【実施例1】
【0022】
図1に実施例1に係る発光ダイオード駆動装置100のブロック図を示す。この発光ダイオード駆動装置100は、整流回路2と、LED集合体10と、第一手段21〜第四手段24と、電流制御手段と、電流検出手段4とを備える。この発光ダイオード駆動装置100は、交流電源APに接続されて、交流電圧を整流した脈流電圧を得るための整流回路2と、複数のLED部で構成されたLED集合体10とを、出力ラインOL上で各々直列に接続している。ここではLED部を4つ使用しており、第一LED部11、第二LED部12、第三LED部13、第四LED部14を直列に接続して、LED集合体10を構成している。さらに出力ラインOLには、LED集合体10と、LED駆動手段3と、電流検出手段4とを直列に接続している。
【0023】
また第二LED部12、第三LED部13、第四LED部14には、各々両端に通電量を制御するための第一手段21、第二手段22、第三手段23が接続される。第一手段21、第二手段22、第三手段23は、それぞれLED部に対して並列に設けられているため、通電量を調整するバイパス経路を構成する。すなわち第一手段21、第二手段22、第三手段23によってバイパスされる電流量を調整できるので、結果的に各LED部の通電量を制御できる。
図1の例では、第二LED部12と並列に第一手段21が接続され、第一バイパス経路BP1を形成する。また第三LED部13と並列に第二手段22が接続され、第二バイパス経路BP2を形成する。さらに第四LED部14と並列に第三手段23が接続され、第三バイパス経路BP3を形成する。なお本明細書においては、出力ライン上に接続されたLED部等をバイパスするバイパス経路にも、出力電流が流れることがあるため、この意味で出力ラインに含めて使用する。
(電流制御手段)
【0024】
また定電流駆動を行うため、定電流回路の制御用に電流制御手段が設けられる。この回路例では第一手段21、第二手段22、第三手段23、第四手段24と第一電流制御手段31、第二電流制御手段32、第三電流制御手段33、第四電流制御手段34とで、一種の定電流回路が構成される。
【0025】
各電流制御手段は第一手段21、第二手段22、第三手段23、第四手段24と接続されており、第一手段21、第二手段22、第三手段23、第四手段24のON/OFFや電流量連続可変といった動作を制御する。具体的には、第一手段21の動作を制御する第一電流制御手段31と、第二手段22の動作を制御する第二電流制御手段32と、第三手段23の動作を制御する第三電流制御手段33と、第四手段24の動作を制御する第四電流制御手段34が設けられる。第一電流制御手段31、第二電流制御手段32、第三電流制御手段33、第四電流制御手段34は、電流検出手段4に接続されてLEDの電流量をモニタし、その値に基づいて第一手段21、第二手段22、第三手段23、第四手段24の制御量を切り替える。
【0026】
各LED部は、一又は複数のLED素子を直列及び/又は並列に接続したブロックである。LED素子は、表面実装型(SMD)や砲弾型のLEDが適宜利用できる。またSMDタイプのLED素子のパッケージは、用途に応じて外形を選択でき、平面視が矩形状のタイプ等が利用できる。さらに、複数のLED素子をパッケージ内で直列及び/又は並列に接続したLEDをLED部として使用することも可能であることは言うまでもない。
【0027】
各LED部に含まれるLED素子の順方向電圧の加算値である小計順方向電圧は、直列接続されたLED素子の個数によって決まる。例えば順方向電圧3.6VのLED素子を6個使用する場合の小計順方向電圧は、3.6×6=21.6Vとなる。
【0028】
この発光ダイオード駆動装置100は、電流検出手段4で検出した電流値に基づいて各LED部に対する通電のON/定電流制御/OFFを切り替える。いいかえると、整流電圧の電圧値でなく、現実に通電される電流量に基づいた電流制御であるため、LED素子の順方向電圧のばらつきに左右されず、適切なタイミングで正確なLED部の切り替えが実現され、信頼性の高い安定した動作が見込まれる。なお電流値の検出には、電流検出手段4等が利用できる。
【0029】
図1の例では、第一電流制御手段31が第一LED部11の通電量に基づいて、第一手段21による第一LED部11への通電制限量を制御する。具体的には、第一手段21及び第二手段22、第三手段23がONの状態で、通電量が予め設定された第一基準電流値に達したとき、第一手段21は第一LED部11を定電流駆動する。その後入力電圧が上昇して、第一LED部11と第二LED部12を共に駆動できる電圧に達すると、第二LED部12に電流が流れ始め、さらにその電流値が第一基準電流値を超えると、第一手段21はOFFとなる。さらに第二電流制御手段32が第一LED部11及び第二LED部12の通電量に基づいて、第二手段22による第一LED部11及び第二LED部12への通電制限量を制御する。具体的には、通電量が予め設定された第二基準電流値に達すると、第二手段22は第一LED部11と第二LED部12を定電流駆動する。その後入力電圧が上昇して、第一LED部11と第二LED部12と第三LED部13とを共に駆動できる電圧に達すると、第三LED部13に電流が流れ始め、さらにその電流値が第二基準電流値を超えると、第二手段22はOFFとなる。
【0030】
さらに第三電流制御手段33が第一LED部11、第二LED部12、第三LED部13の通電量に基づいて、第三手段23による第一LED部11、第二LED部12、第三LED部13への通電制限量を制御する。具体的には、通電量が予め設定された第三基準電流値に達すると、第三手段23は第一LED部11と第二LED部12と第三LED部13とを定電流駆動する。その後入力電圧が上昇して、第一LED部11と第二LED部12と第三LED部13と第四LED部14を共に駆動できる電圧に達すると、第四LED部14に電流が流れ始め、さらにその電流値が第三基準電流値を超えると、第三手段23はOFFとなる。最後に第四手段24及び第四電流制御手段34は、第一LED部11、第二LED部12、第三LED部13、第四LED部14を定電流駆動させる。
【0031】
ここで、第一基準電流値<第二基準電流値<第三基準電流値となるよう設定することで、第一LED部11から第二LED部12、第三LED部13、第四LED部14への順で、ON/定電流制御/OFFを順次切り替えることができる。
【0032】
以上のように発光ダイオード駆動装置100は、家庭用電源等の交流電源APを用いて、その交流を全波整流した後に得られる周期的に変化する脈流電圧に合わせて、直列に配置されたLED素子を適切な個数だけ点灯させるように構成した複数の定電流回路を備えており、各定電流回路を各々適切に動作させるように複数のLED電流検出回路を動作させることができる。
【0033】
この発光ダイオード駆動装置100は、第1の電流値で第一LED部11を通電させ、第1の電流値よりも大きい第2の電流値で第一LED部11及び第二LED部12を通電させ、さらに第2の電流値よりも大きい第3の電流値で第一LED部11、第二LED部12、第三LED部13を通電させ、さらにまた第3の電流値よりも大きい第4の電流値で第一LED部11、第二LED部12、第三LED部13、第四LED部14を通電させる。特に各LED部への通電量を定電流制御によって制限することで、電流量に応じてLED部のON/定電流制御/OFFを切り替えることができ、脈流電圧に対して効率よくLEDを点灯駆動できる。
【0034】
さらに
図1の例では、第四手段24と並列にLED駆動手段3が接続されており、第四手段24に流れる電流の一部をLED駆動手段3で分岐させることによってLED駆動手段3が第四手段24の負荷を低減している。
(高調波抑制信号生成手段6)
【0035】
さらに第一電流制御手段31〜第四電流制御手段34は、高調波抑制信号生成手段6と接続される。高調波抑制信号生成手段6は、整流回路2から出力される整流電圧に基づいて、高調波抑制信号電圧を生成する。ここでは、高調波抑制信号生成手段6は、整流回路2で整流された脈流電圧を適当な大きさに圧縮し、第一電流制御手段31〜第四電流制御手段34に送出して参照信号とし、LED電流検出信号と比較する。各電流制御手段はこの比較結果を基に、それぞれの第一手段21〜第四手段24を介して適切なタイミングと電流で、それぞれのLED部を駆動する。
(実施例1の回路例)
【0036】
次に、
図1の発光ダイオード駆動装置100を半導体素子を用いて実現した具体的な回路の構成例を、
図2に示す。この発光ダイオード駆動装置100’は、交流電源APに接続された整流回路2としてダイオードブリッジを用いている。また交流電源APと整流回路2との間には、保護抵抗81が設けられる。さらに整流回路2の出力側には、バイパスコンデンサ82が接続される。なお交流電源APと整流回路2との間には、図示しないが過電流阻止のためのヒューズとサージ防護回路を設けてもよい。
(交流電源AP)
【0037】
交流電源APは、100Vや200Vの商用電源が好適に利用できる。この商用電源の100V又は200Vは実効値であり、全波整流された整流波形の最大電圧は約141V又は282Vとなる。
(LED集合体10)
【0038】
LED集合体10を構成する各LED部は、相互に直列に接続すると共に、複数のブロックに分け、ブロック同士の境界からは端子を引き出して、第一手段21、第二手段22、第三手段23、第四手段24と接続している。
図2の例では、第一LED部11、第二LED部12、第三LED部13、第四LED部14の4つのグループでLED集合体10を構成している。
【0039】
図2に示す各LED部11〜14は、一のLEDシンボルが複数のLEDチップを実装したLEDパッケージ1を表している。この例では、各LEDパッケージ1は、10個のLEDチップを実装している。各LED部の発光ダイオード接続数、あるいはLED部の接続数は、順方向電圧の加算値、すなわち直列接続されたLED素子の総数と、使用する電源電圧とで決定される。例えば商用電源を使用する場合は、各LED部のVfの合計である合計順方向電圧Vf
allが、141V程度、又はそれ以下となるように設定される。
【0040】
なおLED部は、一以上の任意の数のLED素子を備えている。LED素子は、一個のLEDチップや、複数個のLEDチップを一パッケージに纏めたものを利用できる。この例では、図示する一のLED素子として、それぞれ10個のLEDチップを含むLEDパッケージ1を使用している。
【0041】
また
図2の例では、4つのLED部のVfを同一となるように設計している。ただこの例に限られず、上述の通りLED部数を3以下、あるいは5以上としてもよい。LED部数を増やすことで、定電流制御の数を増やしてより細かなLED部間の点灯切り替え制御が可能となる。さらに各LED部のVfは同一としなくとも良い。
(第一手段21〜第四手段24)
【0042】
第一手段21、第二手段22、第三手段23、第四手段24は、各LED部に対応して、定電流駆動するための部材である。このような第一手段21〜第四手段24としては、トランジスタ等のスイッチング素子で構成される。特にFETは、ソース−ドレイン間飽和電圧がほぼゼロであるため、LED部への通電量を阻害することがなく好ましい。ただ、第一手段21〜第四手段24はFETに限定されるものでなく、バイポーラトランジスタ等でも構成できることはいうまでもない。
【0043】
図2の例では、第一手段21〜第四手段24としてLED電流制御トランジスタを利用している。具体的には、第二LED部12、第三LED部13、第四LED部14、LED駆動手段3には、それぞれ第一手段21〜第四手段24である第一LED電流制御トランジスタ21B、第二LED電流制御トランジスタ22B、第三LED電流制御トランジスタ23Bが接続される。各LED電流制御トランジスタは、その前段のLED部の電流量に応じて、ON状態や定電流制御が切り替わる。LED電流制御トランジスタがOFFになると、バイパス経路に電流が流れなくなって、LED部に通電される。すなわち、各第一手段21〜第四手段24によってバイパスされる電流量を調整できるので、結果的に各LED部の通電量を制御できることになる。
図2の例では、第二LED部12と並列に第一手段21が接続され、第一バイパス経路BP1を形成する。また第三LED部13と並列に第二手段22が接続され、第二バイパス経路BP2を形成する。さらに第四LED部14と並列に第三手段23が接続され、第三バイパス経路BP3を形成する。さらにまた第四LED電流制御トランジスタ24Bが接続され、第一LED部11、第二LED部12、第三LED部13及び第四LED部14への通電量を制御する。
【0044】
ここで第一LED部11は、並列に接続されたバイパス経路や第一手段〜第四手段を設けていない。第二LED部12と並列に接続された第一手段21が、第一LED部11の電流量を制御するからである。また第四LED部14については、第四LED電流制御トランジスタ24Bが電流制御を行う。
【0045】
また
図2の例では、抵抗3をLED駆動手段3としている。この例では、LED駆動手段3に並列に第四手段であるトランジスタを接続することで、電流量が大きくなる際に電流をバイパスして、第四手段への負荷を軽減するよう構成している。ただ、LED駆動手段3を省略してもよい。
【0046】
図2の例では、LED電流制御トランジスタとして、FETを使用している。なお、第一LED電流制御トランジスタ21Bや第二LED電流制御トランジスタ22B、第三LED電流制御トランジスタ23B、第四LED電流制御トランジスタ24Bを用いて、LED部単位でON/OFFの切り替えを制御する構成では、各段のLED電流制御トランジスタを構成するFET等の制御用半導体素子が各々LED部の両端に接続されているため、制御用半導体素子の耐圧はLED部の小計順方向電圧にて保護されることとなる。このため、耐圧の低い小型の半導体素子を使用できる利点が得られる。
(第一電流制御手段31、第二電流制御手段32、第三電流制御手段33、第四電流制御手段34)
【0047】
第一電流制御手段31、第二電流制御手段32、第三電流制御手段33、第四電流制御手段34は、各LED部と対応する第一手段21〜第四手段24が、適切なタイミングで定電流駆動を行うよう制御する部材である。第一〜第四電流制御手段も、トランジスタ等のスイッチング素子が利用できる。特にバイポーラトランジスタは、電流量の検出に好適に利用できる。この例では第一電流制御手段31、第二電流制御手段32、第三電流制御手段33、第四電流制御手段34は、オペアンプで構成される。なお電流制御手段も、オペアンプに限定されるものでなく、コンパレータ、バイポーラトランジスタ、MOSFET等でも構成可能であるのはいうまでもない。
【0048】
図2の例では、電流制御手段は、各々LED電流制御トランジスタの動作を制御する。すなわち、各電流検出オペアンプがON/定電流制御/OFFすることで、LED電流制御トランジスタをOFF/定電流制御/ONに切り替える。
(電流検出手段4)
【0049】
一方、電流検出手段4は、複数の電流検出分圧抵抗で構成される。
図2の例では、4つのLED電流検出抵抗として、第一LED電流検出抵抗4A、第二LED電流検出抵抗4B、第三LED電流検出抵抗4C、第四LED電流検出抵抗4Dが直列に接続されている。これらは、LEDの保護抵抗としても機能する。このLED電流検出抵抗4A、4B、4C、4DでLED部を直列接続したLED集合体10に通電される電流を電圧降下等により検出することによって、LED部を構成するLED素子の定電流駆動を行う。また定電流駆動を行うため、定電流回路の制御用に電流制御手段が設けられる。この回路例では第一手段21、第二手段22、第三手段23、第四手段24と第一電流制御手段31、第二電流制御手段32、第三電流制御手段33、第四電流制御手段34で、一種の定電流回路が構成される。
【0050】
各LED電流検出抵抗の抵抗値は、各電流制御手段のON/OFFをどの電流のタイミングで行うかを規定する。ここでは、第一〜第四電流検出手段31〜34であるオペアンプの順でONされるよう、各LED電流検出抵抗の抵抗値が設定されている。
(基準電流値)
【0051】
ここでは、第一電流検出手段31が第一LED電流制御トランジスタ21をONからOFFに切り替える第一基準電流値を、第二電流検出手段32が第二LED電流制御トランジスタ22をONからOFFに切り替える第二基準電流値よりも低く設定する。また第三電流検出手段33が第三LED電流制御トランジスタ23をONからOFFに切り替える第三基準電流値を、第二基準電流値よりも高く設定する。さらに第四電流検出手段34が第四LED電流制御トランジスタ24をONからOFFに切り替える第四基準電流値を、第三基準電流値よりも高く設定する。このように第一基準電流値<第二基準電流値<第三基準電流値<第四基準電流値となるよう設定することで、整流回路2で整流された入力電圧の上昇に伴い、第一LED部11から第二LED部12、第三LED部13、第四LED部14への順で、ON/定電流制御/OFFを順次切り替えることができる。また入力電圧の下降時には、逆の順序でLEDが消灯される。
(高調波抑制信号生成手段6の動作説明)
【0052】
以下、
図2を参照しながら、発光ダイオード駆動装置100’における高調波抑制信号生成手段6の動作を説明する。
図2の回路例では、電流制御手段は、オペアンプ31〜34で構成される。これらオペアンプ31〜34は、高調波抑制信号生成手段6により制御される。
【0053】
具体的にオペアンプ31〜34は、定電圧電源7により駆動される。定電圧電源7は、オペアンプ電源用トランジスタ70、ツェナーダイオード71、ツェナー電圧設定抵抗72で構成される。この定電圧電源7は、交流電源APを整流回路2で整流した後の脈流電圧が、ツェナーダイオード71のツェナー電圧を超えている期間だけ、オペアンプ31〜34に電源を供給する。この期間は、LEDの点灯期間を包含するよう設定される。すなわち、LED点灯中にオペアンプを動作させて、点灯を制御する。
【0054】
高調波抑制信号生成手段6は、高調波抑制信号生成抵抗60、61で構成される。高調波抑制信号生成抵抗60、61は、整流回路2で整流された脈流電圧を分圧する。いいかえると、脈流電圧を適当な大きさに圧縮する。各オペアンプの+側入力端子には、高調波抑制信号生成抵抗60、61から出力される、圧縮された正弦波である高調波抑制信号が入力される。
【0055】
一方、各オペアンプの負入力端子には、電流検出抵抗で検出された電圧が入力される。
図2の例では、電流検出抵抗は上述の通り直列接続された電流検出分圧抵抗4A、4B、4C、4Dで構成される。電流検出分圧抵抗4A、4B、4C、4D間の電圧は、それぞれのオペアンプが制御を担当する期間に、すなわち各オペアンプの+側入力端子に印加される正弦波に沿って電流制御されるよう設定される。これにより、整流回路2で整流された脈流の正弦波をオペアンプの+側入力端子に入力することができる。このため、正弦波に沿って電流制御動作を行うため、LED駆動電流が正弦波に近似された波形となる。
【0056】
ここで、実施例1の回路による電流波形を、比較例1として
図18の回路による電流波形と比較したグラフを、
図3及び
図4に示す。これらの図において、
図3は電源電圧と比較例1の電流波形を重ねて表示したグラフであり、
図4は実施例1の回路例で実測した電流波形のグラフを、それぞれ示している。また、それぞれの高調波成分のグラフを
図5に示す。これらによれば、実施例1の電圧波形では、7次以外の高調波が減少し、また
図20で示したように
図18の回路例では測定値が限界値を超過していた11次、13次、15次高調波電流が、限度値内に抑えられたことが確認できた。
【0057】
なおLED部はそれぞれ、複数の発光ダイオード素子を相互に直列に接続して構成できる。これにより、脈流電圧を複数の発光ダイオード素子で効果的に分圧できる上、発光ダイオード素子毎の順方向電圧Vfや温度特性のばらつきをある程度吸収してブロック単位での制御を均一化できる。ただ、LED部の数や各LED部を構成する発光ダイオード素子数等は、要求される明るさや入力電圧等によって任意に設定でき、例えばLED部を一の発光ダイオード素子で構成したり、LED部の数を多くしてより細かな制御を行うこと、あるいは逆にLED部を2つのみとして制御をシンプルにすることも可能であることは言うまでもない。
【0058】
また、上記構成ではLED部の構成数を4としたが、LED部の数を2又は3としたり、又は5以上とすることもできることはいうまでもない。特に、LED部の数を増やすことで、階段状の電流波形をより細かくした制御が可能となり、一層の高調波成分の抑制が可能となる。また
図1の例では、各LED部がON/OFFされる切り替え動作を、入力電流に対してほぼ均等に分割しているが、均等にする必要は必ずしも無く、異なる電流でLED部を切り替えてもよい。
【0059】
さらに上記の例では、LEDを4つのLED部に分け、各LED部がそれぞれ同一のVfとなるよう構成しているが、同一のVfでなくても良い。例えばLED部1のVfをできるだけ低く、すなわちLED一個分の3.6V程度に設定できれば、
図4で示した波形において電流の立ち上がりタイミングを早く、立下りタイミングを遅くできる。このことは、高調波を減少させるのにさらに有利となる。またこの方法を使用すれば、LED部の数とVf設定を自由に選択でき、さらに電流波形を正弦波に近似できるため、より柔軟性を高めて高調波抑制を実現することが容易となる。
【0060】
さらにまた、隣り合うオペアンプの負入力端子同士の最小電圧差は、オペアンプのオフセット電圧以上であれば良く、例えば数mV程度の差で設定できる。このことは、回路設計上有利となる。例えば
図18で示したAC多段回路のように、電流制御手段をトランジスタで構成する場合には、半導体部品を実装した回路基板上の、場所による温度変化に起因する設定電流の変動を考慮して、数十mV以上の差を必要としていた。これに対して、実施例1の回路例では、トランジスタで電流制御手段を構成する場合に比べ、十分の一程度の電位差で設定できることになる。このため、実施例1の構成によれば、LED部の電流設定を細かく設定でき、LED部の増加等にも自由に対応可能であることを意味し、部品費等のトレードオフがあるとしても正弦波への近似がさらに精密にできるメリットを享受できる。