特許第5708522号(P5708522)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越化学工業株式会社の特許一覧

特許5708522レジスト材料及びこれを用いたパターン形成方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5708522
(24)【登録日】2015年3月13日
(45)【発行日】2015年4月30日
(54)【発明の名称】レジスト材料及びこれを用いたパターン形成方法
(51)【国際特許分類】
   G03F 7/004 20060101AFI20150409BHJP
   G03F 7/32 20060101ALI20150409BHJP
   G03F 7/038 20060101ALI20150409BHJP
   G03F 7/075 20060101ALI20150409BHJP
   H01L 21/027 20060101ALI20150409BHJP
【FI】
   G03F7/004 501
   G03F7/32
   G03F7/038 505
   G03F7/075 521
   H01L21/30 502R
【請求項の数】10
【全頁数】29
(21)【出願番号】特願2012-24626(P2012-24626)
(22)【出願日】2012年2月8日
(65)【公開番号】特開2012-185485(P2012-185485A)
(43)【公開日】2012年9月27日
【審査請求日】2014年1月24日
(31)【優先権主張番号】特願2011-29596(P2011-29596)
(32)【優先日】2011年2月15日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】100079304
【弁理士】
【氏名又は名称】小島 隆司
(74)【代理人】
【識別番号】100114513
【弁理士】
【氏名又は名称】重松 沙織
(74)【代理人】
【識別番号】100120721
【弁理士】
【氏名又は名称】小林 克成
(74)【代理人】
【識別番号】100124590
【弁理士】
【氏名又は名称】石川 武史
(72)【発明者】
【氏名】畠山 潤
【審査官】 中村 博之
(56)【参考文献】
【文献】 特開2003−122025(JP,A)
【文献】 特開2004−295116(JP,A)
【文献】 米国特許出願公開第2008/0020325(US,A1)
【文献】 特開2005−055585(JP,A)
【文献】 特開平07−258587(JP,A)
【文献】 国際公開第2011/129210(WO,A1)
【文献】 特開2011−118365(JP,A)
【文献】 特開昭53−126929(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/004−7/18
(57)【特許請求の範囲】
【請求項1】
マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体と、溶剤と、GPCによるポリスチレン換算重量平均分子量200〜20,000の範囲のフェノール系樹脂、シルセスキオキサン系樹脂、酸化珪素系樹脂、酸化ジルコニウム系樹脂、酸化亜鉛系樹脂、酸化チタン系樹脂、酸化ハフニウム系樹脂から選ばれる1種以上の樹脂とを含有してなり、
上記溶剤が、水、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、tert−アミルアルコール、ネオペンチルアルコール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−3−ペンタノール、シクロペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2,3−ジメチル−2−ブタノール、3,3−ジメチル−1−ブタノール、3,3−ジメチル−2−ブタノール、2−エチル−1−ブタノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、3−メチル−3−ペンタノール、4−メチル−1−ペンタノール、4−メチル−2−ペンタノール、4−メチル−3−ペンタノール、1−ヘプタノール、シクロヘキサノール、オクタノール、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、プロピレングリコール、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメトキシメチルエーテル、プロピレングリコールモノアセテート、ジアセトンアルコール、アリルアルコール、プロパギルアルコール、3−メチル−1−ペンチン−3−オール、3−メチル−1−ブチン−3−オール、フルフリルアルコール、テトラヒドロフルフリルアルコール、及びグリシドールから選ばれる1種以上であり、
上記金属とβジケトン類との錯体の含有量が、上記樹脂100質量部に対し30質量部以上であることを特徴とする非化学増幅型ネガ型レジスト材料。
【請求項2】
上記錯体は、上記樹脂100質量部に対し200質量部以下の割合で使用することを特徴とする請求項1に記載のレジスト材料。
【請求項3】
マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体と、溶剤と、GPCによるポリスチレン換算重量平均分子量200〜20,000の範囲のフェノール系樹脂、シルセスキオキサン系樹脂、酸化珪素系樹脂、酸化ジルコニウム系樹脂、酸化亜鉛系樹脂、酸化チタン系樹脂、酸化ハフニウム系樹脂から選ばれる1種以上の樹脂とのみからなり、
上記溶剤が、水、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、tert−アミルアルコール、ネオペンチルアルコール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−3−ペンタノール、シクロペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2,3−ジメチル−2−ブタノール、3,3−ジメチル−1−ブタノール、3,3−ジメチル−2−ブタノール、2−エチル−1−ブタノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、3−メチル−3−ペンタノール、4−メチル−1−ペンタノール、4−メチル−2−ペンタノール、4−メチル−3−ペンタノール、1−ヘプタノール、シクロヘキサノール、オクタノール、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、プロピレングリコール、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメトキシメチルエーテル、プロピレングリコールモノアセテート、ジアセトンアルコール、アリルアルコール、プロパギルアルコール、3−メチル−1−ペンチン−3−オール、3−メチル−1−ブチン−3−オール、フルフリルアルコール、テトラヒドロフルフリルアルコール、及びグリシドールから選ばれる1種以上であることを特徴とする非化学増幅型ネガ型レジスト材料。
【請求項4】
マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体が、下記一般式で示される錯体から選ばれることを特徴とする請求項1〜3のいずれか1項に記載のレジスト材料。
【化1】
(式中、R1、R2は同一又は異種の炭素数1〜20の直鎖状、分岐状又は環状のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、又は炭素数6〜20のアリール基であり、これらがヒドロキシ基、アルコキシ基、エーテル基、エステル基、アミノ基、アミド基、スルホン酸エステル基、ハロゲン原子、シアノ基、ニトロ基、カーボネート基、カルバメート基、チオール基、スルフィド基、チオケトン基、又は複素芳香族環を有していてもよい。)
【請求項5】
金属とβジケトン類との錯体が、下記一般式で示される錯体から選ばれることを特徴とする請求項3に記載のレジスト材料。
【化2】
(式中、R1、R2は上記の通り。)
【請求項6】
請求項1〜のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。
【請求項7】
現像液としてアルカリ水を用いて現像することを特徴とする請求項に記載のパターン形成方法。
【請求項8】
現像液がテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリンヒドロキシド、水酸化ナトリウム、及び水酸化カリウムから選ばれる1種以上の水溶液であることを特徴とする請求項又はに記載のパターン形成方法。
【請求項9】
前記高エネルギー線で露光する工程において、波長3〜15nmの真空紫外線を光源として用いることを特徴とする請求項のいずれか1項に記載のパターン形成方法。
【請求項10】
前記高エネルギー線で露光する工程において、加速電圧1〜150keVの加速電圧電子ビームを光源として用いることを特徴とする請求項のいずれか1項に記載のパターン形成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レジスト材料、特に電子ビーム(EB)露光及び真空紫外光(EUV)露光用ネガ型レジスト材料、及びこれを用いたパターン形成方法に関する。
【背景技術】
【0002】
LSIの高集積化と高速度化に伴い、パターンルールの微細化が急速に進んでいる。特にフラッシュメモリー市場の拡大と記憶容量の増大化が微細化を牽引している。最先端の微細化技術としてはArFリソグラフィーによる65nmノードのデバイスの量産が行われており、次世代のArF液浸リソグラフィーによる45nmノードの量産準備が進行中である。次次世代の32nmノードとしては、水よりも高屈折率の液体と高屈折率レンズ、高屈折率レジスト膜を組み合わせた超高NAレンズによる液浸リソグラフィー、波長13.5nmの真空紫外光(EUV)リソグラフィー、ArFリソグラフィーの2重露光(ダブルパターニングリソグラフィー)などが候補であり、検討が進められている。
【0003】
ところで、近年では加工寸法が最小線幅として50nmを切ろうとしているが、加工寸法がそのように小さくなった場合には、現像液の表面張力に抗してパターンを維持する構造強度、基板への接着強度等の要因から、加工を行う基板の表面材質によってはレジスト膜厚は100nm以下にする必要がある場合があるが、従来高解像性化学増幅型レジスト膜を形成するために使用されてきたレジスト膜の膜厚が150nmにおいてはラインエッジラフネスの悪化が大きな問題にならなかったにも拘わらず、膜厚が100nm以下になるとラインエッジラフネスが大幅に悪化してしまう問題が発生した。
【0004】
微細化の進行と共に、酸の拡散による像のボケが問題になっている(非特許文献1:SPIE Vol.5039 p1 (2003))。寸法サイズ45nm以降の微細パターンでの解像性を確保するためには、従来提案されている溶解コントラストの向上だけでなく、酸拡散の制御が重要であることが提案されている。しかしながら、化学増幅型レジスト材料は、酸の拡散によって感度とコントラストを上げているため、ポストエクスポージャベーク(PEB)温度や時間を短くして酸拡散を極限まで抑えようとすると感度とコントラストが著しく低下する。
バルキーな酸が発生する酸発生剤を添加して酸拡散を抑えることは有効である。そこで、ポリマーに重合性オレフィンを有するオニウム塩の酸発生剤を共重合することが提案されている。
寸法サイズ16nm以降のレジスト膜のパターン形成においては、酸拡散の観点から化学増幅型レジスト膜ではパターン形成ができないと考えられており、非化学増幅型レジスト材料の開発が望まれている。
【0005】
非化学増幅型レジスト材料として、ポリメチルメタクリレート(PMMA)を挙げることができる。このものは、EBあるいはEUV照射によって主鎖が切断し、分子量が低下することによって有機溶剤の現像液への溶解性が向上するポジ型レジスト材料であるが、環構造を有していないためにエッチング耐性が低いことと露光時のアウトガス量が多いことが欠点である。
【0006】
ハイドロゲンシルセスキオキサン(HSQ)は、EBあるいはEUV照射によって生じたシラノールの縮合反応による架橋によってアルカリ現像液に不溶となるネガ型レジスト材料である。また、塩素置換したカリックスアレーンもネガ型レジスト材料として機能する。これらのネガ型レジスト材料は、架橋前の分子サイズが小さく酸拡散によるボケが無いため、エッジラフネスが小さく解像性が非常に高く、露光装置の解像限界を示すためのパターン転写材料として用いられている。しかしながら、化学増幅型レジスト材料よりも2桁感度が低い問題がある。
化学増幅型レジスト材料と同程度の感度で、解像性の高い非化学増幅型の分子レジストの開発が望まれているのである。
【0007】
EB描画中のレジスト膜の帯電によって、描画位置がずれる問題が生じている。レジスト膜の帯電を防止するためにレジスト膜上に帯電防止膜を敷くことが提案されている。但しこの場合、帯電防止膜を塗ることによるプロセスのコストアップが問題になる。
【0008】
これまで半導体リソグラフィー用のフォトレジスト材料において、金属が導入されたレジスト材料を用いることは、金属原子が基板に移動することによって半導体の動作不良が起きる可能性があるために不可能であった。しかしながら半導体以外の用途、例えばLCD用レジスト材料(非特許文献2:J.Vac.Sci.Technol.B27(6),Nov/Dec p3164 (2009))として、透明電極ZnOを形成するためのパターン形成材料として、ネオデカン酸亜鉛が用いられている。特許文献1(特表2005−505691号公報)においては、珪素、チタン、ジルコニウム、タンタル、バリウム、ストロンチウム、ハフニウムのアセチルアセトン配位子によるパターン形成例が示されている。更には、特許文献2(米国特許第5534312号明細書)においては、銅、クロム、セリウム、イットリウム、バリウム、アルミニウム等のカルボキシル基を有する配位子、アミノ基を有する配位子による塩を用いたパターン形成例が示されている。パターン形成後に300℃の加熱処理を行うことによってメタル酸化物のパターンを形成している。
【0009】
上記文献中、金属レジスト材料の成膜にスピンコート法が示されているが、溶剤としてクロロホルム、メチレンクロライド、トルエン、アセトン、ジメチルスルホキシド、ジメチルアセトアミド、2−メトキシエタノールが挙げられている。ところが、これらの溶剤は毒性が高いために、産業用途に用いることができない。また、これらの溶剤は沸点が低いために、スピンコート時の蒸発速度が速く、成膜時に膜厚が均一になる前に乾燥してしまい、膜厚均一性が劣る問題があった。
また、前述の文献において現像をレジスト溶剤を用いて行っており、これにおいても毒性の問題が生じていた。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特表2005−505691号公報
【特許文献2】米国特許第5534312号明細書
【非特許文献】
【0011】
【非特許文献1】SPIE Vol.5039 p1 (2003)
【非特許文献2】J.Vac.Sci.Technol.B27(6),Nov/Dec p3164 (2009)
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明は上記事情に鑑みなされたもので、高解像度でありながら高感度であり、なおかつ露光後のパターン形状が良好でラインエッジラフネスが小さいレジスト材料、特には導電性の機能を有して描画中のチャージアップを防止し、毒性が少なく安全性の高い溶剤を用いたネガ型レジスト材料、及びこれを用いたパターン形成方法を提供することを目的とする。
【課題を解決するための手段】
【0013】
即ち、本発明は、下記レジスト材料並びにこれを用いたパターン形成方法を提供する。
〔1〕
マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体と、溶剤と、GPCによるポリスチレン換算重量平均分子量200〜20,000の範囲のフェノール系樹脂、シルセスキオキサン系樹脂、酸化珪素系樹脂、酸化ジルコニウム系樹脂、酸化亜鉛系樹脂、酸化チタン系樹脂、酸化ハフニウム系樹脂から選ばれる1種以上の樹脂とを含有してなり、
上記溶剤が、水、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、tert−アミルアルコール、ネオペンチルアルコール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−3−ペンタノール、シクロペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2,3−ジメチル−2−ブタノール、3,3−ジメチル−1−ブタノール、3,3−ジメチル−2−ブタノール、2−エチル−1−ブタノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、3−メチル−3−ペンタノール、4−メチル−1−ペンタノール、4−メチル−2−ペンタノール、4−メチル−3−ペンタノール、1−ヘプタノール、シクロヘキサノール、オクタノール、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、プロピレングリコール、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメトキシメチルエーテル、プロピレングリコールモノアセテート、ジアセトンアルコール、アリルアルコール、プロパギルアルコール、3−メチル−1−ペンチン−3−オール、3−メチル−1−ブチン−3−オール、フルフリルアルコール、テトラヒドロフルフリルアルコール、及びグリシドールから選ばれる1種以上であり、
上記金属とβジケトン類との錯体の含有量が、上記樹脂100質量部に対し30質量部以上であることを特徴とする非化学増幅型ネガ型レジスト材料。
〔2〕
上記錯体は、上記樹脂100質量部に対し200質量部以下の割合で使用することを特徴とする〔1〕に記載のレジスト材料。
〔3〕
マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体と、溶剤と、GPCによるポリスチレン換算重量平均分子量200〜20,000の範囲のフェノール系樹脂、シルセスキオキサン系樹脂、酸化珪素系樹脂、酸化ジルコニウム系樹脂、酸化亜鉛系樹脂、酸化チタン系樹脂、酸化ハフニウム系樹脂から選ばれる1種以上の樹脂とのみからなり、
上記溶剤が、水、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、tert−アミルアルコール、ネオペンチルアルコール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−3−ペンタノール、シクロペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2,3−ジメチル−2−ブタノール、3,3−ジメチル−1−ブタノール、3,3−ジメチル−2−ブタノール、2−エチル−1−ブタノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、3−メチル−3−ペンタノール、4−メチル−1−ペンタノール、4−メチル−2−ペンタノール、4−メチル−3−ペンタノール、1−ヘプタノール、シクロヘキサノール、オクタノール、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、プロピレングリコール、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメトキシメチルエーテル、プロピレングリコールモノアセテート、ジアセトンアルコール、アリルアルコール、プロパギルアルコール、3−メチル−1−ペンチン−3−オール、3−メチル−1−ブチン−3−オール、フルフリルアルコール、テトラヒドロフルフリルアルコール、及びグリシドールから選ばれる1種以上であることを特徴とする非化学増幅型ネガ型レジスト材料。

マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体が、下記一般式で示される錯体から選ばれることを特徴とする〔1〕〜〔3〕のいずれかに記載のレジスト材料。
【化1】
(式中、R1、R2は同一又は異種の炭素数1〜20の直鎖状、分岐状又は環状のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、又は炭素数6〜20のアリール基であり、これらがヒドロキシ基、アルコキシ基、エーテル基、エステル基、アミノ基、アミド基、スルホン酸エステル基、ハロゲン原子、シアノ基、ニトロ基、カーボネート基、カルバメート基、チオール基、スルフィド基、チオケトン基、又は複素芳香族環を有していてもよい。)
〔5〕
金属とβジケトン類との錯体が、下記一般式で示される錯体から選ばれることを特徴とする〔3〕に記載のレジスト材料。
【化15】
(式中、R1、R2は上記の通り。)

〔1〕〜〔〕のいずれかに記載のレジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。

現像液としてアルカリ水を用いて現像することを特徴とする〔〕に記載のパターン形成方法。

現像液がテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリンヒドロキシド、水酸化ナトリウム、及び水酸化カリウムから選ばれる1種以上の水溶液であることを特徴とする〔〕又は〔〕に記載のパターン形成方法。

前記高エネルギー線で露光する工程において、波長3〜15nmの真空紫外線を光源として用いることを特徴とする〔〕〜〔〕のいずれかに記載のパターン形成方法。
10
前記高エネルギー線で露光する工程において、加速電圧1〜150keVの加速電圧電子ビームを光源として用いることを特徴とする〔〕〜〔〕のいずれかに記載のパターン形成方法。
【0014】
このような本発明のレジスト材料は、該レジスト材料を組成する材料として、マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体を含んでいるものであり、溶剤としては水、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、tert−アミルアルコール、ネオペンチルアルコール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−3−ペンタノール、シクロペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2,3−ジメチル−2−ブタノール、3,3−ジメチル−1−ブタノール、3,3−ジメチル−2−ブタノール、2−エチル−1−ブタノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、3−メチル−3−ペンタノール、4−メチル−1−ペンタノール、4−メチル−2−ペンタノール、4−メチル−3−ペンタノール、1−ヘプタノール、シクロヘキサノール、オクタノール、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、プロピレングリコール、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメトキシメチルエーテル、プロピレングリコールモノアセテート、ジアセトンアルコール、アリルアルコール、プロパギルアルコール、3−メチル−1−ペンチン−3−オール、3−メチル−1−ブチン−3−オール、フルフリルアルコール、テトラヒドロフルフリルアルコール、及びグリシドールから選ばれる1種以上を用いることを特徴とする。マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、ハフニウムは、EB、EUVの光に対して吸収が大きく、非化学増幅レジスト材料としては比較的高感度であり、露光後のパターン形状が良好で、化学増幅レジスト材料のような酸の拡散による像のボケの問題が生じず、更には分子量が非常に小さいためにラインエッジラフネスが小さいものとなる。従って、これらの特性を有することから、実用性が極めて高く、超LSI用レジスト材料、あるいはマスクパターン形成材料として非常に有効である。
また、金属塩のレジスト膜は導電性を帯びており、EB描画中の帯電を防止し、描画中の位置ずれを防止することができる。
【発明の効果】
【0015】
本発明のレジスト材料は、解像性とエッジラフネスが良好な特性を示す。従って、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料、EB、EUV露光用のパターン形成材料として好適なネガ型レジスト材料とすることができる。
【発明を実施するための形態】
【0016】
以下、本発明につき更に詳しく説明する。
上述のように、LSIの高集積化と高速度化に伴い、パターンルールの微細化が進むなか、高解像度でありながら高感度であり、なおかつ露光後のパターン形状が良好でラインエッジラフネスが小さいレジスト材料が求められていた。
【0017】
本発明者は、近年要望される高解像度、高感度でなおかつラインエッジラフネスの小さいレジスト材料を得るべく鋭意検討を重ねた結果、マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体を含有するネガ型レジスト材料が有効であることを知見した。
これらの金属はEB、EUVの光に対して吸収が高く、非化学増幅型レジスト材料としては感度が高い特徴を有する。マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、ハフニウムから選ばれる金属のβジケトン類との錯体は、高エネルギー線の照射によって金属酸化物を生じる。これらの金属のβジケトン類との錯体はアルカリ水溶液に可溶であるが、金属酸化物になることによってアルカリ現像液に不溶化し、ネガレジストになるのである。
【0018】
前述の金属のβジケトン類との錯体は非化学増幅型の分子レジストであり、酸拡散による像のボケが発生しないために高解像度である。しかもポリマー型のレジスト材料に比べて分子サイズが小さいために、分子サイズの揺らぎに起因するエッジラフネスの発生が少ないために、非常にエッジラフネスが小さい特徴を有する。
更には、導電性を有するためにEB描画中の帯電を防止し、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料として好適なレジスト材料、特にはネガ型レジスト材料が得られることを知見し、本発明を完成させたものである。
【0019】
この場合、本発明のレジスト材料において、マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体は、下記一般式で示される錯体から選ばれることが好ましい。
【化2】
(式中、R1、R2は同一又は異種の炭素数1〜20の直鎖状、分岐状又は環状のアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、又は炭素数6〜20のアリール基であり、これらがヒドロキシ基、アルコキシ基、エーテル基、エステル基、アミノ基、アミド基、スルホン酸エステル基、ハロゲン原子、シアノ基、ニトロ基、カーボネート基、カルバメート基、チオール基、スルフィド基、チオケトン基、又は複素芳香族環を有していてもよい。)
【0020】
上記一般式中のβジケトン類は、置換又は非置換のアセチルアセトンであり、具体的には下記に例示される。ここで、アセチルアセトンの水素原子が置換され、置換基の炭素数が多いほど有機溶剤に溶解し易くなり、炭素数が少ないほど水への溶解性が向上し、固形物として水和物を形成し易くなる。置換基の炭素数が多いほど、レジスト材料をスピンコーティングしたときの膜厚の均一性が向上するが、露光中のアウトガス成分量が多くなり、金属酸化物を形成したときのシュリンク量が多くなる。
【0021】
アセチルアセトンは、下記に示すようにエノール化することによって金属M2+と錯体を形成する。
【化3】
【0022】
βジケトン類、即ち置換、非置換のアセチルアセトン類は、具体的には下記に例示することができる。
【化4】
【0023】
【化5】
【0024】
【化6】
【0025】
【化7】
【0026】
【化8】
【0027】
【化9】
以上のうちでは、特に[化4]、[化5]で示されるものが好ましい。
【0028】
1とR2とは、同一であるβジケトン類が一般的であるが、特開2004−175755号公報に記載されているように異なっていてもよい。R1とR2との両方がメチル基であるアセチルアセトンが最も一般的であるが、有機溶剤への溶解性に乏しい欠点がある。R1とR2を合計した炭素数は3以上が好ましく、より好ましくは4以上である。
【0029】
本発明のレジスト材料に配合することができる溶剤としては、水、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、tert−アミルアルコール、ネオペンチルアルコール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−3−ペンタノール、シクロペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2,3−ジメチル−2−ブタノール、3,3−ジメチル−1−ブタノール、3,3−ジメチル−2−ブタノール、2−エチル−1−ブタノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、3−メチル−3−ペンタノール、4−メチル−1−ペンタノール、4−メチル−2−ペンタノール、4−メチル−3−ペンタノール、1−ヘプタノール、シクロヘキサノール、オクタノール、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、プロピレングリコール、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメトキシメチルエーテル、プロピレングリコールモノアセテート、ジアセトンアルコール、アリルアルコール、プロパギルアルコール、3−メチル−1−ペンチン−3−オール、3−メチル−1−ブチン−3−オール、フルフリルアルコール、テトラヒドロフルフリルアルコール、グリシドールから選ばれる1種以上を用いることができる。
【0030】
本発明のレジスト材料は、マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、及びハフニウムから選ばれる金属とβジケトン類との錯体を含有することを必須とするネガ型レジスト材料であるが、架橋を促進するため、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)が200〜20,000の範囲の樹脂を添加することが望ましい。樹脂としては、フェノール系樹脂、シルセスキオキサン系樹脂、酸化珪素系樹脂、酸化ジルコニウム系樹脂、酸化亜鉛系樹脂、酸化チタン系樹脂、酸化ハフニウム系樹脂を挙げることができる。フェノール系樹脂としては、ポリヒドロキシスチレン、ポリヒドロキシビニルナフタレン、ポリヒドロキシフェニルメタクリレート、ポリヒドロキシナフチルメタクリレート、及びこれらとスチレン、ビニルナフタレン、ビニルアントラセン、ビニルビフェニル、ビニルカルバゾール、インデン、アセナフチレン、ノルトリシクレン誘導体、ノルボルネン誘導体、無水マレイン酸、マレイミド誘導体、メタクリレート誘導体との共重合体を挙げることができる。他のフェノール系樹脂としては、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−ジメチルフェノール、2,5−ジメチルフェノール、3,4−ジメチルフェノール、3,5−ジメチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、2,3,5−トリメチルフェノール、3,4,5−トリメチルフェノール、2−tert−ブチルフェノール、3−tert−ブチルフェノール、4−tert−ブチルフェノール、2−フェニルフェノール、3−フェニルフェノール、4−フェニルフェノール、3,5−ジフェニルフェノール、2−ナフチルフェノール、3−ナフチルフェノール、4−ナフチルフェノール、4−トリチルフェノール、レゾルシノール、2−メチルレゾルシノール、4−メチルレゾルシノール、5−メチルレゾルシノール、カテコール、4−tert−ブチルカテコール、2−メトキシフェノール、3−メトキシフェノール、2−プロピルフェノール、3−プロピルフェノール、4−プロピルフェノール、2−イソプロピルフェノール、3−イソプロピルフェノール、4−イソプロピルフェノール、2−メトキシ−5−メチルフェノール、2−tert−ブチル−5−メチルフェノール、ピロガロール、チモール、イソチモール、1−ナフトール、2−ナフトール、2−メチル−1−ナフトール、4−メトキシ−1−ナフトール、7−メトキシ−2−ナフトール、更に1,5−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン等のジヒドロキシナフタレン、3−ヒドロキシ−ナフタレン−2−カルボン酸メチルと、アルデヒド類とを縮合したノボラック樹脂やカリックスアレーン樹脂を挙げることができる。
【0031】
更には、特開2005−128509号公報、特開2006−227391号公報、特開2006−259249号公報、特開2006−259482号公報、特開2006−285095号公報、特開2006−293207号公報、特開2006−293298号公報、特開2007−199653号公報、特開2007−316282号公報に記載のフェノール系モノマー又はこれをアルデヒド類と縮合したノボラック樹脂を挙げることができる。特開2008−116677号公報に記載のカリックスレゾルシン樹脂を挙げることもできる。
【0032】
シルセスキオキサン系樹脂、酸化珪素系樹脂はアルコキシシランを縮合した樹脂、酸化ジルコニウム系樹脂、酸化亜鉛系樹脂、酸化チタン系樹脂、酸化ハフニウム系樹脂は、Nanotechnology 21 (2010) 065303(10pp)に例示されているアルコキシジルコニウム、アルコキシ亜鉛、アルコキシチタン、アルコキシハフニウムの縮合物及びこれらの混合物を挙げることができる。
【0033】
ここで、上記溶剤の使用量は、上記錯体100質量部に対し50〜10,000質量部、特に100〜8,000質量部であることが好ましい。また、上記樹脂は、上記錯体100質量部に対し20〜10,000質量部、特に50〜8,000質量部であることが好ましい。
【0034】
また、本発明は、前記レジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法を提供する。高エネルギー線としては、KrF、ArF、Xe、F2、Ar2に挙げられるエキシマレーザー、エキシマランプ、EUV、EBを挙げることができる。露光のエネルギーによって金属イオンとアセチルアセトンイオンとの乖離が起こり、水分やアセチルアセトン中の酸素と結合することによって金属酸化物が形成される。金属塩はアルカリ水溶液に可溶であるが、金属酸化物は不溶となるためにネガ型パターンが形成される。
描画後にベークを行うことによって金属酸化物の形成を促進させることができる。ベーク温度としては70〜200℃で時間は1〜300秒である。
【0035】
この場合、前記高エネルギー線で露光する工程において、波長3〜15nmの真空紫外線や加速電圧1〜150keVの加速電圧電子ビーム、好ましくは5〜120keV、より好ましくは加速電圧50keV以下の加速電圧電子ビーム、特には10keV以下の低加速電圧電子ビームを光源として用いることができる。エキシマレーザーよりも波長が短く、エネルギー密度が高いEUVやEBで露光した方が金属酸化物となる反応効率が高いため好ましく用いることができる。
【0036】
マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、ハフニウムから選ばれる金属の塩は導電性であるために、EB描画中のレジスト膜の帯電を防止する効果がある。このため、レジスト膜の上に必ずしも帯電防止膜を形成しなくてもよい。
【0037】
マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム、ハフニウムから選ばれる金属は波長13.5nmのEUV光に強い吸収がある。EUVで露光したときにエネルギーを吸収することによってβジケトンとの乖離が加速されるために、吸収が少ない珪素などの場合と比べて感度が向上する。
【0038】
本発明のレジスト材料を種々の集積回路製造及びマスク製造に用いる場合は、特に限定されないが公知のリソグラフィー技術を適用することができる。
例えば、本発明のレジスト材料を、集積回路製造用の基板あるいは該基板上の被加工層(Si、SiO2、SiN、SiON、TiN、WSi、BPSG、SOG、有機反射防止膜等)や、マスク回路製造用の基板あるいは該基板上の被加工層(Cr、CrO、CrON、MoSi、SiO2等)上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により塗布膜厚が0.01〜2.0μmとなるように塗布する。これをホットプレート上で60〜150℃、10秒〜30分間、好ましくは80〜120℃、30秒〜20分間プリベークする。
【0039】
次いで、紫外線、遠紫外線、電子線(EB)、X線、エキシマレーザー、γ線、シンクロトロン放射線、真空紫外線(軟X線;EUV)等の高エネルギー線から選ばれる光源で目的とするパターンを所定のマスクを通じてもしくは直接露光を行う。露光量は1mJ/cm2〜〜1J/cm2程度、特に10〜500mJ/cm2、又は0.1μC/cm2〜1mC/cm2程度、特に0.5〜500μC/cm2となるように露光することが好ましい。次に、ホットプレート上で60〜200℃、10秒〜30分間、好ましくは80〜150℃、30秒〜20分間ポストエクスポージャベーク(PEB)する。本発明のレジスト材料は酸触媒による化学増幅型レジスト材料ではないので、PEBプロセスは必ずしも必須ではない。しかしながら、PEBによって金属塩の金属酸化物への反応を促進させることができる。
【0040】
更に、0.1〜30質量%、好ましくは0.1〜5質量%、更に好ましくは2〜3質量%のテトラメチルアンモニウムヒドロキシド(TMAH)、コリンヒドロキシド、テトラエチルアンモニウムヒドロキシド(TEAH)、テトラプロピルアンモニウムヒドロキシド(TPAH)、テトラブチルアンモニウムヒドロキシド(TBAH)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)から選ばれるアルカリ水溶液により現像を行う。前述の塩基性物質以外にアンモニア、メチルアミン、エチルアミン、プロピルアミン、n−ブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジ−n−ブチルアミン、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ヒドラジン、ヒドラジン水和物、メチルヒドラジン、ジメチルヒドラジン、トリメチルヒドラジン、テトラメチルヒドラジン、エチルヒドラジン、ジエチルヒドラジン、プロピルヒドラジン、ブチルヒドラジン、フェニルヒドラジン、ベンジルヒドラジン、フェネチルヒドラジン、シクロプロピルヒドラジン、シクロペンチルヒドラジン、シクロヘキシルヒドラジン、エチレンジアミン、1,2−ジアミノプロパン、1,3−ジアミノプロパン、1,2−ジアミノ−2−メチルプロパン、N−メチルエチレンジアミン、N−エチルエチレンジアミン、N−イソプロピルエチレンジアミン、N−ヘキシルエチレンジアミン、N−シクロヘキシルエチレンジアミン、N−オクチルエチレンジアミン、N−デシルエチレンジアミン、N−ドデシルエチレンジアミン、N,N−ジメチルエチレンジアミン、N,N’−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N’−ジエチルエチレンジアミン、N,N’−ジイソプロピルエチレンジアミン、N,N,N’−トリメチルエチレンジアミン、ジエチレントリアミン、N−イソプロピルジエチレントリアミン、N−(2−アミノエチル)−1,3−プロパンジアミン、トリエチレンテトラミン、N,N’−ビス(3−アミノプロピル)エチレンジアミン、N,N’−ビス(2−アミノエチル)−1,3−プロパンジアミン、トリス(2−アミノエチル)アミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、2−(2−アミノエチルアミノ)エタノール、N,N’−ビス(ヒドロキエチル)エチレンジアミン、N−(ヒドロキシエチル)ジエチレントリアミン、N−(ヒドロキシエチル)トリエチレンテトラミン、ピペラジン、1−(2−アミノエチル)ピペラジン、4−(2−アミノエチル)モルホリン、ポリエチレンイミン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,3−ジアミノペンタン、1,5−ジアミノペンタン、2,2−ジメチル−1,3−プロパンジアミン、ヘキサメチレンジアミン、2−メチル−1,5−ジアミノプロパン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,12−ジアミノドデカン、N−メチル−1,3−プロパンジアミン、N−エチル−1,3−プロパンジアミン、N−イソプロピル−1,3−プロパンジアミン、N,N−ジメチル−1,3−プロパンジアミン、N,N’−ジメチル−1,3−プロパンジアミン、N,N’−ジエチル−1,3−プロパンジアミン、N,N’−ジイソプロピル−1,3−プロパンジアミン、N,N,N’−トリメチル−1,3−プロパンジアミン、2−ブチル−2−エチル−1,5−ペンタンジアミン、N,N’−ジメチル−1,6−ヘキサンジアミン、3,3’−ジアミノ−N−メチルジプロピルアミン、N−(3−アミノプロピル)−1,3−プロパンジアミン、スペルミジン、ビス(ヘキサメチレン)トリアミン、N,N’,N”−トリメチルビス(ヘキサメチレン)トリアミン、4−アミノメチル−1,8−オクタンジアミン、N,N’−ビス(3−アミノプロピル)−1,3−プロパンジアミン、スペルミン、4,4’−メチレンビス(シクロヘキシルアミン)、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、1,3−シクロヘキサンビス(メチルアミン)、1,4−シクロヘキサンビス(メチルアミン)、1,2−ビス(アミノエトキシ)エタン、4,9−ジオキサ−1,12−ドデカンジアミン、4,7,10−トリオキサ−1,13−トリデカンジアミン、1,3−ジアミノヒドロキシプロパン、4,4’−メチレンジピペリジン、4−(アミノメチル)ピペリジン、ホモピペラジン、3−アミノピロリジン、4−アミノピペリジン、3−(4−アミノブチル)ピペリジン、ポリアリルアミン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(DBU)、1,5−ジアザビシクロ[4.3.0]−5−ノネン(DBN)、1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)、1,4,7−トリメチル−1,4,7−トリアザシクロノナン、1,5,9−トリメチル−1,5,9−トリアザシクロドデカン、1,4,8,11−テトラメチル−1,4,8,11−テトラアザシクロテトラデカン、4,4’−トリメチレンビス(1−メチルピペリジン)等を0.1〜30質量%含有するアルカリ水溶液の現像を行ってもよい。現像時間は3秒〜3分間、好ましくは5秒〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより、光を照射した部分は現像液に溶解せず、露光されなかった部分は溶解し、基板上に目的のネガ型のパターンが形成される。現像後純水でリンスし、スピンドライによって乾燥させパターンを得る。
【実施例】
【0041】
以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、重量平均分子量(Mw)、数平均分子量(Mn)はGPCによるポリスチレン換算値を示す。
【0042】
[実施例1〜16、比較例1〜9]
下記に示される金属のアセチルアセトン塩を、界面活性剤として3M社製のフッ素系界面活性剤FC−4430を100ppm溶解させた溶剤に表1,2に示される組成で溶解させた溶液を、0.2μmサイズのフィルターで濾過してネガ型レジスト材料を調製した。
下記表中の各組成は次の通りである。
【0043】
【化10】
【0044】
【化11】
【0045】
PGME:プロピレングリコールモノメチルエーテル
PGEE:プロピレングリコールモノエチルエーテル
PGPE:プロピレングリコールモノプロピルエーテル
PGMEA:プロピレングリコールモノメチルエーテルアセテート
MEK:メチルエチルケトン
ハイドロゲンシルセスキオキサン(Mw=4,000、Mw/Mn=1.48)
【0046】
ブレンドポリマー1:
共重合組成比(モル比)
重量平均分子量(Mw)=4,600
分子量分布(Mw/Mn)=1.47
【化12】
【0047】
酸発生剤:PAG1(下記構造式参照)
【化13】
塩基性化合物Amine1(下記構造式参照)、架橋剤(下記構造式参照)
【化14】
【0048】
レジスト塗布評価
表1,2に示されるレジスト材料を8インチウエハーに塗布し、ホットプレートで100℃で60秒間ベークし、溶剤を蒸発させた。実施例1〜16及び比較例1,2,3,5〜9では膜厚40nmのレジスト膜を形成し、比較例4では膜厚60nmのレジスト膜を形成した。光学測定式膜厚計を用いて8インチウエハー面内の膜厚を測定し、膜厚の最大から最小の値を引いた値が2nm以下の場合をOK、2nmを超える場合をNGとした。結果を表3に示す。
【0049】
電子ビーム描画評価
描画評価では、表1,2に示される組成で溶解させた溶液を、0.2μmサイズのフィルターで濾過して得たネガ型レジスト材料を直径6インチのヘキサメチルジシラザン(HMDS)ベーパープライム処理したSi基板上に、クリーントラックMark 5(東京エレクトロン(株)製)を用いてスピンコートし、ホットプレート上で110℃で60秒間プリベークして実施例1〜16及び比較例5〜9では40nmのレジスト膜を作製した。比較例4では膜厚60nmのレジスト膜を作製した。これに、(株)日立製作所製HL−800Dを用いてHV電圧50keVで真空チャンバー内描画を行った。比較例1,2,3のレジスト材料では、塗布後の膜厚均一性が悪く露光評価の再現性が悪いと考えられたため、露光評価は行わなかった。
描画後、直ちにクリーントラックMark 5(東京エレクトロン(株)製)を用いてホットプレート上で表1に記載の温度で60秒間ポストエクスポージャベーク(PEB)を行い、2.38質量%のTMAH水溶液で20秒間パドル現像を行い、ネガ型のパターンを得た。
得られたレジストパターンを次のように評価した。
100nmのラインアンドスペースを1:1で解像する露光量における、最小の寸法を解像力とし、100nmLSのエッジラフネス(LWR)をSEMで測定した。
レジスト組成とEB露光における感度、解像度の結果を表3に示す。
【0050】
【表1】
【0051】
【表2】
【0052】
【表3】
【0053】
表3の結果より、本発明のレジスト材料は、十分な解像力と適度な感度を有し、エッジラフネスも十分に小さいことがわかった。
一方、比較例のレジスト材料は、十分な感度を有しているものの、エッジラフネスは、本発明のレジスト材料に比べてかなり大きい結果となった。
【0054】
即ち、本発明のレジスト材料のように、マグネシウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、銀、カドミウム、インジウム、錫、アンチモン、セシウム、ジルコニウム及びハフニウムから選ばれる金属とβジケトン類との錯体と、水、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、tert−アミルアルコール、ネオペンチルアルコール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、3−メチル−2−ブタノール、3−メチル−3−ペンタノール、シクロペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2,3−ジメチル−2−ブタノール、3,3−ジメチル−1−ブタノール、3,3−ジメチル−2−ブタノール、2−エチル−1−ブタノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、3−メチル−3−ペンタノール、4−メチル−1−ペンタノール、4−メチル−2−ペンタノール、4−メチル−3−ペンタノール、1−ヘプタノール、シクロヘキサノール、オクタノール、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、プロピレングリコール、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメトキシメチルエーテル、プロピレングリコールモノアセテート、ジアセトンアルコール、アリルアルコール、プロパギルアルコール、3−メチル−1−ペンチン−3−オール、3−メチル−1−ブチン−3−オール、フルフリルアルコール、テトラヒドロフルフリルアルコール、及びグリシドールから選ばれる1種以上を溶剤として含むことを特徴とするレジスト材料であれば、塗布後の膜厚均一性に優れ、高解像度、高感度で、かつラインエッジラフネスも小さいため、超LSI用レジスト材料、マスクパターン形成材料等として非常に有効に用いることができると言える。
【0055】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。