【課題を解決するための手段】
【0009】
本発明者等は、上記課題を解決するための方法として、精製において昇華法を採用するDCRの製造方法を基礎に検討することとした。上記の通り、ルテニウム薄膜の形成に適した原料として、不純物元素を低減するには、分離能の高い昇華法が有効なためである。そこで、本発明者等は、昇華法によりDCRを精製する際、DCRの熱分解が生じる場合について検討した。
【0010】
その結果、DCRを昇華させる雰囲気ガスの種類により、DCRの熱分解し始める温度が異なるものとなることを見出した。そこで、雰囲気ガスの選択により、DCRの熱分解を抑制しつつ、従来よりも高い加熱温度で昇華可能となり、大量の粗DCRを処理できる本発明に想到した。
【0011】
すなわち本発明は、次式で示されるドデカカルボニルトリルテニウム(DCR)からなる化学蒸着原料用の有機ルテニウム化合物の製造方法において、昇華法により、粗DCRから不純物元素を分離してDCRを精製する工程を備え、この精製工程では、一酸化炭素濃度30〜100%の雰囲気下で粗DCRを加熱して昇華させた後、冷却してDCRを析出させるDCRの製造方法に関する。
【化1】
【0012】
本発明は、粗DCRを一酸化炭素(CO)雰囲気下で昇華させる点に特徴を有する。一酸化炭素を採用することで、DCRの熱分解を抑制しつつ、加熱温度を高めて大量の粗DCRを昇華させることが可能となる。一酸化炭素は、不純物を残留させにくい点でも、化学蒸着原料用のDCRの製造において有用である。尚、本発明において「昇華」は、固体から気体への状態変化のみを示すものとし、気体から固体への変化は「凝固」と表す。
【0013】
以下、本発明に係るDCRの製造方法について詳細に説明する。本発明の方法において、精製対象である粗DCRは、一般的に知られている合成方法により入手できる。一般的なDCRの合成方法では、得られたDCR中に、原料や装置の構成材料等に由来して、不純物元素が混入する。これら不純物元素の例としては、鉄(Fe)、リチウム(Li)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、カリウム(K)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ストロンチウム(Sr)、イットリウム(Y)、モリブデン(Mo)、イリジウム(Ir)、白金(Pt)、金(Au)、鉛(Pb)、トリウム(Th)、ウラン(U)等が挙げられる。
【0014】
本発明において「粗DCR」とは、上記のような不純物元素を含有するDCRをいう。具体的には、純度90%以上のDCRである。好ましくは、純度98%以上のDCRである。精製工程で不純物元素を分離するという本発明の目的より、不純物元素を所定量以上含有するものが粗DCRとして精製対象になるため、純度100%のDCRは除かれる。粗DCRは、不純物元素を、すべての元素の合計で5ppm以上含んでいる場合、精製対象として本発明に好適である。
【0015】
上記粗DCRを合成方法によって得るには、ルテニウム塩を原料として、カルボニル化する方法を利用できる。具体的には、ルテニウム塩を一酸化炭素により直接カルボニル化する方法(以下、直接法と称する)が好ましい。直接法のほか、例えば、ルテニウム塩を原料とし、これをアセチルアセトナトルテニウムを中間体とし、中間体をカルボニル化する合成方法も知られているが、中間体を経由する方法は工程数が多くなり不純物混入の機会が増える。直接法で粗DCRを合成する場合、反応条件としては、反応圧0.2〜0.9MPa、反応温度50〜100℃、反応時間10〜30時間が好ましい。
【0016】
直接法の原料となるルテニウム塩は、塩化ルテニウム、酸化ルテニウム、硝酸ルテニウム、ヘキサアミンルテニウムクロライド、酢酸ルテニウムが好ましく、塩化ルテニウムが特に好ましい。これらの原料は市販されている物質であり、容易に入手できるからである。また、原料は高純度のものが好ましい。尚、DCR等の有機金属化合物の合成においては、触媒作用を有する補助金属を用いることが多いが、本発明では補助金属の添加は不要である。補助金属の適用は、不純物の混入の要因になるためである。
【0017】
粗DCRは、以上説明した合成方法にて入手できるが、本発明のDCRの製造方法では、合成したDCRに代えて、市販のDCRを利用することもできる。
【0018】
以上説明した粗DCRについて、不純物元素を分離するための精製工程を行う。従来の精製工程では、窒素、アルゴン等の不活性ガス雰囲気下で粗DCRを昇華するが、本発明では一酸化炭素(CO)雰囲気下で昇華させる。一酸化炭素を用いると、従来、粗DCRを昇華させる際の加熱温度を80℃前後としていたところを、加熱温度100〜130℃としても、DCRの熱分解が生じることなく、昇華効率及び収率の高い処理が実現できる。上述のとおり、従来と異なるガス雰囲気とすることで、DCRの熱分解温度が変化したためと考えられる。加熱温度は、100℃未満では長時間の処理を要し、130℃を超えると、昇華速度は速くなるものの、DCRの熱分解が生じ始める。
【0019】
本発明は、一酸化炭素雰囲気下で粗DCRを昇華させる際、一酸化炭素とともに、窒素、アルゴン等の不活性ガスを併用することも可能である。この場合、雰囲気ガス中の一酸化炭素濃度が30%〜100%の範囲内であることを要する。30%未満であると、DCRの昇華温度を上昇させた場合にDCRの熱分解が生じやすく、精製工程の収率を向上できない。
【0020】
本発明では、粗DCRを昇華させる際、反応容器にCOガスを流通させて、上記のような一酸化炭素雰囲気とする。流通させる一酸化炭素(CO)の供給量は、150〜1000sccmが好ましく、300〜500sccmがさらに好ましい。150sccm未満であると粗DCRが熱分解する場合があり、1000sccmを超えると粗DCRが加熱容器内に飛散し収率が低下する場合がある。また、昇華時における加熱容器内の圧力は、13〜80Pa程度が好ましく、13〜40Paがさらに好ましい。13Pa未満では一酸化炭素が粗DCRに充分に接触しにくいものとなり熱分解する場合があり、80Paを超えると昇華速度が低下する傾向となり、粗DCRの処理量が多い場合は昇華時間が長く必要になる。尚、加熱温度と、一酸化炭素供給量と、加熱容器内圧力とは相関関係があり、3種の設定値のうちいずれかを変更すると、他の設定値の好適範囲も変動する傾向がある。このため、上記した温度、CO供給量、圧力としては、他の2種の設定値が好適条件の範囲内である場合の好適値を示した。
【0021】
COガスは、精製する粗DCRに対し、均一に分散して接触するように供給することが好ましい。一酸化炭素の供給が不均一になると、部分的にDCRの熱分解が生じ、結果として昇華効率が低下するためである。このため、粗DCRの昇華は、ろ過精度5〜30μmの焼結フィルターを介して、粗DCRにCOガスを供給して行うことが好ましい。具体的には、かかる焼結フィルター上方に配置した粗DCRに対し、焼結フィルター下方からCOガスを供給する方法が採用できる。焼結フィルターの空隙を伝ってCOガスが均一に分散し、粗DCRに対しムラ無くCOガスを接触させることができる。尚、上記ろ過精度は公称値である。
【0022】
本発明の精製工程では、以上の手順で粗DCRを昇華させた後、気化したDCRを冷却して析出させて、不純物元素を低減したDCRを回収する。DCRを冷却する温度は、20℃以下が好ましい。
【0023】
粗DCRを昇華させた後、析出させて得られたDCRについては、再結晶、カラムクロマトグラフィー等の精製処理を、追加的に行っても良い。例えば、本発明の精製工程後に再結晶処理を行った場合、不純物元素に加え、合成未反応物の有機物等を分離できる。
【0024】
以上説明した本発明の製造方法で得られるDCRは、化学蒸着原料としてルテニウム薄膜やルテニウム化合物薄膜の製造に用いられる。本発明のDCRを用いてルテニウム薄膜を形成する条件としては、成膜温度40〜150℃、成膜圧力0.01〜26.66Paが好適である。かかる化学蒸着時、気化したDCRが薄膜形成前に分解してしまうことを抑制するために、一酸化炭素(CO)ガスを利用できる。COガスを用いる場合、その流量は0.1〜1000sccmが好適である。
【0025】
以上説明したDCRの製造方法では、上記した粗DCRの昇華を均一に進行させるため、昇華の際、粗DCRに対し一酸化炭素ガスを均一に接触させる必要がある。そこで、本発明に対応した昇華装置としては、粗DCRが配置される載置手段と、粗DCRに一酸化炭素を供給するCOガス供給手段と、前記載置手段を加熱する手段と、を有する加熱蒸発部と、前記加熱蒸発部に接続され、冷却器を有するDCR析出部と、前記加熱蒸発部及び前記冷却析出部内の気体を吸引する圧力調整手段とを備え、前記加熱蒸発部の載置手段に、ろ過精度(公称値)5〜30μmの焼結フィルターが設置された昇華装置を採用できる。
【0026】
粗DCRの載置手段としては、ステンレス製で、ハニカム構造や網目構造の板が用いられているが、粗DCRに対し、この載置手段のみを介してCOガスを供給すると、高温で昇華させた場合、DCRの一部が熱分解する場合があった。粗DCRに対しCOガスが均一に接触しなかったためと考えられる。
【0027】
そこで本発明の昇華装置は、載置手段に焼結フィルターを配置させるものであり、この焼結フィルターにより、COガスを粗DCRに対し均一に行き渡らせることができる。焼結フィルターは、ステンレス製、Ti、Al、セラミック等の焼結材からなるものであり、ろ過精度(公称値)は5〜30μm、好ましくは5〜15μm、さらに好ましくは5〜10μmである。また、断面厚み1〜3mmが好ましい。尚、載置手段としては、焼結フィルターが差し込み可能な溝等であってもよく、必ずしもハニカム等の板状の載置台を要するものではない。すなわち、ハニカム等の板を用いることなく、焼結フィルターのみを載置台として、フィルター上に粗DCRを配置する装置であってもよい。
【0028】
また、加熱蒸発部には、冷却析出部への不純物元素の混入を防ぐトラップフィルターをさらに備えることが好ましい。COガスの供給流により、加熱容器内に不純物元素が飛散し、DCR析出部内に侵入することや、製品に混入するのを防ぐためである。トラップフィルターは粗DCRよりも下流側に設置することができ、複数設置してもよい。材質は、ステンレス、Ti、Al、セラミック等、形状はフィン、網、ハニカム等のものを採用できる。
【0029】
加熱蒸発部は、載置手段を加熱する手段を有する。具体的には、ステンレスヒーター、ポリイミドヒーター、シリコンラバーヒーター、フレキシブルヒーター等を採用できる。加熱手段としては、DCRを配置する載置手段を加熱する手段(下部加熱手段と称する)の他に、加熱容器外周を加熱する加熱手段(外周加熱手段と称する)を備えることが好ましい。2種の加熱手段を個別に温度設定することで、粗DCRを昇華させる加熱温度の均一化を図れる。具体的には、外周よりも下部の設定温度を高くすると、粗DCRの処理量が多い場合の加熱温度ムラを低減できる。