【実施例】
【0028】
以下に実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0029】
[実施例1]
純度99.9%、平均粒径1.0μmの酸化イットリウム(Y
2O
3)粉末と、純度99.0%、平均粒径0.5μmの酸化アルミニウム(Al
2O
3)粉末と、純度99.9%、平均粒径0.2μmの酸化セリウム(CeO
2)粉末とを、各々Y:Al:Ce=2.98:5:0.02のモル比でミキサーにて30分混合し、500gの混合粉末を得た。次に、この混合粉末を、大気雰囲気中、1400℃で4時間焼成し、ガーネット相単相組成の原料粉末(1−1)500gを得た。
【0030】
一方、純度99.9%、平均粒径1.0μmの酸化イットリウム(Y
2O
3)粉末と、純度99.0%、平均粒径0.5μmの酸化アルミニウム(Al
2O
3)粉末と、純度99.9%、平均粒径0.2μmの酸化セリウム(CeO
2)粉末とを、各々Y:Al:Ce=2.98:3.00:0.02のモル比で混合し、1gの混合粉末を得た。次に、この混合粉末を、大気雰囲気中、1400℃で4時間焼成し、ぺロブスカイト相単相組成の原料粉末(1−2)1gを得た。
【0031】
これら原料粉末(1−1)及び(1−2)を、ミキサーにて1時間混合し、焼結用の原料粉末(1)を得た。次に、得られた原料粉末(1)を1軸プレスでプレス成形した後、1750℃にて真空焼結することで、緻密な焼結体を得た。得られた焼結体から縦1.5mm、横2.0mm、厚さ200μmの薄板状の焼結体を切り出して、波長変換部材とした。
【0032】
この波長変換部材の焼結密度を測定したところ4.55g/cm
3で、気孔率は0.1体積%であった。この波長変換部材の断面を観察したところ、気泡の少ない緻密な焼結体であった。また、この波長変換部材をXRDで定性分析したところ、主相はYAG相(ガーネット相)であり、それ以外にYAP相(ペロブスカイト相)が確認された。更に、この波長変換部材の組織を電子顕微鏡で観察し、EPMAで分析したところ、平均粒径が約3μmのYAP相が、YAG相に包含されて分散した状態でYAG相中に存在していることが確認された。
図2に電子顕微鏡像及びEPMA像を示す。
【0033】
得られた波長変換部材を470nmの光で励起したところ、波長変換部材の内部量子効率は0.90であった。また、この波長変換部材に470nmの点光源を照射したところ、光源の照射面と反対側の面で、色むらのない発光が得られた。
【0034】
[実施例2]
実施例1と同様の方法で、原料粉末(1−1)500gを得た。一方、純度99.9%、平均粒径1.0μmの酸化イットリウム(Y
2O
3)粉末と、純度99.0%、平均粒径0.5μmの酸化アルミニウム(Al
2O
3)粉末と、純度99.9%、平均粒径0.2μmの酸化セリウム(CeO
2)粉末とを、各々Y:Al:Ce=3.98:2.00:0.02のモル比で混合し、1gの混合粉末を得た。次に、この混合粉末を、大気雰囲気中、1400℃で4時間焼成し、モノクリニック相単相組成の原料粉末(2−2)1gを得た。
【0035】
これら原料粉末(1−1)及び(2−2)を、ミキサーにて1時間混合し、焼結用の原料粉末(2)を得た。次に、得られた原料粉末(2)を1軸プレスでプレス成形した後、1750℃にて真空焼結することで、緻密な焼結体を得た。得られた焼結体から縦1.5mm、横2.0mm、厚さ200μmの薄板状の焼結体を切り出して、波長変換部材とした。
【0036】
この波長変換部材の焼結密度を測定したところ4.55g/cm
3で、気孔率は0.1体積%であった。この波長変換部材の断面を観察したところ、気泡の少ない緻密な焼結体であった。また、この波長変換部材をXRDで定性分析したところ、主相はYAG相(ガーネット相)であり、それ以外にYAM相(モノクリニック相)が確認された。更に、この波長変換部材の組織を電子顕微鏡で観察し、EPMAで分析したところ、平均粒径が約5μmのYAM相が、YAG相に包含されて分散した状態でYAG相中に存在していることが確認された。
図3に電子顕微鏡像及びEPMA像を示す。
【0037】
得られた波長変換部材を470nmの光で励起したところ、波長変換部材の内部量子効率は0.92であった。また、この波長変換部材に470nmの点光源を照射したところ、光源の照射面と反対側の面で、色むらのない発光が得られた。
【0038】
[実施例3]
純度99.9%、平均粒径1.0μmの酸化イットリウム(Y
2O
3)粉末と、純度99.0%、平均粒径0.5μmの酸化アルミニウム(Al
2O
3)粉末と、純度99.9%、平均粒径0.2μmの酸化セリウム(CeO
2)粉末とを、各々Y:Al:Ce=2.99:5:0.01のモル比でミキサーにて30分混合し、混合粉末を得た。次に、この混合粉末を、大気雰囲気中、1400℃で4時間焼成し、ガーネット相単相組成の原料粉末(3−1)を得た。
【0039】
この原料粉末(3−1)に、酸化ケイ素粉末を2000ppmとなるように添加し、ミキサーにて1時間混合し、焼結用の原料粉末(3)100gを得た。次に、得られた原料粉末(3)を1軸プレスでプレス成形した後、1780℃で真空焼結することで、緻密な焼結体を得た。得られた焼結体から縦1.5mm、横2.0mm、厚さ200μmの薄板状の焼結体を切り出して、波長変換部材とした。
【0040】
この波長変換部材の焼結密度を測定したところ4.54g/cm
3で、気孔率は0.2体積%であった。この波長変換部材の断面を観察したところ、気泡の少ない緻密な焼結体であった。また、この波長変換部材をXRDで定性分析したところ、主相はYAG相(ガーネット相)であり、それ以外にシリケート相が確認された。更に、この波長変換部材の組織を電子顕微鏡で観察し、EPMAで分析したところ、平均粒径が約5μmのシリケート相が、YAG相に包含されて分散した状態でYAG相中に存在していることが確認された。
図4に電子顕微鏡像及びEPMA像を示す。
【0041】
得られた波長変換部材を470nmの光で励起したところ、波長変換部材の内部量子効率は0.92であった。また、この波長変換部材に470nmの点光源を照射したところ、光源の照射面と反対側の面で、色むらのない発光が得られた。
【0042】
[比較例1]
実施例1と同様の方法で、原料粉末(1−1)500gを得た。次に、得られた原料粉末(2)を1軸プレスでプレス成形した後、1750℃にて真空焼結することで、緻密な焼結体を得た。得られた焼結体から縦1.5mm、横2.0mm、厚さ200μmの薄板状の焼結体を切り出して、波長変換部材とした。
【0043】
この波長変換部材の焼結密度を測定したところ4.55g/cm
3で、気孔率は0.1体積%であった。また、この波長変換部材をXRDで定性分析したところ、ガーネット相であった。更に、この波長変換部材の組織を電子顕微鏡で観察し、EPMAで分析したところ、ガーネット相以外の相は観察されなかった。
図5に電子顕微鏡像及びEPMA像を示す。
【0044】
得られた波長変換部材を470nmの光で励起したところ、波長変換部材の内部量子効率は0.90であった。また、この波長変換部材に470nmの点光源を照射したところ、光源の照射面と反対側の面で、色むらがある発光しか得られなかった。