特許第5677006号(P5677006)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングの特許一覧

<>
  • 特許5677006-インバータの作動方法及びインバータ 図000002
  • 特許5677006-インバータの作動方法及びインバータ 図000003
  • 特許5677006-インバータの作動方法及びインバータ 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5677006
(24)【登録日】2015年1月9日
(45)【発行日】2015年2月25日
(54)【発明の名称】インバータの作動方法及びインバータ
(51)【国際特許分類】
   H02M 3/155 20060101AFI20150205BHJP
【FI】
   H02M3/155 U
【請求項の数】1
【全頁数】8
(21)【出願番号】特願2010-223640(P2010-223640)
(22)【出願日】2010年10月1日
(65)【公開番号】特開2011-78306(P2011-78306A)
(43)【公開日】2011年4月14日
【審査請求日】2013年4月5日
(31)【優先権主張番号】10 2009 047 936.8
(32)【優先日】2009年10月1日
(33)【優先権主張国】DE
(73)【特許権者】
【識別番号】390014281
【氏名又は名称】ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング
【氏名又は名称原語表記】DR. JOHANNES HEIDENHAIN GESELLSCHAFT MIT BESCHRANKTER HAFTUNG
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100089705
【弁理士】
【氏名又は名称】社本 一夫
(74)【代理人】
【識別番号】100075270
【弁理士】
【氏名又は名称】小林 泰
(74)【代理人】
【識別番号】100080137
【弁理士】
【氏名又は名称】千葉 昭男
(74)【代理人】
【識別番号】100096013
【弁理士】
【氏名又は名称】富田 博行
(74)【代理人】
【識別番号】100096068
【弁理士】
【氏名又は名称】大塚 住江
(72)【発明者】
【氏名】マルクス・シェーンリナー
(72)【発明者】
【氏名】ノルベルト・フーバー
【審査官】 下原 浩嗣
(56)【参考文献】
【文献】 特開2000−152651(JP,A)
【文献】 特開2007−295797(JP,A)
【文献】 特開平11−318042(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 3/155
(57)【特許請求の範囲】
【請求項1】
複数の太陽発電機の直流電圧を、1つの交流電源として供給するために交流電圧に変換するためのインバータシステムであって、
前記複数の太陽発電機の出力にそれぞれ接続された複数の昇圧回路
前記複数の昇圧回路の出力に接続された1つの中間回路と、
前記中間回路の出力に接続された複数の降圧回路であって、それぞれが前記交流電源の複数の相の交流電圧を提供する降圧回路
を備え
前記昇圧回路の各々は、当該昇圧回路に接続された前記太陽発電機からの直流電圧が、前記交流電源のピーク・ピーク最大値より小さいときに、該直流電圧を前記交流電源の前記複数の相で現在必要とされる最高の電圧に動的に昇圧して、一時的に前記中間回路に対してほぼ正弦波形の電圧曲線を提供するよう構成されており、
前記降圧回路の各々、前記中間回路電圧を、前記交流電源の対応する相において現在必要とされ電圧に降圧するよう構成されている
ことを特徴とするインバータシステム
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、インバータの作動方法及びこのために適したインバータに関するものである。このようなインバータは、例えば交流電圧を交流電源に供給するために、存在する直流電圧を交流電圧に変換することに使用される。特に太陽光発電の分野における適用においては、できるだけ高い変換効率が要求されている。
【背景技術】
【0002】
ドイツ特許公開第102006010694号は、従来技術のソーラ・インバータを開示している。該インバータにおいては、2つの直流電源又は太陽発電機が直列に接続され、これらの接続点は、第1の電圧レベルである中間電圧を形成する。太陽発電機の外側の2つの接続点はそれぞれ正又は負の電圧レベルを形成する。発電電圧が最高電源電圧より低い場合、これらの両方のレベルから、それぞれ1つの昇圧器により、発電電圧は最高の正又は負の電源電圧を超えて昇圧される。即ち、回路は5つの異なる固定電圧レベルで作動する。次に、電源相には、降圧器を介して、それぞれ絶対値として次に高い電圧レベルから給電され、この場合、絶対値として次に低い電圧レベルを上回るようにフリーホイーリングが行われる。比較的高い回路費用のほかに、昇圧器又は降圧器が不必要なスイッチング損失を発生することが欠点であり、その理由は、特定の作動状態において、発電電圧がある値に昇圧され、その値から、降圧器により本来必要とされる電圧レベルが発生されなければならないからである。さらに、このインバータの作動のために2つの太陽発電機が必要とされ、2つの太陽発電機はできるだけ同じ出力を提供しなければならない。しかしながら、例えばモジュールを1つに統一したときにおいても、常にこれが保証されるとは限らない。
【0003】
ドイツ特許第102007026393号にはソーラ・インバータが記載され、このソーラ・インバータにおいては、昇圧器が発電電圧を確かに常により高いレベルにもたらすが、拡張作動モードにおいて、発電電圧が、蓄積チョークを希望どおりにもはや磁化可能ではないほど低いときにのみ、出力がこのレベルから呼び出される。この場合、昇圧器は固定電圧レベルで作動し、この電圧レベルから、再び、同様に降圧器が実際に必要とされる電圧レベルを発生しなければならない。
【発明の概要】
【発明が解決しようとする課題】
【0004】
したがって、本発明の目的は、改善された効率を可能にするインバータの作動方法並びに該方法を実行するためのインバータを提供することである。
【課題を解決するための手段】
【0005】
上記した目的は、太陽発電機の直流電圧を電源に供給するために交流電圧に変換するための昇圧回路、中間回路、及び降圧回路を備えたインバータの作動方法及びインバータにより達成される。昇圧回路は、直流電圧、電源電圧の現在値より小さいときに、直流電圧を昇圧する。降圧回路は、必要に応じて、中間回路電圧を電源内において実際に必要とされるより低い電圧に降圧する。この場合、昇圧回路は、直流電圧を、実際に電源内において必要とされる値に動的に昇圧し、これにより、一時的に、中間回路電圧に対してほぼ正弦波形の電圧曲線を提供する。したがって、以下において動的中間回路又は動的中間回路電圧に関して記載する場合、中間回路が固定電圧に保持される通常の中間回路とは異なり、中間回路電圧を実際に電源内において必要とされる電圧に少なくとも一時的に適合させることを意味している。
【0006】
本発明に係るインバータは、動的中間回路を有し、動的中間回路に発電機から直流電圧が供給され、直流電圧は、必要とされる電源電圧が発電電圧を超えている場合に、動的中間回路の前段に接続された2つの対称の昇圧器により昇圧される。動的中間回路から電源にエネルギが供給され、該供給された電圧は、動的中間回路電圧が実際に必要とされる値を超えている場合、動的中間回路の後段に接続された2つの対称の降圧器により降圧される。
【0007】
インバータは、直流電源として1つの太陽発電機のみを必要とするにすぎない。直流電圧は中間の電圧レベルに対して対称に存在する。太陽発電機から供給された直流電圧が実際に必要とされる電源電圧よりも低い場合、昇圧器は、直流電圧をしたがって動的中間回路電圧を、必要とされる電源電圧に正確に昇圧する。これにより、同時に降圧器が作動されなければならないことが回避される。降圧器は、発電電圧が実際に必要とされる電源電圧を超えているときにのみ、作動する。
【0008】
さらに、回路は3つの電圧レベルで作動し、給電は、正及び負の電圧レベルで行われることが好ましく、戻り過程では、正及び負の電圧レベルの中間の電圧レベルとなる。中間の電圧レベルは接地されていてもよい。
【0009】
上記の説明により、太陽発電機から電源の各相に給電可能である。例えば三相電源に給電するために、この回路が3回使用されてもよい。しかしながら、これらの相には全てただ1つの動的中間回路から給電されることが好ましい。このとき、それぞれの発電機に付属された両方の昇圧器に対して、これらの昇圧器が発電電圧を実際に必要とされる全ての相電圧の最高電圧に昇圧しなければならない。個々の相にはこのとき、別々の降圧器を介して給電され、降圧器は動的中間回路電圧をそれぞれに必要とされる相電圧に降圧しなければならない。
本発明のその他の利点並びに詳細は好ましい実施形態の図面による以下の説明から理解されるであろう。
【図面の簡単な説明】
【0010】
図1】電源の相に給電するためのソーラ・インバータ回路を示す回路図である。
図2】電源の相の1周期分のインバータの種々の作動領域を示す波形図である。
図3】複数の電圧源及び3つの電源相のためのソーラ・インバータ回路を示すブロック図である。
【発明を実施するための形態】
【0011】
図1の回路は、太陽発電機Gを備えている。この太陽発電機は直流電圧を提供し、この直流電圧は、基本的に実際の照度の関数であるが、作動温度又はモジュール劣化等の他のパラメータの関数でもある。直列に接続され且つ発電機Gに並列に接続された2つのコンデンサC1及びC2により中間の電圧レベルが形成され、中間の電圧レベルはここでは0Vである。このレベルは接地レベルでもよいが、接地レベルでなくてもよい。C1及びC2の接続位置において接地されていない場合、発電機Gには電圧リップルが発生せず、これにより、作動点は、太陽発電機Gが最大効率を有するいわゆる最大パワー・ポイント(MPP)に、より良好に保持可能であるか、ないしは動的中間回路の容量は同じMPP効率に対してより小さく選択可能である。
【0012】
発電機Gの正の電圧レベル+U_ZLは、第1のダイオードD1を介して動的な中間回路Zと接続されている。さらに、電圧レベル+U_ZLは、インダクタンスL1及び半導体スイッチング素子T1を介して中間の電圧レベルとも接続されている。発電電圧が動的中間回路Zを少なくとも実際に電源Nの給電されるべき相内において必要とされる電圧に充電するのに十分であるかぎり、スイッチング素子T1は遮断され、発電電圧はダイオードD1を介して動的中間回路Zに供給される。
【0013】
しかしながら、発電電圧が低すぎる場合、スイッチング素子T1において脈動が開始される。これにより、スイッチング素子T1の遮断時にインダクタンスL1において電圧を上昇させる電流が短時間流れる。この既知の原理により作動する、直流電圧をより高い直流電圧に変圧する回路は、昇圧器又はセットアップ変換器と称せられる。インダクタンスL1とスイッチング素子T1との動作により、昇圧された電圧が第2のダイオードD2によりピック・アップされ、動的中間回路Zに供給される。図1において+U_ZHとして表わされている電位は、このとき太陽発電機Gの出力電圧+U_ZLより高いので、ダイオードD1は遮断されて、発電機Gを動的中間回路Zから切り離す。
【0014】
負の発電電圧−U_ZLに対する、インダクタンスL2及び半導体スイッチング素子T5を備えた同様な構成及び機能の下部昇圧器も必要に応じて備えられる。下部昇圧器が作動しないとき、ダイオードD6は発電機Gを直接動的中間回路Zと接続し、一方、ダイオードD7は、下部昇圧器により昇圧された負の発電電圧を動的中間回路Zに導く。正及び負の発電電圧に対する両方の昇圧器は、中間の電圧レベルに対して対称に配置され、図1に示すように昇圧回路Hを形成している。この回路はのちに参照されるが、そのときは再度詳細には説明しない。
【0015】
動的中間回路Zは、直列に接続された2つのコンデンサC3及びC4によりフィルタリングされ、コンデンサC3及びC4の共通の接続点は同様に中間の電圧レベルとなる。この共通の接続点は、昇圧回路Hの中間の電圧レベルと接続されていることが好ましい。ただし、この接続は必ずしも必要ではないので、図1においては、破線で接続を示されている。この位置を接地することも可能であるが、上記の理由から、図示の実施例においては、接地は省略されている。
【0016】
動的中間回路Zには降圧回路Tが接続されており、該降圧回路Tは、正又は負の動的中間回路の電圧+U_ZH又は−U_ZHを、半導体スイッチング素子T2〜T6のオン・オフ制御(脈動)により、必要に応じて、電源N内において実際に必要とされるより低い電圧U_Netzに降圧するために、同様に既知の2つの降圧器を含む。この場合、電源Nの正の半波の間においては電圧が動的中間回路Zの正の電位+U_ZHから得られ、電源Nの負の半波の間においては電圧が動的中間回路Zの負の電位−U_ZHから得られる。この場合、動的中間回路の中間の電圧レベルへ又は中間の電圧レベルから、それぞれ対応して接続された半導体スイッチング素子T3及びT4を介してフリーホイール動作が行われる。このために、スイッチング素子T3及びT4にフリーホイール・ダイオードD3及びD4が直列に接続されている。電源電圧の正の半波の間にスイッチング素子T3は導通し、スイッチング素子T4は遮断される。負の半波の間においては、スイッチング素子T3は遮断され、スイッチング素子T4は導通する。
【0017】
正及び負の電源電圧に対する両方の降圧器は中間の電圧レベルに対して対称に配置され、図1に示すように降圧回路Tを形成している。
電源N内への本来の給電は最終的に電源チョークL3を介して行われる。
【0018】
図2は、正及び負の発電電圧+U_ZL及び−U_ZLが、絶対値として、電源N内の最大の正及び負の電圧より小さい場合における、ソーラ・インバータ回路の種々の作動状態を示す。言い換えると、この場合、発電電圧は電源電圧のピーク・ピーク最大値より小さいことになる。
【0019】
電源電圧U_Netzの正の半波の間のAで表わされる領域内においては、必要とされる供給電圧は発電機により提供される電圧を下回っている。この場合、動的中間回路Zは、ダイオードD1を介して発電機Gにより充電され、即ち、正の中間回路電位+U_ZHは正の発電電圧+U_ZLに匹敵する。このときには降圧回路Tの上部の降圧器が作動し、昇圧回路Hは作動していない。
【0020】
電源電圧U_Netzの正の半波の間の領域B内においては、必要とされる供給電圧は発電機Gにより提供される電圧を超えている。この場合、昇圧回路Hの上部昇圧器が作動して正の発電電圧+U_ZLを電圧+U_ZHに昇圧し、電圧+U_ZHはダイオードD2を介して動的中間回路に作用し、一方、ダイオードD1は発電機Gを動的中間回路Zから切り離す。この場合、昇圧器は、電圧+U_ZHが必要とされる供給電圧に正確に対応するように作動される。図2の領域B内においては、動的中間回路の電圧+U_ZHが正確に電源電圧U_Netzの正弦波形に追従する。これにより、降圧回路Tを作動させる必要がないので、昇圧回路H及び降圧回路Tの同時作動による不必要なスイッチング損失を回避することができる。
【0021】
昇圧器及び降圧器を動作させるために、既知のように制御回路が使用され、該制御回路は、目標電圧及び実際電圧に基づき、種々の半導体スイッチング素子に対する適切なオン・オフ操作パターンを発生する。
【0022】
電源電圧の負の半波に対しては、領域C及び領域Dに対して、負の発電電圧−U_ZLを、絶対値として、実際に必要とされる供給電圧に昇圧させるために、同様にインバータ回路の作動が反復され、領域C内においては、降圧回路Tの下部降圧器のみが作動し、領域D内においては、昇圧回路Hの下部昇圧器のみが作動する。同様に、正弦波形電圧−U_ZHの提供により、領域D内において降圧回路Tの同時作動が回避される。
【0023】
図1に示された回路は、太陽発電機又はいわゆるストリング、即ち複数のソーラ・モジュールからなる一連の回路の直流電圧を、電源相に供給するために交流電圧に変換するのに適している。これは数kWの出力を有する小型装置に対しても十分に使用可能である。しかしながら、より高い出力の太陽光発電装置に対しては、供給電源の3つの全ての相への給電が必要である。このために、ソーラ・モジュールにおける最大システム電圧は1000V(無負荷)を超えてはならないので、きわめて多数のソーラ・モジュールを1つのストリング内に直列接続することは不可能となる。これにより、作動電圧は約750Vに制限されている。したがって、より高い出力の装置においては、複数のストリングが並列に作動される。この場合、各ストリングは他のストリングとは別々に、最大パワー・ポイントにおいて作動可能であり、即ち電流及び電圧が各ストリングに対して別々に選択可能であることが好ましい。
この要求は、図1に示された回路を用いて、簡単な拡張変更により達成可能である。
【0024】
図3に示すように、各ストリングG(4つのストリングGが示されているが、この数はこれより多くても又は少なくてもよい)に対して、図1に示した1つの昇圧回路Hが提供されている。これにより、各ストリングGをそれぞれの最大パワー・ポイントにおいて作動させることが可能である。
全ての昇圧回路Hは1つの共通の動的中間回路Zに給電し、この動的中間回路Zの構成は図1のそれに対応する。昇圧回路は相互にいわゆる並列に接続されている。
【0025】
動的中間回路Zに、電源Nの各相U、V、Wに対して、それぞれ1つの降圧回路Tが続き、降圧回路Tからそれぞれの電源相に給電される。通常のように三相交流電源に給電されるべきとき、3つのこのような降圧回路Tが必要となる。これらの降圧回路Tも同様に、相互に並列に接続されている。図1に示すのと同様に構成された、昇圧回路Hのみならず降圧回路Tもまた具備されているが、図3においては、それぞれの接続及びこれらの相互接続のみが示されている。
【0026】
共通の動的中間回路に給電するための複数の昇圧回路Hのこのタイプの並列接続は、個々の昇圧回路Hの作動における変化を可能にする。はじめに、実際に最高の出力電圧を提供するストリングGがいわゆるマスタ・ストリングである。このマスタ・ストリング、詳細にはそれに付属されている昇圧回路Hは、図1に関して説明されたように作動され、このマスタ・ストリングの電圧が実際に必要とされる3つの供給電圧の最高を下回ったときには常に昇圧回路Hが作動される。即ち、このとき、昇圧回路Hは、全ての電源相の実際に最高の電圧に調整されていなければならない。即ち、図2に示すようにストリング電圧が電源内のピーク電圧を下回っている場合、昇圧回路Hは本質的に開放され且つ場合により継続して使用されるが、この場合、さらに、それぞれの昇圧回路Hが実際に最高の電源電圧の正弦波形に追従するように適用され、これにより、この作動状態においては、少なくともこれらの相に対して降圧回路Tが作動される必要はない。また、その他の相に給電するために、場合により昇圧回路H及び降圧回路Tの同時作動が必要となることがあっても、これは必要最小限に低減される。
【0027】
その他のストリングG及びそれらの昇圧回路Hに対して、これらが常に、マスタ・ストリングと同じ電圧を動的中間回路Zに提供しなければならない。そのために、それぞれの昇圧回路Hは継続して作動されなければならない。この場合、これらの昇圧回路Hは、一定の電圧レベル、即ちマスタ・ストリングの電圧レベルを発生するか、又はマスタ・ストリングの昇圧回路Hと同様に、実際に必要とされる最高供給電圧の正弦波形に追従する。
【0028】
図1又は図3に示された回路の利点は、降圧回路の半導体スイッチング素子T2、T3、T4及びT6の制御により、給電が中間の電圧レベルを介して行われることである。例えば、負の電源電圧においては中間の電圧レベルから正の電流が供給され、電圧−U_ZHを介してフリーホイールが行われる。これにより、供給された電流の位相角は変化可能であり、したがって電源に無効電力を供給可能である。これは電源ドライバの要求であり、電源ドライバは、供給された太陽エネルギ又は風力エネルギを常により大きく寄与させるために、無効電力におけるそれぞれの需要に対してフレキシブルに応答可能である。
【符号の説明】
【0029】
G 太陽発電機(ストリング)
H 昇圧回路
N 交流電源
T 降圧回路
Z 動的中間回路
図1
図2
図3