【実施例】
【0023】
以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
【0024】
(実施例1)
原料粉として、Fe−Pt合金粉末、Ag粉末、BN粉末を用意した。これらの粉末を60(45Fe−45Pt−10Ag)−40BN(mol%)となるように秤量した。
次に、秤量した粉末を乳鉢に投入し、均一に混合した。そして、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。
ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、950°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.9%であった。
また、得られた焼結体の酸素含有量を測定した結果、酸素含有量は3500wtppmと少なかった。なお、酸素分析装置は、LECO社製TC−600を使用し、不活性ガス溶解法で分析を行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工して、ターゲットを得、その表面を観察した。機械加工後のターゲットの外観写真を
図1に示す。
図1に示されるように、ターゲットの表面には割れやチッピングはなく、綺麗に仕上がっていることが確認できた。
【0025】
(比較例1)
原料粉として、Fe粉末、Pt粉末、Ag粉末、BN粉末を用意した。これらの粉末を60(45Fe−45Pt−10Ag)−40BN(mol%)となるように秤量した。
次に、秤量した粉末を粉砕媒体のジルコニアボールと共に容量5Lの媒体攪拌ミルに投入し、2時間、回転(回転数300rpm)させて混合・粉砕した。そして媒体攪拌ミルから取り出した混合粉末をカーボン製の型に充填し、ホットプレスした。
ホットプレスの条件は、実施例1と同様、真空雰囲気、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、実施例1と同様に、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、950°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.0%であった。
また、得られた焼結体の酸素含有量を実施例1と同様の方法で測定した結果、実施例1と比べて、酸素含有量は13000wtppmと著しく増加していた。なお、酸素含有量の測定は、実施例1と同様の方法で行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工して、ターゲットを得、その表面を観察した。機械加工後のターゲットの外観写真を
図2に示す。
図2に示されるように、ターゲットの表面には激しくチッピングが生じていることを確認した。
なお、焼結体の端面を切り出し、断面を研磨してその組織をFE−EPMAで分析したところ(
図3、参照)、酸素および鉄がほぼ同じ領域に観察され、酸化鉄が形成されていることを確認した。
【0026】
(実施例2)
原料粉として、Fe−Pt合金粉末、BN粉末を用意した。これらの粉末70(50Fe−50Pt)−30BN(mol%)となるように秤量した。
次に、秤量した粉末を乳鉢に投入し、均一に混合した。そして、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。
ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1400°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ98.3%であった。
また、得られた焼結体の酸素含有量を測定した結果、酸素含有量は3100wtppmと少なかった。なお、酸素含有量の測定は、実施例1と同様の方法で行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工しターゲットを得た。その表面を観察したところ、ターゲットの表面には割れやチッピングはなく、綺麗に仕上がっていることが確認できた。
【0027】
(実施例3)
原料粉として、Fe−Pt合金粉末、Ag粉末、BN粉末、C粉末を用意した。これらの粉末65(45Fe−45Pt−10Ag)−5BN−30C(mol%)となるように秤量した。
次に、秤量した粉末を乳鉢に投入し、均一に混合した。そして、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。
ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、950°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.8%であった。
また、得られた焼結体の酸素含有量を測定した結果、酸素含有量は3400wtppmと少なかった。なお、酸素含有量の測定は、実施例1と同様の方法で行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工しターゲットを得た。その表面を観察したところ、ターゲットの表面には割れやチッピングはなく、綺麗に仕上がっていることが確認できた。
【0028】
(実施例4)
原料粉として、Fe−Pt合金粉末、Cu粉末、BN粉末、C粉末を用意した。これらの粉末65(30Fe−60Pt−10Cu)−5BN−30C(mol%)となるように秤量した。
次に、秤量した粉末を乳鉢に投入し、均一に混合した。そして、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。
ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1060°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.8%であった。
また、得られた焼結体の酸素含有量を測定した結果、酸素含有量は3300wtppmと少なかった。なお、酸素含有量の測定は、実施例1と同様の方法で行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工しターゲットを得た。その表面を観察したところ、ターゲットの表面には割れやチッピングはなく、綺麗に仕上がっていることが確認できた。
【0029】
(比較例2)
原料粉として、Fe粉末、Pt粉末、Cu粉末、BN粉末、C粉末を用意した。これらの粉末を65(30Fe−60Pt−10Cu)−5BN−30C(mol%)となるように秤量した。
次に、秤量した粉末を粉砕媒体のジルコニアボールと共に容量5Lの媒体攪拌ミルに投入し、2時間、回転(回転数300rpm)させて混合・粉砕した。そして媒体攪拌ミルから取り出した混合粉末をカーボン製の型に充填し、ホットプレスした。
ホットプレスの条件は、実施例1と同様、真空雰囲気、昇温速度300°C/時間、保持温度1060°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、実施例1と同様に、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.0%であった。
また、得られた焼結体の酸素含有量を実施例1と同様の方法で測定した結果、実施例4と比べて、酸素含有量は11800wtppmと著しく増加していた。なお、酸素含有量の測定は、実施例1と同様の方法で行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工して、ターゲットを得、その表面を観察した。その結果、ターゲットの表面には激しくチッピングが生じていることを確認した。
なお、焼結体の端面を切り出し、断面を研磨してその組織をFE−EPMAで分析したところ、酸素および鉄がほぼ同じ領域に観察され、酸化鉄が形成されていることを確認した。
【0030】
(実施例5)
原料粉として、Fe−Pt合金粉末、Ag粉末、BN粉末、SiC粉末を用意した。これらの粉末85(60Fe−30Pt−10Ag)−10BN−5SiC(mol%)となるように秤量した。
次に、秤量した粉末を乳鉢に投入し、均一に混合した。そして、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。
ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、950°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.8%であった。
また、得られた焼結体の酸素含有量を測定した結果、酸素含有量は2400wtppmと少なかった。なお、酸素含有量の測定は、実施例1と同様の方法で行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工しターゲットを得た。その表面を観察したところ、ターゲットの表面には割れやチッピングはなく、綺麗に仕上がっていることが確認できた。
【0031】
(比較例3)
原料粉として、Fe粉末、Pt粉末、Ag粉末、BN粉末、SiC粉末を用意した。これらの粉末を85(60Fe−30Pt−10Ag)−10BN−5SiC(mol%)となるように秤量した。
次に、秤量した粉末を粉砕媒体のジルコニアボールと共に容量5Lの媒体攪拌ミルに投入し、2時間、回転(回転数300rpm)させて混合・粉砕した。そして媒体攪拌ミルから取り出した混合粉末をカーボン製の型に充填し、ホットプレスした。
ホットプレスの条件は、実施例1と同様、真空雰囲気、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、実施例1と同様に、昇温速度300°C/時間、保持温度950°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、950°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.0%であった。
また、得られた焼結体の酸素含有量を実施例1と同様の方法で測定した結果、実施例5と比べて、酸素含有量は11500wtppmと著しく増加していた。なお、酸素含有量の測定は、実施例1と同様の方法で行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工して、ターゲットを得、その表面を観察した。その結果、ターゲットの表面には激しくチッピングが生じていることを確認した。
なお、焼結体の端面を切り出し、断面を研磨してその組織をFE−EPMAで分析したところ、酸素および鉄がほぼ同じ領域に観察され、酸化鉄が形成されていることを確認した。
【0032】
(実施例6)
原料粉として、Fe−Pt合金粉末、Fe−B粉末、Ru粉末、BN粉末、C粉末を用意した。これらの粉末70(60Fe−30Pt−5B−5Ru)−10BN−20C(mol%)となるように秤量した。
次に、秤量した粉末を乳鉢に投入し、均一に混合した。そして、乳鉢から取り出した混合粉末をカーボン製の型に充填しホットプレスした。
ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.8%であった。
また、得られた焼結体の酸素含有量を測定した結果、酸素含有量は3000wtppmと少なかった。なお、酸素含有量の測定は、実施例1と同様の方法で行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工しターゲットを得た。その表面を観察したところ、ターゲットの表面には割れやチッピングはなく、綺麗に仕上がっていることが確認できた。
【0033】
(比較例4)
原料粉として、Fe粉末、Pt粉末、Fe−B粉末、Ru粉末、BN粉末、C粉末を用意した。これらの粉末を70(60Fe−30Pt−5B−5Ru)−10BN−20C(mol%)となるように秤量した。
次に、秤量した粉末を粉砕媒体のジルコニアボールと共に容量5Lの媒体攪拌ミルに投入し、2時間、回転(回転数300rpm)させて混合・粉砕した。そして媒体攪拌ミルから取り出した混合粉末をカーボン製の型に充填し、ホットプレスした。
ホットプレスの条件は、実施例1と同様、真空雰囲気、昇温速度300°C/時間、保持温度1200°C、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。
次にホットプレスの型から取り出した焼結体に熱間等方加圧加工を施した。熱間等方加圧加工の条件は、実施例1と同様に、昇温速度300°C/時間、保持温度1100°C、保持時間2時間とし、昇温開始時からArガスのガス圧を徐々に高めて、1100°Cで保持中は150MPaで加圧した。保持終了後は炉内でそのまま自然冷却させた。
こうして作製された焼結体の密度をアルキメデス法で測定し、相対密度を計算したところ96.0%であった。
また、得られた焼結体の酸素含有量を実施例1と同様の方法で測定した結果、実施例6と比べて、酸素含有量は12300wtppmと著しく増加していた。なお、酸素含有量の測定は、実施例1と同様の方法で行った。
次に焼結体を直径90.0mm、厚さ4.0mmの形状へ旋盤で切削加工して、ターゲットを得、その表面を観察した。その結果、ターゲットの表面には激しくチッピングが生じていることを確認した。
なお、焼結体の端面を切り出し、断面を研磨してその組織をFE−EPMAで分析したところ、酸素および鉄がほぼ同じ領域に観察され、酸化鉄が形成されていることを確認した。
【0034】
実施例、比較例の結果をまとめたものを表1に示す。以上のように、粉砕を伴わない方法で原材料のFe粉末又はFe合金粉末を混合することにより、Fe系磁性材焼結体中の酸素量を著しく低減することができた。そして、このような焼結体をスパッタリングターゲットに加工する際には、割れやチッピングの発生を抑制することができた。また、実施例に挙げた組成のほか、添加元素や添加材を含有する場合についても、同様の効果が得られた。