特許第5678976号(P5678976)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ DIC株式会社の特許一覧

特許5678976硬化性樹脂組成物、その硬化物、及び電子部品用樹脂材料
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5678976
(24)【登録日】2015年1月16日
(45)【発行日】2015年3月4日
(54)【発明の名称】硬化性樹脂組成物、その硬化物、及び電子部品用樹脂材料
(51)【国際特許分類】
   C08G 59/40 20060101AFI20150212BHJP
【FI】
   C08G59/40
【請求項の数】7
【全頁数】17
(21)【出願番号】特願2013-45271(P2013-45271)
(22)【出願日】2013年3月7日
(62)【分割の表示】特願2009-76192(P2009-76192)の分割
【原出願日】2009年3月26日
(65)【公開番号】特開2013-166941(P2013-166941A)
(43)【公開日】2013年8月29日
【審査請求日】2013年3月8日
(73)【特許権者】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】100124970
【弁理士】
【氏名又は名称】河野 通洋
(72)【発明者】
【氏名】小林 厚子
(72)【発明者】
【氏名】小椋 一郎
【審査官】 中村 英司
(56)【参考文献】
【文献】 特開2010−229218(JP,A)
【文献】 特開2009−073990(JP,A)
【文献】 特開2001−139777(JP,A)
【文献】 特開2003−055623(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08G 59/00
C08L 63/00
(57)【特許請求の範囲】
【請求項1】
エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、ラジカル重合開始剤(C)、及び前記(B)成分の他のラジカル重合性単量体(D)を必須成分とする硬化性樹脂組成物であって、
前記エポキシ樹脂(A)が、脂環式炭化水素基を結接基として複数のフェノール類が結合した分子構造を有する多官能フェノールのポリグリシジルエーテルであり、
前記酸基含有ラジカル重合性単量体(B)と前記(B)成分の他のラジカル重合性単量体(D)との質量割合が、前者/後者=20/80〜80/20の範囲であり、
前記(A)〜(C)の各成分の配合比率が、前記エポキシ樹脂(A)中のエポキシ基と、前記酸基含有ラジカル重合性単量体(B)中の酸基との当量比[エポキシ基/酸基]が1/1〜1/0.1となる割合であって、かつ、組成物100質量部あたりラジカル重合開始剤(C)が0.1〜3質量部となる割合であり、
かつ、有機溶剤を含まない場合の25℃の温度条件下でE型粘度計を用いて測定される粘度が5〜500mPa・sの範囲であることを特徴とする硬化性樹脂組成物。
【請求項2】
請求項1記載の硬化性樹脂組成物と、組成物中10質量%以下の有機溶剤とを併用してなる硬化性樹脂組成物。
【請求項3】
前記酸基含有ラジカル重合性単量体(B)が、アクリル酸、メタクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸及びその無水物からなる群から選択されるものである請求項1又は2記載の硬化性樹脂組成物。
【請求項4】
前記酸基含有ラジカル重合性単量体(B)と前記(B)成分の他のラジカル重合性単量体(D)との合計質量が、(A)成分〜(D)成分の合成質量の5〜50質量%の範囲である請求項1〜3の何れか一つに記載の硬化性樹脂組成物。
【請求項5】
上記各成分に加え、前記(B)成分の他のエポキシ樹脂用硬化剤を含有する請求項1〜4の何れか1つに記載の硬化性樹脂組成物。
【請求項6】
請求項1〜5の何れか1つに記載の硬化性樹脂組成物をイン・サイチュー重合反応させることにより得られる硬化物。
【請求項7】
請求項1〜5の何れか1つに記載の硬化性樹脂組成物からなる電子部品用絶縁材料。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非有機溶剤系でのワニス調整が可能であると共に、優れた耐熱性と、低誘電率・低誘電正接を発現する硬化物を得ることができる点から、プリント配線基板用積層板、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム、半導体封止材料、ダイアタッチ剤、フリップチップ実装用アンダーフィル材、グラブットプ材、TCP用液状封止材、導電性接着剤、液晶シール材、フレキシブル基板用カバーレイ、レジストインキ等の各種電子部品材料用絶縁材料として適する硬化性樹脂組成物、その硬化物に関する。
【背景技術】
【0002】
エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、高耐熱性、耐湿性、寸法安定性等の諸物性に優れる点から半導体封止材やプリント回路基板、ビルドアップ基板、レジストインキ等の電子部品、導電ペースト等の導電性接着剤やその他接着剤、アンダーフィルなどの液状封止材、液晶シール材、フレキシブル基板用カバーレイ、ビルドアップ用接着フィルム、塗料、フォトレジスト材料、顕色材料、繊維強化複合材料等で広く用いられている。
【0003】
これらの各用途のうち、プリント配線基板、レジストインキ、導電ペースト、アンダーフィル剤等の高流動性が要求される各種電子部品用樹脂材料の分野では、近年のVOC問題など環境負荷への対応から非溶剤系樹脂組成物の開発が盛んであり、例えば、プリント配線基板材料には、低分子量ビスフェノール型エポキシ樹脂に代表される液状エポキシ樹脂と、酸無水物に代表されるエポキシ樹脂用硬化剤とを配合した非溶剤系ワニスが広く用いられている。しかしながら、かかる低分子量ビスフェノール型エポキシ樹脂をエポキシ樹脂用硬化剤で硬化させてなる硬化物は、それ自体の耐湿性・耐熱性が十分なレベルになく、鉛フリーハンダ使用時や高周波型半導体装置実装時における熱履歴に対する耐性が十分ないといった問題を有していた。
【0004】
また、硬化物の耐湿性に優れるエポキシ樹脂として、ジシクロペンタジエン型エポキシ樹脂が知られている(下記特許文献1)。しかしながら、このジシクロペンタジエン型エポキシ樹脂は、硬化物の耐湿性に優れるものの、常温で固形であるため、プリント配線基板絶縁材料、ビルドアップ用接着フィルム等の電子材料に適用するには有機溶剤の使用が避けられず、前記したVOCの問題が残る他、前記した鉛フリーハンダ対応の電子部品に適用する場合、熱履歴に対する耐性が十分なレベルに至っていないものであった。更に、プリント配線基板材料やビルドアップ用接着フィルムといった電子部品材料の技術分野では、近年、各種電子機器における信号の高速化、高周波数化が進んでおり、これに伴って、低誘電率を維持しつつ低い誘電正接を実現する絶縁材料が求められているところ、該ジシクロペンタジエン型エポキシ樹脂は硬化物自体の誘電率・誘電正接は比較的低く、良好な誘電特性を有するものの、近年要求されるレベルには達しないものであった。
【0005】
更に、非溶剤系のプリント配線基板用ワニスとしてノボラック型エポキシ樹脂やビスフェノール型エポキシ樹脂をメタクリル酸と反応させて得られるビニルエステル樹脂を、不飽和単量体と混合・ワニス化する技術も知られている(下記特許文献2)。しかしながら、ノボラック型エポキシ樹脂をメタクリル酸と反応させて得られるビニルエステル樹脂を用いる場合、そのワニス粘度が著しく高くなりガラスクロスへの含浸性に劣り、プリント配線基板の生産性が低くなるものであった。他方、液状ビスフェノール型エポキシ樹脂をメタクリル酸と反応させて得られるビニルエステル樹脂を用いる場合、ワニス粘度は低くなるものの、耐熱性が十分でないものであった。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特許第3735896号公報
【特許文献2】特許第3415610号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
従って、本発明が解決しようとする課題は、有機溶剤を使用することなくワニス状に調整することが可能であり、また、硬化反応後は硬化物に優れた耐熱性と、低誘電率・低誘電正接を与える硬化性樹脂組成物、並びに、高耐熱性、低誘電率及び低誘電正接を兼備した硬化物を提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題を解決するため、鋭意検討した結果、エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、ラジカル重合開始剤(C)、及び前記(B)成分の他のラジカル重合性単量体(D)を必須成分とする硬化性樹脂組成物であって、前記エポキシ樹脂(A)として、脂環式炭化水素基を結接基として複数のフェノール類が結合した分子構造を有する多官能フェノールのポリグリシジルエーテルを用い、かつ、前記酸基含有ラジカル重合性単量体(B)と前記(B)成分の他のラジカル重合性単量体(D)との質量割合が、前者/後者=20/80〜80/20の範囲とし、これらを連続的乃至同時に硬化させる、所謂イン・サイチュー重合反応による硬化を行うこと、即ち、前記単量体(B)中の酸基を前記多官能型エポキシ樹脂(A)中のエポキシ基と反応させると共に、該単量体(B)に起因するラジカル重合性基を重合させることにより、硬化前では、無溶剤又は組成物の総質量に対し10質量%以下の有機溶剤を含有する場合の25℃の温度条件下でE型粘度計を用いて測定される粘度が5〜500mPa・sの範囲である低粘度の樹脂組成物であると伴に、硬化後は優れた耐熱性と誘電特性とを発現することを見出し、本発明を完成するに至った。
【0009】
即ち、本発明は、エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、ラジカル重合開始剤(C)、及び前記(B)成分の他のラジカル重合性単量体(D)を必須成分とする硬化性樹脂組成物であって、前記エポキシ樹脂(A)が、脂環式炭化水素基を結接基として複数のフェノール類が結合した分子構造を有する多官能フェノールのポリグリシジルエーテルであり、前記酸基含有ラジカル重合性単量体(B)と前記(B)成分の他のラジカル重合性単量体(D)との質量割合が、前者/後者=20/80〜80/20の範囲であり、かつ、無溶剤又は組成物の総質量に対し10質量%以下の有機溶剤を含有する場合の25℃の温度条件下でE型粘度計を用いて測定される粘度が5〜500mPa・sの範囲であることを特徴とする硬化性樹脂組成物に関する。
【0010】
本発明は、更に、前記硬化性樹脂組成物をイン・サイチュー反応させることにより得られる硬化物に関する。
【0011】
本発明は、更に、前記硬化性樹脂組成物からなる電子部品用樹脂材料に関する。
【発明の効果】
【0012】
本発明によれば、有機溶剤を使用することなくワニス状に調整することが可能であり、また、硬化反応後は硬化物に優れた耐熱性と、低誘電率・低誘電正接を与える硬化性樹脂組成物、並びに高耐熱性、低誘電率及び低誘電正接を兼備した硬化物を提供できる。
【発明を実施するための形態】
【0013】
以下、本発明を詳細に説明する。
本発明の硬化性樹脂組成物は、その熱硬化性樹脂成分として、エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、ラジカル重合開始剤(C)、及び前記(B)成分の他のラジカル重合性単量体(D)を必須成分とする硬化性樹脂組成物であって、前記エポキシ樹脂(A)として、脂環式炭化水素基を結接基として複数のフェノール類が結合した分子構造を有する多官能フェノールのポリグリシジルエーテルを用いるものである。そして、これらを連続的乃至同時に反応させること、即ち、エポキシ基と酸基との反応と、ラジカル重合性基の重合反応とを特に反応工程として区別することなく両反応を同時乃至連続的に行うことを特徴としている。このようにイン・サイチュー重合反応により硬化させる硬化システムを採用することにより、非有機溶剤系であっても液状の組成物、更に低粘度の組成物であっても、硬化物における耐熱性及び誘電特性を飛躍的に向上させることができる。
【0014】
本発明で用いるエポキシ樹脂(A)は、脂環式炭化水素基を結接基として複数のフェノール類が結合した分子構造を有する多官能フェノールのポリグリシジルエーテルである。
【0015】
ここで、エポキシ樹脂(A)を構成するフェノール類は、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ビニルフェノール、イソプロペニルフェノール、アリルフェノール、フェニルフェノール、ベンジルフェノール、クロルフェノール、ブロムフェノール(各々o、m、p−異性体を含む)、ビスフェノールA、ナフトール、ジヒドロキシナフタレン等が挙げられる。これらの中でも流動性および硬化性が優れる点からフェノール、クレゾールが特に好ましい。
【0016】
また、エポキシ樹脂(A)を構成する脂環式炭化水素基は、該エポキシ樹脂のグリシジルエーテル構造部位を形成するフェノール骨格部分の結接基となるものであり、シクロヘキサン環或いはシクロヘキセン環を有するものが硬化物の耐水性向上効果に優れる点から好ましい。それらの中でも特にこの効果が顕著である点から、具体的にはジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、5−ビニルノルボナ−2−エン、α−ピネン、β−ピネン、リモネン等の不飽和脂環式化合物の分子骨格中の不飽和結合に起因する2価の脂環式炭化水素基であることが好ましい。これらの脂環式炭化水素基は単独で存在していても、また2種類以上が共存していても良い。更に、これらの中でも硬化物の耐熱性及び耐湿性に優れる点からジシクロペンタジエンの分子骨格中の不飽和結合に起因する2価の複合脂環式炭化水素基であることが好ましい。
【0017】
本発明で用いるエポキシ樹脂(A)は、複数のフェノール類が上記結接基を介して結合した構造を有するポリフェノールのポリグリシジルエーテルであり、結接基によって繰り返される芳香族炭化水素核の数によって種々の分子量のものが得られるが、既述の通り、エポキシ樹脂(A)は、2核体化合物を樹脂中10〜35重量%含有することが低誘電正接に加え、一層、耐熱性、低線膨張係数を持つ硬化物を得ることができる。
【0018】
ここで2核体化合物の含有率とは、エポキシ樹脂(A)において、1分子あたりフェノール類化合物2個から構成される樹脂成分である。
【0019】
また、エポキシ樹脂(A)は、上記の構造的、分子量分布的な条件を満足するとともに、エポキシ当量が253〜350g/eq.の範囲にあるものが硬化性及び耐熱性に優れたエポキシ樹脂となる点から好ましく、また、150℃におけるICI溶融粘度が0.1〜40dPa・sの範囲にあるものが好ましい。
【0020】
上記のエポキシ樹脂(A)を得るには、上述したフェノール類と不飽和脂環式化合物とを重付加反応させて、得られた中間体とエピハロヒドリンを反応させればよい。
【0021】
ここで、中間体である上記重付加反応物は、特にその製造条件が限定されるものではないが、エポキシ樹脂(A)の2核体化合物の含有量を10〜35重量%の範囲に設定するためには、反応時のフェノール類と不飽和脂環式化合物のモル比率を調整することが好ましく、たとえばフェノール類/不飽和脂環式化合物=2.5/1〜5/1(モル比率)の範囲内で合成すると、目的のエポキシ樹脂を得るに好ましい中間体が得られる。
【0022】
上記中間体の製造法を詳述すれば、溶融或いは溶液にしたフェノール類に、重付加触媒を添加し、これに不飽和脂環式化合物を適下後、加熱攪拌し重付加反応を進行させ、その後に未反応フェノール類を蒸留回収し、重付加反応物を得る。ここで、反応温度は特に制限されないが、40〜150℃であることが好ましく、重付加触媒としては、塩酸、硫酸などの無機酸或いはパラトルエンスルホン酸等の有機酸或いはAlCl、BF等のルイス酸等が挙げられる。
【0023】
ここで、これらの脂環式炭化水素基を樹脂構造中に導入するために用いられる不飽和脂環式化合物としては、1分子中に不飽和二重結合を2つ以上有する脂肪族環状炭化水素化合物であれば、例示するならばジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、5−ビニルノルボナ−2−エン、α−ピネン、β−ピネン、リモネン等が挙げられる。これらの中でも特性バランス、特に耐熱性、吸湿性の点からジシクロペンタジエンが好ましい。またジシクロペンタジエンは石油留分中に含まれることから、工業用ジシクロペンタジエンには他の脂肪族或いは芳香族性ジエン類等が不純物として含有されることがあるが、耐熱性、硬化性、成形性等を考慮すると、ジシクロペンタジエンの純度90重量%以上の製品を用いることが望ましい。
【0024】
次いで、この様にして得られた重付加反応物とエピハロヒドリンとを反応させることによって、目的とするエポキシ樹脂(A)とすることができるが、この反応は常法によって行うことができる。
【0025】
例えば、先ず、中間体の水酸基に対して2〜15当量、中でもの溶融粘度の低減効果に優れる点から好ましくは3〜10当量のエピハロヒドリンを添加して溶解し、その後、重付加反応物中の水酸基に対して0.8〜1.2当量の10〜50%NaOH水溶液を50〜80℃の温度で3〜5時間要して適下する。適下後その温度で0.5〜2時間程度攪拌を続けて、静置後下層の食塩水を棄却する。次いで過剰のエピハロヒドリンを蒸留回収し祖樹脂を得る。これにトルエン、MIBK等の有機溶媒を加え、水洗−脱水−濾過−脱溶媒工程を経て、目的の樹脂を得ることができる。また不純物塩素量の低減等を目的に、反応の際ジオキサン、DMSO等の溶媒を併用しても良い。
【0026】
ここで用いるエピハロヒドリンとしては、エピクロルヒドリンが最も一般的であるが、他にエピヨードヒドリン、エピブロムヒドリン、β−メチルエピクロルヒドリン等も用いることができる。
【0027】
次に、本発明で用いる酸基含有ラジカル重合性単量体(B)は、エポキシ樹脂(A)と反応すると同時に、ラジカル重合によりアクリロイル基の重合を生じさせるものである。本発明ではこのようなイン・サイチュー反応により硬化させることで硬化物の耐熱性を飛躍的に向上させることができる。かかる酸基含有ラジカル重合性単量体(B)は、具体的には、アクリル酸、メタクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸及びこれらの無水物;或いは、
下記構造式1
【0028】
【化1】

(式中、Rは炭素原子数2〜10の脂肪族炭化水素基又は芳香族炭化水素基、Xはエステル結合又はカーボネート結合、Rは炭素原子数2〜10の脂肪族炭化水素基又は芳香族炭化水素基を表し、nは1〜5の整数を示す。)で表される化合物が挙げられる。
【0029】
ここで、前記構造式1中、Xとしてエステル結合を有するものとしては、ヒドロキシアルキル(メタ)アクリレートと炭素原子数2〜10の脂肪族ジカルボン酸とを反応させて得られる化合物;ヒドロキシアルキル(メタ)アクリレートと芳香族ジカルボン酸とを反応させて得られる化合物;ヒドロキシアルキル(メタ)アクリレートと、炭素原子数2〜10の脂肪族ジオールと、炭素原子数2〜10の脂肪族ジカルボン酸とを反応させて得られる化合物;ヒドロキシアルキル(メタ)アクリレートと、炭素原子数2〜10の脂肪族ジオールと、芳香族ジカルボン酸とを反応させて得られる化合物が挙げられる。
【0030】
ここでヒドロキシアルキル(メタ)アクリレートとしては、β−ヒドロキシエチルメタアクリレート、β−ヒドロキシエチルアクリレートが挙げられる。炭素原子数2〜10の脂肪族ジカルボン酸としては、無水コハク酸、アジピン酸、無水マレイン酸、テトラヒドロフタル酸、シクロヘキサンジカルボン酸が挙げられる。また、芳香族ジカルボン酸としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸等が挙げられる。
【0031】
更に、炭素原子数2〜10の脂肪族ジオールとしては、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、2−メチル−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,2−シクロヘキサンジエタノール、1,3−シクロヘキサンジエタノール、1,4−シクロヘキサンジエタノールなどが挙げられる。これらのなかでも炭素原子数が4〜8のブタンジオール、ペンタンジオール、ヘキサンジオール、シクロヘキサンジオール、シクロヘキサンジメタノールがエポキシ樹脂(A)との相溶性に優れる点から好ましい。
【0032】
また、前記構造式1中、Xとしてカーボネート結合を有するものとしては、例えば、炭素原子数2〜10の脂肪族ジオールと炭酸ジアルキルをエステル交換反応によりポリカーボネートジオールを得た後(メタ)アクリル酸又はその誘導体と反応させて得られる化合物が挙げあれる。
【0033】
ここで、炭素原子数2〜10の脂肪族ジオールとしては、例えば、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、2−メチル−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、1,2−シクロヘキサンジオール、1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,2−シクロヘキサンジエタノール、1,3−シクロヘキサンジエタノール、1,4−シクロヘキサンジエタノールなどの炭素原子数3〜10のものが挙げられる。これらのなかでも炭素原子数が4〜8のブタンジオール、ペンタンジオール、ヘキサンジオール、シクロヘキサンジオール、シクロヘキサンジメタノールがエポキシ樹脂(A)との相溶性に優れる点から好ましい。
一方、炭酸ジアルキルとしては反応性の点から炭酸ジメチルが挙げられる。
【0034】
これらのなかでも特に、粘度低減の効果、及び硬化物の耐熱性に優れる点からアクリル酸、メタクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸及びこれらの無水物からなる群から選択されるものが好ましく、とりわけアクリル酸、メタクリル酸が好ましく、特にメタクリル酸が好ましい。
【0035】
以上詳述したエポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)の配合割合は、エポキシ樹脂(A)及び酸基含有ラジカル重合性単量体(B)の合計100質量部に対して、前記エポキシ樹脂(A)を40〜90質量部、前記酸基含有ラジカル重合性単量体(B)を10〜60質量部となる割合であることが、組成物の流動性と硬化物の耐熱性のバランスが良好なものとなる点から好ましい。
【0036】
本発明で用いるラジカル重合開始剤(C)は、熱ラジカル重合開始剤として用いられるものであればよく、例えば、メチルエチルケトンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトンパーオキサイド、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(t−ブチルパーオキシ)シクロドデカン、n−ブチル4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタン、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、t−ブチルハイドロパーオキサイド、P−メンタンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、t−ヘキシルハイドロパーオキサイド、ジクミルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキサン、α、α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3、イソブチリルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、桂皮酸パーオキサイド、m−トルオイルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−3−メトキシブチルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−sec−ブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パーオキシジカーボネート、ジ(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、α、α’−ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3,−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチ−ルエチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルへキサノエート、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシマレイックアシッド、t−ブチルパーオキシラウレート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシ−m−トルオイルベンゾエート、t−ブチルパーオキシベンゾエート、ビス(t−ブチルパーオキシ)イソフタレート、t−ブチルパーオキシアリルモノカーボネート、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン等が挙げられる。前記ラジカル重合開始剤(C)の使用量は、ラジカル重合性成分の総質量及びラジカル重合開始剤(C)の合計質量に対して0.001質量%以上、5質量%以下となる割合で含有されるのが好ましい。
【0037】
本発明の硬化性樹脂組成物は、更に、前記エポキシ樹脂(A)と、酸基含有ラジカル重合性単量体(B)とを反応させるための反応触媒を適宜併用することもできる。この反応触媒としては、例えばトリエチルアミン、N,N−ベンジルジメチルアミン、N,N−ジメチルフェニルアミン、N,N−ジメチルアニリンもしくはジアザビシクロオクタンの如き3級アミン類;トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、メチルトリエチルアンモニウムクロライド等の4級アンモニウム塩類;トリフェニルホスフィン、トリブチルホスフィン等のホスフィン類;2−メチルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾールなどのイミダゾール類;トリフェニルスチビン、アニオン交換樹脂等が挙げられる。該触媒の使用量はワニスである硬化性樹脂組成物中、0.01〜0.5質量%、特に0.05〜0.5質量%となる範囲であることが、反応性に優れる点から好ましい。
【0038】
なお、本発明においては前記エポキシ樹脂(A)のエポキシ基の8割未満、好ましくは5割未満、特に好ましくは3割未満の割合で、通常のエポキシ樹脂用硬化剤による硬化反応を生じさせてもよい。
【0039】
ここで使用し得るエポキシ樹脂用硬化剤としては、例えば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等のアミン系化合物;ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド系化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物系化合物;フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、トリフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂等の多価フェノール化合物;フェノールベンズアルデヒド樹脂、ナフトールベンズアルデヒド樹脂、フェノールナフトアルデヒド樹脂、ナフトールナフトアルデヒド樹脂、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等が挙げられる。これらのエポキシ樹脂用硬化剤を使用する場合の使用量は、該硬化剤中の活性水素が、前記ビスフェノール型エポキシ樹脂(A)のエポキシ基に対して0.8当量未満、好ましくは0.5当量未満、特に好ましくは0.3当量未満の範囲である。
【0040】
本発明の硬化性樹脂組成物は、用途に応じて適度な柔軟性や強度などの機能性を硬化物に付与でき、かつ、ワニスの更なる低粘度化が可能となる点から、前記した(B)成分の他のラジカル重合性単量体(D)を併用する。ここで使用し得る(B)成分の他のラジカル重合性単量体(D)は、例えば、スチレン、メチルスチレン、ハロゲン化スチレン、ジビニルベンゼン、以下に代表される(メタ)アクリル酸エステル類が挙げられる。
【0041】
本発明に使用できる単官能(メタ)アクリレートとしては例えば、メチル、エチル、プロピル、ブチル、3−メトキシブチル、アミル、イソアミル、2−エチルヘキシル、オクチル、イソオクチル、ノニル、イソノニル、デシル、イソデシル、ドデシル、トリデシル、ヘキサデシル、オクタデシル、ステアリル、イソステアリル、シクロヘキシル、ベンジル、メトキシエチル、ブトキシエチル、フェノキシエチル、ノニルフェノキシエチル、グリシジル、ジメチルアミノエチル、ジエチルアミノエチル、イソボルニル、ジシクロペンタニル、ジシクロペンテニル、ジシクロペンテニロキシエチル等の置換基を有する(メタ)アクリレート等が挙げられる。
【0042】
また、多官能(メタ)アクリレートとしては例えば、1,3−ブチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,8−オクタンジオール、1,9−ノナンジオール、トリシクロデカンジメタノール、エチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール等のジ(メタ)アクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレート、1,6−ヘキサンジオール1モルに2モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオールのジまたはトリ(メタ)アクリレート、ビスフェノールA1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールのポリ(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、エチレンオキサイド変性アルキル化リン酸(メタ)アクリレート等が挙げられる。
【0043】
以上の(メタ)アクリレートの他に、更に必要に応じてウレタン(メタ)アクリルオリゴマー、エポキシ(メタ)アクリルオリゴマー等のエチレン性二重結合を含有する機能性オリゴマー類を添加することも出来る。また、これらは各々単独または2種類以上を任意の割合で併用して用いることができる。
【0044】
前記酸基含有ラジカル重合性単量体(B)と、前記(B)成分の他のラジカル重合性単量体(D)との配合比は、前者/後者=20/80〜80/20の範囲である。また、前記エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、及び前記ラジカル重合性単量体(D)の合計に対する(B)成分の他のラジカル重合性単量体(D)の使用量は、目的とする用途や粘度、流動特性により適宜調節することができるが、例えば、常温液状のワニスに調節する場合、前記エポキシ樹脂(A)、酸基含有ラジカル重合性単量体(B)、及び前記ラジカル重合性単量体(D)の合計質量100質量部に対して、5〜40質量部となる割合であることが好ましい。
【0045】
以上詳述した本発明の硬化性樹脂組成物は、更に硬化物に難燃性を付与する観点から難燃剤を併用できる。ここで用いる難燃剤としては、ポリ臭素化ジフェニルエーテル、ポリ臭素化ビフェニル、テトラブロモビスフェノールA、テトラブロモビスフェノールA型エポキシ樹脂等のハロゲン系難燃剤、及び、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等の非ハロゲン系難燃剤が挙げられる。これらのなかでも特に近年のノンハロゲンの要求が高いことから非ハロゲン系難燃剤が好ましい。
【0046】
本発明の硬化性樹脂組成物には、必要に応じて、シランカップリング剤、離型剤、イオントラップ剤、顔料等、種々の配合剤を添加することができる。
【0047】
本発明の硬化性樹脂組成物は、前記した各成分を、均一に撹拌することにより、液状の組成物として容易に得ることができる。
【0048】
本発明の硬化性樹脂組成物は、前記したとおり、有機溶剤を使用することなく、常温液状の組成物、或いは、溶融時に高流動性を示す組成物であるが、必要に応じて、有機溶剤を少量併用しても構わない。ここで使用し得る有機溶剤としては、アセトン、メチルエチルケトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、エチレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド、メタノール、エタノールなどが挙げられる。この有機溶剤の使用量は、組成物中10質量%以下であることが好ましい。
【0049】
本発明の硬化性樹脂組成物は、上記した各成分を均一に混合することにより製造することができる。ここで、本発明の硬化性樹脂組成物を常温(25℃)で液状の組成物に調整する場合、硬化前は優れた流動性を有すると共に、硬化後は極めて高い耐熱性を発現するという特徴を発現する。具体的には、上記した各成分を均一に混合したワニスは、25℃にてE型粘度計(東機産業(株)製「TV−20形」コーンプレートタイプを使用して測定した粘度が5〜500mPa・sの範囲であり、5〜350mPa・sであることがより好ましい。
【0050】
本発明の硬化性樹脂組成物の硬化物は、前記した通り、上記した各成分を均一に混合した組成物を各種用途に応じた使用状態で、イン・サイチュー重合反応させることにより得られるものである。ここで、イン・サイチュー反応とは、前記した通り、エポキシ基と酸基との反応と、ラジカル重合性基の重合反応とを特に反応工程として区別することなく両反応を同時乃至連続的に行うものである。
【0051】
かかるイン・サイチュー反応を行う際の硬化温度は、具体的には、50〜250℃の温度範囲であることが好ましく、特に、50〜100℃で硬化させ、タックフリー状の硬化物にした後、更に、120〜200℃の温度条件で処理することが好ましい。
【0052】
以上詳述した硬化性樹脂組成物は、プリント配線基板用積層板、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム、ダイアタッチ剤、フリップチップ実装用アンダーフィル材、グラブトップ材、TCP用液状封止材、導電性接着剤、液晶シール材、フレキシブル基板用カバーレイ、レジストインキなどの電子回路基板用樹脂材料;半導体封止材料;光導波路や光学フィルムなどの光学用材料、樹脂注型材料、接着剤、絶縁塗料等のコーティング材料;LED、フォトトランジスタ、フォトダイオード、フォトカプラー、CCD、EPROM、フォトセンサーなどの様々な光半導体装置;CFRP等の繊維強化樹脂成形品等の各種の用途に適用することができる。これらの中でも特に高耐熱性、低誘電率、低誘電正接といった観点から、電子回路基板用樹脂材料及び半導体封止材料等の電子部品材料であることが好ましい。特に、本発明では常温液状の組成物であって、かつ、硬化後に優れた耐熱性、耐リフロー性と共に、低誘電率、低誘電正接を有する材料となるために、プリント配線基板用ワニス、ビルドアップ用接着フィルム、液状封止材料、フリップチップ実装用アンダーフィル材等の各種用途において特に有用である。
【0053】
本発明の硬化性樹脂組成物をプリント配線基板用積層板に用いる場合、具体的には、上記した各成分を配合して得られたワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種繊維基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物である積層板を得ることができる。なお、本発明では流動性に優れたワニスを調整可能であることから、プリプレグを製造し積層硬化させることなく、積層板製造に必要な繊維基材を予め積層しておき、これにワニスを含浸、イン・サイチュー重合反応により硬化させることにより製造することができる。この際、積層板中の樹脂分が20〜60質量%となるように調製することが好ましい。
【0054】
本発明の硬化性樹脂組成物をダイアタッチ剤や導電ペーストとして使用する場合には、例えば、微細導電性粒子を該硬化性樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
【0055】
また、本発明の硬化性樹脂組成物をビルドアップ基板用層間絶縁材料として用い、ビルドアップ基板を製造するには、例えば、ゴム、フィラーなどを適宜配合した硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基板を得ることができる。
【0056】
本発明の硬化性樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。
【0057】
本発明の硬化性樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
【0058】
ここで、多層プリント配線板のスルホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
【0059】
上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性樹脂組成物を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(α)を形成させることにより製造することができる。
【0060】
形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。
【0061】
なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
【0062】
前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
【0063】
支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。
【0064】
上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
【0065】
次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
【0066】
ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
【0067】
本発明の硬化性樹脂組成物を、半導体封止材用として用いる場合、前記硬化性樹脂組成物に充填剤を配合して調整することができる。充填剤としては、通常シリカが用いられるが、その充填率は硬化性樹脂組成物100質量部当たり、充填剤を30〜95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。
【0068】
本発明の硬化性樹脂組成物から光半導体装置を製造するには、例えば上記硬化性樹脂組成物を、例えば、リード線などの電極を取り付けた光半導体に、本発明の硬化性樹脂組成物でトランスファー成形、注型などのモールド方法によって封止し、硬化する方法や、予め光半導体を回路基板に実装し、それを本発明の硬化性樹脂組成物で封止し、硬化する方法が挙げられる。具体的には、光半導体素子をセットした型枠に流し込んだのち、上記温度条件で加熱硬化することにより得ることができる。
【0069】
光半導体装置は、前記した通り、具体的にはLED、フォトトランジスタ、フォトダイオード、フォトカプラー、CCD、EPROM、フォトセンサーなどの受光素子や発光素子等を封止した光半導体装置が挙げられ、これらのなかでもとりわけLED装置、特に高輝度LED装置がとりわけ好ましく、特に波長350〜550nmに主発光ピークを有する青色乃至白色のLED装置、及び、4元系LED装置であることが特に好ましい。
【0070】
次に、本発明の硬化性樹脂組成物を繊維強化樹脂成形品に用いる場合、本発明の硬化性樹脂組成物を構成する各成分を均一に混合してワニスを調整し、次いでこれを強化繊維からなる強化基材に含浸した後、イン・サイチュー重合反応させることにより製造することができる。
【0071】
かかるイン・サイチュー反応を行う際の硬化温度は、具体的には、50〜250℃の温度範囲であることが好ましく、特に、50〜100℃で硬化させ、タックフリー状の硬化物にした後、更に、120〜200℃の温度条件で処理することが好ましい。
【0072】
本発明ではワニス粘度が従来のCFRP用ワニスに比べ著しく低粘度であるため、該ワニスを繊維強化材への含浸させる際の加熱温度を低く抑えること、乃至は5〜40℃の常温領域での含浸が可能となる。他方、このような低粘度ワニスでありながら繊維強化材に含浸、イン・サイチュー硬化させて得られる成形品は、強度的に従来のCFRP成形品に何等劣ることなく、寧ろ耐熱性が飛躍的に向上する。
【0073】
ここで、強化繊維は、強化繊維は、有撚糸、解撚糸、又は無撚糸などいずれでも良いが、解撚糸や無撚糸が、繊維強化プラスチック製部材の成形性と機械強度を両立することから、好ましい。さらに、強化繊維の形態は、繊維方向が一方向に引き揃えたものや、織物が使用できる。織物では、平織り、朱子織りなどから、使用する部位や用途に応じて自由に選択することができる。具体的には、機械強度や耐久性に優れることから、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが挙げられ、これらの2種以上を併用することもできる。これらの中でもとりわけ成形品の強度が良好なものとなる点から炭素繊維が好ましく、かかる、炭素繊維は、ポリアクリロニトリル系、ピッチ系、レーヨン系などの各種のものが使用できる。中でも、容易に高強度の炭素繊維が得られるポリアクリロニトリル系のものが好ましい。ここで、ワニスを強化繊維からなる強化基材に含浸して繊維強化複合材料とする際の強化繊維の使用量は、該繊維強化複合材料中の強化繊維の体積含有率が40〜85%の範囲となる量であることが好ましい。
【0074】
本発明の繊維強化樹脂成形品は、繊維強化複合材料用樹脂組成物の硬化物と強化繊維とを有する成形品であり、具体的には、繊維強化樹脂成形品中の強化繊維の量は、40〜70質量%の範囲であり、特に、強度の点から50〜70質量%の範囲であることが好ましい。
【0075】
かかる繊維強化樹脂成形品を製造する方法としては、型に繊維骨材を敷き、前記ワニスを多重積層してゆくハンドレイアップ法やスプレーアップ法、オス型・メス型のいずれかを使用し、強化繊維からなる基材にワニスを含浸させながら積み重ねて成形、圧力を成形物に作用させることのできるフレキシブルな型をかぶせ、気密シールしたものを真空(減圧)成型する真空バッグ法、あらかじめ強化繊維を含有するワニスをシート状にしたものを金型で圧縮成型するSMCプレス法、繊維を敷き詰めた合わせ型に前記ワニスを注入するRTM法、強化繊維に前記ワニスを含浸させてプリプレグを製造し、これを大型のオートクレーブで焼き固める方法などが挙げられるが、これらのなかでもとりわけ、ワニスの流動性に優れる点からRTM法が好ましい。
【実施例】
【0076】
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り重量基準である。尚、各物性評価は以下の条件にて測定した。
1)ワニス粘度:25℃にてE型粘度計(東機産業(株)製「TV−20形」コーンプレートタイプを使用して測定した。
2)ガラス転移点(動的粘弾性測定(DMA法)):硬化物をダイヤモンドカッターで幅5mm、長さ50mmに切り出し、エスアイアイ・ナノテクノロジー社製「DMS6100」を用いて、測定温度範囲:室温〜260℃、昇温速度:3℃/分、周波数:1Hz(正弦波)、歪振幅:10μm、硬化物の両持ち曲げによる動的粘弾性を測定した。tanδ最大値の温度をTgとした。
3)熱機械分析(TMA):セイコー電子工業(株)製熱機械分析装置「TMA/SS6100」を用いて、昇温速度3℃/分により測定し、40〜60℃までに変化させた際の線膨張係数(α1:ガラス領域での線膨張係数)と220〜240℃までに変化させた際の線膨張係数(α2:高温(ゴム)領域での線膨張係数)を測定した。
4)誘電率、誘電正接:JIS−C−6481に準拠し、アジレント・テクノロジー(株)製インピーダンス・マテリアル・アナライザ「HP4291B」により、試験片を乾燥した後、23℃、湿度50%の室内に24時間保管した後の硬化物の100MHz及び1GHzの周波数における誘電率と誘電正接を測定した(試験片のサイズ75×25×2mm)
5)示差走査熱量測定(DSC):以下の条件にて測定したDSC曲線における融解ピークの頂点を融解ピーク温度とした。
装置 ;メトラー・トレド株式会社製 DSC1
サンプル量;約5mg
温度条件 ;10℃/min.
【0077】
以下、実施例により本発明を詳細に説明する。各種性状の測定方法は以下の通りである。
【0078】
実施例1〜2
1.エポキシ樹脂組成物配合
下記の表1に示す配合に従い、エポキシ樹脂とカルボン酸、重合性化合物、ラジカル重合開始剤、硬化促進剤等を、撹拌機を用いて配合してエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いてワニス粘度を評価した。
2.エポキシ樹脂の樹脂硬化板の作製
エポキシ樹脂組成物を、厚さ2mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、オーブン中で100℃で1時間硬化させ、型から硬化物を取り出し、タックフリー状になっているのを確認した後、更に、170℃で1時間、アフターキュアを行い、厚み2mmの樹脂硬化板を得た。これを試験片として用い、各種の評価試験を行った。結果を表1に示す。
【0079】
比較例1
下記の表1に示す配合に従い、各成分を混合した後、次いで、150℃で20分間の条件でプレス成形し、その後175℃でさらに5時間の条件で硬化(アフターキュアー)して厚み2mmの板状硬化物を得た。これを試験片として用い、各種の評価試験を行った。結果を表1に示す。
【0080】
【表1】
【0081】
なお、実施例及び比較例のエポキシ樹脂組成物に使用した各成分は下記の通りである。
「HP−7200」:ジシクロペンタジエンとフェノールとの共縮合樹脂のポリグリシジルエーテル(DIC(株)製「エピクロンHP−7200」150℃におけるICI粘度:0.8dPa・s)
「パーヘキサHC」:1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン、商品名「パーヘキサHC」日油(株)製重合開始剤
「2E4MZ」:2−エチル−4−メチルイミダゾール
「TD−2131」:フェノールノボラック樹脂(DIC製「フェノライトTD−2131」軟化点80℃、水酸基当量103g/eq.)
【0082】
比較例2
メタクリル酸242gを四つ口フラスコ中に仕込み、ハイドロキノン:0.4gを添加後、100℃に加熱し、o−クレゾールノボラック型エポキシ樹脂(DIC製エピクロンN−695、エポキシ当量:214、)600gを徐々に加え溶解し、続いてトリフェニルホスフィン:1.68gを添加して120〜125℃で3時間反応させる。反応終了後、スチレン:292gを加えて徐冷しながら均一に溶解させて樹脂溶液を得た。
このようにして得られた樹脂溶液の150gに1−シアノエチル−2−エチル−4−メチルイミダゾール(四国化成工業(株)製「2E4MZ−CN」)1.5g、1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン(日油(株)製「パーヘキサHC」)1.5gを加え、室温で撹拌混合して固形分濃度82質量%のワニスを得、このワニスの粘度を測定した。
【0083】
次いで、得られたワニスを厚さ3mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、100℃で1時間加熱後、200℃で1時間加熱し硬化物を得、これを用いて上記方法にて動的粘弾性を測定し、Tgを求めた。
ワニス粘度及びTgの値を表2に示す。
【0084】
比較例3
ビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン850S」エポキシ当量188g/eq.)78.8g、メチルテトラハイドロフタル酸無水物(DIC株式会社製「エピクロンB−570」酸無水物当量166g/eq.)71.3g、ジメチルベンジルアミン1.5gを、撹拌機を用いて均一に撹拌混合して固形分濃度52質量%のワニスを得、このワニスの粘度を測定した。
次いで、得られたワニスを厚さ3mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、110℃で1時間保持して硬化させ、型から硬化物を取り出した後、更に、165℃に昇温し、165℃に到達した後、該温度で2時間保持して硬化を行い、得られた硬化物を試験片として用い、動的粘弾性を測定し、Tgを求めた。
ワニス粘度及びTgの値を表2に示す。
【0085】
比較例4
ビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン850S」エポキシ当量188g/eq.)のジメタクリレート105g、スチレンモノマー45g、1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン(日油(株)製「パーヘキサHC」)1.5gを、撹拌機を用いて均一に混合して固形分濃度69質量%のワニスを得、このワニスの粘度を測定した。
次いで、得られたワニスを厚さ3mmのスペーサー(シリコーンチューブ)をガラス板で挟んだ型の間隙に流し込み、100℃で1時間保持して硬化させ、型から硬化物を取り出した後、更に、170℃に昇温し、170℃に到達した後、該温度で1時間保持して硬化を行い、得られた硬化物を試験片として用い、動的粘弾性を測定し、Tgを求めた。
ワニス粘度及びTgの値を表2に示す。
【0086】
【表2】