【実施例】
【0048】
以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
【0049】
(例1:実施例1〜24)
(銅箔への被覆層の形成)
実施例1〜21の銅箔基材として、厚さ9μm及び17μmの圧延銅箔(日鉱金属製C1100)を用意した。圧延銅箔の表面粗さ(Rz)はそれぞれ0.5μm、0.2μmであった。また、実施例22〜24の銅箔基材として、厚さ9μmの電解銅箔(日鉱金属製JTC箔)を用意した。電解銅箔の樹脂との接着面の表面粗さ(Rz)は3.8μm、エッチング面の表面粗さ(Rz)は0.21μmであった。
【0050】
まず、これらの銅箔の片面に対して、以下の条件であらかじめ銅箔基材に付着している薄い酸化皮膜を逆スパッタリングによって取り除き、Ni層及びCr層を順に成膜した。この面を樹脂との接着面とした。さらにエッチング面となるこの反対面に、Au、Pt、Pdのいずれか一種以上を成膜した。これらの金属付着量は成膜時間を調整することにより変化させた。
・装置:バッチ式スパッタリング装置(アルバック社、型式MNS−6000)
・到達真空度:1.0×10
-5Pa
・スパッタリング圧力:0.2Pa
・逆スパッタリング電力:100W
・ターゲット
樹脂との接着面:Ni、Cr(3N)
エッチング面:
Au、Pt、Pd(3N)
Au−50at%Pd、Pt−50at%Pd、
Au−50at%Pt
・スパッタリング電力:50W
・成膜速度:各ターゲットについて一定時間約0.2μm成膜し、3次元測定器で厚さを測定し、単位時間当たりのスパッタリングレートを算出した。
【0051】
上記手順で表面処理が施された銅箔に、接着剤付ポリイミドフィルム(ニッカン工業製、CISV1215)を7kgf/cm
2の圧力、160℃で40分間の加熱プレスで積層させた。一部の銅箔は、N
2雰囲気下で350℃で2時間保持した後に、上記手順でポリイミドフィルムと積層させた(実施例16〜18)。
【0052】
<付着量の測定>
被覆層のAu,Pd、Ptの付着量測定は、王水で表面処理銅箔サンプルを溶解させ、その溶解液を希釈し、原子吸光分析法で行った。
【0053】
(エッチングによる回路形成)
上記手順で作製した積層体の銅箔エッチング面をアセトンで脱脂し、硫酸(100g/L)に30秒浸漬させて、表面の汚れ及び酸化層を取り除いた。次にスピンコーターを用いて液体レジスト(東京応化工業製、OFPR−800LB)を積層体エッチング面に滴下し、乾燥させた。乾燥後のレジスト厚みは1μmとなるように調整した。その後、露光(11mW/cm
2×3.5秒)、現像(現像液:東京応化工業製、NMD−W)により、L/S=33μm/17μm、またはL/S=25μm/5μmのレジストパターンを形成した。このときのエッチング条件を以下に示す。また、回路本数はそれぞれ10本である。
【0054】
<エッチング条件>
・塩化第二鉄水溶液:(37wt%、ボーメ度:40°)
・液温:50°C
・スプレー圧:0.25MPa
(50μmピッチ回路形成)
・レジストL/S=33μm/17μm
・仕上がり回路ボトム(底部)幅:25μm
・エッチング時間:10〜130秒
(30μmピッチ回路形成)
・レジストL/S=25μm/5μm
・仕上がり回路ボトム(底部)幅:15μm
・エッチング時間:30〜70秒
・エッチング終点の確認:時間を変えてエッチングを数水準行い、光学顕微鏡で回路間に銅が残存しなくなるのを確認し、これをエッチング時間とした。
・エッチング後、45℃のNaOH水溶液(100g/L)に1分間浸漬させてレジストを剥離した。
【0055】
<エッチングファクターの測定条件>
エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点からのダレの長さの距離をaとした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。
図1に、回路パターンの一部の表面写真と、当該部分における回路パターンの幅方向の横断面の模式図と、該模式図を用いたエッチングファクターの計算方法の概略とを示す。このaは回路上方からのSEM観察により測定し、エッチングファクター(EF=b/a)を算出した。このエッチングファクターを用いることにより、エッチング性の良否を簡単に判定できる。さらに、傾斜角θは上記手順で測定したa及び銅箔の厚さbを用いてアークタンジェントを計算することにより算出した。これらの測定範囲は回路長600μmで、12点のエッチングファクター、その標準偏差及び傾斜角θの平均値を結果として採用した。
【0056】
<レジストの銅箔除去面における原子濃度の測定>
レジスト直下のアンダーカット(サイドエッチ)は高々数〜20μmである。この部分をXPSで直接分析しようとすると、X線の照射面積(800μmφ、下記参照)が十分ではなかった。このため、以下の手順でレジストの銅箔除去面における原子濃度の測定を行った。
上述の表面処理を施した銅箔(回路形成前の銅箔)にレジストを塗工し、回路パターンを形成せずに乾燥させてレジスト付積層体を作製した。続いて、このレジスト付積層体を塩化第二鉄溶液に浸漬させた。浸漬時間は各種表面処理の銅箔から回路を形成するのに要したエッチング時間とした。このようにして得られたレジストの銅箔との接着面をXPSで分析した。これにより、レジストの銅箔除去面の金、白金、パラジウムの合計原子濃度(%)を測定した。
(XPS稼動条件)
レジスト裏側のsurveyスペクトルを作成した際のXPSの稼働条件を以下に示す。
・装置:XPS測定装置(アルバックファイ社、型式5600MC)
・到達真空度:8.0×10
-8Pa
・X線:単色AlKα、エックス線出力210W、検出面積800μmφ、試料と検出器のなす角度45°
【0057】
上記手順で形成した回路の断面を、日本電子株式会社製の断面試料作製装置SM−09010で加工した。この回路断面のSEM写真から、任意に選択した3本の回路の被覆層形成側表面から1μmの深さの範囲で最も広い回路幅W1(μm)、回路断面全体で最も狭い回路幅W2(μm)を測定し、これらの平均値を算出した。また、当該平均値を用いてW2/W1を算出した。
【0058】
(例2:実施例25〜27)
銅層厚み8μmのメタライジングCCL(日鉱金属製マキナス、銅層側Ra0.01μm、タイコート層の金属付着量Ni1780μg/dm
2、Cr360μg/dm
2)に例1の手順でAu、Pt、Pdを蒸着させ、エッチング性の評価、及び、レジストの銅箔除去面における原子濃度の測定を行った。
【0059】
(例3:比較例1〜3)
9μm厚の圧延銅箔を準備し、例1と同様の手順で銅箔のエッチング面にAu、Pt、Pdを付着させ、ポリイミドフィルムと積層させてエッチングにより回路を形成し、エッチング性の評価、及び、レジストの銅箔除去面における原子濃度の測定を行った。
【0060】
(例4:比較例4及び5:ブランク材)
9μm厚及び12μm厚の圧延銅箔を準備し、それぞれ例1の手順で表面処理を施し、エッチング性の評価、及び、レジストの銅箔除去面における原子濃度の測定を行った。
【0061】
(例5:比較例6)
厚み9μmの圧延銅箔の片面に下記条件でNiめっきを施した後、その反対面に例1の手順でスパッタリングによる表面処理を施した。Niめっきを施した面がエッチング面となるよう、この銅箔に例1の手順でポリイミドフィルムを接着させ、エッチングにより回路を形成し、エッチング性の評価、及び、レジストの銅箔除去面における原子濃度の測定を行った。
・Ni:30g/L
・pH:3.0
・温度:50℃
・電流密度:35A/dm
2
・時間:4秒
例1〜5の各測定結果を表1〜4に示す。
【0062】
【表1】
【0063】
【表2】
【0064】
【表3】
【0065】
【表4】
【0066】
<評価>
実施例1、5、9ではやや裾引きが大きかったものの、両方のレジストパターンで回路を形成することができた。
実施例2〜4、6〜8、10〜15では両方のレジストパターンで裾引きが小さい回路を形成することができた。
表面処理銅箔にポリイミド硬化相当の熱処理を施した実施例16〜18でもレジスト上にAu、Pt、Pdが残存し、裾引きが小さい回路を形成することができた。
実施例19〜21では銅箔が厚くなっても、同等の付着量で裾引きが小さい回路を形成することができた。
実施例22〜24では樹脂との接着面が粗化処理であっても、両方のレジストパターンで裾引きが小さい回路を形成することができた。
銅基材をメタライジングCCLとした実施例25〜27でも、裾引きが小さい回路を形成することができた。
比較例1〜3はAu、Pt、Pdの付着量が過剰であり、初期エッチング性が非常に悪く、銅箔エッチング面の耐腐食性が向上したために、30μmピッチのレジストパターンで回路を形成することができなかった。
ブランク材である比較例4、5では30μmピッチのレジストパターンで銅箔厚み方向のエッチングが完了する前に回路上方でのサイドエッチが進行したために、回路を形成することができなかった。
比較例6では初期エッチング性が悪く、また、サイドエッチング量が大きく、裾引きが大きい回路となった。
図2に、実施例21の回路断面写真を示す。
また、
図3に、実施例11におけるレジスト裏側のXPSのsurveyスペクトルを、
図4に比較例3により形成された回路を示す写真をそれぞれ示す。なお、surveyスペクトルとはXPSの極表層の分析結果をスペクトルで表したものである。