【実施例】
【0035】
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれによって限定されるものではない。また、下記例において、表中の物性は、下記の試験法により測定されたものである。
【0036】
[硬化性]
シリコーン組成物を調製直後、ポリエチレンラミネート紙にシリコーン組成物を1.0g/m
2となるように塗布し、120℃の熱風式乾燥機中で所定時間加熱し、形成された硬化皮膜を、指で数回擦り、くもり及び脱落の有無を目視にて判断し、硬化に要した時間(秒)で硬化性を示した。
【0037】
[密着性]
シリコーン組成物を調製直後、ポリエチレンラミネート紙にシリコーン組成物を1.0g/m
2となるように塗布し、120℃の熱風式乾燥機中で30秒間加熱し、形成された硬化皮膜を室温で1日間保存した後、指で数回擦り、くもり及び脱落の有無を目視にて判断してこれを初期密着性とした。更にこの硬化皮膜を温度40℃、湿度90%の恒温恒湿糟中で7日間保存した後、硬化皮膜を指で数回擦り、くもり及び脱落の有無を目視にて判断してこれを経時密着性とした。
【0038】
[剥離力]
シリコーン組成物を調製直後、ポリエチレンラミネート紙にシリコーン組成物を1.0g/m
2となるように塗布し、120℃の熱風式乾燥機中で30秒間加熱し、形成された硬化皮膜を室温で1日間保存した後、アクリル系粘着剤(BPS−5127(東洋インキ株式会社製))を塗布して100℃で3分間加熱処理した。次に、粘着剤を塗布して処理した面に、64g/m
2上質紙を貼り合せ、5cm幅に切断し、更に室温で1日間エージングさせたものを試料とし、64g/m
2上質紙を引っ張り試験機を用いて180°の角度で剥離速度0.3m/分で剥がし、剥離するのに要した力を測定して剥離力とした。
【0039】
[残留接着率]
シリコーン組成物を調製直後、ポリエチレンラミネート紙にシリコーン組成物を1.0g/m
2となるように塗布し、120℃の熱風式乾燥機中で30秒間加熱し、形成された硬化皮膜を室温で1日間保存した後、得られたシリコーンセパレーターの表面に、ポリエステルテープ(ニットー31B(日東電工株式会社製商品名))を貼り合せ、1976Paの荷重をかけ、70℃で20時間加熱処理してから、このテープを剥がし、これをステンレス板に貼り付け、この処理したテープを、引っ張り試験機を用い、ステンレス板から剥離するのに要した力を初期剥離力試験と同様の方法で測定し、接着力(A)とした。
【0040】
同様に、このポリエステルテープ(ニットー31Bテープ)をテフロン(登録商標)板に貼り合せ、1,976Paの荷重をかけ、70℃で20時間加熱処理してから、このテープを剥がし、これをステンレス板に貼り付け、この処理したテープを、引っ張り試験機を用い、ステンレス板から剥離するのに要した力を初期剥離力試験と同様の方法で測定し、シリコーン硬化表面に触れていないブランクの接着力(B)とした。残留接着率は次の式から求めた。
残留接着率 = 接着力(A)/ ブランクの接着力(B)×100
【0041】
[実施例1]オルガノハイドロジェンポリシロキサン1の合成方法
撹拌装置,温度計,還流冷却器,滴下ロートを取り付けた4つ口フラスコに、下記式(12)で示されるシロキサンモノマー1(186質量部)
【化13】
と溶媒としてのトルエン(100質量部)、白金触媒としてPtの含有率が0.5質量%トルエン溶液(0.5質量部)を混合し、65℃まで昇温し、次いで下記式(13)で示されるシロキサンモノマー2(326質量部)
【化14】
を少量ずつ添加し、添加終了後70℃で3時間反応させ、活性炭(3.0質量部)を添加して室温で8時間撹拌した後、活性炭をろ過し、反応溶液を90℃、30mmHgで、トルエン、揮発成分を留去して、シロキサンオリゴマー1(437質量部)を得た。次いで、撹拌装置,温度計,還流冷却器,滴下ロートを取り付けた4つ口フラスコにこのシロキサンオリゴマー1(56質量部)と1,3,5,7−テトラメチルシクロテトラシロキサン(103質量部)を仕込み、混合しながら、トリフルオロメタンスルホン酸(0.1質量部)を添加し、室温で10時間撹拌し、その後キョーワード500SH(0.9質量部)を添加し、更に、室温で4時間撹拌し、キョーワード500SHをろ過し、反応液を120℃、20mmHgで、未反応物を留去して、オルガノハイドロジェンポリシロキサン1(135質量部)を得た。これは淡黄色透明の液体で、粘度22mm
2/s、水素ガス発生量が245mL/gであった。また、このオルガノハイドロジェンポリシロキサン1はNMR分析により下記式(14)で表される構造のポリマーであることを確認した。
【化15】
(n
1+n
2+n
3≒15)
【0042】
[付加硬化型シリコーン組成物の調製]
本発明の(A)成分に該当する上記により合成したオルガノハイドロジェンポリシロキサン1を3.4質量部、下記式(15)で表される本発明の(B)成分に該当する25℃における粘度が400mPa・sであり、かつアルケニル基量が0.02mol/100gであるアルケニル基含有オルガノポリシロキサン1を100質量部、
【化16】
エチニルシクロヘキサノール0.2質量部を均一に混合し、シリコーン混合物1を得た。この混合物1の100質量部に、塩化白金酸とビニルシロキサンの錯塩を2質量部(白金換算100ppm)添加し、よく混合してシリコーン組成物1を得た。このシリコーン組成物1を、前記の方法にて硬化性、密着性、剥離力及び残留接着率を測定した。その結果を表1に示した。
【0043】
[実施例2]オルガノハイドロジェンポリシロキサン2の合成方法
撹拌装置,温度計,還流冷却器,滴下ロートを取り付けた4つ口フラスコに、1,5−ヘキサジエン(82質量部)と溶媒としてのトルエン(100質量部)、白金触媒としてPtの含有率が0.5質量%トルエン溶液(0.5質量部)を混合し、65℃まで昇温し、次いで下記式(13)で示されるシロキサンモノマー2(326質量部)
【化17】
を少量ずつ添加し、添加終了後70℃で3時間反応させ、活性炭(3.0質量部)を添加し、室温で8時間撹拌した後、活性炭をろ過し、反応溶液を90℃、30mmHgで、トルエン、揮発成分を留去して、シロキサンオリゴマー2(302質量部)を得た。次いで、撹拌装置,温度計,還流冷却器,滴下ロートを取り付けた4つ口フラスコにこのシロキサンオリゴマー2(56質量部)と1,3,5,7−テトラメチルシクロテトラシロキサン(103質量部)を仕込み、混合しながら、トリフルオロメタンスルホン酸(0.1質量部)を添加し、室温で10時間撹拌し、その後キョーワード500SH(0.9質量部)を添加し、更に、室温で4時間撹拌し、キョーワード500SHをろ過し、反応液を120℃、20mmHgで、未反応物を留去して、オルガノハイドロジェンポリシロキサン2(132質量部)を得た。これは淡黄色透明の液体で、粘度21mm
2/s、水素ガス発生量が248mL/gであった。また、このオルガノハイドロジェンポリシロキサン2はNMR分析により下記式(16)で表される構造のポリマーであることを確認した。
【0044】
【化18】
(n
4+n
5≒12)
【0045】
[付加硬化型シリコーン組成物の調製]
本発明の(A)成分に該当する上記により合成したオルガノハイドロジェンポリシロキサン2を3.4質量部、下記式(15)で表される本発明の(B)成分に該当する25℃における粘度が400mPa・sであり、かつアルケニル基量が0.02mol/100gであるアルケニル基含有オルガノポリシロキサン1を100質量部
【化19】
エチニルシクロヘキサノール0.2質量部を均一に混合し、シリコーン混合物2を得た。この混合物2の100質量部に、塩化白金酸とビニルシロキサンの錯塩を2質量部(白金換算100ppm)添加し、よく混合してシリコーン組成物2を得た。このシリコーン組成物2を、前記の方法にて硬化性、密着性、剥離力及び残留接着率を測定した。その結果を表1に示した。
【0046】
[実施例3]オルガノハイドロジェンポリシロキサン3の合成方法
撹拌装置,温度計,還流冷却器,滴下ロートを取り付けた4つ口フラスコに、下記式(17)で示されるシロキサンモノマー3(186質量部)
【化20】
と溶媒としてのトルエン(100質量部)、白金触媒としてPtの含有率が0.5質量%のトルエン溶液(0.8質量部)を混合し、65℃まで昇温し、次いで下記式(18)で示されるシロキサンモノマー4(444質量部)
【化21】
を少量ずつ添加し、添加終了後100〜120℃で10時間反応させ、活性炭(3.0質量部)を添加し、室温で8時間撹拌した後、活性炭をろ過し、反応溶液を110℃,30mmHgでトルエン、揮発成分を留去して、シロキサンオリゴマー3(540質量部)を得た。
【0047】
次いで、撹拌装置,温度計,還流冷却器,滴下ロートを取り付けた4つ口フラスコに、このシロキサンオリゴマー3(56質量部)と、1,3,5,7−テトラメチルシクロテトラシロキサン(103質量部)を仕込み、混合しながら、トリフルオロメタンスルホン酸(0.1質量部)を添加し、室温で10時間撹拌し、その後キョーワード500SH(0.9質量部)を添加し、更に、室温で4時間撹拌し、キョーワード500SHをろ過し、反応液を120℃,20mmHgで未反応物を留去して、オルガノハイドロジェンポリシロキサン3(130質量部)を得た。
【0048】
これは淡黄色透明の液体で、粘度33mm
2/s、水素ガス発生量が255mL/gであった。また、このオルガノハイドロジェンポリシロキサン3はNMR分析により下記構造のポリマー(19)であることを確認した。
【化22】
(n
1+n
2+n
3+n
4+n
5≒20)
【0049】
[付加硬化型シリコーン組成物の調製]
本発明の(A)成分に該当する上記により合成したオルガノハイドロジェンポリシロキサン3を3.4質量部、下記式(15)で表される本発明の(B)成分に該当する25℃における粘度が400mPa・sであり、かつアルケニル基量が0.02mol/100gであるアルケニル基含有オルガノポリシロキサン1を100質量部
【化23】
エチニルシクロヘキサノール0.2質量部を均一に混合し、シリコーン混合物
3を得た。この混合物
3の100質量部に、塩化白金酸とビニルシロキサンの錯塩を2質量部(白金換算100ppm)添加し、よく混合してシリコーン組成物3を得た。このシリコーン組成物3を、前記の方法にて硬化性、密着性、剥離力及び残留接着率を測定した。その結果を表1に示した。
【0050】
[比較例1]
オルガノハイドロジェンポリシロキサンとして、下記式(20)で示される水素ガス発生量が340mL/gのオルガノハイドロジェンポリシロキサン2.1質量部、
【化24】
下記式(15)で表される25℃における粘度が400mPa・sであり、かつアルケニル基量が0.02mol/100gであるアルケニル基含有オルガノポリシロキサン1を100質量部、
【化25】
エチニルシクロヘキサノール0.2質量部を均一に混合し、シリコーン混合物
4を得た。この混合物
4の100質量部に、塩化白金酸とビニルシロキサンの錯塩を2質量部(白金換算100ppm)添加し、よく混合してシリコーン組成物4を得た。このシリコーン組成物4を、前記の方法にて硬化性、密着性、剥離力及び残留接着率を測定した。その結果を表1に示した。
【0051】
[比較例2]
オルガノハイドロジェンポリシロキサンとして下記式(21)で示される水素ガス発生量が252mL/gのオルガノハイドロジェンポリシロキサン3.4質量部、
【化26】
下記式(15)で表される25℃における粘度が400mPa・sであり、かつアルケニル基量が0.02mol/100gであるアルケニル基含有オルガノポリシロキサン1を100質量部
【化27】
エチニルシクロヘキサノール0.2質量部を均一に混合し、シリコーン混合物
5を得た。この混合物
5の100質量部に、塩化白金酸とビニルシロキサンの錯塩を2質量部(白金換算100ppm)添加し、よく混合してシリコーン組成物5を得た。このシリコーン組成物5を、前記の方法にて硬化性、密着性、剥離力及び残留接着率を測定した。その結果を表1に示した。
【0052】
【表1】