(58)【調査した分野】(Int.Cl.,DB名)
複数の太陽電池セルそれぞれのバスバー電極に配線材を電気的に接続して太陽電池モジュールを製造するに際し、前記バスバー電極に配線材を半田付けするためのフラックスを塗布するフラックス塗布用具であって、支持基体と、この支持基体に立設され、前記バスバー電極の幅と同一又はこれより小さい幅を有し、フラックスを含浸したスポンジ体からなる塗布部材とを備えたスタンプ体を有し、前記バスバー電極に前記塗布部材の先端部を弾性的に縮小変形させて接触させることにより該塗布部材に含浸されていたフラックスをバスバー電極に移行塗布させる用具において、前記塗布部材の先端部が先端に向かうにつれてその厚さが薄くなる先細形状を有しており、前記スタンプ体は、更に、前記支持基体上に前記塗布部材の先端部の高さ位置よりも低く立設され、前記バスバー電極に前記塗布部材の先端部を弾性的に縮小変形させて接触させる際に、先端部が太陽電池セルに当接して前記塗布部材の弾性的な縮小変形がそれ以上生じないように制限するストッパ部材と、前記塗布部材と支持基体との間に介装される板状の部材であって、その厚さを変えることにより該塗布部材の先端部の高さ位置を調整して前記バスバー電極へのフラックスの塗布幅を変更可能なスペーサ部材とを備えることを特徴とする太陽電池モジュール製造におけるフラックス塗布用具。
複数の太陽電池セルそれぞれのバスバー電極にフラックスを塗布し、次いで配線材を半田付けすることにより該複数の太陽電池セルを電気的に接続して太陽電池モジュールを製造する方法において、前記フラックスの塗布を請求項1〜4のいずれか1項記載のフラックス塗布用具を用いて行うことを特徴とする太陽電池モジュールの製造方法。
【背景技術】
【0002】
太陽電池は、クリーンで無尽蔵のエネルギー源である太陽からの光を直接電気に変換できることから、新しいエネルギー源として期待されている。
【0003】
このような太陽電池を家屋用或いは工業用等の電源として用いるにあたっては、太陽電池1枚当たりの出力が数Wと小さいことから、通常複数の太陽電池セルを電気的に直列或いは並列に接続することで、出力を数100Wにまで高めた太陽電池モジュールとして使用するのが一般的である。
【0004】
かかる太陽電池モジュールは、略正方形の板状の太陽電池セルを一列に並べて隣り合う太陽電池セル同士をタブリードやインターコネクタと呼ばれる配線材によって電気的に接続したストリングを形成する工程と、ストリング同士を配線により電気的に接続するマトリクス工程と、ガラス、透光性プラスチックのような透光性を有する表面部材と、耐候性フィルムからなる裏面部材との間に、耐候性、耐湿性に優れたEVA(ethylene vinylacetate、エチレン酢酸ビニル)等の透光性を有する封止材により封止するラミネート工程を経て製造される。
【0005】
ストリングを形成する工程においては、太陽電池セルには、表面の電極と裏面の電極に対してそれぞれ細長いテープ状の配線材が半田付けによって接続される。配線材の前半部分は、太陽電池セルの表面に沿って半田付けされ、配線材の後半部分は、後方に隣接する太陽電池セルの裏面に沿って半田付けされるようになっている。
この半田付けに際して、太陽電池セルの表裏面の電極には、あらかじめフラックスが塗布される。
【0006】
太陽電池セルの上面及び下面にフラックスを塗布するフラックス塗布機構としては、太陽電池セルの上面に接触する上面塗布ローラと、太陽電池セルの下面に接触する下面塗布ローラを備えたもの(例えば、特開2005−236235号公報:特許文献1参照)やディスペンサ装置を用いたもの(例えば、特開2008−192980号公報:特許文献2参照)などが知られている。
【発明を実施するための形態】
【0013】
以下、本発明に係る太陽電池モジュール製造におけるフラックス塗布用具及び太陽電池モジュールの製造方法の一実施形態について図面を参照して説明するが、本発明はこれに制限されるものではない。
【0014】
(太陽電池モジュール)
本発明に係る太陽電池モジュールは、
図1に示すように、複数の太陽電池セル(太陽電池セル1、1’)それぞれのバスバー電極(バスバー電極3b、バスバー電極4b’)に配線材(インターコネクター5)を半田付けすることにより該複数の太陽電池セルを電気的に接続する構成となっている。なお、太陽電池セル1、1’の構成は同じであり、太陽電池セル1’において太陽電池セル1と同じ構成部材には参照符号に「’」を付けている。以降、太陽電池セル1を代表例として説明するが、太陽電池セル1’でも同じように構成される。
【0015】
ここで、太陽電池セル1は、半導体基板2と、その表裏面に形成される表面集電電極3(フィンガー電極3a及び表面バスバー電極3bからなる)及び裏面集電電極(バスバー電極4b及びそれを除くほぼ全面に形成された集電用のアルミニウム電極)とを具備する。半導体基板2としては、例えば、一辺が155mm程度の擬似四角形で、厚みが0.2〜0.3mm程度の単結晶シリコンや多結晶シリコン等のP型又はN型シリコン基板が用いられる。
【0016】
半導体基板2がP型シリコン基板の場合、この基板表層にはP/N接合が形成される。このP/N接合の形成は、具体的には、リン等のN型の不純物を含む溶液をP型シリコン基板の表面に塗布するか、あるいはこのP型シリコン基板を気相中に基板同士を重ね合わせ、ボートに移載して800〜900℃程度でその表面からリン、砒素、アンチモン等のN型の不純物を、例えばオキシ塩化リンなどを用いた気相拡散により、P型シリコン基板の表層に不純物拡散層を形成することで行われる。即ち、半導体基板2内にN型領域2nとP型領域2pが形成され、N型領域2nとP型領域2pとの界面部分に半導体接合部が形成される。こうして形成された太陽電池セル1の受光面であるN型拡散面を表面とし、この面と反対側の不拡散面を裏面とする。受光面である表面には、図示していないが、反射防止膜を形成しておくことが望ましい。なお、この半導体基板2は、シリコン以外に単結晶ガリウム砒素等を用いてもよいし、N型基板に臭化ボロンなどの拡散源を用いてP型の拡散層を設けてP/N接合を形成してもよい。
【0017】
前記半導体基板2には、
図1に示すように、半導体基板2の受光面にN型領域2nと接して表面集電電極3が形成され、半導体基板2の裏面にP型領域2pと接して裏面集電電極が形成されている。表面の表面集電電極3は、フィンガー電極(フィンガー部ともいう)3aと、表面バスバー電極(受光面バスバー電極(バスバー部)ともいう)3bで構成される。
【0018】
図1中、表面バスバー電極3bは、半導体基板2の受光面を長さ方向(隣接する半導体基板との連設方向)に沿ってその一端部から他端部にかけて2本平行に形成されている。フィンガー電極3aは、表面バスバー電極3bと直角に交差するようにして複数本が基板の全幅にわたって形成されることが多い。表面バスバー電極3b(3b’)の幅は、例えば0.5〜3mm程度であり、フィンガー電極3aの幅は、例えば0.05〜0.2mm程度が好ましい。
【0019】
このような受光面の集電電極3及び裏面の集電電極は、具体的には、次のようにして形成される。即ち、電極形成工程において、半導体基板2の受光面には線状に、裏面には全面に、金属又はそれに準じる物質を各集電電極としてパターニングし、真空蒸着法やスクリーン印刷法を用いて各集電電極を形成する。スクリーン印刷の場合、例えば、銀粉末、ガラスフリット、結合剤、溶剤等を含むペーストをスクリーン印刷して、700〜800℃程度の温度で焼き付け、全体を半田層で被覆することにより形成される。また、裏面の集電電極は、インターコネクタ5を接続するための銀電極(裏面バスバー電極(
図1中の4b又は4b’))と、それを除くほぼ全面に形成された集電用のアルミニウム電極(図示せず)とで構成され、通常、銀電極は半田層で被覆される。
【0020】
このようにして得られる太陽電池セル1、1’を受光面を同一方向に向けた状態でバスバー電極の長さ方向に沿って配置し、太陽電池セル1の表面バスバー電極3bと、この太陽電池セル1と隣接する他の太陽電池セル1’の裏面バスバー電極4b’に、インターコネクタ5を接続して、
図1(A)、(B)に示すような太陽電池モジュールを得る。なお、太陽電池セルの連結数は通常、2〜60個である。
【0021】
また一般に、太陽電池モジュールでは、太陽電池セルの表面や裏面を保護する必要があることから、太陽電池モジュール製品としては、上述したインターコネクタ5を備えた複数の太陽電池セル(太陽電池セル1、1’)を、
図2(A)、(B)に示すように、ガラス板等の透明基板9と裏面カバー(バックシート)8との間に挟んだ構成になっている。この場合、例えば、透明基板9と裏面カバー8との間に、太陽電池セルの受光面を透明基板9に向けて挟み、透明な充填材料12でインターコネクタ5を備えた複数の太陽電池セル(太陽電池セル1、1’)を封入し、外部端子11a、11bを接続したスーパーストレート方式が一般に用いられる。このとき、一方の外部端子11aには、太陽電池セル1の裏面バスバー電極4bに接続された外部取出しインターコネクタ7が接続され、もう一方の外部端子11bには、太陽電池セル1’の表面バスバー電極3b’に接続された外部取出しインターコネクタ6が接続される。なお、透明な充填材料12としては、光透過率の低下の少ないPVB(ポリビニルブチロール)や、耐湿性に優れたEVA(エチレンビニルアセタート)等が用いられる。
インターコネクタ5は、平角状の銅箔やインバール合金箔等で形成される。また、インターコネクタ5の厚さは10〜200μmであることが好ましく、より好ましくは50〜100μmである。厚さが10μm未満であると電力損失が大きい場合があり、200μmを超えるとセル端部で割れる場合がある。
【0022】
(太陽電池モジュール製造におけるフラックス塗布用具)
本発明に係る太陽電池モジュールの製造方法として、インターコネクタ5の太陽電池セル1、1’への接続例を以下に説明する。
まず、
図1に示すように、太陽電池セル1を用意する。太陽電池セル1の表面バスバー電極3b及び太陽電池セル1’の裏面バスバー電極4b’に、本発明の一実施例に係る
図3に示すフラックス塗布用具により半田付け用のフラックスを塗布し、表面に半田がコーティングされた配線材(インターコネクタ5)を用い、バスバー電極3b、4b’に配線材を半田付け(半田接続)して配線材をバスバー電極3b、4b’に接続する。なお、太陽電池セル1、1’の場合と同様に、隣接する太陽電池セルにおいて一方の太陽電池セルの表面バスバー電極、他方の太陽電池セルの裏面バスバー電極それぞれにフラックスを塗布し、両者を配線材(インターコネクタ5)で半田付けして接続することを繰り返すことにより、更に多くの太陽電池セルを接続することが可能である。
【0023】
図3に、本発明の一実施例に係る太陽電池セル1のバスバー電極3b、4bにフラックスを塗布するフラックス塗布用具の構成を示す。
このフラックス塗布用具10は、四角板状の支持基体13aと、この支持基体13aの周囲に一体に突設された案内部材(側壁)13bと、前記支持基体13a上にスペーサ部材14を介して立設された塗布部材15と、支持基体13aと案内部材(側壁)13bとで構成される枠状体13内に埋設されるように配設されたストッパ部材16とを備えたスタンプ体17を有するもので、前記塗布部材15の先端部は常時はストッパ部材16の表面より所定長さ突出している。なお、前記塗布部材15は、太陽電池セルのバスバー電極の数に応じた2個が立設されており、バスバー電極の形成数に応じてバスバー電極間の間隔と同じ間隔を持って立設することができる。
【0024】
ここで、塗布部材15は、バスバー電極の幅と同一又はこれより小さい幅を有し、またバスバー電極と同じ長さを有する、フラックスを含浸したスポンジ体からなり、このスポンジ体は、軟質ポリウレタンフォーム等の連通気泡構造を持つ弾性材料により形成することができる。
【0025】
スポンジ体(塗布部材15)は、少なくともその先端部でフラックスを保持しており、その先端部が太陽電池セルのバスバー電極と当接して押圧されることにより弾性的に縮小変形してある一定の幅で該バスバー電極と接触した状態となり、その接触した領域のスポンジ体からフラックスが染み出すことでバスバー電極の所定領域にフラックスを塗布することができる。
【0026】
また、スポンジ体(塗布部材15)における太陽電池セル1のバスバー電極3b(4b)と当接する先端部形状としては、先端に向かうにつれてその厚さが薄くなっている先細形状が好ましい。
図3(C)では、塗布部材15の先端が尖頭形状になっている例を示している。これにより、太陽電池セル1又はスタンプ体17の押圧の程度を調整することによりバスバー電極へのフラックスの塗布幅を調整することが可能となる。
【0027】
また、塗布部材15の高さは3〜30mmで、幅は3〜5mmのものが好ましく、本実施形態では塗布部材15の高さ25mm、幅は3mmのものを用いる。
【0028】
ストッパ部材16は、フラックス塗布のために塗布部材15を弾性的に縮小変形させてバスバー電極に接触させる際、ストッパ部材16の先端部が太陽電池セル1に当接して塗布部材15の弾性的な縮小変形がそれ以上起らず、塗布部材15のバスバー電極への進出を制限するものであり、これにより太陽電池セルのバスバー電極に対するフラックスの塗布幅を制限することが可能となる。
【0029】
また、スペーサ部材14は、塗布部材15と支持基体13aとの間に介装される板状の部材であって、その厚さを変えることにより塗布部材15の先端部の高さ位置を調整することが可能である。
図4に、スペーサ部材14を
図3(C)に示すものよりも薄いものに交換した例を示す。これにより、スタンプ体17において、塗布部材15の先端部をより低く設定できる。即ち、スペーサ部材14の厚さを調整することによって太陽電池セル1のバスバー電極3b、4bへのフラックスの塗布幅を自在に変更することが可能である。
【0030】
スペーサ部材14の厚さは、例えば0.5〜3mmのものを用いるとよく、本実施形態では、裏面バスバー電極塗布用のスペーサ部材14で3mmのものを使用し、表面バスバー電極塗布用で2mmのものを使用した。このスペーサ部材14によって太陽電池セル1のバスバー電極3b、4bに適した幅のフラックスを塗布するように制御できる。
【0031】
前記案内部材13bは側壁として支持基体13aの周囲に一体に立設してなるもので、案内部材即ち側壁13bで囲まれる内側形状を太陽電池セル1の外形と略同じとし、かつ側壁13bで囲まれる内寸を太陽電池セル1の外寸と同じか太陽電池セル1の外寸よりも若干小さなものとし、更に側壁13bの高さを塗布部材15の先端部の高さと略同じとするとよい。これにより、側壁13bが、押圧時に太陽電池セル1が嵌め込まれ、バスバー電極3b(4b)に対する塗布部材15の先端部の押し込まれる位置即ちフラックス塗布位置を決める外枠として機能するようになり、バスバー電極3b(4b)におけるフラックス塗布の位置ずれを防止することが可能となる。
【0032】
以上の構成のフラックス塗布用具によれば、
図5に示す太陽電池セル1へのフラックスの塗布は次のように行われる。
まず、
図6(A)に示すように、太陽電池セル1の受光面を上に向けて(即ち、裏面バスバー電極4bを下方に向けて)、裏面バスバー電極4bを塗布部材15の先端部に載せる。
次に、フラックス塗布用具のスタンプ体17を固定して太陽電池セル1をストッパ部材16側へ押圧し、又は太陽電池セル1を固定してフラックス塗布用具のスタンプ体17を太陽電池セル1側に押圧する。このとき、案内部材13bにより太陽電池セル1は、裏面バスバー電極4bに対して塗布部材15の先端部が適切な位置に押し付けられるように案内される。
図6(B)に示すように、太陽電池セル1がストッパ部材16に当接するまで押し込まれると共に、塗布部材15の先端部が弾性的に縮小変形してそこからフラックスが染み出し、太陽電池セル1の裏面バスバー電極4bに塗布される。このときの塗布部材15の先端と太陽電池セル1の裏面バスバー電極4bが接触する幅は0.5〜3mm程度がよく、本実施形態では3mmである。以上の結果、
図7に示すように、太陽電池セル1の裏面バスバー電極4bからはみ出すことなく、所望の領域Fにフラックスが塗布される。フラックス塗布領域Fは、裏面バスバー電極4bの全面であることが好ましい。フラックス塗布後に太陽電池セル1を取り出すと、塗布部材15の先端部分は元の形状に戻る。
表面バスバー電極3bについても前記と同様の手順によってフラックス塗布が行われる。
【0033】
本発明の太陽電池モジュールの製造に当たっては、次に、このようにバスバー電極3b、4bにフラックスを塗布した太陽電池セル1の表面バスバー電極3b上にインターコネクタ5の一方の端部側を接続する。具体的には、太陽電池セル1の表面バスバー電極3bとインターコネクタ5を当接し、太陽電池セル1に接続するインターコネクタ5の上面を半田ごてでなぞり、太陽電池セル1とインターコネクタ5を半田接続する。本発明によれば、フラックスが表面バスバー電極3bからはみ出していないため、美観に優れ、表面バスバー電極3bの全面にフラックスが塗布されていることにより、表面バスバー電極3b全面に半田接続が行われ、接続抵抗を小さくでき、性能の優れた太陽電池モジュールを実現することができる。
【0034】
次に、
図1に示すように、このインターコネクタ5の他方の端部側を太陽電池セル1’の裏面バスバー電極4b’に接続する。具体的には、太陽電池セル1’を太陽電池セル1に近接させて配置し(例えば、太陽電池モジュールにおける太陽電池セル1及び1’の相互の間隔を1.5〜5mm程度とし)、太陽電池セル1’の裏面バスバー電極4b’とインターコネクタ5を当接し、太陽電池セル1’に接続するインターコネクタ5の下面を半田ごてでなぞり、太陽電池セル1’とインターコネクタ5を半田接続する。本発明によれば、フラックスが裏面バスバー電極4b’からはみ出していないため、美観に優れ、裏面バスバー電極4b’の全面にフラックスが塗布されていることにより、裏面バスバー電極4b’全面に半田接続が行われ、接続抵抗を小さくでき、性能の優れた太陽電池モジュールを実現することができる。
【実施例】
【0035】
以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0036】
[実施例1]
厚さ300μm、比抵抗0.5Ω・cmの、ホウ素ドープ{100}P型アズカットシリコン基板2枚を用意した。濃水酸化カリウム水溶液によりダメージ層を除去した後、これらの基板を同時に水酸化カリウム/2−プロパノール混合溶液に浸漬した。水洗、乾燥後、アンモニア過水・フッ酸・塩酸過水・フッ酸洗浄し、水洗・乾燥した。次に、この基板2枚を非受光面同士を重ね合わせ、石英ボートに搭載して、拡散炉に投入した。ヒーター温度を850℃まで昇温して、オキシ塩化リンを窒素毎分1リットル/分にてバブリングさせた。バブリング蒸発したオキシ塩化リンを、酸素ガス毎分1リットル/分を伴ってシリコン表面にリンガラスとして堆積させた。引き続き、窒素雰囲気中に30分間放置した後、拡散炉から取出した。
拡散処理を施したこれら2枚の基板に対してHFでリンガラスを除去後、900℃の酸素雰囲気で熱処理し、酸化膜パッシベーション層を形成した。次に、前記基板に対し、プラズマCVD処理により表面にSiN膜を製膜した。この際、原料ガスとしてモノシランガスとアンモニアガスを使用した。また、プラズマを発生させるための電源の周波数は、マイクロ波を用い、圧力は0.5Torr、基板温度は400℃、処理時間は5分間とした。その後、スクリーン印刷でアルミニウムペーストをほぼ全面に印刷し、銀ペーストをバスバー形状に印刷・焼成して裏面電極を形成した。最後に、受光面にスクリーン印刷により銀ペーストをパターン印刷・焼成し、表面フィンガー電極と、表面バスバー電極を形成し、太陽電池セル2枚を得た。
【0037】
次に、得られた太陽電池セル2枚を太陽電池セル1、1’として、
図1に示す太陽電池モジュール1台を作製した。
即ち、太陽電池セル1、1’の表裏バスバー電極3b、4b、3b’、4b’に、
図3に示すフラックス塗布用具を用いてフラックスを塗布した。その塗布方法としては次の通りに行った。まず、
図6(A)に示すように、太陽電池セル1の裏面バスバー電極4bを下向きにして該裏面バスバー電極4bが塗布部材15の先端部に当接するように、太陽電池セル1を塗布部材15上に載せる。続いて、
図6(B)に示すように、太陽電池セル1をスタンプ体17側に押圧し、弾性的に縮小変形した塗布部材15の尖頭部からフラックスを染み出させ、裏面バスバー電極4bに塗布した。次いで、太陽電池セル1の表面バスバー電極3bを下向きにして裏面バスバー電極4bの場合と同様にフラックスを塗布した。また、2枚目の太陽電池セル1’の表面バスバー電極3b’と裏面バスバー電極4b’にも同様な方法でフラックスを塗布した。
次に、インターコネクタ5と太陽電池セル1の表面バスバー電極3bを半田接続した。また、もう一つの太陽電池セル1’の裏面バスバー電極4b’も半田接続し、
図1(A)、(B)に示すように太陽電池セル1、1’を連結した。
また、
図2に示すように、モジュール外部への配線として太陽電池セル1’の表面バスバー電極3b’に、外部取出しインターコネクタ6を半田接続し、更にインターコネクタ6に外部端子11bを取り付けた。同様に、太陽電池セル1の裏面バスバー電極(銀電極)4bに、外部取出しインターコネクタ7を半田接続し、更にインターコネクタ7に外部端子11aを取り付けた。
最後に、ガラス板等の透明基板9と裏面カバー8との間に、太陽電池セル1、1’の受光面である表面を透明基板9に向けて挟み、透明な充填材料12でインターコネクタ5で連結した太陽電池セル1、1’を封入し、太陽電池モジュールIを得た。
【0038】
[比較例1]
実施例1と同じ2枚の太陽電池セルを使用して、太陽電池セル1、1’のバスバー電極3b、4b、3b’、4b’に、
図3のフラックス塗布用具に代わりにハケを使用してフラックスを塗布した。その結果、フラックスがバスバー電極3b、4b、3b’、4b’からはみ出し美観が悪い部分があり、またこれらのバスバー電極の一部にフラックスが塗布されていない部分も見られた。
次に、インターコネクタ5と太陽電池セル1の表面バスバー電極3bを半田接続し、もう一つの太陽電池セル1’の裏面バスバー電極4b’も半田接続して、
図1(A)、(B)に示すように太陽電池セル1、1’を連結した。また、モジュール外部への配線として、太陽電池セル1’の表面バスバー電極3b’と太陽電池セル1の裏面バスバー電極(銀電極)4bに外部取出しインターコネクタ6、7を半田接続し、更にそれぞれ外部端子11b、11aを取り付けた。最後に、ガラス板等の透明基板9と裏面カバー8との間に、太陽電池セル1、1’の受光面である表面を透明基板9に向けて挟み、透明な充填材料12でインターコネクタ5で連結した太陽電池セル1、1’を封入し、太陽電池モジュールIIを得た。
【0039】
以上のようにして得られた太陽電池モジュールI、IIについて、ソーラーシミュレータ(光強度:1kW/m
2,測定ステージ温度25℃,Xeランプ,スペクトル:AM1.5グローバル)の下で太陽電池モジュール特性を測定した。その結果を表1に示す。
実施例1ではモジュールフィルファクタ(FF)が比較例1よりも極めて高くなり、変換効率も大幅に高くなった。
【0040】
【表1】
【0041】
なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。