製造される方法、製品の使用方法、製品を調製するために有用な化合物及び組成物を含む。例えば、半導体デバイス上での集積回路の製造方法は、米国特許第6,583,049号明細書中に開示されており、それを参照により本明細書中に取り込む。
【0068】
堆積膜中のポロゲンは反応チャンバに導入されるポロゲンと同一の形態であっても又はなくてもよい。また、ポロゲン除去プロセスは膜からポロゲン又はその断片を解放することができる。本質的に、ポロゲン試薬(又は前駆体に結合されたポロゲン置換基)、予備膜中のポロゲン、及び、除去されるポロゲンは、ポロゲン試薬(又はポロゲン置換基)に由来していることが好ましいが、同一の種であっても又はなくてもよい。ポロゲンが本発明の方法全体にわたって変化されるか又はされないかに関係なく、本明細書中で使用されるときに、用語「ポロゲン」は、本発明の全体の方法にわたって見られる形態がいかなるものであろうと、孔形成性試薬(又は孔形成性置換基)及びその誘導体を包含することが意図される。
【0069】
本発明の組成物は、例えば、プロセス反応器にポロゲン及びMESCAP前駆体を輸送することを可能にする適切なバルブ及び取り付け具を装備した少なくとも1つの加圧可能容器(好ましくは、ステンレススチール製)をさらに含むことができる。容器の内容物は事前混合されうる。或いは、ポロゲン及び前駆体は貯蔵の間に別個の容器中に維持されることができ、又は、ポロゲン及び前駆体を別々に維持するための別個の手段を有する単一の容器中に維持されることができる。このような容器は、また、所望の場合には、ポロゲン及び前駆体を混合するための手段を有することができる。
【0070】
ポロゲンは硬化工程により予備(又は、堆積されたままの)膜から除去される。硬化工程は熱アニール、化学処理、現場もしくは遠隔プラズマ処理、光硬化(例えば、UV)及び/又はマイクロ波処理を含むことができる。他の現場もしくは堆積後処理は硬度、安定性(収縮、空気暴露、エッチング、湿式エッチングなどに対する)、一体性、均一性及び接着性などの材料特性を向上させるために使用されうる。このような処理を、ポロゲン除去のために使用される同一又は異なる手段を用いたポロゲン除去の前、間及び/又は後に膜に施すことができる。このように、用語「後処理」は、本明細書中で使用されるときに、エネルギー(例えば、熱、プラズマ、光子、電子、マイクロ波など)、ポロゲンを除去し、場合により、材料特性を向上させるための化学物質を用いた膜の処理を表す。
【0071】
後処理を行う条件は大きく変更可能である。例えば、後処理は高圧又は真空周囲下に行うことができる。
【0072】
UVアニーリングは以下の条件下で行われる好ましい方法である。
【0073】
環境は不活性(例えば、窒素、CO
2, 貴ガス(He, Ar, Ne, Kr, Xe)など)、酸化性(例えば、酸素、空気、希釈酸素環境、エンリッチ化酸素環境、オゾン、一酸化二窒素など)又は還元性(希釈もしくは濃縮水素、炭化水素(飽和、不飽和、直鎖もしくは枝分かれ、芳香族)など)であることができる。圧力は、好ましくは、約1トル〜約1000トル、より好ましくは、大気圧である。しかしながら、真空雰囲気は、また、熱アニーリング、ならびに、任意の他の後処理手段のためにも可能である。温度は好ましくは200〜500℃であり、温度上昇速度は0.1〜100℃/分である。合計UVアニーリング時間は、好ましくは、0.01分〜12時間である。
【0074】
OSG膜の化学処理は以下の条件下に行われる。
【0075】
フッ素化剤(HF, SIF
4, NF
3, F
2, COF
2, CO
2F
2など)、酸化剤(H
2O
2, O
3など)、化学乾燥剤、メチル化剤又は他の化学物質処理剤の使用は最終材料の特性を向上させる。このような処理に使用される化学物質は固体、液体、気体及び/又は超臨界流体状態であることができる。
【0076】
オルガノシリケート膜からのポロゲンの選択的除去のための超臨界流体後処理は以下の条件下に行われる。
【0077】
流体は、二酸化炭素、水、一酸化二窒素、エチレン、SF
6及び/又は他のタイプの化学物質であることができる。他の化学物質はプロセスを向上させるために超臨界流体に添加されてよい。化学物質は不活性 (例えば、窒素、CO
2, 貴ガス(He, Ar, Ne, Kr, Xe)など)、酸化性(例えば、酸素、オゾン、一酸化二窒素など)、又は、還元性(例えば、希釈もしくは濃縮炭化水素、水素など)であることができる。温度は好ましくは、周囲温度から500℃である。化学物質は、また、界面活性剤などのより大きな化学物質種を含むことができる。合計暴露時間は、好ましくは0.01分〜12時間である。
【0078】
OSG膜の不安定基の選択的除去及び可能な化学変性のためのプラズマ処理は下記の条件下に行われる。
【0079】
環境は不活性(窒素、CO
2, 貴ガス(He, Ar, Ne, Kr, Xe)など)、酸化性(例えば、酸素、空気、希釈酸素環境、エンリッチ化酸素環境、オゾン、一酸化二窒素など)又は還元性(例えば、希釈もしくは濃縮水素、炭化水素(飽和、不飽和、直鎖もしくは枝分かれ、芳香族)など)であることができる。プラズマ出力は、好ましくは、0〜5000Wである。温度は好ましくは、周囲温度〜500℃である。圧力は、好ましくは10ミリトル〜大気圧である。合計硬化時間は、好ましくは、0.01分〜12時間である。
【0080】
オルガノシリケート膜からのポロゲンの選択的除去のためのUV硬化は以下の条件下に行われる。
【0081】
環境は不活性(例えば、窒素、CO
2, 貴ガス(He, Ar, Ne, Kr, Xe)など)、酸化性(例えば、酸素、空気、希釈酸素環境、エンリッチ化酸素環境、オゾン、一酸化二窒素など)又は還元性(例えば、希釈もしくは濃縮炭化水素、水素など)であることができる。温度は好ましくは周囲温度〜500℃である。出力は、好ましくは、0〜5000Wである。波長は、好ましくはIR、可視、UV又は深UV (波長<200nm)である。合計のUV硬化時間は好ましくは0.01分〜12時間である。
【0082】
オルガノシリケート膜からのポロゲンの選択的除去のためのマイクロ波後処理は以下の条件下で行われる。
【0083】
環境は不活性(例えば、窒素、CO
2, 貴ガス(He, Ar, Ne, Kr, Xe)など)、酸化性(例えば、酸素、空気、希釈酸素環境、エンリッチ化酸素環境、オゾン、一酸化二窒素など)又は還元性(例えば、希釈もしくは濃縮炭化水素、水素など)であることができる。温度は好ましくは周囲温度〜500℃である。出力及び波長は様々であり、特定の結合に対して調節可能である。合計の硬化時間は好ましくは0.01分〜12時間である。
【0084】
オルガノシリケート膜からのポロゲン又は特定の化学種の選択的除去及び/又は膜特性の改良のための電子線後処理は以下の条件下に行われる。
【0085】
環境は真空、不活性(例えば、窒素、CO
2, 貴ガス(He, Ar, Ne, Kr, Xe)など)、酸化性(例えば、酸素、空気、希釈酸素環境、エンリッチ化酸素環境、オゾン、一酸化二窒素など)又は還元性(例えば、希釈もしくは濃縮炭化水素、水素など)であることができる。温度は好ましくは周囲温度〜500℃である。電子密度及びエネルギーは様々であることができ、特定の結合に対して調節可能である。合計の硬化時間は好ましくは0.001分〜12時間であり、連続であっても又はパルスであってもよい。電子線の一般的な使用に関する追加のガイダンスは、S. Chattopadhyay ら, Journal of Materials Science, 36 (2001) 4323-4330; G. Klosterら, Proceedings of IITC, June 3-5, 2002, SF, CA;及び米国特許第6,207,555号(B1)、同第6,204,201号(B1)及び同第6,132,814号(A1)明細書などの刊行物において得られる。電子ビーム処理の使用はポロゲン除去を提供し、そしてマトリックス内での結合形成プロセスを通して膜の機械特性の強化を提供する。
【0086】
本発明は以下の実施例を参照してより詳細に例示されるであろうが、それを限定するものと認められないことは理解されるべきである。
【実施例】
【0087】
200mmウエハ処理の例示の膜を、種々の化学前駆体及びプロセス条件から、Advance Energy 200 RF発生器を備えた200 mm DxZ 反応チャンバ又は真空チャンバにおいてApplied Materials Precision-5000システムを用いて、プラズマ強化CVD (PECVD)プロセスにより形成した。PECVDプロセスは、一般に、以下の基本工程: ガス流の初期設定及び安定化、シリコンウエハ基材上の膜の堆積、及び、基材取り出しの前のチャンバのパージ/排気を含んだ。堆積後に、膜をUVアニーリングに付した。UVアニーリングは広いバンドのUVバルブを有するFusion UVシステムを用いて行った。その際、ウエハは<10トルの1種以上の圧力及び<400℃の1種以上の温度でヘリウムガス流下に保持された。実験をp−型Siウエハ(抵抗率=8〜12Ohm-cm)で行った。
【0088】
SCI FilmTek 2000屈折率計で厚さ及び屈折率を測定した。中程度の抵抗率のp−型ウエハ(範囲=8〜12Ohm-cm)に対してHgプローブ技術を用いて誘電率を決定した。Nicholet Nexxus 470分光計を用いてFTIRスペクトルを測定した。比較例1及び例1において、機械特性をMTS ナノインデンタを用いて決定した。Physical Electronics 5000LSでx−線光電子分光計(XPS)により組成データを得た。そして原子質量%で提供する。表中に報告されている原子質量%値は水素を含まない。
【0089】
[比較例1:ジエトキシメチルシラン(DEMS)及びシクロオクタンからの多孔性OSG膜の堆積]
構造形成剤DEMS及びポロゲン前駆体シクロオクタンの複合材層を200mm処理のための以下のプロセス条件を用いて堆積した。シクロオクタンの流速960ミリグラム/分(mg/分)及び、240mg/分で、200標準立方センチメートル(sccm)のCO
2キャリアガス流、10sccmのO
2、350ミリインチのシャワーヘッド/ウエハ間隔、275℃のウエハチャンク温度、600Wプラズマが課された8トルチャンバ圧を用いて、前駆体を反応チャンバに直接液体注入(DLI)により輸送した。その後、得られた膜をUVアニールしてシクロオクタンポロゲンを除去し、そして膜を機械的に向上させた。膜の種々の属性(例えば、誘電率(k)、弾性率(GPa)及び原子質量%炭素(%C))を上記のように得た。表1に提供する。
【0090】
[比較例2:1,1−ジエトキシ−1−シラシクロブタン(DESCB)及びシクロオクタンからの多孔性OSG膜の堆積]
構造形成剤DEMS及びポロゲン前駆体シクロオクタンの複合材層を200mm処理のための以下のプロセス条件を用いて堆積した。シクロオクタンの流速1120ミリグラム/分(mg/分)及び、280mg/分で、200標準立方センチメートル(sccm)のCO
2キャリアガス流、20sccmのO
2、350ミリインチのシャワーヘッド/ウエハ間隔、250℃のウエハチャンク温度、700Wプラズマが課された8トルチャンバ圧を用いて、前駆体を反応チャンバに直接液体注入(DLI)により輸送した。その後、得られた膜をUVアニールしてシクロオクタンポロゲンを除去し、そして膜を機械的に向上させた。膜の種々の属性(例えば、誘電率(k)、弾性率(GPa)及び原子質量%炭素(%C))を上記のように得た。表1に提供する。
【0091】
[例1:1−メチル−1−エトキシ−1−シラシクロペンタン(MESCAP)及びシクロオクタンからの多孔性OSG膜の堆積]
構造形成剤MESCAP及びポロゲン前駆体シクロオクタンの複合材層を200mm処理のための以下のプロセス条件を用いて堆積した。シクロオクタンの流速960mg/分及び、MESCAP240mgmで、200標準立方センチメートル(sccm)のCO
2キャリアガス流、20sccmのO
2、350ミリインチのシャワーヘッド/ウエハ間隔、250℃のウエハチャンク温度、600Wプラズマが課された8トルチャンバ圧を用いて、前駆体を反応チャンバに直接液体注入(DLI)により輸送した。その後、得られた膜をUVアニールしてポロゲンを除去し、そして膜を機械的に向上させた。膜の種々の属性(例えば、誘電率(k)、弾性率(GPa)及び原子質量%炭素(%C))を上記のように得た。表1に提供する。
【0092】
[例2:1−メチル−1−イソプロポキシ−1−シラシクロペンタン(MPSCAP)及びシクロオクタンからの多孔性OSG膜の堆積]
構造形成剤MPSCAP及びポロゲン前駆体シクロオクタンの複合材層を200mm処理のための以下のプロセス条件を用いて堆積した。シクロオクタンの流速840mg/分及び、MPSCAP360mgmで、200標準立方センチメートル(sccm)のCO
2キャリアガス流、20sccmのO
2、350ミリインチのシャワーヘッド/ウエハ間隔、250℃のウエハチャンク温度、700Wプラズマが課された8トルチャンバ圧を用いて、前駆体を反応チャンバに直接液体注入(DLI)により輸送した。その後、得られた膜をUVアニールしてポロゲンを除去し、そして膜を機械的に向上させた。膜の種々の属性(例えば、誘電率(k)、弾性率(GPa)及び原子質量%炭素(%C))を上記のように得た。表1に提供する。
【0093】
【表1】
【0094】
【表2】
【0095】
表1及び2は、構造形成剤としてMESCAP及びイソプロポキシ誘導体MPSCAP及びシクロオクタンポロゲン前駆体を用いて製造した膜が、DEMS構造形成性前駆体及び同一のポロゲンを用いて製造した膜と比較して、炭素量が増加し、そして同様の弾性率を有することを示す。表1は、また、比較例2のデータを含み、ここで、1,1−ジエトキシ−1−シラシクロブタンである対称性シラ環状化合物を構造形成剤前駆体として用い、DEMS堆積膜よりも高い%Cを有したが、より低い機械特性を有した。
【0096】
[例3:構造形成剤としてDEMS、MESCAP及びMESCAP及び硬化剤(HA)、及び、ポロゲン前駆体としてシクロオクタンを用いた誘電体膜の堆積]
特定の実験は300mmウエハ処理を用い、Applied Materials Producer(登録商標) SEで行った。上記の200mm処理と同様に、PECVDプロセスは、一般に、以下の基本工程: ガス流の初期設定及び安定化、シリコンウエハ基材上の膜の堆積、及び、基材取り出しの前のチャンバのパージ/排気を含んだ。300mm堆積を、TEOSフェースプレート(AMAT部品番号: 0040-95475)を含むProducer(登録商標)SE Twin 低kチャンバで行った。チャンバはAdvanced Energy APEX 3013 RF 発生器(ツインチャンバ毎に2つ)を備えている。Producerでのすべての堆積に関して、ヘリウムをキャリアガスとして用いた。Producer(登録商標) SE 低kチャンバからの堆積されたままの膜を、Producer(登録商標) SE NanoCure(商標)UV チャンバで、アルゴン下に、<10トルの1種以上の圧力及び≦400℃の1種以上の台座セット温度でUV−硬化させた。実験をp−型Siウエハ(抵抗率範囲=8〜12Ohm-cm)で行った。
【0097】
厚さ及び屈折率をSCI FilmTek 2000 反射率計で測定した。例3及び300mm膜で、膜の機械特性を、Agilent G200 ナノインデンタを用いたナノ押し込みにより測定した。押し込みは連続剛性測定(CSM)オプションを用いたDCMインデンタヘッドにより、50%膜厚の最大侵入深さまで行う。弾性率及び硬度測定は膜厚の10%で報告する。さらに、弾性率測定はシリコン基材の弾性影響に関して補償される。基材の影響に関するこの補償のために、報告される弾性率はOliver-Pharr分析単独で決定される値よりも大体25%低い。300mmウエハのFTIRスペクトルは、12インチウエハを取り扱うために Pike Technologies Map300を備えたThermo Fisher Scientific Model iS 50 分光計を用いて回収した。200mmウエハのFTIRスペクトルはNicolet Nexxus 470 分光計を用いて測定した。誘電率は熱酸化物標準品で検量されたMaterials Development Corporation (MDC)水銀プローブを用いて取った。
【0098】
原子組成はX-線光電子分光分析(XPS)を用いて、Multiple Channel Plates (MCD)及び焦点化Al 単色X−線源を備えたPHI 5000VersaProbe 分光計で決定した。バルク組成はArスパッタリングにより約2000Åの除去の後に200μmにわたって調べる。表中に報告される原子%値は水素を含まない。
【0099】
多孔性低k誘電体膜の一連の堆積物を、500〜700Wプラズマ出力、5〜9トルチャンバ圧力、0.30〜0.60インチ電極間隔、200〜300℃の基材温度、10〜50sccmのO
2流、200〜400sccmのCO
2又はHeキャリアガス流、0.9〜1.5g/分の合計流の30:70〜10:90の比のOSG前駆体/シクロオクタンポロゲン前駆体の種々のプロセス条件下で、200mmPECVD反応器にて、構造形成剤としてDEMS又はMESCAPのいずれか及びポロゲン前駆体としてシクロオクタンを用いて堆積した。炭素含有分を本明細書に記載されるとおりにXPSにより測定した。
図2は異なる誘電率を有する多孔性低kDEMS/シクロオクタン及びMESCAP/シクロオクタン膜の炭素含有分(%)の関係を示す。
図2が示すように、従来技術又はDEMS/シクロオクタン多孔性低k膜は、誘電率が約2.3〜約2.8に増加するときに、狭い範囲の炭素含有分、すなわち、約10〜約20原子%を有した。対照的に、本明細書に記載されるMESCAP/シクロオクタン膜は、同一の誘電率範囲にわたって、より広い範囲の炭素含有分、すなわち、約9〜約50原子%を有した。このことは、同様の値の誘電率である多孔性低k誘電体膜を堆積させるためにMESCAPなどの本明細書に記載されるアルキルアルコキシシラ環状化合物を使用することの、他の従来技術の構造形成剤に対する重要な利点の1つを示し、アルキルアルコキシシラ環状前駆体MESCAPでは、炭素含有分のより広く、調節可能な範囲が可能になる。
【0100】
表3は、構造形成剤としてDEMS、MESCAP、又は、MESCAP含有組成物のいずれか及びテトラエチルオルソシリケートである硬化剤(HA)、及び、ポロゲン前駆体としてシクロオクタンを用いた、k=2.4の誘電率を有する多孔性低k膜の比較を提供する。高弾性率、高炭素含有分又はその両方を得るために所与の膜の処理条件を調節し、その処理条件を表3に提供する。すべての膜は誘電率に悪影響を及ぼさずに最大機械強度に達するのに要する時間により決定される標準UV硬化時間を用いて処理された。DEMS/シクロオクタン膜と比較して、2つのMESCAP/シクロオクタン膜は、同様の弾性率を維持しながら、有意に大きい炭素含有分を含んだ。さらに、表3のMESCAP/シクロオクタン膜は、所与の弾性率について、DEMSなどの従来技術の構造形成剤の炭素含有分を大きく超えて、調節可能な炭素含有分でもって高い弾性率の膜を堆積することが可能であることを示す。さらに、所与のクラスの膜では(例えば、MESCAP/シクロオクタン)、弾性率は炭素含有分の増加と共に減少する。
【0101】
【表3】
【0102】
表3は、また、構造形成剤としてMESCAP及び硬化剤(HA)テトラエチルオルトシリケートの混合物、及び、ポロゲン前駆体としてシクロオクタンを用いた2つの多孔性低k膜を提供する。これらの例において、構造形成剤は質量基準で50:50混合物のMESCAP及び硬化剤であった。表3に示すデータを参照すると、HAは膜の炭素含有分を低減したが、膜の弾性率を増加した。比較のDEMS/シクロオクタン膜と比較して、弾性率が8.0GPaであるk = 2.4 MESCAP/HA/シクロオクタン膜はより高い弾性率(13%増加)を有し、そしてより高い炭素含有分(8%増加)を有した。表3中の他のk=2.4 MESCAP/硬化剤/シクロオクタン膜は9.2GPaの弾性率及び11%の炭素含有分を示す。構造形成剤中にHAを含むその膜は、比較のDEMS/シクロオクタン膜と比較して、弾性率を有意に増加したが(30%増加)、炭素含有分が減少した(8%減少)。表3中の例は、MESCAPの生来的な高い炭素含有分が構造形成剤として明確な利点を提供していることを示す。というのは、炭素含有分における有害な損失を及ぼすことなく、硬化剤を構造形成剤組成物に導入することができるからである。
【0103】
表4は、構造形成剤としてDEMS、MESCAP、又は、MESCAP含有組成物のいずれか、及び、HA、すなわち、テトラエチルオルソシリケート、及び、ポロゲン前駆体としてシクロオクタンを用いた、k=2.3の誘電率を有する多孔性低k膜の比較を提供する。高弾性率、高炭素含有分又はその両方を得るために所与の膜の処理条件を調節し、その処理条件を表4に提供する。表4の第一のカラムは5.7GPaの弾性率及び24原子%の炭素含有分を有するMESCAP/シクロオクタン堆積膜を示す。表4の第二のカラムは6.0GPaの弾性率及び17%の炭素含有分を有するMESCAP/シクロオクタン堆積膜を示す。これらの膜は、構造形成剤としてMESCAPを用いた膜の炭素含有分が弾性率にほとんど影響を及ぼすことなく17〜25原子%で調節することができることを示す。表4の第三のカラムは7.9GPaの弾性率及び14%の炭素含有分を有するMESCAP/HA/シクロオクタン堆積膜を示す。その例示の膜は、アルキルアルコキシシラ環状前駆体MESCAPの使用は、機械特性を維持しながら膜中に比較的に高い炭素含有分を提供又は維持する。というのは、HAは炭素含有分における有害な損失なしに組成物中に導入されうるからである。
【0104】
【表4】
【0105】
表5は、誘電率が2.6である堆積された多孔性低k膜のためのアルキルアルコキシシラ環状前駆体MESCAPの生来的な利点のさらなる例を提供する。表5の第一のカラムは11GPaの高い弾性率及び11%の炭素含有分を有するDEMS/シクロオクタン膜を示す。対照的に、MESCAP/シクロオクタン膜は同等の弾性率(11 GPa)を有したが、15原子%という、より高い炭素含有分を有した(比較のDEMS系膜と比較して36%増加)。
【0106】
【表5】
【0107】
図3は、構造形成剤として、例1でMESCAP (▲)、又は、比較例1でDEMS (●)を用いて、そしてポロゲン前駆体としてシクロオクタンを用いて堆積した、約2.3の誘電率を有する膜を示す。両方の膜を15秒間、100Wプラズマ出力でNH
3 プラズマに暴露し、集積化において見られるプラズマ損傷条件をモデリングした。損傷の深さは炭素がXPS深さプロファイリングスパッタリングにより検知されるとおりに膜から除去された深さにより示される。
図3は、構造形成性前駆体としてMESCAP を用いて堆積した膜では、構造形成性前駆体としてDEMSを用いて堆積した膜と比較して高い炭素含有分を保持しており、そして、炭素が膜から除去された深さにより示される損傷の深さはMESCAPを用いて堆積された膜ではより浅いことを示す。
【0108】
特定の具体的な実施形態及び実施例を参照しながら上記に例示しそして説明してきたが、本発明は、それでも、示された詳細に限定されることが意図されない。むしろ、種々の変更は本発明の趣旨から逸脱することなく、特許請求の範囲及びその均等範囲内の詳細に対してなされてよい。例えば、本文書に広く表現されたすべての範囲はより広い範囲内に該当するすべてのより狭い範囲を包含することが明確に意図される。