【実施例】
【0032】
[合成例1]
撹拌機、滴下ロート、及び温度計を備えた反応容器に、45〜50モル%(MeHSiO)の水素化末端メチルヒドロシロキサン−フェニルメチルシロキサンコポリマー(Gelest,Inc.製 HPM-502 重量平均分子量:4300)28.3g及びトルエン13mLを加えて均一になるまで撹拌した。次いで、N,N−ジエチルヒドロキシルアミン0.12gを加え20分室温で撹拌し、滴下ローとよりメタクリル酸2-ヒドロキシエチル1.89gを滴下し、2時間室温で撹拌した。反応終了後、トルエン20mLと10w%クエン酸水溶液20mLとを加え、反応溶液を水洗し、更に水で水洗を行った。水洗後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色透明な液体として反応生成物Aを30g得た。得られた反応生成物Aの1H-NMR(
図1)を測定したところ、ヒドロシリル基に帰属される4.7ppm(
H−Si)のシグナルに加え、メタクリル基のアルケンに帰属される5.5ppmと6.1ppm(H
2C=C)のシグナルが確認され、反応生成物Aは、水素化末端メチルヒドロシロキサン−フェニルメチルシロキサンコポリマーのヒドロシリル基の一部にメタクリル酸2-ヒドロキシエチルが脱水素により付加した、分子中にラジカル重合可能な炭素−炭素二重結合を有する有機基とヒドロシリル基とを有する化合物であることが確認された。
【0033】
[合成例2]
撹拌機、滴下ロート、及び温度計を備えた反応容器に、トリメチルシリル末端ポリメチルヒドロシロキサン(Gelest,Inc.製 HMS-992 重量平均分子量:2000)39.5g及びトルエン40mLを加えて均一になるまで撹拌した。次いで、N,N−ジエチルヒドロキシルアミン0.35gを加え20分室温で撹拌し、滴下ロートよりメタクリル酸2-ヒドロキシエチル8.48gを滴下し、2時間室温で撹拌した。反応終了後、トルエン60mLと10w%クエン酸水溶液60mLとを加え、反応溶液を水洗し、更に水で水洗を行った。水洗後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色透明な液体として反応生成物Bを30g得た。得られた反応生成物Bの1H-NMRを測定したところ、ヒドロシリル基に帰属される4.7ppm(H−Si)のシグナルに加え、メタクリル基のアルケンに帰属される5.5ppmと6.1ppm(H
2C=C)のシグナルが確認され、反応生成物Bは、トリメチルシリル末端ポリメチルヒドロシロキサンのヒドロシリル基の一部にメタクリル酸2-ヒドロキシエチルが脱水素により付加した、分子中にラジカル重合可能な炭素−炭素二重結合を有する有機基とヒドロシリル基とを有する化合物であることが確認された。
【0034】
[合成例3]
撹拌機、滴下ロート、及び温度計を備えた反応容器に、トリメチルシリル末端ポリメチルヒドロシロキサン(Gelest,Inc.製 HMS-992 重量平均分子量:2000)39.5g及びトルエン40mLを加えて均一になるまで撹拌した。次いで、N,N−ジエチルヒドロキシルアミン0.35gを加え20分室温で撹拌し、滴下ロートよりメタクリル酸2-ヒドロキシエチル87.7gを滴下し、2時間室温で撹拌し、更に60℃で2時間撹拌した。反応終了後、トルエン60mLと10w%クエン酸水溶液60mLを加え、反応溶液を水洗し、更に水で水洗を行った。水洗後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで無色透明な液体として反応生成物Cを119g得た。得られた反応生成物Cの1H-NMRを測定したところ、ヒドロシリル基に帰属される4.7ppm(H−Si)のシグナルが完全に消失し、メタクリル基のアルケンに帰属される5.5ppmと6.1ppm(H
2C=C)のシグナルが確認され、反応生成物Cは、トリメチルシリル末端ポリメチルヒドロシロキサンの全てのヒドロシリル基にメタクリル酸2-ヒドロキシエチルが脱水素により付加した、分子中にラジカル重合可能な炭素−炭素二重結合を有する有機基を有する化合物であることを確認した。
【0035】
上記合成例1〜3で原料として用いたヒドロシリル化合物の平均分子量から計算される1分子中の「平均ヒドロシリル基水素数」を表1に示す。また、上記合成例1〜3で得られた反応生成物A〜Cについて、1H-NMRにおけるヒドロシリル基水素数の面積比から計算される「反応生成物1分子中の平均ヒドロシリル基水素数」と、同じく1H-NMRにおけるメタクリル基のアルケン水素の面積比から計算される「反応生成物1分子中の平均メタクリル基数」を表1に示す。
【0036】
【表1】
【0037】
上記合成例1〜3で得られた反応生成物A〜Cを用いて、トリメチロールプロパントリアクリレート(炭素−炭素二重結合を有する化合物)、ペンタエリスリトールトリアクリレート(炭素−炭素二重結合と水酸基とを有する化合物)、1-ヒドロキシシクロヘキシルフェニルケトン(光重合開始剤)、及びジターシャリーブチルパーオキサイド(熱重合開始剤)と共に、表2に示したとおりに配合して、
硬化性組成物A-1〜2、B-1〜3、及びC-1〜3を得た。なお、表2における各成分の数値は重量部を表す。また、それぞれの
硬化性組成物について、含有された反応成生物A〜Cがヒドロシリル基を有するかどうかその有無を示す。
【0038】
【表2】
【0039】
[実施例1]
上記で得られた硬化性組成物A-1をガラス板上に塗布し、ロールコーターを用いて厚さ0.2mmになるようにキャスト(流延)し、30W/cmの高圧水銀ランプを用いて8000mJ/cm
2の積算露光量で硬化させて、所定の厚み(0.2mm)を有したフィルム状の成形体A-1a(一次硬化物)を得た。得られた成形体A-1aのIRスペクトル(
図2)では2155cm
-1のピーク(ヒドロシリル基に帰属されるピーク)が確認された。
【0040】
上記で得られた成形体A-1aを塩基水溶液(1.1mol/LのN,N−ジエチルヒドロキシルアミン)に浸漬させた。浸漬後、直に成形体のヒドロシリル基による脱水素縮合が進行して水素の気泡が発生した。室温で24時間浸漬させた後、成形体を取り出し、水洗を行った。さらに成形体を室温で1時間自然乾燥させた後、200℃のオーブンで1時間加熱させ、成形体A-1b(最終硬化物)を得た。得られた成形体A-1bのIRスペクトル(
図2)によれば、成形体A-1aで観測された2155cm
-1のピーク(ヒドロシリル基に帰属されるピーク)が消失していることから、完全に脱水素縮合が進行したことが確認された。
【0041】
上記で得られた成形体A-1bについて、以下に記した各条件での物性を評価した。結果を表3に示す。
【0042】
[成形性]
得られた成形体A-1bを目視で確認し、クラックや欠けが無い場合を「良」とし、クラックや欠けが発生している場合を「不良」とする2段階評価を行った。
【0043】
[ヒドロシリル基の有無]
成形体A-1bを約10mm x 10mmに切断して得た試験片表面のIRスペクトルを測定し、2155cm
-1付近にヒドロシリル基に帰属されるピークの有無で確認した。
【0044】
[弾性率]
以下で述べる硬化条件1、1aおよび1bの場合で最終的に得られた厚み0.2mmの成形体については、引張弾性率(試験片:8mm x 80mm x 0.2mm、試験速度0.5mm/min、チャック間距離50mm)の値を示す。硬化条件2、2a、3および3aの場合で最終的に得られた厚み2mmの成形体については、曲げ弾性率(試験片:25mm x 50mm x 2mm、試験速度0.3mm/min、支点間距離12mm、支点半径0.5mm、圧子半径1.5mm)の値を示す。また表3中の「×」は所定サイズの試験片が得られず測定不可を示す。
【0045】
[CTE]
熱機械的分析を行い、50℃から150℃の線膨張係数(CTE)を測定した。硬化条件1、1aおよび1bで得られた厚み0.2mmの成形体については、3mm幅に試験片を加工、チャック間距離15mmで固定し昇温速度昇温速度5℃/min、引張荷重4.2mNで測定した。硬化条件2、2a、3および3aで得られた厚み2mmの成形体については、5mm角に切断し、試験厚み2mmとし昇温速度昇温速度5℃/min、圧縮荷重100mNで測定した。
【0046】
[吸水率]
硬化条件1、1aおよび1bの場合で最終的に得られた厚み0.2mmの成形体については、試験片サイズを100mm x 100mmとし、硬化条件2、2a、3および3aで最終的に得られた厚み2mmの成形体については、試験片サイズを25mm x 50mmにして、それぞれ50℃で24時間乾燥させた後、重量を測定し、ついで25℃の温水中に24時間浸漬させ、次の式により吸水率を求めた。また表3中の「×」は所定サイズの試験片が得られず測定不可を示す。
吸水率(%)=[(吸水重量−乾燥重量)/乾燥重量]×100
【0047】
【表3】
【0048】
[実施例2〜6、比較例1〜6]
表3に示すように、
硬化性組成物と以下に記した硬化条件との組合せから実施例2〜6及び比較例1〜6に係る成形体を得た。得られた成形体について、上述した方法で物性評価を行った。結果を表3に示す。
【0049】
[硬化条件1]
ロールコーターを用いて、ガラス板上に
硬化性組成物を厚さ0.2mmになるようにキャスト(流延)し、30W/cmの高圧水銀ランプを用い、8000mJ/cm2の積算露光量で硬化させ、所定の厚み(0.2mm)を有したフィルム状の成形体(一次硬化物)を得た。
【0050】
[硬化条件1a]
硬化条件1に加えて更に、硬化条件1で得られた成形体を塩基水溶液(1.1mol/LのN,N−ジエチルヒドロキシルアミン)に室温で24時間浸漬させ、水洗後室温で1時間自然乾燥させた後、200℃のオーブンで1時間加熱させて厚さ0.2mmのフィルム状の成形体(最終硬化物)を得た。
【0051】
[硬化条件1b]
塩基性水溶液を水に変えた以外は硬化条件
1aと同様にして厚さ0.2mmのフィルム状の成形体(最終硬化物)を得た。
【0052】
[硬化条件2]
厚さ2mmになるようにガラス板で組み込んだ50mm角の型に
硬化性組成物を流し込み、30W/cmの高圧水銀ランプを用いて8000mJ/cm2の積算露光量で硬化させ、所定の厚み(2mm)を有したシート状の成形体(一次硬化物)を得た。
【0053】
[硬化条件2a]
硬化条件2に加え更に、硬化条件2で得られた成形体を塩基水溶液(1.1mol/LのN、N−ジエチルヒドロキシルアミン)に室温で72時間浸漬させ、水洗後室温で24時間自然乾燥させた後、200℃のオーブンで2時間加熱させて厚さ2mmのシート状の成形体(最終硬化物)を得た。
【0054】
[硬化条件3]
内径が25mm x 50mm x 2mmの金型に射出圧力3Mpaで射出し、保圧:1Mpa/10秒、金型温度:180℃、硬化時間1分の各条件で射出成型して厚さ2mmのシート状の成形体(一次硬化物)を得た。
【0055】
[硬化条件3a]
硬化条件3に加え更に、硬化条件3で得られた成形体を塩基水溶液(1.1mol/LのN、N−ジエチルヒドロキシルアミン)に室温で72時間浸漬させ、水洗後室温で24時間自然乾燥させた後、200℃のオーブンで2時間加熱させて厚さ2mmのシート状の成形体(最終硬化物)を得た。
【0056】
上記実施例1〜6、及び比較例1〜6より、それぞれのCTEの結果から、ヒドロシリル基を含有する成形体(一次硬化物)を塩基水溶液に接触させることで、ヒドロシリル基が脱水素縮合し、架橋密度が増加したことで、弾性率が増加し、CTEを低減させることが確認された。また、反応生成物BとCを用いた
硬化性組成物の比較から、本発明の製造方法を用いれば、炭素−炭素二重結合を増加させたことと同等の弾性率とCETをもつ成形体(最終硬化物)を良好な成形性で得ることができ、尚且つ低吸水性を併せ持つことが可能である。