【実施例】
【0050】
以下、本発明の好ましい実施形態を、図面を参照しながらより詳細に説明する。
製造例1A:ヒトP450酵素タンパク質の大腸菌内における安定発現とP450含有膜画分の調製および活性評価
1.ヒトP450発現
P450発現用カセットプラスミド、pCWRm1A2Nに対し、ヒト主要P450遺伝子(CYP1A1など)およびヒトNADPH−P450還元酵素をタンデムに挿入したP450発現用カセットプラスミドを用いて大腸菌での発現を試みた。大腸菌の形質転換は、定法によりコンピテントDH5αを形質転換する事により行った。また、各プラスミドの大腸菌への導入確認は、LB培地に添加した抗生物質アンピシリンによる薬剤耐性能を評価することにより行った。抗生物質アンピシリンを含むLB寒天培地上の単一大腸菌コロニーを、2.5mlのTB液体培地へと植菌することにより組換え大腸菌の培養を開始した。前培養は、16時間、37℃の条件下で行った。次に、終濃度500μg/mlのアミノレブリン酸および終濃度50μg /mlのアンピシリンを含むLB培地中でOD値が0.3前後になるまで約3時間培養した。次に、37℃の培養後培養温度を28℃まで下げると同時に終濃度1mMのIPTGを添加し、引き続き24時間培養を行った。組換え大腸菌株は、遠心分離操作により大腸菌培養液から回収した。各P450酵素タンパク質の大腸菌内における発現量については、還元型CO差スペクトルを測定する事により評価した。還元型CO差スペクトルは、定法に従い還元条件下でCOを通気することにより測定した。P450のモル数は、佐藤・大村らの定数を用いて算出した(T. Omura, and R. Sato, J. Biol. Chem. 1964, 239, 2370-2378.)。
【0051】
2.膜画分精製
大腸菌膜画分(ミクロソーム)の精製は以下の方法により行った。200mlのTB培養液を3000gで10分間遠心して集菌した後、30秒ずつ計6回の超音波破砕処理を行い菌体を破砕した。次に、この菌体破砕液を10,000rpmで10分間遠心する事により大腸菌残渣を遠心分離した。遠心操作後に得られた上清を4℃、40,000rpm(100,000g)で超遠心分離操作を行い、P450酵素タンパク質を含む膜画分を回収した後にこの大腸菌膜画分を3mlのP450保存緩衝液(20%グリセロールを含む100mMリン酸カリウム緩衝液(pH7.5))に分散させた。
【0052】
3.活性計測
調製後の組換え大腸菌におけるヒトCYP1A1による薬物代謝活性については、高速液体クロマトグラフィー(HPLC)法により評価した。酵素基質としては、P450モデル蛍光基質である7−エトキシクマリンを用いた。酵素反応は、先に培養したP450酵素タンパク質を発現させた組換え大腸菌株に対して直接基質を添加する方法と、P450酵素タンパク質を発現させた組換え大腸菌株から超遠心法を用いて精製した大腸菌膜画分を用いる2種類の方法を検討した。P450による酸化反応は、P450発現大腸菌株を用いた際には終濃度0.1mMの各種酵素基質を添加した後に、50時間、28℃でインキュベーションする事により反応させた。一方、P450を発現させた大腸菌膜画分を用いた代謝実験の際には、補酵素として終濃度0.2mMのNADPHを反応液に添加した。HPLC解析は、HITACHI製D7000HPLCシステムにナカライテスク製のC18逆相カラム, COSMOCIL (5C18-AR)を用い、溶離液としてMeOH/H2O(0.85%リン酸含む)35対65から100対0への直線的グラジエント法を用いた。
【0053】
実施例1A
1 材料
テトラエチルオルトシリケート(TEOS), トリエトキシ(オクチル)シラン (オクチル-トリEOS), Ludox HS-40 コロイダルシリカ, アガロース(Type VII) 及び珪酸ナトリウム溶液をSIGMA-ALDRICHから購入した。 トリ(4,7-ジフェニル-1,10-フェナンスロリン) ルテニウムジクロリド(Ru(dpp)
3Cl
2), エタノール, メタノール及び濃塩酸は、和光純薬工業から入手した、リン酸ニ水素カリウム、β-ニコチンアミドアデニンジヌクレオチドリン酸四ナトリウム塩(NADPH)及びリン酸水素二カリウムは、ナカライテスクから購入した。クロルトルロンは、Riedel-de Haenから入手した。グルコース-6-リン酸(G6P)は東京化成工業(株)から購入した。グルコース-6-リン酸デヒドロゲナーゼ (G6PD)は東洋紡績株式会社から購入した。96マイクロウェルプレートはNUNCから購入した。18 MΩ.cm以上の抵抗率を有するミリQ水は、水溶液を調製するのに使用した。全ての化学薬品、溶媒は分析試薬グレードであり、さらに精製することなく使用した。
【0054】
2 装置
全ての発光測定は、励起波長と発光波長が各々400 nmと620 nmであるソフトウェアAscent software version 2.4により制御されたマイクロプレートリーダーFluoroskan Ascent CF (Labsystem)で行った。アガロースゲルの透明性のため、測定にはプレート上部からの観察(トップモード)を使用した。
【0055】
3 マイクロプレート上での酸素センサー層の調製
ルテニウム錯体(Ru(dpp)
3Cl
2)をドープしたゾル溶液を文献(Anal. Chem. 75 (2003) 2407-2413.)に記載の方法を改良し、以下のように調製した。0.29 ml TEOSを0.612 ml オクチル-トリEOS, 0.625 mLエタノール及び0.2 mLの0.1 M HClと撹拌しながら室温で1時間混合した。次いで最終的に形成される酸素センサーフィルムの品質を改良するために、1.725 mLのエタノールを該溶液に加えてゾルを希釈した。溶液を1時間撹拌し続けた。Ru(dpp)3Cl2ドープしたゾルを調製するために、100 μLの2 mM Ru(dpp)
3Cl
2 のエタノール溶液を300 μL の上記ゾル溶液と混合した。これらの混合溶液にキャップをして30分間撹拌し、10 μLをマイクロプレートの各ウェルにピペットで加えた。マイクロプレートを暗所・室温で保存してゲル化させ、さらに6日間エージングした。酸素センサー表面の親水性を向上しハイドロゲルとの接着性を増大するために、ポリ (ビニルアセテート) (PVAC)を使用してマイクロアレイの表面を修飾した。
【0056】
4 アガロースゲル、TEOSゲル及びLudoxゲルへのP450膜画分封入
アガロースを純水に溶解し、60℃で1.3%(w/w)溶液を調製した。この溶液を約38 ℃に冷却した。100 μL のP450 懸濁液を300 μLの1.3%アガロースゾルと混合し、次いで60 μLのP450/アガロースゾルをマイクロプレートの各ウェルの酸素センサー層表面にピペットで加えた。マイクロプレートを使用するまで冷蔵庫に4℃で保存した。酸素センサーマイクロアレイにおけるP450封入アガロースゲルの概略図を
図8に示す。
【0057】
TEOS ゾルは、0.5 mL TEOS, 0.25 mL純水及び12.5 μLの0.1 M HClを混合し、3時間撹拌して均質ゾルを形成することにより調製した。該ゾルを純水で4倍希釈した。300 μLの希釈したTEOSゾルを100 μLのP450ミクロソーム懸濁液と混合し、60 μLの該ゾルをピペットでマイクロプレートの各ウェルの酸素センサー層表面に加えた。マイクロプレートはまた、冷蔵庫中に4 ℃で保存した。
【0058】
Ludoxゾルを文献(Anal. Chem. 77 (2005) 7080-7083及びJ. Mater. Chem. 13 (2003) 203-208)に記載のように調製した。具体的には、0.5 mLの8.5 M Ludox コロイダルシリカを0.5 mLの0.16 M 珪酸ナトリウム溶液と撹拌しながら混合した。4.0 M HClをpH値を約 7に中和するために使用した。次いで、100 μLのP450ミクロソーム懸濁液を300 μLの上記Ludoxシリカゾルと混合した。60 μLのP450ドープされたゾルをマイクロプレートの各ウェルに1滴ずつ加えた。マイクロプレートを使用するまで4℃の冷蔵庫で保存した。
【0059】
5 固定化P450・酸素センサー積層基板による基質代謝活性の測定
固定化P450・酸素センサー積層基板による基質代謝活性を測定するため、P450としてヒトCYP1A1を固定化し、基質としてクロルトルロン(除草剤)用いて、検討を行った。クロロトルロンの濃度を変えた標準基質溶液は、以下のように調製した。様々な濃度 (0.8, 4, 8, 20, 40 mM)の25 μLのクロルトルロン/エタノール溶液を、NADPH再生系(0.1 mM NADPH、3 mM MgCl
2、3 mM G6P及び0.4 U/mL G6PD)を含む1975 μLの0.1 M KPB溶液に加えた。クロルトルロンの最終濃度は0.01, 0.05, 0.1, 0.25及び0.5 mMであった。固定化P450・酸素センサー積層基板を含有するマイクロプレートの各ウェルに、基質濃度の異なる各溶液250 μLを加えた。透明ポリマーテープを使用してプレートの各ウェルをシールし、酵素反応中に空気中の酸素が該溶液に混入するのを防止した。マイクロアレイへの基質溶液の添加後、蛍光測定のためにマイクロプレートをマイクロプレートリーダーのプラットフォーム上に速やかに置いた。蛍光強度は3時間、5分ごとに記録した。
【0060】
結果
1 アガロースゲル, Ludoxシリカゲル及びTEOSシリカゲルに封入したP450によるクロルトルロン代謝応答
P450を封入するマトリックスとして、アガロースゲル, Ludoxシリカゲル及びTEOSシリカゲルを用い、代謝活性の検討を行った。
図3Aは、クロルトルロン溶液 (0.5 mM)およびクロロトルロンを含まない溶液(両者ともNADPH再生系を含有)がP450 封入アガロースゲルに導入された際の酸素センサー層の蛍光強度の計時変化を示す。基質を添加しない場合でも、わずかな蛍光強度の増加が示された(■)。これはP450酵素存在下のNADPH 酸化による副反応が寄与しているものと考えられる。基質 (0.5 mM クロルトルロン)の存在下では、蛍光強度が有意に増加し(●)、時間とともに定常状態に達することが観察された。蛍光の増大は、アガロースゲル中に封入されたP450ミクロソームが水溶液中と同様にP450酵素活性を維持し、クロルトルロンに代謝反応を通じた酸素消費を行うことを反映している。蛍光の変化は、溶液相系における遊離形態のP450の代謝反応において見られる類似の速度論的挙動を示す。これは、アガロースゲルの微細孔構造がNADPHと基質の早い拡散による供給を可能にするためであると考えられる。
【0061】
図3B及び3Cは、P450封入Ludoxシリカゲル及びTEOSシリカゲルを酸素センサーに積層した基板の基質(0.5 mM クロルトルロン)の存在下及び非存在下における蛍光応答を示す。Ludoxシリカゲルでは、P450封入アガロースゲルの結果と比較して、NADPHからのより高いバックグラウンドの酸素消費が
図3B(■)で観察された。一方、基質を添加した場合においても、蛍光増加は顕著に増大しなかった。これは、P450代謝活性が無機材料であるLudoxシリカゲル内では抑制されている、基質の拡散が制限されている、などの原因が考えられる。TEOSシリカゲルに封入されたP450においては、基質不在下におけるバックグラウンド酸素消費は低いが、基質存在下においてもに明確な蛍光増加は起こらなかった(
図3C)。これは、TEOS の加水分解により生じるエタノールがP450酵素活性を低下させるためであると考えられる。
【0062】
アガロースゲル中でのP450ミクロソームの安定性を評価するために、P450代謝マイクロアレイを10日間及び21日間維持し、クロルトルロン試験と同じ実験方法を用いてP450ミクロソームの活性を評価した。P450マイクロアレイは、3週間維持した後でさえも類似の触媒挙動を示す。このことは、P450 活性がアガロースゲル封入により長期間保存されることを意味する。
【0063】
2 異なる基質濃度に対するP450封入アガロースゲルの応答
異なる濃度のクロルトルロン溶液をP450封入アガロースゲルに導入し、酸素センサーの蛍光応答を評価した。
図4Aは、異なる濃度のクロルトルロン溶液存在下における蛍光強度の時間変化を示す。P450封入アガロースゲルは基質の濃度変化に敏感であり、異なる濃度では異なる蛍光強度変化を示した(
図4A)。経時的な蛍光強度変化は、シグモイダル曲線にフィットすることが可能であり、0.99という高い相関係数を有することが分かった。これは微生物の生化学的酸素要求(BOD)バイオセンサーと類似する挙動であり、蛍光強度の微分値を用いたdynamic transient method (DTM) を使用してデータを解析することが可能である。
図4Bは、
図4Aに示される蛍光強度増加の微分値(変位速度)を示す。蛍光強度の変位速度は、基質がP450に代謝されることにより生じる酸素消費に対応して、最初の1時間増加を続ける。次に、酸素もしくは基質の消耗を反映して、変異速度が時間とともに減少する。
図4Cは、蛍光変位速度の最大値を基質(クロルトルロン)濃度に対してプロットしたものである。エラーバーは、標準偏差を示す。また、赤い曲線は、データをミカエリス・メンテンの式でフィッティングしたものである。DTM法により得られる蛍光変位速度の最大値は、近似的ではあるがミカエリス・メンテンの速度モデルで評価できることが示された。
【0064】
実施例2A:積層構造及び溶液中のP450酵素活性検出比較
P450としてCYP1A1を、基質としてクロロトルロンを各々使用し、実施例1Aと同様にして、CYP1A1をアガロースゲルに固定化した積層基板を作製し、CYP1A1の酵素活性を蛍光強度の変化により測定した。また、CYP1A1を溶液中に同一濃度(膜画分サンプルを15μL添加)懸濁し、クロロトルロンを0.2mMの濃度で存在させ、CYP1A1の酵素活性を蛍光強度の変化により測定した。結果を
図9に示す。
【0065】
実施例3A:異なる化合物に対するP450分子種の代謝活性
96ウェルマイクロプレートを用いて、酸素センサー表面に異なる分子種のヒトP450 ((A) CYP1A1, (B) CYP2C8, (C) CYP2E1, (D) CYP3A4)を固定化し、食品内成分(カプサイシン、サフロール、エストラゴール、7−クマリン、5−MOP、8−MOP)および農薬(クロロトルロン)に対する蛍光応答を求めた。結果を
図10−1、
図10−2に示す。
図10−1は、酸素センサー蛍光強度の経時変化を示し、
図10−2は各化合物に対する酸素センサー応答最大値を示す。
図10−2の縦軸は、基質がある場合の応答を基質がない場合(NADPH)の応答(バックグランド酸素消費)で割って規格化した値である。各化合物に対して、異なる分子種が活性を示すことが分かる。この結果は、酸素センサーの蛍光応答を多種類の分子種に対して取得しパターン化することにより、化合物の同定に本センサーが利用できる可能性を示すものである。また、医薬品などの化合物に対するヒトP450の活性を並列で検出できる可能性も示している。
【0066】
実施例4A:化合物に対する多様なP450分子種の代謝活性
96ウェルマイクロプレートを用いて、酸素センサー/固定化P450のカプサイシンに対する多様なヒトP450分子種の活性評価を行った。基質のある溶液と基質のない溶液に対する応答を比較し、各分子種の活性を標準化した。P450としては、CYP2C9、CYP1A2、CYP2D6、CYP3A4、CYP2B6、CYP2C19(1A,1B)、CYP2E1、CYP1A1、CYP2C8、CYP2W1、CYP4X1、CYP17A1、CYP27A1、CYP51A1、CYP2A6、CYP2A13、CYP1B1、CYP2C18、CYP2J2、CYP3A5、CYP2R1、CYP2B6を用いた。また、ヒトP450を含まないネガティブコントロールとして、大腸菌由来の膜画分(pCW)を用いた。結果を
図11に示す。
図11の縦軸は、基質がある場合の応答を基質がない場合の応答(バックグランド酸素消費)で割って規格化した値である。各化合物に対して、異なる分子種が活性を示すことが分かる。この結果は、酸素センサーの蛍光応答を多種類の分子種に対して取得しパターン化することにより、化合物の同定に本センサーが利用できる可能性を示すものである。また、医薬品などの化合物に対するヒトP450の活性を並列で検出できる可能性も示している。
【0067】
製造例1B:ケージドNADPの合成
2-Nitrophenyl-acetophenone hydrazone(26.9mg 0.15mmol)をジクロロメタン (0.3ml)に溶かし、酸化マンガン(65.2mg、0.75mmol)を 加え、5分間攪拌した。その後、遠心し、上清をPTFEフィルター(ミリポア製、孔径0.75μm)でろ過し、NADP水溶液(77mg(0.1mmol) を0.3mlの水に溶かした溶液)を加え、2時間攪拌した。水層をジクロロメタンで2回洗浄した後、凍結乾燥し、116mgの白色粉末を得た。これをアセトニトリルとトリフルオロ酢酸を含む溶離液を用いたC-18逆相HPLCで精製し、凍結乾燥し、白色粉末の目的物(ケージド基が式I(R
1、R
2、R
3=H、R=CH
3)のケージドNADP)を得た。質量分析(ESI):計算値 892.4、観測値 893.1 for [M+H
+]
【0068】
製造例2B:ケージドG6Pの合成
2-Nitrophenyl-acetophenone hydrazone(1.26mmol、225mg)をジクロロメタン (1ml)に溶かし、酸化マンガン(369.9mg)を 加え、30分間攪拌した。その後、遠心し、上清をPTFEフィルター(ミリポア製、孔径0.75μm)でろ過し、グルコース6リン酸Na塩水溶液(87.3mg(0.31mmol) を1mlの水に溶かした溶液)を加え、1晩攪拌した。水層をジクロロメタンで2回洗浄した後、凍結乾燥し、116mgの白色粉末を得た。これをアセトニトリルと10mM炭酸水素アンモニウムを含む溶離液を用いたC-18逆相HPLCで精製し、凍結乾燥を2回行い、白色粉末の目的物(ケージド基が式I(R
1、R
2、R
3=H、R=CH
3)のケージドG6P)を得た(97.8mg、収率77%)。質量分析(ESI):計算値 409.07、観測値 432.3 for [M+Na
+]
【0069】
製造例3B:ケージドNADPの合成2
3,4-dimethoxy-2-Nitrophenyl-acetophenone hydrazoneを用い、製造例1Bと同様な操作により、白色粉末の目的物(ケージド基が式I(R
1=4-methoxy、R
2=5-methoxy、R
3=H、R=CH
3)であるケージドNADP)を得た。質量分析(ESI):m/z 計算値 953.15 for [M
+]、観測値 953.2 for [M
+]
【0070】
製造例4B:ケージドG6Pの合成2
3,4-dimethoxy-2-Nitrophenyl-acetophenone hydrazoneを用い、製造例2Bと同様な操作により、白色粉末の目的物(ケージド基が式I(R
1=4-methoxy、R
2=5-methoxy、R
3=H、R=CH
3)であるケージドG6P)を得た。質量分析(ESI):m/z 計算値 469.099 for [M]、観測値 470.2 for [M+H
+], 492.3 for [M+Na
+], 508.1 for [M+K
+], 482.3 for [2M+Na
++H
+]
【0071】
参考実験1B:ケージドNADPの光分解
製造例1Bの凍結乾燥前のケージドNADPの水溶液25μlをエッペンドルフチューブにとり、紫外線ランプ(150W 水銀キセノンランプ、浜松ホトニクス製)の光を5分照射したところ、ケージドNADPに相当するm/e=893.1のピークが減少し、NADPに相当するm/e=744.1([M+H
+])のピークの出現が観察された。このことから、ケージドNADPのケージド基を紫外光照射により脱保護し、NADPを与えることが確認された。
【0072】
製造例5B:ヒトP450酵素およびP450還元酵素の大腸菌内安定発現と膜画分の調製
1.ヒトP450およびP450還元酵素の発現
P450発現用カセットプラスミド、pCWRm1A2Nに対し、ヒト主要P450(CYP1A1)およびヒトNADPH−P450還元酵素をタンデムに挿入したP450発現用カセットプラスミドを用いて大腸菌での発現を試みた。大腸菌の形質転換は、定法によりコンピテントDH5αを形質転換する事により行った。また、各プラスミドの大腸菌への導入確認は、LB培地に添加した抗生物質アンピシリンによる薬剤耐性能を評価することにより行った。抗生物質アンピシリンを含むLB寒天培地上の単一大腸菌コロニーを、2.5mlのTB液体培地へと植菌することにより組換え大腸菌の培養を開始した。前培養は、16時間、37℃の条件下で行った。次に、終濃度500μg/mlのアミノレブリン酸および終濃度50μg /mlのアンピシリンを含むLB培地中でOD値が0.3前後になるまで約3時間培養した。次に、37℃の培養後培養温度を28℃まで下げると同時に終濃度1mMのIPTGを添加し、引き続き24時間培養を行った。組換え大腸菌株は、遠心分離操作により大腸菌培養液から回収した。各P450酵素タンパク質の大腸菌内における発現量については、還元型CO差スペクトルを測定する事により評価した。還元型CO差スペクトルは、定法に従い還元条件下でCOを通気することにより測定した。P450のモル数は、佐藤・大村らの定数を用いて算出した。
【0073】
2.膜画分精製
大腸菌膜画分の精製は以下の方法により行った。200mlのTB培養液を3000gで10分間遠心して集菌した後、30秒ずつ計6回の超音波破砕処理を行い、菌体を破砕した。次に、この菌体破砕液を10,000rpmで10分間遠心する事により大腸菌残渣を遠心分離した。遠心操作後に得られた上清を4℃、40,000rpm(100,000g)で超遠心分離操作を行い、P450酵素タンパク質を含む膜画分を回収した後にこの大腸菌膜画分を3mlのP450保存緩衝液(20%グリセロールを含む100mMリン酸カリウム緩衝液(pH7.5))に分散させた。
【0074】
試験例1B:活性計測
調製後の組換え大腸菌におけるヒトCYP1A1による薬物代謝活性については、高速液体クロマトグラフィー(HPLC)法により評価した。酵素基質としては、P450モデル蛍光基質である7−エトキシクマリン(7EC)を用いた。酵素反応は、先に培養したP450酵素タンパク質を発現させた組換え大腸菌株に対して直接基質を添加する方法と、P450酵素タンパク質を発現させた組換え大腸菌株から超遠心法を用いて精製した大腸菌膜画分を用いる2種類の方法を検討した。P450による酸化反応は、P450発現大腸菌株を用いた際には終濃度0.1mMの各種酵素基質を添加した後に、50時間、28℃でインキュベーションする事により反応させた。一方、P450を発現させた大腸菌膜画分を用いた代謝実験の際には、補酵素として終濃度0.2mMのNADPHを反応液に添加した。HPLC解析は、HITACHI製D7000HPLCシステムにナカライテスク製のC18逆相カラム, COSMOCIL (5C18-AR)を用い、溶離液としてMeOH/H
2O(0.85%リン酸含む)35対65から100対0への直線的グラジエント法を用いた。
【0075】
試験例2B ケージドNADPを用いたチトクロムP450の酵素活性計測
ケージドNADPを用いてチトクロムP450酵素活性を測定した。反応液は、1M カリウムリン酸緩衝液 50μL、40mM 7−エトキシレゾルフィン(7ER)6.25μL、50mM G6P30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mMケージドNADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。(ウシオスポットキュア:光強度14〜15mW/cm
2 (365nm))紫外光を異なる時間照射してケージドNADPをNADPに変換した後、30分間インキュベーションしてP450酵素反応を行った。その後、30% トリクロロ酢酸を25μL添加し、酵素反応を停止した。反応液にクロロホルムを500μL添加し、1分間撹拌することで、反応で生成した7−ハイドロキシクマリン(7HR)をクロロホルムに抽出した。1分間遠心分離後、下層のクロロホルム層を250μL回収し、0.01M NaOH/ 0.1M NaClを500μL添加して1分間撹拌することで、7HRを水溶液に再抽出した。1分間遠心分離後、上層をキュベットに移し取り、蛍光スペクトルを以下の条件で測定した(日立F-4500)。励起波長:366nm、蛍光波長:380nm-600nm。蛍光極大値を用いて、7HRを定量した。また、光照射によるケージドNADPの脱保護およびチトクロムP450の失活の影響を個別に検討するため、以下の条件でも検討を行った。(A)ケージドNADPのみに紫外光を照射して反応液に加える。(B)P450を含む反応液に光照射を行い通常のNADPを加える。結果は、
図14に示される。ケージドNADPのみに紫外光照射してP450活性アッセイに用いた場合(A)では、紫外光照射量とともに活性が上昇し、約8秒で一定値に達していることが分かった。一方、(B)に示されるように、紫外光照射によりP450酵素の活性が徐々に低下するという副作用が存在することも分かった。これは、P450が色素を持つヘムタンパク質であるためであると考えられる。従って、P450酵素存在下でケージドNADPに紫外光照射を行うと、紫外光照射時間に対するP450活性化の依存性は、ケージドNADP脱保護とP450の失活の両方の効果を足しあわせた挙動となることが分かった(C)。酵素活性化のために至適な照射時間は、約8秒であることが分かった。なお、ケージドNADPは、P450試料内に含まれる内在性NADPのために、保護された状態でも若干の反応がバックグランドとして進行することが確認された。
【0076】
試験例3B:ケージドG6Pを用いたチトクロムP450の酵素活性計測
ケージドG6Pを用いてチトクロムP450酵素活性を測定した。反応液は、1M カリウムリン酸緩衝液 50μL、40mM 7−エトキシレゾルフィン(7ER)6.25μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。紫外光を異なる時間照射してケージドG6PをG6Pに変換した後、30分間インキュベーションしてP450酵素反応を行った。その後、30% トリクロロ酢酸を25μL添加し、酵素反応を停止した。反応液にクロロホルムを500μL添加し、1分間撹拌することで、反応で生成した7−ハイドロキシクマリン(7HR)をクロロホルムに抽出した。1分間遠心分離後、下層のクロロホルム層を250μL回収し、0.01M NaOH/ 0.1M NaClを500μL添加して1分間撹拌することで、7HRを水溶液に再抽出した。1分間遠心分離後、上層をキュベットに移し取り、蛍光スペクトルを以下の条件で測定した。励起波長:366nm、蛍光波長:380nm-600nm。蛍光極大値を用いて、7HRを定量した。また、光照射によるケージドG6Pの脱保護およびチトクロムP450の失活の影響を個別に検討するため、以下の条件でも検討を行った。(A)ケージドG6Pのみに紫外光を照射して反応液に加える。(B)P450を含む反応液に光照射を行い通常のG6Pを加える。結果は、
図15に示される。ケージドG6Pのみに紫外光照射してP450活性アッセイに用いた場合(A)では、紫外光照射量とともに活性が上昇し、約4秒で一定値に達していることが分かった。一方、紫外光照射によりP450酵素の活性が徐々に低下するという副作用が存在することも分かった(B)。従って、P450酵素存在下でケージドG6Pに紫外光照射を行うと、紫外光照射時間に対するP450活性化の依存性は、ケージドG6P脱保護とP450の失活の両方の効果を足しあわせた挙動となることが分かった(C)。酵素活性化のために至適な照射時間は、約4秒であった。なお、ケージドNADPは、P450試料内に含まれる内在性NADPのために、保護された状態でも若干の反応がバックグランドとして進行するが、ケージドG6Pの場合は、保護された状態におけるバックグランド反応はほぼ無視できる。従って、単体で用いる場合には、ケージドG6Pの方がより精密な光制御を行えると言える。
【0077】
試験例4B:ケージドNADPとケージドG6Pを併用したチトクロムP450の酵素活性計測
試験例2B−3Bの結果から、ケージドNADPとケージドG6Pはいずれも、比較的短時間の光照射によってP450酵素活性を制御できることが分かった。また、ケージドNADPは、P450試料内に含まれる内在性NADPのために、保護された状態でも若干の反応がバックグランドとして進行する。ケージドNADPとケージドG6Pを併用することでより強固なP450の活性抑制が可能になり、より精密な酵素活性計測が可能になるものと考えられる。
【0078】
ケージドNADPおよびケージドG6Pを同時に用いてチトクロムP450酵素活性を測定した。反応液は、1M カリウムリン酸緩衝液 50μL、40mM 7−エトキシレゾルフィン(7ER)6.25μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM ケージドNADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。紫外光を異なる時間照射してケージドNADPおよびケージドG6PをNADP、G6Pに変換した後、30分間インキュベーションしてP450酵素反応を行った。その後、30% トリクロロ酢酸を25μL添加し、酵素反応を停止した。反応液にクロロホルムを500μL添加し、1分間撹拌することで、反応で生成した7−ハイドロキシクマリン(7HR)をクロロホルムに抽出した。1分間遠心分離後、下層のクロロホルム層を250μL回収し、0.01M NaOH/ 0.1M NaClを500μL添加して1分間撹拌することで、7HRを水溶液に再抽出した。1分間遠心分離後、上層をキュベットに移し取り、蛍光スペクトルを以下の条件で測定した。励起波長:366nm、蛍光波長:380nm-600nm。蛍光極大値を用いて、7HRを定量した。結果は、
図16に示される。ケージドNADPもしくはケージドG6Pを単体で使用した場合と較べて、より長い紫外光照射が必要であり、至適な照射時間は約15秒であった。一方、紫外光を照射しない条件(ケージドNADPとケージドG6Pを用いた反応)のP450酵素反応は、ケージドG6P単体を用いた場合よりもさらに小さく、より強固なP450の活性抑制が可能であることが分かった。
図17にケージドNADPもしくはケージドG6Pを単体で使用した場合、および両者を併用した場合の結果のまとめを示す。P450活性は、通常のNADPとG6Pを用いた場合の活性を基準値として規格化した。ケージドG6Pを単体で使用した場合に最も短時間の紫外光照射で活性が極大となり、他の条件に較べて活性の最大値も大きいことが分かった。一方、両者を併用した場合には、活性化するために要する紫外光照射時間が長く、極大における活性が最も低かった。以上の結果から、2種類のケージド化合物の併用は、保護状態での強固な活性抑制というメリットはあるが、光による活性化という目的からは、ケージドG6Pを単体で用いるのが最も効果的であると考えられる。
【0079】
試験例5B:マイクロウェルを使用したチトクロムP450の酵素活性計測
ケージド化合物を用いることにより、局所的紫外光照射で酵素活性を空間的に制御することが可能である。このことを示すために、幅100μm、深さ30μmのサイズを持つマイクロウェルをシリコンエラストマー(ポリジメチルシロキサン:PDMS)で作製し、その中にチトクロムP450酵素活性測定反応液を導入して、光学顕微鏡下で局所的に紫外光を照射することにより、光を照射したマイクロウェル内でのみP450酵素を活性化する実験を行った。反応液は、1M カリウムリン酸緩衝液 50μL、40mM 7−エトキシレゾルフィン(7ER)6.25μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。反応液をPDMSマイクロウェルの上に滴下し、スライドガラスをその上からかぶせることで、溶液を各ウェル内に封入した。蛍光顕微鏡(オリンパスBX51WI)によってマイクロウェル内の蛍光を5分間観察(励起:545-580nm、蛍光:610nm以上)した後、励起光フィルターの波長を330-385nmに切り替え8秒間照射することで、マイクロウェル内のケージドG6Pの脱保護を行った。紫外光照射領域は、ピンホールを用いてひとつのマイクロウェル内に限定した。その後励起光波長域を再度変更し10秒間観察を続けた。その結果、光照射されたマイクロウェルのみでチトクロムP450が酵素活性を持ち7ERの代謝による蛍光が観察された(
図18)。明視野顕微鏡観察ではマイクロウェルが約100μmの間隔で並んでいるが、蛍光顕微鏡観察ではその中のひとつのマイクロウェルだけで7HRの蛍光が観察されることが分かる。
図19は、紫外光照射前後のマイクロウェル内の蛍光強度をプロットしたものである。紫外光を照射したウェルでは照射後蛍光強度が顕著に増大しているが、約100μmの間隔で隣接している別のマイクロウェルにおいては蛍光強度の増大は観察されなかった。この実験より、ケージドG6Pを用いることでP450の活性を微小空間内で制御することが可能であることが分かった。
【0080】
試験例6B:マイクロウェルを使用したチトクロムP450の酵素活性計測
ケージド化合物をマイクロアレイや微小流路と組み合わせることで、
図12に示すように多分子種、多検体の酵素の代謝反応を同時に開始することが可能である。このことを示すために、幅60μm、深さ30μmの微小流路内に異なる濃度の基質(7ER)をチトクロムP450酵素(ヒトCYP1A1)、ケージドG6Pとともに導入し同時に紫外光照射を行うことで、チトクロムP450酵素を活性化する検討を行った。反応液は、1M カリウムリン酸緩衝液 50μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLに異なる濃度の7ERを混合した水溶液を用いた。ケージドG6Pを脱保護するため、ウシオスポットキュアを用いて流路チップ全域に紫外光照射を行った。その結果、全ての流路でチトクロムP450が酵素活性を持ち、7−ERの濃度に応じて代謝による蛍光が観察された(
図20)。この結果より、P450分子種、化合物種、濃度の異なる溶液をマイクロアレイや微小流路で並列に配置して、酵素反応を光で同時に開始することが可能であることが示された。同期した反応初期過程の解析は、P450の多様な化合物に対する代謝活性をより定量的に評価することが出来るものと期待される。
【0081】
試験例7B:異なる基質濃度に対する応答(1)
P450としてヒトCYP1A1を用い、7ERを基質として、異なる基質濃度(0μM、0.1μM、0.2μM、0.5μM、1.0μM、1.5μM)に対するP450酵素反応を求めた。具体的には、幅100μm、深さ30μmのマイクロウェルを多数持つPDMS基板とスライドガラスを貼り合わせることで、P450、基質、補酵素再生系(ケージドG6Pを含む)などを含んだ水溶液をマイクロウェルに封入した。蛍光顕微鏡観察下で紫外光照射によりケージドG6Pを脱保護すると、P450酵素活性に必要な補酵素(NADPH)が生成され、酵素反応が開始して基質濃度に応じた蛍光増加が見られた(
図21)。
【0082】
試験例8B:異なる基質濃度に対する応答(2)
異なる基質(7-ER)濃度に対する代謝活性を測定した結果を、ミカエリスメンテンプロットにより解析し、酵素学的速度論定数(K
m, V
max)を決定した(
図22)。ミカエリスメンテンプロット(左)および速度論定数(右)を通常のG6PとケージドG6Pで比較した。通常のG6Pを用いたアッセイでは、2mLのサンプルチューブを用いて検討を行った。一方、ケージドG6Pを用いたアッセイでは、2mLのサンプルチューブおよびPDMSマイクロウェルを用いた2通りのアッセイを行った。(ケージドG6Pを用いたアッセイではマイクロウェル内に酵素と基質を含む溶液を封入して任意のタイミングで反応を開始できるが、通常のG6Pを用いたアッセイでは溶液を混合してマイクロウェルに封入する過程において反応が既に開始してしまうため、アッセイを行うことが困難である。)ケージドG6Pを用いたアッセイにおいて、通常のG6Pを用いたアッセイよりもK
m, V
maxのエラー値が小さくデータ精度の高い測定が可能になった。本発明によれば各酵素のK
m, V
maxを非常に正確に測定することができる。また、マイクロウェルなどの微小空間における酵素反応も可能になるため、貴重な酵素、基質サンプルを節約することが出来る。
【0083】
試験例9B:蛍光基質を用いた競合アッセイ
蛍光基質(7-ER)と非蛍光基質(ベンゾピレン)の競合アッセイを、ケージドG6Pを用いて行った。反応液は、1M カリウムリン酸緩衝液 50μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。7-ER濃度は、0.1μMから1.5μMの間で変化させた。一方、ベンゾピレンの濃度は、0.1μMと1μMを用いた。紫外光照射後、30分間インキュベーションしてP450酵素反応を行った。その後、30% トリクロロ酢酸を25μL添加し、酵素反応を停止した。反応液にクロロホルムを500μL添加し、1分間撹拌することで、反応で生成した7−ハイドロキシクマリン(7HR)をクロロホルムに抽出した。1分間遠心分離後、下層のクロロホルム層を250μL回収し、0.01M NaOH/ 0.1M NaClを500μL添加して1分間撹拌することで、7HRを水溶液に再抽出した。1分間遠心分離後、上層をキュベットに移し取り、蛍光スペクトルを以下の条件で測定した。励起波長:366nm、蛍光波長:380nm-600nm。蛍光極大値を用いて、7HRを定量した。結果を
図23に示す。
図23より蛍光基質を用いた競合アッセイが可能であることが示された。ベンゾピレン濃度を変化させて7-ERの反応初期速度への影響を調べることで、ベンゾピレンが7-ERに対して非競合阻害剤として作用していることがわかる。
【0084】
試験例10B:酸素センサーを用いた酵素活性検出
酸素センサー(ルテニウム錯体)と固定化P450(ヒトCYP1A1)/アガロースゲルを積層化したマイクロウェルに蛍光基質(7-ER)、ケージドG6P、その他必要な試薬を含む反応溶液を封入し、紫外光照射を行うことで、酵素反応を開始できることが示された(
図24)。マイクロウェルとしては、ポリメチルメタクリレート(PMMA)板に幅2mm、深さ1.5mmのウェル構造を多数作製し、その中に酸素センサー層、固定化P450(ヒトCYP1A1)/アガロースゲル層を積層化した(
図24左)。その上に基質(カプサイシン0.2mM)を含んだ水溶液(1M カリウムリン酸緩衝液 50μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合)を加え、マイクロプレート用シールテープで溶液を封入した(
図24左)。蛍光顕微鏡を用い酸素センサー層の蛍光を観察しつつ、顕微鏡光源を用いてケージドG6Pの光脱保護を行ったところ、P450酵素活性による酸素消費を蛍光強度増強として観察することが出来た(
図24右)。