【実施例】
【0037】
以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0038】
(実施例1)
LiMnPO
4の合成は以下のようにして行った。
Li源及びP源としてLi
3PO
4を、Mn源としてMnSO
4水溶液を用い、これらをモル比でLi:Mn:P=3:1:1となるように混合して200mlの原料スラリーを作製した。
次いで、この原料スラリーにアンモニア水を、MnSO
4のMnに対してアンモニア換算で5mol%となるように混合し、耐圧容器に入れた。その後、120℃にて2時間、水熱合成を行った。反応後、室温になるまで冷却し、ケーキ状態の反応生成物の沈殿物を得た。この沈殿物を蒸留水にて計5回十分に水洗し、乾燥しないように含水率30%に保持し、実施例1のケーキ状物質を得た。
【0039】
次いで、上記の沈殿物から試料を若干量採取し、この試料を70℃にて2時間真空乾燥させ、実施例1の粉体を得た。
この粉体をX線回折装置を用いて同定したところ、単相のLiMnPO
4が生成していることが確認された。また、この粉体のX線回折図形における回折角2θが17°付近の(200)面のX線強度I(200)と29°付近の(020)面のX線強度I(020)との比I(020)/I(200)は3.38であった。
また、この粉体の比表面積を比表面積計 BelsorpII(日本ベル社製)を用いて測定したところ、30.1m
2/gであった。
実施例1の粉体のX線回折図形を
図1に示す。なお、
図1の最下段に、JCPDSカードNo.33−0804に記載されているLiMnPO
4の回折線の位置を示している。
【0040】
(実施例2)
LiMnPO
4の合成は以下のようにして行った。
Li源及びP源としてLi
3PO
4を、Mn源としてMnSO
4水溶液を用い、これらをモル比でLi:Mn:P=3:1:1となるように混合して200mlの原料スラリーを作製した。
次いで、この原料スラリーにアンモニア水を、MnSO
4のMnに対してアンモニア換算で10mol%となるように混合し、耐圧容器に入れた。その後、120℃にて2時間、水熱合成を行った。反応後、室温になるまで冷却し、ケーキ状態の反応生成物の沈殿物を得た。この沈殿物を蒸留水にて計5回十分に水洗し、乾燥しないように含水率30%に保持し、実施例2のケーキ状物質を得た。
【0041】
次いで、上記の沈殿物から試料を若干量採取し、この試料を70℃にて2時間真空乾燥させ、実施例2の粉体を得た。
この粉体をX線回折装置を用いて同定したところ、単相のLiMnPO
4が生成していることが確認された。また、この粉体のX線回折図形における回折角2θが17°付近の(200)面のX線強度I(200)と29°付近の(020)面のX線強度I(020)との比I(020)/I(200)は4.31であった。
また、この粉体の比表面積を比表面積計 BelsorpII(日本ベル社製)を用いて測定したところ、43.2m
2/gであった。
【0042】
(比較例1)
LiMnPO
4の合成は以下のようにして行った。
Li源及びP源としてLi
3PO
4を、Mn源としてMnSO
4水溶液を用い、これらをモル比でLi:Mn:P=3:1:1となるように混合して200mlの原料スラリーを作製した。
次いで、この原料スラリーを耐圧容器に入れ、その後、120℃にて2時間、水熱合成を行った。反応後、室温になるまで冷却し、ケーキ状態の反応生成物の沈殿物を得た。この沈殿物を蒸留水にて計5回十分に水洗し、乾燥しないように含水率30%に保持し、比較例1のケーキ状物質を得た。
【0043】
次いで、上記の沈殿物から試料を若干量採取し、この試料を70℃にて2時間真空乾燥させ、比較例1の粉体を得た。
この粉体をX線回折装置を用いて同定したところ、単相のLiMnPO
4が生成していることが確認された。また、この粉体のX線回折図形における回折角2θが17°付近の(200)面のX線強度I(200)と29°付近の(020)面のX線強度I(020)との比I(020)/I(200)は2.87であった。
また、この粉体の比表面積を比表面積計 BelsorpII(日本ベル社製)を用いて測定したところ、12.6m
2/gであった。
比較例1の粉体のX線回折図形を
図1に示す。
【0044】
(比較例2)
LiMnPO
4の合成は以下のようにして行った。
Li源及びP源としてLi
3PO
4を、Mn源としてMnSO
4水溶液を用い、これらをモル比でLi:Mn:P=3:1:1となるように混合して200mlの原料スラリーを作製した。
次いで、この原料スラリーにアンモニア水を、MnSO
4のMnに対してアンモニア換算で15mol%となるように混合し、耐圧容器に入れた。その後、120℃にて2時間、水熱合成を行った。反応後、室温になるまで冷却し、ケーキ状態の反応生成物の沈殿物を得た。この沈殿物を蒸留水にて計5回十分に水洗し、乾燥しないように含水率30%に保持し、比較例2のケーキ状物質を得た。
【0045】
次いで、上記の沈殿物から試料を若干量採取し、この試料を70℃にて2時間真空乾燥させ、比較例2の粉体を得た。
この粉体をX線回折装置を用いて同定したところ、生成物はLi
3PO
4とMn
2P
2O
7水和物との混合物であることが確認された。
また、この粉体の比表面積を比表面積計 BelsorpII(日本ベル社製)を用いて測定したところ、32.1m
2/gであった。
比較例2の粉体のX線回折図形を
図1に示す。
【0046】
(実施例3)
LiCoPO
4の合成は以下のようにして行った。
Li源及びP源としてLi
3PO
4を、Co源としてCoSO
4水溶液を用い、これらをモル比でLi:Co:P=3:1:1となるように混合して200mlの原料スラリーを作製した。
次いで、この原料スラリーにアンモニア水を、CoSO
4のCoに対してアンモニア換算で5mol%となるように混合し、耐圧容器に入れた。その後、180℃にて12時間、水熱合成を行った。反応後、室温になるまで冷却し、ケーキ状態の反応生成物の沈殿物を得た。この沈殿物を蒸留水にて計5回十分に水洗し、乾燥しないように含水率30%に保持し、実施例3のケーキ状物質を得た。
【0047】
次いで、上記の沈殿物から試料を若干量採取し、この試料を70℃にて2時間真空乾燥させ、実施例3の粉体を得た。
この粉体をX線回折装置を用いて同定したところ、単相のLiCoPO
4が生成していることが確認された。また、この粉体のX線回折図形における回折角2θが17°付近の(200)面のX線強度I(200)と29°付近の(020)面のX線強度I(020)との比I(020)/I(200)は3.76であった。
また、この粉体の比表面積を比表面積計 BelsorpII(日本ベル社製)を用いて測定したところ、15.3m
2/gであった。
実施例3の粉体のX線回折図形を
図2に示す。なお、
図2の最下段に、JCPDSカードNo.85−0002に記載されているLiCoPO
4の回折線の位置を示している。
【0048】
(実施例4)
LiCoPO
4の合成は以下のようにして行った。
Li源及びP源としてLi
3PO
4を、Co源としてCoSO
4水溶液を用い、これらをモル比でLi:Co:P=3:1:1となるように混合して200mlの原料スラリーを作製した。
次いで、この原料スラリーにアンモニア水を、CoSO
4のCoに対してアンモニア換算で10mol%となるように混合し、耐圧容器に入れた。その後、180℃にて12時間、水熱合成を行った。反応後、室温になるまで冷却し、ケーキ状態の反応生成物の沈殿物を得た。この沈殿物を蒸留水にて計5回十分に水洗し、乾燥しないように含水率30%に保持し、実施例4のケーキ状物質を得た。
【0049】
次いで、上記の沈殿物から試料を若干量採取し、この試料を70℃にて2時間真空乾燥させ、実施例4の粉体を得た。
この粉体をX線回折装置を用いて同定したところ、単相のLiCoPO
4が生成していることが確認された。また、この粉体のX線回折図形における回折角2θが17°付近の(200)面のX線強度I(200)と29°付近の(020)面のX線強度I(020)との比I(020)/I(200)は3.21であった。
また、この粉体の比表面積を比表面積計 BelsorpII(日本ベル社製)を用いて測定したところ、19.4m
2/gであった。
【0050】
(比較例3)
LiCoPO
4の合成は以下のようにして行った。
Li源及びP源としてLi
3PO
4を、Co源としてCoSO
4水溶液を用い、これらをモル比でLi:Co:P=3:1:1となるように混合して200mlの原料スラリーを作製した。
次いで、この原料スラリーを耐圧容器に入れ、その後、180℃にて12時間、水熱合成を行った。反応後、室温になるまで冷却し、ケーキ状態の反応生成物の沈殿物を得た。この沈殿物を蒸留水にて計5回十分に水洗し、乾燥しないように含水率30%に保持し、比較例3のケーキ状物質を得た。
【0051】
次いで、上記の沈殿物から試料を若干量採取し、この試料を70℃にて2時間真空乾燥させ、比較例3の粉体を得た。
この粉体をX線回折装置を用いて同定したところ、単相のLiCoPO
4が生成していることが確認された。また、この粉体のX線回折図形における回折角2θが17°付近の(200)面のX線強度I(200)と29°付近の(020)面のX線強度I(020)との比I(020)/I(200)は1.91であった。
また、この粉体の比表面積を比表面積計 BelsorpII(日本ベル社製)を用いて測定したところ、8.2m
2/gであった。
比較例3の粉体のX線回折図形を
図2に示す。
【0052】
(比較例4)
LiCoPO
4の合成は以下のようにして行った。
Li源及びP源としてLi
3PO
4を、Co源としてCoSO
4水溶液を用い、これらをモル比でLi:Co:P=3:1:1となるように混合して200mlの原料スラリーを作製した。
次いで、この原料スラリーにアンモニア水を、CoSO
4のCoに対してアンモニア換算で15mol%となるように混合し、耐圧容器に入れた。その後、180℃にて12時間、水熱合成を行った。反応後、室温になるまで冷却し、ケーキ状態の反応生成物の沈殿物を得た。この沈殿物を蒸留水にて計5回十分に水洗し、乾燥しないように含水率30%に保持し、比較例4のケーキ状物質を得た。
【0053】
次いで、上記の沈殿物から試料を若干量採取し、この試料を70℃にて2時間真空乾燥させ、比較例4の粉体を得た。
この粉体をX線回折装置を用いて同定したところ、生成物はLi
3PO
4とCo
2P
2O
7水和物との混合物であることが確認された。
また、この粉体の比表面積を比表面積計 BelsorpII(日本ベル社製)を用いて測定したところ、16.3m
2/gであった。
比較例4の粉体のX線回折図形を
図2に示す。
【0054】
「リチウムイオン電池の作製」
実施例1〜4及び比較例1〜4各々にて得られた各粉体、導電助剤としてアセチレンブラック(AB)、バインダーとしてポリフッ化ビニリデン(PVdF)、溶媒としてN−メチル−2−ピロリジノン(NMP)を用い、これらを混合し、実施例1〜4及び比較例1〜4各々の正極材料ペーストを作製した。なお、ペースト中の質量比、すなわち粉体:AB:PVdFは80:10:10であった。
次いで、これらの正極材料ペーストを厚み30μmのアルミニウム(Al)箔上に塗布し、乾燥した。その後、30MPaの圧力にて圧密し、正電極板とした。
【0055】
次いで、この正電極板を成形機を用いて直径16mmの円板状に打ち抜き、試験用正電極とした。
一方、負電極には、市販のLi金属板を、セパレーターには多孔質ボリプロピレン膜を、非水電解質溶液には1mol/LのLiPF
6溶液を、それぞれ用い、また、このLiPF
6溶液の溶媒としては、炭酸エチレンと炭酸ジエチルとの体積比が1:1の混合溶液を用い、2032コイン型セルを用いて、実施例1〜4及び比較例1、3各々のリチウムイオン電池を作製した。
【0056】
「電池特性試験A」
実施例1、2及び比較例1各々のリチウムイオン電池の電池特性試験を、環境温度25℃、充電電流0.1CAで、正電極の電位がLiの平衡電位に対して4.3Vになるまで充電し、続いてLiの平衡電位に対して4.3Vで充電電流0.01CAとなるまで充電した。1分間休止の後、0.1CAの放電電流で2.0Vになるまで放電させて行った。
実施例1、2及び比較例1各々の環境温度25℃における0.1C放電容量及び1C放電容量を表1に示す。また、
図3に実施例1及び比較例1各々の0.1CAの充放電曲線を示す。
【0057】
「電池特性試験B」
実施例3、4及び比較例3各々のリチウムイオン電池の電池特性試験を、環境温度25℃、充電電流0.1CAで、正電極の電位がLiの平衡電位に対して5.0Vになるまで充電し、続いてLiの平衡電位に対して5.0Vで充電電流0.01CAとなるまで充電した。1分間休止の後、0.1CAの放電電流で2.0Vになるまで放電させて行った。
実施例3、4及び比較例3各々の環境温度25℃における0.1C放電容量及び1C放電容量を表2に示す。また、
図4に実施例3及び比較例3各々の0.1CAの充放電曲線を示す。
【0058】
【表1】
【0059】
【表2】
【0060】
なお、実施例1〜4では、単相のLiMnPO
4あるいはLiCoPO
4を用いたが、これらの替わりにLiNiPO
4を用いても、同様の結果が得られたことが確認された。
また、単相のLiMnPO
4あるいはLiCoPO
4の替わりに、これらにMn、Co、Niのいずれかをドープしたものについても、同様の結果が得られたことが確認された。
【0061】
また、実施例1〜4では、導電助剤としてアセチレンブラックを用いているが、カーボンブラック、グラファイト、ケッチェンブラック、天然黒鉛、人造黒鉛等の炭素材料を用いてもよい。
また、負電極に市販のLi金属板を用いたが、このLi金属板の替わりに天然黒鉛、人造黒鉛、コークス等の炭素材料、リチウム合金、Li
4Ti
5O
12等の負極材料を用いてもよい。
【0062】
また、非水電解質溶液にLiPF
6溶液を、このLiPF
6溶液の溶媒として炭酸エチレンと炭酸ジエチルとの比が1:1のものを、それぞれ用いたが、LiPF
6の替わりにLiBF
4やLiClO
4溶液を用いてもよく、炭酸エチレンの代わりにプロピレンカーボネートやジエチルカーボネートを用いてもよい。
また、電解液とセパレーターの替わりに固体電解質を用いてもよい。