(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0041】
以下、必要に応じて図面を参照しつつ、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。図面中、同一又は相当する要素には同一符号が付される。重複する説明は適宜省略される。上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものである。寸法比率は図示の比率に限られるものではない。
【0042】
本明細書において、「Bステージ」とは、硬化反応の中間的な段階、すなわち溶融粘度が上昇した段階を意味する。Bステージ化された樹脂組成物は、加熱により軟化する。具体的には、Bステージ化された接着剤層の20℃〜60℃における溶融粘度の最大値(最大溶融粘度)が5000〜100000Pa・sであるのが好ましく、良好な取り扱い性及びピックアップ性の観点から10000〜100000Pa・sであることがより好ましい。
【0043】
本実施形態に係る接着剤層付き半導体ウェハは、半導体ウェハと、露光によってBステージ化された接着剤層とを備える。接着剤層は、半導体ウェハの回路面とは反対側の面上に形成されている。
【0044】
Bステージ化された接着剤層の20〜60℃における最大溶融粘度は好ましくは5000〜100000Pa・sである。これにより、接着剤層の良好な自己支持性が得られる。上記最大溶融粘度は10000Pa・s以上であることがより好ましい。これにより、接着剤層表面の粘着性が低減されて、接着剤層付き半導体ウェハの保存安定性が向上する。上記最大溶融粘度は30000Pa・s以上であることが更に好ましい。これにより、接着剤層の硬度が上昇するため、加圧によるダイシングテープとの貼り合せが容易となる。上記最大溶融粘度は50000Pa・s以上であることが更に好ましい。これにより、接着剤層表面のタック強度が十分に低減するため、ダイシング工程後のダイシングテープからの良好なはく離性を確保できる。はく離性が良好であると、ダイシング工程後の接着剤層付き半導体チップのピックアップ性を好適に確保できる。
【0045】
上記最大溶融粘度が5000Pa・sを下回ると、Bステージ化後の接着剤層表面のタック力が過度に強くなる傾向にある。そのため、接着剤層付き半導体ウェハをダイシングによって個片化して得られる半導体チップを接着剤層とともにピックアップする際に、ダイシングシートからの接着剤層のはく離力が高すぎるために、半導体チップが割れ易くなる傾向にある。上記最大溶融粘度は、半導体ウェハの反り抑制の点で100000Pa・s以下であることが好ましい。
【0046】
光照射によりBステージ化された接着剤組成物(接着剤層)の20℃〜300℃における溶融粘度(粘度)の最小値(最低溶融粘度)は、30000Pa・s以下であることが好ましい。
【0047】
上記最低溶融粘度は、20000Pa・s以下であることがより好ましく、18000Pa・s以下であることが更に好ましく、15000Pa・s以下であることが特に好ましい。接着剤組成物がこれら範囲内の最低溶融粘度を有することにより、接着剤層のより優れた低温熱圧着性を確保することができる。更に、凹凸がある基板などに対する良好な密着性を接着剤層に付与することができる。上記最低溶融粘度は、取り扱い性等の点からは10Pa・s以上であることが望ましい。
【0048】
接着剤層の80〜200℃における溶融粘度の最小値(最低溶融粘度)は、5000Pa・s以下であることが好ましい。これにより、200℃以下の温度での熱流動性が向上し、ダイボンド時の良好な熱圧着性を確保できる。また、上記最低溶融粘度は3000Pa・s以下であることがより好ましい。これにより、表面に段差が形成されている基板などの被着体に対して、200℃以下の比較的低い温度で半導体チップが熱圧着される際に、接着剤層が段差を十分に埋め込むことが更に容易になる。上記最低溶融粘度は1000Pa・s以下であることが更に好ましい。これにより、薄い接着剤層の熱圧着の際の良好な流動性を保持できる。また、より低圧での熱圧着が可能であり、半導体チップが極薄である場合に特に有利である。上記最低溶融粘度の下限は、加熱時の発泡抑制の点で、好ましくは10Pa・s以上であり、より好ましくは100Pa・s以上である。上記最低溶融粘度が5000Pa・sを超えると、熱圧着時の流動不足に起因して、支持基板又は半導体素子等の被着体に対する十分なぬれ性を確保できなくなる可能性がある。ぬれ性が不足すると、その後の半導体装置組立において十分な接着性を保持できず、得られる半導体装置の信頼性が低下する可能性が高くなる。また、接着剤層の十分な流動性を確保するために高い熱圧着温度が必要となるため、接着固定後の半導体素子の反り等、周辺部材への熱的ダメージが大きくなる傾向にある。
【0049】
上記最大溶融粘度及び最低溶融粘度は、次のような方法により測定される値である。まず、接着剤組成物をPETフィルム上に膜厚50μmとなるように塗布し、得られた塗膜に、室温空気下でPETフィルムとは反対面の側から高精度平行露光機(オーク製作所製、「EXM−1172−B−∞」(商品名))により1000mJ/cm
2で露光して、Bステージ化された接着剤層を形成させる。形成された接着剤層をテフロン(登録商標)シートに貼り合せ、ロール(温度60℃、線圧4kgf/cm、送り速度0.5m/分)で加圧する。その後、PETフィルムをはく離し、接着剤層に、露光によりBステージ化された別の接着剤層を重ね、加圧しながら積層する。これを繰り返して、厚みが約200μmの接着剤サンプルを得る。得られた接着剤サンプルの溶融粘度を、粘弾性測定装置(レオメトリックス サイエンティフィック エフ イー株式会社製、商品名:ARES)を用いて、直径25mmの平行プレートを測定プレートとして、昇温速度:10℃/min、周波数:1Hzの条件で、20〜200℃又は20〜300℃の測定温度で測定する。得られた溶融粘度と温度との関係から、20〜60℃における最大溶融粘度、及び80〜200℃における最低溶融粘度を読み取る。
【0050】
上記接着剤層のBステージ化前の25℃における粘度、すなわち、半導体ウェハ上に成膜される接着剤組成物の粘度は、10〜30000mPa・sであることが好ましい。これにより、接着剤組成物を塗布したときのハジキ又はピンホール発生の抑制と、優れた薄膜形成性とを両立できる。上記粘度は30〜20000mPa・sであることがより好ましい。これにより、スピンコート等により接着剤組成物を塗布する際の塗布量の均一な制御が可能となる。上記粘度は50〜10000mPa・sであることが更に好ましい。これにより、スピンコート等の塗布により薄い接着剤層を形成することが更に容易になる。上記粘度は100〜5000mPa・sであることが更に好ましい。これにより、スピンコート等により大口径の半導体ウェハに接着剤組成物を塗布して、薄い接着剤層を形成することが更に容易になる。上記粘度が10mPa・sを下回ると、接着剤組成物を塗布したときに、ハジキ、又はピンホールが生じやすくなる傾向がある。上記粘度が30000mPa・sを超えると、得られる接着剤層の薄膜化が困難になったり、スピンコート等による塗布の際にノズルからの接着剤組成物の吐出が困難となったりする傾向がある。上記粘度は、東京計器株式会社製E型粘度計(EHD型回転粘度計、標準コーン)を用いて、測定温度:25℃、サンプル容量:4ccの条件で、測定開始から10分経過後に測定される値である。粘度計の回転数は、表1のように、サンプルの想定される粘度に応じて設定される。
【0052】
上記接着剤層は、(A)炭素−炭素二重結合を有する化合物、及び(B)光開始剤を少なくとも含有する接着剤組成物をBステージ化させて形成された層であることが好ましい。上記接着剤組成物は、更に(C)エポキシ樹脂を含むことがより好ましい。これによって、Bステージ化後の塗膜の固化、又は低タック化が図れる他、ダイシング工程等の半導体装置組立プロセスの効率化に寄与する。上記接着剤組成物から得られる接着剤層を有する半導体装置は、耐リフロー性等の半導体装置の信頼性を高度に満足することができる。
【0053】
(A)炭素−炭素二重結合を有する化合物は、分子内にエチレン性不飽和基を有する化合物であれば、特に制限されない。好ましいエチレン性不飽和基としては、ビニル基、アリル基、プロパギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、(メタ)アクリル基などが挙げられる。中でも後述する(B)光開始剤との組合せで良好な放射線重合性を発現する(メタ)アクリル基が好ましい。(メタ)アクリル基を分子内に有する化合物を選択することによって、Bステージ化後の接着剤層の低タック化と、Bステージ化後の低温での熱圧着性とを、高度に満足することができる。ダイボンド時の基板上の配線段差への低圧での埋め込みを可能にする熱流動性も付与できる。
【0054】
(A)炭素−炭素二重結合を有する化合物の量は、接着剤組成物全量に対して10〜95質量%であることが好ましく、20〜90質量%であることがより好ましく、40〜90質量%であることが更に好ましい。(A)成分が10質量%未満であるとBステージ化後のタック力が大きくなる傾向があり、95質量%を超えると熱硬化後の接着強度が低下する傾向がある。
【0055】
ビニル基を有する化合物としては、例えば、スチレン、ジビニルベンゼン、4−ビニルトルエン、4−ビニルピリジン、N−ビニルピロリドンが挙げられる。
【0056】
(メタ)アクリル基を有する化合物としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、1,3−アクリロイルオキシ−2−ヒドロキシプロパン、1,2−メタクリロイルオキシ−2−ヒドロキシプロパン、メチレンビスアクリルアミド、N,N−ジメチルアクリルアミド、N−メチロールアクリルアミド、トリス(β−ヒドロキシエチル)イソシアヌレートのトリアクリレート、エトキシ化ビスフェノールA型アクリレート等の下記一般式(18)で表される化合物、ウレタンアクリレート、ウレタンメタクリレート、及び尿素アクリレートなどの多官能(メタ)アクリレートが挙げられる。
【0058】
式中、R
19及びR
20は各々独立に、水素原子又はメチル基を示し、g及びhは各々独立に、1〜20の整数を示す。
【0059】
その他、(メタ)アクリル基を有する化合物としては、グリシジル基含有(メタ)アクリレート、フェノールEO変性(メタ)アクリレート、フェノールPO変性(メタ)アクリレート、ノニルフェノールEO変性(メタ)アクリレート、ノニルフェノールPO変性(メタ)アクリレート、フェノール性水酸基含有(メタ)アクリレート、水酸基含有(メタ)アクリレート、フェニルフェノールグリシジルエーテル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、及びフェノキシジエチレングリコールアクリレート等の芳香族系(メタ)アクリレート、2−(1,2−シクロヘキサカルボキシイミド)エチルアクリレート等のイミド基含有(メタ)アクリレート、カルボキシル基含有(メタ)アクリレート、イソボロニル含有(メタ)アクリレート、ジシクロペンタジエニル基含有(メタ)アクリレート、イソボロニル(メタ)アクリレートなどの単官能(メタ)アクリレート、及び、グリシジルメタクリレート、グリシジルアクリレート、4−ヒドロキシブチルアクリレートグリシジルエーテル、4−ヒドロキシブチルメタクリレートグリシジルエーテルが挙げられる。エポキシ基と反応する官能基及び(メタ)アクリル基を有する化合物と、多官能エポキシ樹脂とを反応させて得られる化合物を用いることもできる。エポキシ基と反応する官能基としては、特に限定はしないが、イソシアネート基、カルボキシル基、フェノール性水酸基、水酸基、酸無水物、アミノ基、チオール基、アミド基等が挙げられる。
【0060】
エポキシ基を有する単官能(メタ)アクリレート化合物としては、上記の他、ビスフェノールA型(又はAD型、S型、F型)のグリシジルエーテル、水添加ビスフェノールA型のグリシジルエーテル、エチレンオキシド付加体ビスフェノールA及び/又はF型のグリシジルエーテル、プロピレンオキシド付加体ビスフェノールA及び/又はF型のグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、3官能型(又は4官能型)のグリシジルエーテル、ジシクロペンタジエンフェノール樹脂のグリシジルエーテル、ダイマー酸のグリシジルエステル、3官能型(又は4官能型)のグリシジルアミン、ナフタレン樹脂のグリシジルアミン等を原料としたものが挙げられる。熱圧着性、低応力性及び接着性確保の点で、エポキシ基及びエチレン性不飽和基の数がそれぞれ3つ以下であることが好ましく、特にエチレン性不飽和基の数は2つ以下であることが好ましい。このような化合物としては、例えば下記一般式(13)、(14)、(15)、(16)又は(17)で表される化合物が好ましく用いられる。
【0062】
式中、R
12及びR
16は水素原子又はメチル基を示し、R
10、R
11、R
13及びR
14は2価の有機基を示し、R
15、R
17及びR
18はエポキシ基又はエチレン性不飽和基を有する有機基を示す。
【0063】
これらの多官能又は単官能(メタ)アクリレート化合物は、1種を単独で又は2種類以上を組み合わせて使用することができる。
【0064】
上記エポキシ基を有する単官能(メタ)アクリレートは、例えば、トリフェニルホスフィンやテトラブチルアンモニウムブロミドの存在下、1分子中に少なくとも2つ以上のエポキシ基を有する多官能エポキシ樹脂と、エポキシ基1当量に対し0.1〜0.9当量の(メタ)アクリル酸とを反応させることによって得られる。また、ジブチルスズジラウレートの存在下、多官能イソシアネート化合物とヒドロキシ基含有(メタ)アクリレート及びヒドロキシ基含有エポキシ化合物とを反応させ、又は多官能エポキシ樹脂とイソシアネート基含有(メタ)アクリレートとを反応させることにより、グリシジル基含有ウレタン(メタ)アクリレート等が得られる。
【0065】
これらの(メタ)アクリレート化合物は、25℃、1atmで液状であることが好ましく、更に5%質量減少温度が120℃以上であることが好ましい。%質量減少温度は、示差熱熱重量同時測定装置(エスアイアイ ナノテクノロジー製:TG/DTA6300)を用いて、昇温速度10℃/min、窒素フロー(400ml/min)下で測定したときに5%の質量減少が認められる温度である。このような化合物を使用することによって、熱圧着又は加熱工程での揮発による発泡又は周辺部材への汚染を抑制できる。
【0066】
これらの(メタ)アクリレート化合物は、不純物イオンであるアルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン、特には塩素イオンや加水分解性塩素等を1000ppm以下に低減した高純度品であることが、エレクトロマイグレーション防止や金属導体回路の腐食防止の観点から好ましい。例えば、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン等を低減した多官能エポキシ樹脂を原料として用いることで上記不純物イオン濃度を満足することができる。全塩素含量はJIS K7243−3に準じて測定できる。
【0067】
上記(メタ)アクリレート化合物は、中でも、単官能(メタ)アクリレートを含有することが好ましく、このような化合物を使用することによって、露光によるBステージ化において、(メタ)アクリレート基同士の光重合による架橋密度の上昇を抑制することができる。また、Bステージ化後の接着剤塗膜の良好な熱圧着流動性の確保、及びBステージ化後の体積収縮の抑制による被着体の反りの低減が図れる。
【0068】
上記単官能(メタ)アクリレートは、Bステージ化後の被着体との密着性、硬化後の接着性、耐熱性確保の点で、エポキシ基、ウレタン基、イソシアヌル基、イミド基、又は水酸基を有することが好ましく、中でも分子内にイミド基を有する単官能(メタ)アクリレート、及び/又はエポキシ基を有する単官能(メタ)アクリレートが好ましく用いられる。これによって、半導体素子及び支持部材等の被着体表面に対する良好な接着性が付与でき、更に耐リフロー性等の半導体装置の信頼性確保に必要とされる高温接着性が付与できる。
【0069】
上記単官能(メタ)アクリレートの量は、(A)分子内に炭素−炭素二重結合を有する化合物に対して、20〜100質量%であることが好ましく、40〜100質量%であることがより好ましく、50〜100質量%であることが最も好ましい。上記単官能(メタ)アクリレートを上記配合量とすることでBステージ化後の被着体との密着性及び熱圧着性が向上する。
【0070】
(B)光開始剤としては、感度向上の点から、波長365nmの光に対する分子吸光係数が100ml/g・cm以上であるものが好ましく、200ml/g・cm以上であるものがより好ましい。なお、分子吸光係数は、サンプルの0.001質量%アセトニトリル溶液を調製し、この溶液について分光光度計(日立ハイテクノロジーズ社製、「U−3310」(商品名))を用いて吸光度を測定することにより求められる。
【0071】
上記(B)光開始剤としては、例えば、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパノン−1、2,4−ジエチルチオキサントン、2−エチルアントラキノン、フェナントレンキノン等の芳香族ケトン、ベンジルジメチルケタール等のベンジル誘導体、2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(m−メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−フェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2,4−ジ(p−メトキシフェニル)−5−フェニルイミダゾール二量体、2−(2,4−ジメトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン等のアクリジン誘導体、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド、ビス(2,4,6,−トリメチルベンゾイル)−フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイドやマレイミドを有する化合物が挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。
【0072】
中でも、溶剤を実質的に含有しない接着剤組成物における溶解性の点で、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オンが好ましく用いられる。また、空気雰囲気下中でも露光によって、Bステージ化が可能となる点では、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オンが好ましく用いられる。
【0073】
(B)光開始剤は、放射線の照射によってエポキシ樹脂の重合及び/又は反応を促進する機能を発現する光開始剤を含有していてもよい。このような光開始剤としては、例えば、放射線照射によって塩基を発生する光塩基発生剤、放射線照射によって酸を発生する光酸発生剤などが挙げられ、光塩基発生剤が特に好ましい。
【0074】
上記光塩基発生剤を用いることによって、接着剤組成物の被着体への高温接着性及び耐湿性を更に向上させることができる。この理由としては、光塩基発生剤から生成した塩基がエポキシ樹脂の硬化触媒として効率よく作用することにより、架橋密度をより一層高めることができるため、また生成した硬化触媒が基板等を腐食することが少ないためと考えられる。また、接着剤組成物に光塩基発生剤を含有させることにより、架橋密度を向上させることができ、高温放置時のアウトガスをより低減させることができる。さらに、硬化プロセス温度を低温化、短時間化させることができると考えられる。
【0075】
光塩基発生剤は、放射線照射時に塩基を発生する化合物であれば特に制限は受けず用いることができる。発生する塩基としては、反応性、硬化速度の点から強塩基性化合物が好ましい。
【0076】
このような放射線照射時に発生する光塩基発生剤としては、例えば、イミダゾール、2,4−ジメチルイミダゾール、及び1−メチルイミダゾール等のイミダゾール誘導体、ピペラジン、及び2,5−ジメチルピペラジン等のピペラジン誘導体、ピペリジン、及び1,2−ジメチルピペリジン等のピペリジン誘導体、プロリン誘導体、トリメチルアミン、トリエチルアミン、及びトリエタノールアミン等のトリアルキルアミン誘導体、4−メチルアミノピリジン、及び4−ジメチルアミノピリジン等の4位にアミノ基又はアルキルアミノ基が置換したピリジン誘導体、ピロリジン、及びn−メチルピロリジン等のピロリジン誘導体、ジヒドロピリジン誘導体、トリエチレンジアミン、及び1,8−ジアザビスシクロ(5,4,0)ウンデセン−1(DBU)等の脂環式アミン誘導体、並びにベンジルメチルアミン、ベンジルジメチルアミン、及びベンジルジエチルアミン等のベンジルアミン誘導体等が挙げられる。
【0077】
上記のような塩基を放射線照射によって発生する光塩基発生剤としては、例えば、Journal of Photopolymer Science and Technology 12巻、313〜314項(1999年)やChemistry of Materials 11巻、170〜176項(1999年)等に記載されている4級アンモニウム塩誘導体を用いることができる。これらは、活性光線の照射(放射線照射)により高塩基性のトリアルキルアミンを生成するため、エポキシ樹脂の硬化には最適である。
【0078】
上記光塩基発生剤としては、Journal of American Chemical Society 118巻 12925頁(1996年)やPolymer Journal 28巻 795頁(1996年)等に記載されているカルバミン酸誘導体も用いることができる。
【0079】
活性光線の照射により塩基を発生する光塩基発生剤としては、2,4−ジメトキシ−1,2−ジフェニルエタン−1−オン、1,2−オクタンジオン,1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]やエタノン,1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾールー3−イル]−,1−(O−アセチルオキシム)などのオキシム誘導体や、光ラジカル発生剤として市販されている2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、ヘキサアリールビスイミダゾール誘導体(ハロゲン、アルコキシ基、ニトロ基、シアノ基等の置換基がフェニル基に置換されていてもよい)、ベンゾイソオキサゾロン誘導体等を用いることができる。
【0080】
上記光塩基発生剤としては、高分子の主鎖及び/又は側鎖に塩基を発生する基を導入した化合物を用いても良い。この場合の分子量としては、接着剤としての接着性、流動性及び耐熱性の観点から重量平均分子量1000〜100000が好ましく、5000〜30000であることがより好ましい。
【0081】
上記光塩基発生剤は、露光しない状態ではエポキシ樹脂と反応性を示さないため、室温での貯蔵安定性が非常に優れる。
【0082】
(B)光開始剤の量は、特に制限はないが、(A)炭素−炭素二重結合を有する化合物100質量部に対して、0.01〜30質量部であることが好ましい。
【0083】
(C)エポキシ樹脂としては、分子内に少なくとも2個以上のエポキシ基を含むものが好ましく、熱圧着性や硬化性、硬化物特性の点から、フェノールのグリシジルエーテル型のエポキシ樹脂がより好ましい。このような樹脂としては、例えば、ビスフェノールA型(又はAD型、S型、F型)のグリシジルエーテル、水添加ビスフェノールA型のグリシジルエーテル、エチレンオキシド付加体ビスフェノールA型のグリシジルエーテル、プロピレンオキシド付加体ビスフェノールA型のグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、3官能型(又は4官能型)のグリシジルエーテル、ジシクロペンタジエンフェノール樹脂のグリシジルエーテル、ダイマー酸のグリシジルエステル、3官能型(又は4官能型)のグリシジルアミン、ナフタレン樹脂のグリシジルアミン等が挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。
【0084】
上記(C)エポキシ樹脂は、不純物イオンである、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン、特に塩素イオンや加水分解性塩素等を300ppm以下に低減した高純度品であることが、エレクトロマイグレーション防止や金属導体回路の腐食防止の観点から好ましい。
【0085】
上記(C)エポキシ樹脂は、25℃、1atmで液状であることが好ましく、また、5%質量減少温度が150℃以上であることが好ましい。5%質量減少温度とは、示差熱熱重量同時測定装置(エスアイアイ ナノテクノロジー製:TG/DTA6300)を用いて、昇温速度10℃/min、窒素フロー(400ml/min)下で測定したときの5%質量減少が認められる温度である。5%質量減少温度が高いエポキシ樹脂を使用することで、熱圧着又は熱硬化時に揮発することを抑制できる。このような耐熱性を有する熱硬化性樹脂としては、分子内に芳香族基を有するエポキシ樹脂が挙げられる。接着性、耐熱性の観点から特に3官能型(又は4官能型)のグリシジルアミン、ビスフェノールA型(又はAD型、S型、F型)のグリシジルエーテルが好ましく用いられる。
【0086】
(C)エポキシ樹脂の量は、(A)分子内に炭素−炭素二重結合を有する化合物100質量部に対して1〜100質量部であることが好ましく、2〜50質量部であることがより好ましい。この量が100質量部を超えると、露光後のタック力が上昇する傾向がある。一方、1質量部未満であると、十分な熱圧着性及び高温接着性が得られなくなる傾向がある。
【0087】
(C)エポキシ樹脂の硬化を促進する目的で、接着剤組成物が硬化促進剤を含有することもできる。硬化促進剤としては、加熱によってエポキシ樹脂の硬化/重合を促進する化合物であれば特に制限はなく、例えば、フェノール系化合物、脂肪族アミン、脂環族アミン、芳香族ポリアミン、ポリアミド、脂肪族酸無水物、脂環族酸無水物、芳香族酸無水物、ジシアンジアミド、有機酸ジヒドラジド、三フッ化ホウ素アミン錯体、イミダゾール類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2−エチル−4−メチルイミダゾール−テトラフェニルボレート、1,8−ジアザビシクロ[5.4.0]ウンデセン−7−テトラフェニルボレート、第3級アミン等が挙げられる。これらの中でも溶剤を含有しないときの溶解性、分散性の観点からイミダゾール類が好ましく用いられる。硬化促進剤の量は、エポキシ樹脂100質量部に対して0.01〜50質量部が好ましい。また、接着性、耐熱性、保存安定性の観点からもイミダゾール類が特に好ましい。
【0088】
上記イミダゾール類の反応開始温度は50℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることが更に好ましい。反応開始温度が50℃未満であると保存安定性が低下するため、接着剤組成物の粘度が上昇し膜厚の制御が困難となる傾向がある。
【0089】
上記イミダゾール類は、好ましくは平均粒径10μm以下、より好ましくは8μm以下、最も好ましくは5μm以下の粒子状の化合物であることが好ましい。このような粒径のイミダゾール類を用いることで接着剤組成物の粘度変化を抑制することができ、イミダゾール類の沈降を抑制することができる。また、薄膜の接着層を形成したときに、表面の凹凸を低減されて、より均一な膜を得ることができる。さらに、硬化時には接着剤組成物中の硬化を均一に進行させることができるため、アウトガスが低減できると考えている。また、エポキシ樹脂への溶解性が乏しいイミダゾールを使用することで良好な保存安定性を得ることができる。
【0090】
上記イミダゾール類としてはエポキシ樹脂に溶解するイミダゾール類も使用することができる。このようなイミダゾール類を用いることで薄膜形成時の表面の凹凸をより低減することができる。このようなイミダゾール類は、好ましくは、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール及び1−シアノエチル−2−フェニルイミダゾリウムトリメリテイトから選ばれる少なくとも1種である。
【0091】
上記(C)エポキシ樹脂の硬化剤としてフェノール系化合物が含有されていてもよい。フェノール系化合物としては分子中に少なくとも2個以上のフェノール性水酸基を有するフェノール系化合物がより好ましい。このような化合物としては、例えばフェノールノボラック、クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾールノボラック、ジシクロペンタジエンフェノールノボラック、キシリレン変性フェノールノボラック、ナフトール系化合物、トリスフェノール系化合物、テトラキスフェノールノボラック、ビスフェノールAノボラック、ポリ−p−ビニルフェノール、フェノールアラルキル樹脂等が挙げられる。これらの中でも、数平均分子量が400〜4000の範囲内のものが好ましい。これにより、半導体装置組立加熱時に、半導体素子又は装置等の汚染の原因となる加熱時のアウトガスを抑制できる。フェノール系化合物の量は、熱硬化性樹脂100質量部に対して50〜120質量部であることが好ましく、70〜100質量部であることがより好ましい。
【0092】
本実施形態に係る接着剤組成物は、上記(C)エポキシ樹脂に加えて、必要に応じて、シアネートエステル樹脂、マレイミド樹脂、アリルナジイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、レゾルシノールホルムアルデヒド樹脂、キシレン樹脂、フラン樹脂、ポリウレタン樹脂、ケトン樹脂、トリアリルシアヌレート樹脂、ポリイソシアネート樹脂、トリス(2−ヒドロキシエチル)イソシアヌラートを含有する樹脂、トリアリルトリメリタートを含有する樹脂、シクロペンタジエンから合成された熱硬化性樹脂、芳香族ジシアナミドの三量化による熱硬化性樹脂等を含むこともできる。なお、これら熱硬化性樹脂は単独で又は二種類以上を組み合わせて用いることができる。
【0093】
本実施形態に係る接着剤組成物は、低応力性、被着体との密着性、熱圧着性向上を目的に、必要に応じて、ポリエステル樹脂、ポリエーテル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、ポリウレタンイミド樹脂、ポリウレタンアミドイミド樹脂、シロキサンポリイミド樹脂、ポリエステルイミド樹脂、これらの共重合体、これらの前駆体(ポリアミド酸等)の他、ポリベンゾオキサゾール樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、(メタ)アクリル共重合体、ノボラック樹脂、及びフェノール樹脂等の熱可塑性樹脂を含むこともできる。
【0094】
本実施形態に係る接着剤組成物の低粘度化、Bステージ化後の熱圧着性確保の点で、上記熱可塑性樹脂のガラス転移温度(Tg)が150℃以下であることが好ましく、重量平均分子量は、5000〜500000であることが好ましい。上記Tgとは、熱可塑性樹脂をフィルム化したときの主分散ピーク温度を意味する。レオメトリックス社製粘弾性アナライザー「RSA−2」(商品名)を用いて、フィルム厚100μm、昇温速度5℃/min、周波数1Hz、測定温度−150〜300℃の条件でフィルム状の熱可塑性樹脂の粘弾性を測定し、Tg付近のtanδピーク温度を主分散ピーク温度とした。また、上記重量平均分子量とは、島津製作所社製高速液体クロマトグラフィー「C−R4A」(商品名)を用いて、ポリスチレン換算で測定したときの重量平均分子量を意味する。
【0095】
上記熱可塑性樹脂の量は、特に制限はないが、(A)分子内に炭素−炭素二重結合を有する化合物100質量部に対して、1〜200質量部であることが好ましい。
【0096】
上記熱可塑性樹脂としては、高温接着性、及び耐熱性確保の点で、イミド基を有する樹脂が好ましい。イミド基を有する樹脂としては。例えばポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリウレタンイミド樹脂、ポリウレタンアミドイミド樹脂、シロキサンポリイミド樹脂、ポリエステルイミド樹脂、及びこれらの共重合体が挙げられる。
【0097】
例えばポリイミド樹脂は、テトラカルボン酸二無水物とジアミンとを公知の方法で縮合反応させて得ることができる。すなわち、有機溶媒中で、テトラカルボン酸二無水物とジアミンとを等モルで、又は、必要に応じてテトラカルボン酸二無水物の合計1.0molに対して、ジアミンの合計を好ましくは0.5〜2.0mol、より好ましくは0.8〜1.0molの範囲で組成比を調整し、反応温度80℃以下、好ましくは0〜60℃で付加反応させる。各成分の添加順序は任意である。反応が進行するにつれ反応液の粘度が徐々に上昇し、ポリイミド樹脂の前駆体であるポリアミド酸が生成する。樹脂組成物の諸特性の低下を抑えるため、上記テトラカルボン酸二無水物は、無水酢酸で再結晶精製処理したものであることが好ましい。
【0098】
上記縮合反応におけるテトラカルボン酸二無水物とジアミンとの組成比については、テトラカルボン酸二無水物の合計1.0molに対して、ジアミンの合計が2.0molを超えると、得られるポリイミド樹脂に、アミン末端のポリイミドオリゴマーの量が多くなる傾向があり、ポリイミド樹脂の重量平均分子量が低くなり、樹脂組成物の耐熱性を含む種々の特性が十分でなくなる傾向がある。一方、テトラカルボン酸二無水物の合計1.0molに対してジアミンの合計が0.5mol未満であると、酸末端のポリイミド樹脂オリゴマーの量が多くなる傾向があり、ポリイミド樹脂の重量平均分子量が低くなり、樹脂組成物の耐熱性を含む種々の特性が低下する傾向がある。
【0099】
ポリイミド樹脂は、上記反応物(ポリアミド酸)を脱水閉環させて得ることができる。脱水閉環は、加熱処理する熱閉環法、脱水剤を使用する化学閉環法等で行うことができる。
【0100】
ポリイミド樹脂の原料として用いられるテトラカルボン酸二無水物としては特に制限は無く、例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ベンゼン−1,2,3,4−テトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,4,5−ナフタレンテトラカルボン酸二無水物、2,6−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,7−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,3,6,7−テトラクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、フェナンスレン−1,8,9,10−テトラカルボン酸二無水物、ピラジン−2,3,5,6−テトラカルボン酸二無水物、チオフェン−2,3,5,6−テトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4−ジカルボキシフェニル)メチルフェニルシラン二無水物、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン二無水物、1,4−ビス(3,4−ジカルボキシフェニルジメチルシリル)ベンゼン二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシクロヘキサン二無水物、p−フェニレンビス(トリメリテート無水物)、エチレンテトラカルボン酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、デカヒドロナフタレン−1,4,5,8−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−1,2,5,6−テトラカルボン酸二無水物、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物、ピロリジン−2,3,4,5−テトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビス(エキソ−ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸二無水物、ビシクロ−[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス[4−(3,4−ジカルボキシフェニル)フェニル]プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2−ビス[4−(3,4−ジカルボキシフェニル)フェニル]ヘキサフルオロプロパン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、1,4−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、1,3−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物、テトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物、下記一般式(1)で表されるテトラカルボン酸二無水物等が挙げられる。式(1)中、aは2〜20の整数を示す。
【0102】
上記一般式(1)で表されるテトラカルボン酸二無水物は、例えば、無水トリメリット酸モノクロライド及び対応するジオールから合成することができる。式(1)のテトラカルボン酸二無水物として、1,2−(エチレン)ビス(トリメリテート無水物)、1,3−(トリメチレン)ビス(トリメリテート無水物)、1,4−(テトラメチレン)ビス(トリメリテート無水物)、1,5−(ペンタメチレン)ビス(トリメリテート無水物)、1,6−(ヘキサメチレン)ビス(トリメリテート無水物)、1,7−(ヘプタメチレン)ビス(トリメリテート無水物)、1,8−(オクタメチレン)ビス(トリメリテート無水物)、1,9−(ノナメチレン)ビス(トリメリテート無水物)、1,10−(デカメチレン)ビス(トリメリテート無水物)、1,12−(ドデカメチレン)ビス(トリメリテート無水物)、1,16−(ヘキサデカメチレン)ビス(トリメリテート無水物)、1,18−(オクタデカメチレン)ビス(トリメリテート無水物)等が挙げられる。
【0103】
テトラカルボン酸二無水物としては、溶剤への良好な溶解性及び耐湿性、365nm光に対する透明性を付与する観点から、下記式(2)又は(3)で表されるテトラカルボン酸二無水物が好ましい。
【0105】
以上のようなテトラカルボン酸二無水物は、1種を単独で又は2種類以上を組み合わせて使用することができる。
【0106】
本実施形態に係る熱可塑性樹脂は、更に、接着強度を上昇させる点でカルボキシル基及び/又はフェノール性水酸基を含有するポリイミド樹脂を用いることができる。このポリイミド樹脂の原料として用いられるジアミンは、下記式(4)、(5)、(6)又は(7)で表される芳香族ジアミンを含むことが好ましい。
【0108】
上記ポリイミド樹脂の原料として用いられるその他のジアミンとしては特に制限はなく、例えば、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、ビス(4−アミノ−3,5−ジメチルフェニル)メタン、ビス(4−アミノ−3,5−ジイソプロピルフェニル)メタン、3,3’−ジアミノジフェニルジフルオロメタン、3,4’−ジアミノジフェニルジフルオロメタン、4,4’−ジアミノジフェニルジフルオロメタン、3,3’−ジアミノジフェニルスルフォン、3,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフォン、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルケトン、2,2−ビス(3−アミノフェニル)プロパン、2,2’−(3,4’−ジアミノジフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2−(3,4’−ジアミノジフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3,3’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、3,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、4,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4−(3−アミノエノキシ)フェニル)スルフィド、ビス(4−(4−アミノエノキシ)フェニル)スルフィド、ビス(4−(3−アミノエノキシ)フェニル)スルホン、ビス(4−(4−アミノエノキシ)フェニル)スルホン、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、3,5−ジアミノ安息香酸等の芳香族ジアミン、1,3−ビス(アミノメチル)シクロヘキサン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、下記一般式(8)で表される脂肪族エーテルジアミン、下記一般式(9)で表されるシロキサンジアミン等が挙げられる。
【0109】
上記ジアミンの中でも、他成分との相溶性を付与する点で、下記一般式(8)で表される脂肪族エーテルジアミンが好ましく、エチレングリコール及び/又はプロピレングリコール系ジアミンがより好ましい。下記一般式(8)中、R
1、R
2及びR
3は各々独立に、炭素数1〜10のアルキレン基を示し、bは2〜80の整数を示す。
【0111】
このような脂肪族エーテルジアミンとして具体的には、サンテクノケミカル(株)製ジェファーミンD−230,D−400,D−2000,D−4000,ED−600,ED−900,ED−2000,及びEDR−148、BASF(製)ポリエーテルアミンD−230,D−400,及びD−2000、並びに、東京化成製B−12等のポリオキシアルキレンジアミン等の脂肪族ジアミンが挙げられる。これらの脂肪族エーテルジアミンは、全ジアミンの20モル%以上であることが好ましく、(A)炭素−炭素二重結合を有する化合物や(C)エポキシ樹脂等の他配合成分との相溶性、また熱圧着性と高温接着性とを高度に両立できる点で50モル%以上であることがより好ましい。
【0112】
上記ジアミンとしては、室温での密着性、接着性を付与する点で、下記一般式(9)で表されるシロキサンジアミンが好ましい。下記一般式(9)中、R
4及びR
9は各々独立に、炭素数1〜5のアルキレン基又は置換基を有してもよいフェニレン基を示し、R
5、R
6、R
7及びR
8は各々独立に、炭素数1〜5のアルキル基、フェニル基又はフェノキシ基を示し、dは1〜5の整数を示す。
【0114】
これらのシロキサンジアミンは、全ジアミンの0.5〜80モル%とすることが好ましく、熱圧着性と高温接着性とを高度に両立できる点で1〜50モル%とすることが更に好ましい。0.5モル%を下回るとシロキサンジアミンを添加した効果が小さくなり、80モル%を上回ると他成分との相溶性、高温接着性が低下する傾向がある。
【0115】
上記一般式(9)で表されるシロキサンジアミンとして具体的には、式(9)中のdが1のものとして、1,1,3,3−テトラメチル−1,3−ビス(4−アミノフェニル)ジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ビス(4−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノブチル)ジシロキサン、及び1,3−ジメチル−1,3−ジメトキシ−1,3−ビス(4−アミノブチル)ジシロキサン等が挙げられ、dが2のものとして、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(4−アミノフェニル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(2−アミノエチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサエチル−1,5−ビス(3−アミノプロピル)トリシロキサン、及び1,1,3,3,5,5−ヘキサプロピル−1,5−ビス(3−アミノプロピル)トリシロキサン等が挙げられる。
【0116】
上述したジアミンは、1種を単独で又は2種以上を組み合わせて使用することができる。
【0117】
また、上記ポリイミド樹脂は、1種を単独で又は必要に応じて2種以上を組み合わせて用いることができる。
【0118】
ポリイミド樹脂の組成を決定する際には、そのTgが150℃以下となるように設計することが好ましい。ポリイミド樹脂の原料であるジアミンとして、上記一般式(8)で表される脂肪族エーテルジアミンを用いることが特に好ましい。
【0119】
上記ポリイミド樹脂の合成時に、下記式(10)、(11)又は(12)で表される化合物のような単官能酸無水物及び/又は単官能アミンを縮合反応液に投入することにより、ポリマー末端に酸無水物又はジアミン以外の官能基を導入することができる。また、これにより、ポリマーの分子量を低くし、接着剤樹脂組成物の粘度を低下させ、熱圧着性を向上させることができる。
【0121】
上記熱可塑性樹脂としては、粘度上昇を抑制し、更に樹脂組成物中のとけ残りを低減する点で、常温(25℃)で液状である液状熱可塑性樹脂を用いることが好ましい。このような熱可塑性樹脂は溶剤を用いることなく、加熱して反応させることが可能となり本発明のような溶剤を適用しない接着剤組成物では溶剤除去の工程削減、残存溶剤の低減、再沈殿工程の削減の点で有用である。また液状熱可塑性樹脂は、反応炉からの取り出しも容易である。このような液状熱可塑性樹脂としては、特に限定はしないが、ポリブタジエン、アクリロニトリルブタジエンオリゴマー、ポリイソプレン、ポリブテン等のゴム状ポリマー、ポリオレフィン、アクリルポリマー、シリコーンポリマー、ポリウレタン、ポリイミド、及びポリアミドイミド等が挙げられる。中でもポリイミド樹脂が好ましく用いられる。
【0122】
液状のポリイミド樹脂としては例えば上記の酸無水物と脂肪族エーテルジアミンやシロキサンジアミンとを反応させることによって得られる。合成方法としては溶剤を加えずに、脂肪族エーテルジアミンやシロキサンジアミン中に酸無水物を分散させ、加熱することによって得られる。
【0123】
本実施形態の接着剤組成物は、必要に応じて増感剤を含有することができる。この増感剤としては、例えば、カンファーキノン、ベンジル、ジアセチル、ベンジルジメチルケタール、ベンジルジエチルケタール、ベンジルジ(2−メトキシエチル)ケタール、4,4’−ジメチルベンジル−ジメチルケタール、アントラキノン、1−クロロアントラキノン、2−クロロアントラキノン、1,2−ベンズアントラキノン、1−ヒドロキシアントラキノン、1−メチルアントラキノン、2−エチルアントラキノン、1−ブロモアントラキノン、チオキサントン、2−イソプロピルチオキサントン、2−ニトロチオキサントン、2−メチルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、2−クロロ−7−トリフルオロメチルチオキサントン、チオキサントン−10,10−ジオキシド、チオキサントン−10−オキサイド、ベンゾインメチルエーテル、ベンゾインエチルエーテル、イソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、ビス(4−ジメチルアミノフェニル)ケトン、4,4’−ビスジエチルアミノベンゾフェノン、及びアジド基を含む化合物が挙げられる。これらは単独で又は2種類以上併用して使用することができる。
【0124】
本実施形態に係る接着剤組成物は、必要に応じて熱ラジカル発生剤を含有することができる。熱ラジカル発生剤は、有機過酸化物であることが好ましい。有機過酸化物としては、1分間半減期温度が80℃以上であるものが好ましく、100℃以上であるものがより好ましく、120℃以上であることが最も好ましい。有機過酸化物は、接着剤組成物の調製条件、製膜温度、硬化(貼り合せ)条件、その他プロセス条件、貯蔵安定性等を考慮して選択される。使用可能な過酸化物としては、特に限定はしないが、例えば、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシへキサン)、ジクミルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサネート、t−ヘキシルパーオキシ−2−エチルヘキサネート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート等が挙げられ、これらのうちの1種を単独で、又は2種以上を混合して用いることができる。有機過酸化物を含有することで露光に残存している未反応の炭素−炭素二重結合を有する化合物を反応させることができ、低アウトガス化、高接着化を図ることができる。
【0125】
熱ラジカル発生剤の量は、炭素−炭素二重結合を有する化合物の全量に対し、0.01〜20質量%が好ましく、0.1〜10質量%が更に好ましく、0.5〜5質量%が最も好ましい。0.01質量%未満であると硬化性が低下し、添加効果が小さくなり、20質量%を超えるとアウトガス量増加、保存安定性低下が見られる。
【0126】
熱ラジカル発生剤としては、半減期温度が80℃以上の化合物であれば特に限定はしないが、例えば、パーヘキサ25B(日油社製)、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシへキサン)(1分間半減期温度:180℃)、パークミルD(日油社製)、ジクミルパーオキサイド(1分間半減期温度:175℃)が挙げられる。
【0127】
本実施形態に係る接着剤組成物には、保存安定性、プロセス適応性又は酸化防止性を付与するために、キノン類、多価フェノール類、フェノール類、ホスファイト類、イオウ類等の重合禁止剤又は酸化防止剤を、硬化性を損なわない範囲で更に添加してもよい。
【0128】
さらに、本実施形態に係る接着剤組成物には、適宜フィラーを含有させることもできる。フィラーとしては、例えば、銀粉、金粉、銅粉、及びニッケル粉等の金属フィラー、アルミナ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、結晶性シリカ、非晶性シリカ、窒化ホウ素、チタニア、ガラス、酸化鉄、及びセラミック等の無機フィラー、並びに、カーボン、及びゴム系フィラー等の有機フィラー等が挙げられ、種類や形状等にかかわらず特に制限なく使用することができる。
【0129】
上記フィラーは、所望する機能に応じて使い分けることができる。例えば、金属フィラーは、樹脂組成物に導電性、熱伝導性、チキソ性等を付与する目的で添加され、非金属無機フィラーは、接着剤層に熱伝導性、低熱膨張性、低吸湿性等を付与する目的で添加され、有機フィラーは接着剤層に靭性等を付与する目的で添加される。
【0130】
これら金属フィラー、無機フィラー又は有機フィラーは、1種を単独で又は2種類以上を組み合わせて使用することができる。中でも、半導体装置用接着材料に求められる、導電性、熱伝導性、低吸湿特性、絶縁性等を付与できる点で、金属フィラー、無機フィラー、又は絶縁性のフィラーが好ましく、無機フィラー又は絶縁性フィラーの中では、樹脂ワニスに対する分散性が良好で且つ、熱時の高い接着力を付与できる点でシリカフィラーがより好ましい。
【0131】
上記フィラーは、平均粒子径が10μm以下、且つ、最大粒子径が30μm以下であることが好ましく、平均粒子径が5μm以下、且つ、最大粒子径が20μm以下であることがより好ましい。平均粒子径が10μmを超え、且つ、最大粒子径が30μmを超えると、破壊靭性向上の効果が十分に得られない傾向がある。また、平均粒子径及び最大粒子径の下限は特に制限はないが、通常、どちらも0.001μm以上である。
【0132】
上記フィラーの量は、付与する特性又は機能に応じて決められるが、接着剤組成物全量に対して0〜50質量%が好ましく、1〜40質量%がより好ましく、3〜30質量%が更に好ましい。フィラーを増量させることにより、低熱膨張係数化、低吸湿化、高弾性率化が図れ、ダイシング性(ダイサー刃による切断性)、ワイヤボンディング性(超音波効率)、熱時の接着強度を有効に向上させることができる。
【0133】
フィラーを必要以上に増量させると、粘度が上昇したり、熱圧着性が損なわれたりする傾向にあるため、フィラーの量は上記の範囲内にあることが好ましい。求められる特性のバランスをとるべく、最適フィラー含有量を決定する。フィラーを用いた場合の混合及び混練は、通常の撹拌機、らいかい機、三本ロール、及びボールミル等の分散機を適宜、組み合わせて行うことができる。
【0134】
本実施形態に係る接着剤組成物は、異種材料間の界面結合を良くするために、各種カップリング剤を含有することもできる。カップリング剤としては、例えば、シラン系、チタン系、アルミニウム系等が挙げられ、中でも効果が高い点で、シラン系カップリング剤が好ましい。エポキシ基等の熱硬化性の官能基やメタクリレート及び/又はアクリレート等の放射線重合性の官能基を有する化合物がより好ましい。上記シラン系カップリング剤の沸点及び/又は分解温度は150℃以上であることが好ましく、180℃以上であることより好ましく、200℃以上であることが更により好ましい。つまり、200℃以上の沸点及び/又は分解温度で、且つエポキシ基等の熱硬化性の官能基やメタクリレート及び/又はアクリレート等の放射線重合性の官能基を有するシラン系カップリング剤が最も好ましく用いられる。上記カップリング剤の量は、その効果や耐熱性及びコストの面から、使用する接着剤組成物100質量部に対して、0.01〜20質量部とすることが好ましい。
【0135】
本実施形態に係る接着剤組成物には、イオン性不純物を吸着して、吸湿時の絶縁信頼性を良くするために、更にイオン捕捉剤を添加することもできる。このようなイオン捕捉剤としては、特に制限はなく、例えば、トリアジンチオール化合物、フェノール系還元剤等の銅がイオン化して溶け出すのを防止するための銅害防止剤として知られる化合物、粉末状のビスマス系、アンチモン系、マグネシウム系、アルミニウム系、ジルコニウム系、カルシウム系、チタン系、ズズ系及びこれらの混合系等の無機化合物が挙げられる。具体例としては、特に限定はしないが東亜合成(株)製の無機イオン捕捉剤、商品名、IXE−300(アンチモン系)、IXE−500(ビスマス系)、IXE−600(アンチモン、ビスマス混合系)、IXE−700(マグネシウム、アルミニウム混合系)、IXE−800(ジルコニウム系)、IXE−1100(カルシウム系)等がある。これらは単独で又は2種以上を混合して用いることができる。上記イオン捕捉剤の量は、添加による効果や耐熱性、コスト等の点から、接着剤組成物100質量部に対して、0.01〜10質量部が好ましい。
【0136】
接着剤組成物は、例えば、光開始剤と、放射線重合性化合物とを含有する。接着剤組成物は、溶剤を実質的に含有しないことが好ましい。
【0137】
光開始剤として、光照射によってラジカル、酸又は塩基などを生成する化合物を用いることができる。中でもマイグレーションなどの耐腐食性の観点から、光照射によりラジカル及び/又は塩基を生成する化合物を用いることが好ましく。特に、露光後の加熱処理が不要となる点や高感度である点でラジカルを生成する化合物が好ましく用いられる。光照射によって酸又は塩基を生成する化合物は、エポキシ樹脂の重合及び/又は反応を促進する機能を発現する。
【0138】
ラジカルを生成する化合物としては、例えば、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパノン−1、2,4−ジエチルチオキサントン、2−エチルアントラキノン及びフェナントレンキノン等の芳香族ケトン、ベンジルジメチルケタール等のベンジル誘導体、2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(m−メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−フェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2,4−ジ(p−メトキシフェニル)−5−フェニルイミダゾール二量体及び2−(2,4−ジメトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体、9−フェニルアクリジン及び1,7−ビス(9,9’−アクリジニル)ヘプタン等のアクリジン誘導体、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド及びビス(2,4,6,−トリメチルベンゾイル)−フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド、オキシムエステル系化合物、マレイミド化合物が挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。
【0139】
上記光開始剤の中でも、溶剤を含有しない接着剤組成物での溶解性の点で、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オンが好ましく用いられる。また、空気雰囲気下中でも露光によって、Bステージ化が可能となる点では、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オンが好ましく用いられる。
【0140】
露光によって塩基を生成する化合物(光塩基発生剤)を用いることにより、接着剤組成物の被着体への高温接着性及び耐湿性を更に向上させることができる。この理由としては、光塩基発生剤から生成した塩基がエポキシ樹脂の硬化触媒として効率よく作用することにより、架橋密度をより一層高めることができるため、また生成した硬化触媒が基板などを腐食することが少ないためと考えられる。また、接着剤組成物に光塩基発生剤を含有させることにより、架橋密度を向上させることができ、高温放置時のアウトガスをより低減させることができる。さらに、硬化プロセス温度を低温化、短時間化させることができると考えられる。
【0141】
光塩基発生剤は、放射線照射により塩基を発生する化合物であれば特に制限は受けず用いることができる。発生する塩基としては、反応性、硬化速度の点から強塩基性化合物が好ましい。より具体的には、光塩基発生剤によって発生する塩基の水溶液中でのpKa値は、7以上であることが好ましく、8以上であることがより好ましい。pKaは、一般的に、塩基性の指標として酸解離定数の対数である。
【0142】
放射線照射により発生する光塩基発生剤としては、例えば、イミダゾール、2,4−ジメチルイミダゾール、1−メチルイミダゾール等のイミダゾール誘導体、ピペラジン及び2,5−ジメチルピペラジン等のピペラジン誘導体、ピペリジン及び1,2−ジメチルピペリジン等のピペリジン誘導体、トリメチルアミン、トリエチルアミン及びトリエタノールアミン等のトリアルキルアミン誘導体、4−メチルアミノピリジン及び4−ジメチルアミノピリジン等の4位にアミノ基またはアルキルアミノ基が置換したピリジン誘導体、ピロリジン、n−メチルピロリジン等のピロリジン誘導体、1,8−ジアザビスシクロ(5,4,0)ウンデセン−1(DBU)等の脂環式アミン誘導体、ベンジルメチルアミン、ベンジルジメチルアミン及びベンジルジエチルアミン等のベンジルアミン誘導体、プロリン誘導体、トリエチレンジアミン、モルホリン誘導体、1級アルキルアミンが挙げられる。
【0143】
活性光線の照射により1級アミノ基を発生するオキシム誘導体、光ラジカル発生剤として市販されている2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オン(チバ スペシャリティ ケミカルズ社製、イルガキュア907)、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1(チバ スペシャリティ ケミカルズ社製、イルガキュア369)、3,6−ビス-(2メチル−2モルホリノ−プロピオニル)−9−N−オクチルカルバゾール(ADEKA社製、オプトマーN―1414)、ヘキサアリールビスイミダゾール誘導体(ハロゲン、アルコキシ基、ニトロ基、シアノ基等の置換基がフェニル基に置換されていてもよい)、ベンゾイソオキサゾロン誘導体、カルバメート誘導体等を光開始剤として用いることができる。
【0144】
放射線重合性化合物としては、エチレン性不飽和基を有する化合物が挙げられる。エチレン性不飽和基としては、ビニル基、アリル基、プロパギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、(メタ)アクリル基などが挙げられる。反応性の観点から、(メタ)アクリル基が好ましい。放射線重合性化合物は、単官能(メタ)アクリレートを含むことが好ましい。単官能(メタ)アクリレートを添加することで、特に、Bステージ化のための露光時に架橋密度を低減することができ、露光後の熱圧着性、低応力性及び接着性を良好な状態とすることができる。
【0145】
単官能(メタ)アクリレートの5%重量減少温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることが更により好ましく、180℃以上であることがより一層好ましい。ここでの5%質量減少温度は、放射線重合性化合物(単官能(メタ)アクリレート)に関して、示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー製:TG/DTA6300)を用いて、昇温速度10℃/min、窒素フロー(400ml/min)の条件で測定される。5%重量減少温度が高い単官能(メタ)アクリレートを用いることにより、露光によってBステージ化した後に残存した未反応単官能(メタ)アクリレートが熱圧着又は熱硬化時に揮発することを抑制できる。
【0146】
単官能(メタ)アクリレートは、例えば、グリシジル基含有(メタ)アクリレート、フェノールEO変性(メタ)アクリレート、フェノールPO変性(メタ)アクリレート、ノニルフェノールEO変性(メタ)アクリレート、ノニルフェノールPO変性(メタ)アクリレート、フェノール性水酸基含有(メタ)アクリレート、水酸基含有(メタ)アクリレート、フェニルフェノールグリシジルエーテル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなどの芳香族系(メタ)アクリレート、イミド基含有(メタ)アクリレート、カルボキシル基含有(メタ)アクリレート、イソボロニル基含有(メタ)アクリレート、ジシクロペンタジエニル基含有(メタ)アクリレート、イソボロニル(メタ)アクリレートから選ばれる。
【0147】
単官能(メタ)アクリレートとしては、Bステージ化後の被着体との密着性、硬化後の接着性、耐熱性の観点から、ウレタン基、イソシアヌル基、イミド基及び水酸基から選ばれる少なくとも1種の官能基を有することが好ましい。特に、イミド基を有する単官能(メタ)アクリレートが好ましい。
【0148】
エポキシ基を有する単官能(メタ)アクリレートも好ましく用いることができる。エポキシ基を有する単官能(メタ)アクリレートの5%重量減少温度は、保存安定性、接着性、低アウトガス性、耐熱・耐湿信頼性の観点から、好ましくは150℃以上、より好ましくは180℃以上、更に好ましくは200℃以上である。エポキシ基を有する単官能(メタ)アクリレートの5%重量減少温度は、フィルム形成時の加熱乾燥による揮発もしくは表面への偏析を抑制できる点で150℃以上であることが好ましく、熱硬化時のアウトガスによるボイド及びはく離や接着性低下を抑制できる点で180℃以上であることが更に好ましく、200℃以上であることが更により好ましく、リフロー時に未反応成分が揮発することによるボイド及びはく離を抑制できる点で260℃以上であることが最も好ましい。このようなエポキシ基を有する単官能(メタ)アクリレートは、芳香環を有すものが好ましい。5%重量減少温度が150℃以上の多官能エポキシ樹脂を単官能(メタ)アクリレートの原料として用いることにより、高い耐熱性が得られる。
【0149】
エポキシ基を有する単官能(メタ)アクリレートとしては、特に限定はしないが、グリシジルメタクリレート、グリシジルアクリレート、4−ヒドロキシブチルアクリレートグリシジルエーテル、4−ヒドロキシブチルメタクリレートグリシジルエーテルの他、エポキシ基と反応する官能基及びエチレン性不飽和基を有する化合物と多官能エポキシ樹脂とを反応させて得られる化合物等が挙げられる。上記エポキシ基と反応する官能基としては、特に限定はしないが、イソシアネート基、カルボキシル基、フェノール性水酸基、水酸基、酸無水物、アミノ基、チオール基、アミド基などが挙げられる。これらの化合物は、1種を単独で又は2種類以上を組み合わせて使用することができる。
【0150】
エポキシ基を有する単官能(メタ)アクリレートは、例えば、トリフェニルホスフィンやテトラブチルアンモニウムブロミドの存在下、1分子中に少なくとも2つ以上のエポキシ基を有する多官能エポキシ樹脂と、エポキシ基1当量に対し0.1〜0.9当量の(メタ)アクリル酸とを反応させることによって得られる。また、ジブチルスズジラウレートの存在下、多官能イソシアネート化合物とヒドロキシ基含有(メタ)アクリレート及びヒドロキシ基含有エポキシ化合物とを反応させ、又は多官能エポキシ樹脂とイソシアネート基含有(メタ)アクリレートとを反応させることにより、グリシジル基含有ウレタン(メタ)アクリレート等が得られる。
【0151】
さらに、エポキシ基を有する単官能(メタ)アクリレートとしては、不純物イオンであるアルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン、特には塩素イオンや加水分解性塩素等を1000ppm以下に低減した高純度品を用いることが、エレクトロマイグレーション防止や金属導体回路の腐食防止の観点から好ましい。例えば、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン等を低減した多官能エポキシ樹脂を原料として用いることで上記不純物イオン濃度を満足することができる。全塩素含量はJIS K7243−3に準じて測定できる。
【0152】
上記耐熱性と純度を満たすエポキシ基を有する単官能(メタ)アクリレート成分としては、特に限定はしないが、ビスフェノールA型(又はAD型、S型、F型)のグリシジルエーテル、水添加ビスフェノールA型のグリシジルエーテル、エチレンオキシド付加体ビスフェノールA及び/又はF型のグリシジルエーテル、プロピレンオキシド付加体ビスフェノールA及び/又はF型のグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、3官能型(又は4官能型)のグリシジルエーテル、ジシクロペンタジエンフェノール樹脂のグリシジルエーテル、ダイマー酸のグリシジルエステル、3官能型(又は4官能型)のグリシジルアミン、ナフタレン樹脂のグリシジルアミン等を原料としたものが挙げられる。
【0153】
特に、熱圧着性、低応力性及び接着性を改善するためには、エポキシ基及びエチレン性不飽和基の数がそれぞれ3つ以下であることが好ましく、特にエチレン性不飽和基の数は2つ以下であることが好ましい。このような化合物としては特に限定はしないが、下記一般式(13)、(14)、(15)、(16)又は(17)で表される化合物等が好ましく用いられる。下記一般式(13)〜(17)において、R
12及びR
16は水素原子又はメチル基を示し、R
10、R
11、R
13及びR
14は2価の有機基を示し、R
15〜R
18はエポキシ基又はエチレン性不飽和基を有する有機基を示す。
【0155】
以上のような単官能(メタ)アクリレートの量は、放射線重合性化合物全体量に対して、20〜100質量%であることが好ましく、40〜100質量%であることがより好ましく、50〜100質量%であることが最も好ましい。単官能(メタ)アクリレートの量を係る範囲とすることにより、Bステージ化後の被着体との密着性及び熱圧着性を特に向上することができる。
【0156】
放射線重合性化合物は2官能以上の(メタ)アクリレートを含んでいてもよい。2官能以上の(メタ)アクリレートは、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、スチレン、ジビニルベンゼン、4−ビニルトルエン、4−ビニルピリジン、N−ビニルピロリドン、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、1,3−アクリロイルオキシ−2−ヒドロキシプロパン、1,2−メタクリロイルオキシ−2−ヒドロキシプロパン、メチレンビスアクリルアミド、N,N−ジメチルアクリルアミド、N−メチロールアクリルアミド、トリス(β−ヒドロキシエチル)イソシアヌレートのトリアクリレート、下記一般式(18)で表される化合物、ウレタンアクリレート若しくはウレタンメタクリレート、及び尿素アクリレートから選ばれる。
【0158】
式(18)中、R
19及びR
20はそれぞれ独立に水素原子又はメチル基を示し、g及びhはそれぞれ独立に1〜20の整数を示す。
【0159】
これらの放射線重合性化合物は、1種を単独で又は2種類以上を組み合わせて使用することができる。中でも、上記一般式(18)で表されるグリコール骨格を有する放射線重合性化合物は、硬化後の耐溶剤性を十分に付与でき、かつ低粘度で高い5%重量減少温度を有する点で好ましい。
【0160】
また、官能基当量の高い放射線重合性化合物を用いることで、低応力化、低反り化することが可能となる。官能基当量の高い放射線重合性化合物は、重合官能基当量が200eq/g以上であることが好ましく、300eq/g以上であることがより好ましく、400eq/g以上であることが最も好ましい。重合官能基当量が200eq/g以上のエーテル骨格、ウレタン基及び/又はイソシアヌル基を有する放射線重合性化合物を用いることにより、接着剤組成物の接着性を向上させ、かつ低応力化、低反り化することが可能となる。また、重合官能基当量が200eq/g以上の放射線重合性化合物と重合官能基当量が200eq/g以下の放射線重合性化合物を併用してもよい。
【0161】
放射線重合性化合物の含有量は、接着剤組成物全量に対して10〜95質量%であることが好ましく、20〜90質量%であることがより好ましく、40〜90質量%であることが最も好ましい。放射線重合性化合物が10質量%以下であるとBステージ化後のタック力が大きくなる傾向があり、95質量%以上であると熱硬化後の接着強度が低下する傾向がある。
【0162】
放射線重合性化合物は室温で液状であることが好ましい。放射線重合性化合物の粘度は5000mPa・s以下であることが好ましく、3000mPa・s以下であることがより好ましく、2000mPa・s以下であることが更により好ましく、1000mPa・s以下であることが最も好ましい。放射性重合性化合物の粘度が5000mPa・s以上あると接着剤組成物の粘度が上昇し、接着剤組成物の作製が困難となったり、薄膜化が困難となったり、ノズルからの吐出が困難となる傾向がある。
【0163】
放射線線重合性化合物の5%重量減少温度は120℃以上であることが好ましく、150℃以上であることがより好ましく、180℃以上であることが更により好ましい。ここでの5%質量減少温度とは、放射線重合性化合物を示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー製:TG/DTA6300)を用いて、昇温速度10℃/min、窒素フロー(400ml/min)の条件下で測定される。5%重量減少温度が高い放射線重合性化合物を適用することで、未反応の放射線重合性化合物が熱圧着又は熱硬化時に揮発することを抑制できる。
【0164】
接着剤組成物は、熱硬化性樹脂を含有することが好ましい。熱硬化性樹脂は、熱により架橋反応を起こす反応性化合物からなる成分であれば特に限定されることはない。熱硬化性樹脂は、例えば、エポキシ樹脂、シアネートエステル樹脂、マレイミド樹脂、アリルナジイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、レゾルシノールホルムアルデヒド樹脂、キシレン樹脂、フラン樹脂、ポリウレタン樹脂、ケトン樹脂、トリアリルシアヌレート樹脂、ポリイソシアネート樹脂、トリス(2−ヒドロキシエチル)イソシアヌラートを含有する樹脂、トリアリルトリメリタートを含有する樹脂、シクロペンタジエンから合成された熱硬化性樹脂、芳香族ジシアナミドの三量化による熱硬化性樹脂から選ばれる。中でも、ポリイミド樹脂との組み合せにおいて、高温での優れた接着力を持たせることができる点で、エポキシ樹脂、マレイミド樹脂、及びアリルナジイミド樹脂が好ましい。なお、これら熱硬化性樹脂は単独で又は二種類以上を組み合わせて用いることができる。
【0165】
エポキシ樹脂としては、2個以上のエポキシ基を有する化合物が好ましい。熱圧着性や硬化性、硬化物特性の点から、フェノールのグリシジルエーテル型のエポキシ樹脂が好ましい。このようなエポキシ樹脂としては、例えば、ビスフェノールA型(又はAD型、S型、F型)のグリシジルエーテル、水添加ビスフェノールA型のグリシジルエーテル、エチレンオキシド付加体ビスフェノールA型のグリシジルエーテル、プロピレンオキシド付加体ビスフェノールA型のグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル、ナフタレン樹脂のグリシジルエーテル、3官能型(又は4官能型)のグリシジルエーテル、ジシクロペンタジエンフェノール樹脂のグリシジルエーテル、ダイマー酸のグリシジルエステル、3官能型(又は4官能型)のグリシジルアミン、ナフタレン樹脂のグリシジルアミンが挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。
【0166】
エポキシ樹脂としては、不純物イオンである、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲンイオン、特に塩素イオンや加水分解性塩素等を300ppm以下に低減した高純度品を用いることが、エレクトロマイグレーション防止や金属導体回路の腐食防止の観点から好ましい。
【0167】
エポキシ樹脂の含有量は、放射線重合性化合物100質量部に対して1〜100質量部であることが好ましく、2〜50質量部であることがより好ましい。この含有量が100質量部を超えると、露光後のタックが上昇する傾向がある。一方、上記含有量が2質量部未満であると、十分な熱圧着性及び高温接着性が得られにくくなる傾向がある。
【0168】
熱硬化性樹脂としては室温で液状であることが好ましい。熱硬化性樹脂の粘度は10000mPa・s以下であることが好ましく、5000mPa・s以下であることがより好ましく、3000mPa・s以下であることが更により好ましく、2000mPa・s以下であることが最も好ましい。粘度が10000mPa・s以上であると接着剤組成物の粘度が上昇し、薄膜化が困難となる傾向がある。
【0169】
熱硬化性樹脂の5%重量減少温度は150℃以上であることが好ましく、180℃以上であることがより好ましく、200℃以上であることが更により好ましい。ここでの5%質量減少温度とは、熱硬化性樹脂を示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー製:TG/DTA6300)を用いて、昇温速度10℃/min、窒素フロー(400ml/min)の条件下で測定される。5%重量減少温度が高い熱硬化性樹脂を適用することで、熱圧着又は熱硬化時に揮発することを抑制できる。このような耐熱性を有する熱硬化性樹脂としては、芳香族を有するエポキシ樹脂が挙げられる。接着性、耐熱性の観点から特に3官能型(又は4官能型)のグリシジルアミン、ビスフェノールA型(又はAD型、S型、F型)のグリシジルエーテルが好ましく用いられる。
【0170】
エポキシ樹脂を用いる場合、接着剤組成物は、硬化促進剤を更に含有することが好ましい。硬化促進剤としては、加熱によってエポキシ樹脂の硬化/重合を促進する化合物あれば特に制限はない。硬化促進剤は、例えば、フェノール系化合物、脂肪族アミン、脂環族アミン、芳香族ポリアミン、ポリアミド、脂肪族酸無水物、脂環族酸無水物、芳香族酸無水物、ジシアンジアミド、有機酸ジヒドラジド、三フッ化ホウ素アミン錯体、イミダゾール類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2−エチル−4−メチルイミダゾール−テトラフェニルボレート、1,8−ジアザビシクロ[5.4.0]ウンデセン−7−テトラフェニルボレート及び第3級アミンから選ばれる。これらの中でも溶剤を含有しないときの溶解性、分散性の観点からイミダゾール類が好ましく用いられる。硬化促進剤の含有量は、エポキシ樹脂100質量部に対して0.01〜50質量部が好ましい。
【0171】
イミダゾール類は、反応開始温度が50℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることが更に好ましい。反応開始温度が50℃以下であると保存安定性が低下するため、接着剤組成物の粘度が上昇し膜厚の制御が困難となる傾向がある。
【0172】
イミダゾール類は、好ましくは10μm以下、より好ましくは8μm以下、更に好ましくは5μm以下の平均粒径を有する粒子であることが好ましい。このような粒径のイミダゾール類を用いることにより接着剤組成物の粘度変化を抑制することができ、またイミダゾール類の沈降を抑制することができる。また、薄膜形成した際には、表面の凹凸を低減することにより均一な膜を得ることができる。更に、硬化時には樹脂中の硬化を均一に進行させることができるため、アウトガスが低減できると考えられる。また、エポキシ樹脂への溶解性が乏しいイミダゾールを使用することで良好な保存安定性を得ることができる。
【0173】
イミダゾール類としては、エポキシ樹脂に溶解するものを使用することもできる。このようなイミダゾール類を用いることで薄膜形成時の表面の凹凸をより低減することができる。このようなイミダゾール類と限定はしないが、2−エチルー4−メチルイミダゾール、1−シアノエチルー2−メチルイミダゾール、1−シアノエチルー2−エチルー4−メチルイミダゾール、1−シアノエチルー2−フェニルイミダゾール、1−ベンジルー2−メチルイミダゾール、1−ベンジルー2−フェニルイミダゾールなどが挙げられる。
【0174】
接着剤組成物は、硬化剤としてフェノール系化合物を含有していてもよい。フェノール系化合物としては分子中に少なくとも2個以上のフェノール性水酸基を有するフェノール系化合物がより好ましい。このような化合物としては、例えばフェノールノボラック、クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾールノボラック、ジシクロペンタジエンフェノールノボラック、キシリレン変性フェノールノボラック、ナフトール系化合物、トリスフェノール系化合物、テトラキスフェノールノボラック、ビスフェノールAノボラック、ポリ−p−ビニルフェノール、フェノールアラルキル樹脂等が挙げられる。これらの中でも、数平均分子量が400〜4000の範囲内のものが好ましい。これにより、半導体装置組立加熱時に、半導体素子又は装置等の汚染の原因となる加熱時のアウトガスを抑制できる。フェノール系化合物の含有量は、熱硬化性樹脂100質量部に対して50〜120質量部であることが好ましく、70〜100質量部であることがより好ましい。
【0175】
硬化性樹脂として用いられるマレイミド樹脂は、マレイミド基を2個以上有する化合物である。マレイミド樹脂としては、例えば、下記一般式(IV):
【化11】
(式中、R
5は芳香族環及び/又は直鎖、分岐若しくは環状脂肪族炭化水素基を含む2価の有機基)で表されるビスマレイミド樹脂、及び、下記一般式(V):
【化12】
(式中、nは0〜20の整数を示す。)
で表されるノボラック型マレイミド樹脂が挙げられる。式(IV)中のR
5は、好ましくは、ベンゼン残基、トルエン残基、キシレン残基、ナフタレン残基、直鎖、分岐、若しくは環状アルキル基、又はこれらの混合基である。R
5は、さらに好ましくは下記化学式で表される2価の有機基である。各式中、nは1〜10の整数である。
【0178】
中でも、接着フィルムの硬化後の耐熱性及び高温接着力を付与できる点で、下記構造:
【化15】
を有するビスマレイミド樹脂、及び/又は下記構造:
【化16】
を有するノボラック型マレイミド樹脂が好ましく用いられる。これら式中、nは0〜20の整数を示す。
【0179】
上記マレイミド樹脂の硬化のために、アリル化ビスフェノールA、シアネートエステル化合物をマレイミド樹脂と組み合わせてもよい。過酸化物などの触媒を接着剤組成物に含有させることもできる。上記化合物及び触媒の添加量、及び添加の有無については、目的とする特性を確保できる範囲で適宜調整する。
【0180】
アリルナジイミド樹脂は、アリルナジミド基を2個以上有する化合物である。例えば、下記一般式(I)で示されるビスアリルナジイミド樹脂が挙げられる。
【0182】
式(I)中、R
1は芳香族環及び/又は直鎖、分岐若しくは環状脂肪族炭化水素を含む2価の有機基を示す。R
1は、好ましくは、ベンゼン残基、トルエン残基、キシレン残基、ナフタレン残基、直鎖、分岐、若しくは環状アルキル基、又はこれらの混合基が挙げられる。R
1は、さらに好ましくは下記化学式で表される2価の有機基である。各式中、nは1〜10の整数である。
【0185】
中でも、下記化学式(II)で表される液状のヘキサメチレン型ビスアリルナジイミド、下記化学式(III)で表される低融点(融点:40℃)固体状のキシリレン型ビスアリルナジイミドが、接着剤組成物を構成する異種成分間の相溶化剤としても作用し、接着フィルムのBステージでの良好な熱時流動性を付与できる点で好ましい。また、固体状のキシリレン型ビスアリルナジイミドは、良好な熱時流動性に加えて、室温におけるフィルム表面の粘着性の上昇を抑制でき、取り扱い性、及びピックアップ時のダイシングテープとの易はく離性、ダイシング後の切断面の再融着の抑制の点で、より好ましい。
【化20】
【0186】
これらのビスアリルナジイミドは単独で、又は二種類以上を組み合わせて用いることができる。
【0187】
アリルナジイミド樹脂は、無触媒下での単独硬化では、250℃以上の硬化温度が必要である。また、触媒を用いる場合、強酸やオニウム塩など、電子材料においては重大な欠点となり得る金属腐食性の触媒しか使用できず、かつ最終硬化には250℃前後の温度が必要である。上記のアリルナジイミド樹脂と、2官能以上のアクリレート化合物若しくはメタクリレート化合物、及びマレイミド樹脂のいずれかとを併用することによって、200℃以下の低温で硬化が可能である(文献:A.Renner,A.Kramer,“Allylnadic−Imides:A New Class of Heat−Resistant Thermosets”,J.Polym.Sci.,Part A Polym.Chem.,27,1301(1989))。
【0188】
接着剤組成物は、熱可塑性樹脂を更に含有してもよい。熱可塑性樹脂を用いることにより、低応力性、被着体との密着性、熱圧着性を更に向上させることができる。熱可塑性樹脂のガラス転移温度(Tg)は150℃以下であることが好ましく、120℃以下であることがより好ましく、100℃以下であることがさらにより好ましく、80℃以下であることが最も好ましい。このTgが150℃を超える場合、接着剤組成物の粘度が上昇する傾向がある。また、接着剤組成物を被着体に熱圧着する際に150℃以上の高温を要し、半導体ウェハに反りが発生しやすくなる傾向がある。
【0189】
ここでの「Tg」は、フィルム化された熱可塑性樹脂の主分散ピーク温度を意味する。レオメトリックス社製粘弾性アナライザー「RSA−2」(商品名)を用いて、フィルム厚100μm、昇温速度5℃/min、周波数1Hz、測定温度−150〜300℃の条件でフィルムの動的粘弾性を測定し、tanδの主分散ピーク温度をTgとした。
【0190】
熱可塑性樹脂の重量平均分子量は、5000〜500000の範囲内にあることが好ましく、熱圧着性と高温接着性とを高度に両立できる点で10000〜300000であることがより好ましい。ここでの「重量平均分子量」は、島津製作所社製高速液体クロマトグラフィー「C−R4A」(商品名)を用いて、標準ポリスチレン換算で測定したときの重量平均分子量を意味する。
【0191】
熱可塑性樹脂としては、ポリエステル樹脂、ポリエーテル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、ポリウレタンイミド樹脂、ポリウレタンアミドイミド樹脂、シロキサンポリイミド樹脂、ポリエステルイミド樹脂、これらの共重合体、これらの前駆体(ポリアミド酸等)の他、ポリベンゾオキサゾール樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、重量平均分子量が1万〜100万の(メタ)アクリル共重合体、ノボラック樹脂、フェノール樹脂などが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。また、これらの樹脂の主鎖及び/又は側鎖に、エチレングリコール、プロピレングリコールなどのグリコール基、カルボキシル基及び/又は水酸基が付与されていてもよい。
【0192】
これらの中でも、高温接着性、耐熱性の観点から、熱可塑性樹脂はイミド基を有する樹脂であることが好ましい。イミド基を有する樹脂として、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリウレタンイミド樹脂、ポリウレタンアミドイミド樹脂、シロキサンポリイミド樹脂及びポリエステルイミド樹脂からなる群より選ばれる少なくとも1種の樹脂が用いられる。
【0193】
ポリイミド樹脂は、例えば以下の方法で合成することができる。テトラカルボン酸二無水物とジアミンとを公知の方法で縮合反応させて得ることができる。すなわち、有機溶媒中で、テトラカルボン酸二無水物とジアミンとを等モルで、又は、必要に応じてテトラカルボン酸二無水物の合計1.0molに対して、ジアミンの合計を好ましくは0.5〜2.0mol、より好ましくは0.8〜1.0molの範囲で組成比を調整(各成分の添加順序は任意)し、反応温度80℃以下、好ましくは0〜60℃で付加反応させる。反応が進行するにつれ反応液の粘度が徐々に上昇し、ポリイミド樹脂の前駆体であるポリアミド酸が生成する。なお、樹脂組成物の諸特性の低下を抑えるため、上記のテトラカルボン酸二無水物は無水酢酸で再結晶精製処理したものであることが好ましい。
【0194】
上記縮合反応におけるテトラカルボン酸二無水物とジアミンとの組成比については、テトラカルボン酸二無水物の合計1.0molに対して、ジアミンの合計が2.0molを超えると、得られるポリイミド樹脂に、アミン末端のポリイミドオリゴマーの量が多くなる傾向があり、ポリイミド樹脂の重量平均分子量が低くなり、接着剤組成物の耐熱性を含む種々の特性が十分でなくなる傾向がある。一方、テトラカルボン酸二無水物の合計1.0molに対してジアミンの合計が0.5mol未満であると、酸末端のポリイミド樹脂オリゴマーの量が多くなる傾向があり、ポリイミド樹脂の重量平均分子量が低くなり、接着剤組成物の耐熱性を含む種々の特性が十分でなくなる傾向がある。
【0195】
ポリイミド樹脂は、上記反応物(ポリアミド酸)を脱水閉環させて得ることができる。脱水閉環は、加熱処理する熱閉環法、脱水剤を使用する化学閉環法等で行うことができる。
【0196】
ポリイミド樹脂の原料として用いられるテトラカルボン酸二無水物としては特に制限は無く、例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ベンゼン−1,2,3,4−テトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,4,5−ナフタレンテトラカルボン酸二無水物、2,6−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,7−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,3,6,7−テトラクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、フェナンスレン−1,8,9,10−テトラカルボン酸二無水物、ピラジン−2,3,5,6−テトラカルボン酸二無水物、チオフェン−2,3,5,6−テトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4−ジカルボキシフェニル)メチルフェニルシラン二無水物、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン二無水物、1,4−ビス(3,4−ジカルボキシフェニルジメチルシリル)ベンゼン二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシクロヘキサン二無水物、p−フェニレンビス(トリメリテート無水物)、エチレンテトラカルボン酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、デカヒドロナフタレン−1,4,5,8−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−1,2,5,6−テトラカルボン酸二無水物、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物、ピロリジン−2,3,4,5−テトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビス(エキソ−ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸二無水物、ビシクロ−[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス[4−(3,4−ジカルボキシフェニル)フェニル]プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2−ビス[4−(3,4−ジカルボキシフェニル)フェニル]ヘキサフルオロプロパン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、1,4−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、1,3−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物、テトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物、下記一般式(1)で表されるテトラカルボン酸二無水物等が挙げられる。下記一般式(1)中、aは2〜20の整数を示す。
【0198】
上記一般式(1)で表されるテトラカルボン酸二無水物は、例えば、無水トリメリット酸モノクロライド及び対応するジオールから合成することができ、具体的には1,2−(エチレン)ビス(トリメリテート無水物)、1,3−(トリメチレン)ビス(トリメリテート無水物)、1,4−(テトラメチレン)ビス(トリメリテート無水物)、1,5−(ペンタメチレン)ビス(トリメリテート無水物)、1,6−(ヘキサメチレン)ビス(トリメリテート無水物)、1,7−(ヘプタメチレン)ビス(トリメリテート無水物)、1,8−(オクタメチレン)ビス(トリメリテート無水物)、1,9−(ノナメチレン)ビス(トリメリテート無水物)、1,10−(デカメチレン)ビス(トリメリテート無水物)、1,12−(ドデカメチレン)ビス(トリメリテート無水物)、1,16−(ヘキサデカメチレン)ビス(トリメリテート無水物)、1,18−(オクタデカメチレン)ビス(トリメリテート無水物)等が挙げられる。
【0199】
また、テトラカルボン酸二無水物としては、溶剤への良好な溶解性及び耐湿性、365nm光に対する透明性を付与する観点から、下記一般式(2)又は(3)で表されるテトラカルボン酸二無水物が好ましい。
【0201】
以上のようなテトラカルボン酸二無水物は、1種を単独で又は2種類以上を組み合わせて使用することができる。
【0202】
上記ポリイミド樹脂の原料として用いられるその他のジアミンとしては特に制限はなく、例えば、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテメタン、ビス(4−アミノ−3,5−ジメチルフェニル)メタン、ビス(4−アミノ−3,5−ジイソプロピルフェニル)メタン、3,3’−ジアミノジフェニルジフルオロメタン、3,4’−ジアミノジフェニルジフルオロメタン、4,4’−ジアミノジフェニルジフルオロメタン、3,3’−ジアミノジフェニルスルフォン、3,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフォン、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルケトン、2,2−ビス(3−アミノフェニル)プロパン、2,2’−(3,4’−ジアミノジフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2−(3,4’−ジアミノジフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3,3’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、3,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、4,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4−(3−アミノエノキシ)フェニル)スルフィド、ビス(4−(4−アミノエノキシ)フェニル)スルフィド、ビス(4−(3−アミノエノキシ)フェニル)スルフォン、ビス(4−(4−アミノエノキシ)フェニル)スルフォン、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、3,5−ジアミノ安息香酸等の芳香族ジアミン、1,3−ビス(アミノメチル)シクロヘキサン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、下記一般式(8)で表される脂肪族エーテルジアミン、下記一般式(9)で表されるシロキサンジアミン等が挙げられる。
【0203】
上記ジアミンの中でも、他成分との相溶性を付与する点で、下記一般式(8)で表される脂肪族エーテルジアミンが好ましく、エチレングリコール及び/又はプロピレングリコール系ジアミンがより好ましい。下記一般式(8)中、R
1、R
2及びR
3は各々独立に、炭素数1〜10のアルキレン基を示し、bは2〜80の整数を示す。
【0205】
このような脂肪族エーテルジアミンとして具体的には、サンテクノケミカル(株)製ジェファーミンD−230,D−400,D−2000,D−4000,ED−600,ED−900,ED−2000,EDR−148、BASF(製)ポリエーテルアミンD−230,D−400,D−2000等のポリオキシアルキレンジアミン等の脂肪族ジアミンが挙げられる。これらのジアミンは、全ジアミンの20モル%以上であることが好ましく、他配合成分との相溶性、また熱圧着性と高温接着性とを高度に両立できる点で50モル%以上であることがより好ましい。
【0206】
また、上記ジアミンとしては、室温での密着性、接着性を付与する点で、下記一般式(9)で表されるシロキサンジアミンが好ましい。下記一般式(9)中、R
4及びR
9は各々独立に、炭素数1〜5のアルキレン基又は置換基を有してもよいフェニレン基を示し、R
5、R
6、R
7及びR
8は各々独立に、炭素数1〜5のアルキル基、フェニル基又はフェノキシ基を示し、dは1〜5の整数を示す。
【0208】
これらのジアミンは、全ジアミンの0.5〜80モル%とすることが好ましく、熱圧着性と高温接着性とを高度に両立できる点で1〜50モル%とすることが更に好ましい。0.5モル%を下回るとシロキサンジアミンを添加した効果が小さくなり、80モル%を上回ると他成分との相溶性、高温接着性が低下する傾向がある。
【0209】
上記一般式(9)で表されるシロキサンジアミンとして具体的には、式(9)中のdが1のものとして、1,1,3,3−テトラメチル−1,3−ビス(4−アミノフェニル)ジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ビス(4−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノブチル)ジシロキサン、1,3−ジメチル−1,3−ジメトキシ−1,3−ビス(4−アミノブチル)ジシロキサン等が挙げられ、dが2のものとして、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(4−アミノフェニル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(2−アミノエチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサエチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサプロピル−1,5−ビス(3−アミノプロピル)トリシロキサン等が挙げられる。
【0210】
上述したジアミンは、1種を単独で又は2種以上を組み合わせて使用することができる。
【0211】
上記ポリイミド樹脂は、1種を単独で又は必要に応じて2種以上を混合(ブレンド)して用いることができる。
【0212】
ポリイミド樹脂の組成を決定する際には、そのTgが150℃以下となるように設計することが好ましい。ポリイミド樹脂の原料であるジアミンとして、上記一般式(8)で表される脂肪族エーテルジアミンを用いることが特に好ましい。
【0213】
上記ポリイミド樹脂の合成時に、下記一般式(10)、(11)又は(12)で表される化合物のような単官能酸無水物及び/又は単官能アミンを縮合反応液に投入することにより、ポリマー末端に酸無水物又はジアミン以外の官能基を導入することができる。また、これにより、ポリマーの分子量を低くし、接着剤樹脂組成物の粘度を低下させ、熱圧着性を向上させることができる。
【0215】
熱硬化性樹脂は、エポキシ樹脂の硬化を促進する機能を有するイミダゾール基などの官能基をその主鎖及び/又は側鎖に有していてもよい。例えば、イミダゾール基を有するポリイミド樹脂は、例えば、ポリイミド樹脂を合成するために用いられるジアミンの一部として、下記化学式で表されるイミダゾール基含有のジアミンを用いる方法により得ることができる。
【0217】
上記ポリイミド樹脂は、均一にBステージ化できる点から、30μmの膜厚に成形されたときの365nmに対する透過率が10%以上であることが好ましく、より低露光量でBステージ化できる点で20%以上であることが更に好ましい。このようなポリイミド樹脂は、例えば、上記一般式(2)で表される酸無水物と、上記一般式(8)で表される脂肪族エーテルジアミン及び/又は上記一般式(9)で表されるシロキサンジアミンとを反応させることで合成することができる。
【0218】
熱可塑性樹脂として、粘度上昇を抑制し、更に接着剤組成物中の溶け残りを低減する点で、常温(25℃)で液状であるものを用いることが好ましい。このような熱可塑性樹脂を用いることにより、溶剤を用いることなく加熱して反応させることが可能となり、溶剤を実質的に含有しない接着剤組成物では溶剤除去の工程削減、残存溶剤の低減、再沈殿工程の削減の点で有用である。また液状熱可塑性樹脂は反応炉からの取り出しも容易である。このような液状熱可塑性樹脂としては、特に限定はしないが、ポリブタジエン、アクリロニトリル・ブタジエンオリゴマー、ポリイソプレン、ポリブテンなどのゴム状ポリマー、ポリオレフィン、アクリルポリマー、シリコーンポリマー、ポリウレタン、ポリイミド、ポリアミドイミドなどが挙げられる。中でもポリイミド樹脂が好ましく用いられる。
【0219】
液状のポリイミド樹脂としては例えば上記の酸無水物と脂肪族エーテルジアミンやシロキサンジアミンとを反応させることによって得られる。合成方法としては溶剤を加えずに、脂肪族エーテルジアミンやシロキサンジアミン中に酸無水物を分散させ、加熱することによって得られる。
【0220】
本実施形態の接着剤組成物は、必要に応じて増感剤を含有してもよい。この増感剤としては、例えば、カンファーキノン、ベンジル、ジアセチル、ベンジルジメチルケタール、ベンジルジエチルケタール、ベンジルジ(2−メトキシエチル)ケタール、4,4’−ジメチルベンジル−ジメチルケタール、アントラキノン、1−クロロアントラキノン、2−クロロアントラキノン、1,2−ベンズアントラキノン、1−ヒドロキシアントラキノン、1−メチルアントラキノン、2−エチルアントラキノン、1−ブロモアントラキノン、チオキサントン、2−イソプロピルチオキサントン、2−ニトロチオキサントン、2−メチルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン、2−クロロ−7−トリフルオロメチルチオキサントン、チオキサントン−10,10−ジオキシド、チオキサントン−10−オキサイド、ベンゾインメチルエーテル、ベンゾインエチルエーテル、イソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、ビス(4−ジメチルアミノフェニル)ケトン、4,4’−ビスジエチルアミノベンゾフェノン、アジド基を含む化合物などが挙げられる。これらは単独で又は2種類以上併用して使用することができる。
【0221】
本実施形態の接着剤組成物は、必要に応じて熱ラジカル発生剤を含有してもよい。熱ラジカル発生剤としては、有機過酸化物が好ましい。有機過酸化物としては、1分間半減期温度が80℃以上であるものが好ましく、100℃以上であるものがより好ましく、120℃以上であることが最も好ましい。有機過酸化物は、接着剤組成物の調製条件、製膜温度、硬化(貼り合せ)条件、その他プロセス条件、貯蔵安定性等を考慮して選択される。使用可能な過酸化物としては、特に限定はしないが、例えば、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシへキサン)、ジクミルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサネート、t−ヘキシルパーオキシ−2−エチルヘキサネート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネートなどが挙げられ、これらのうちの1種を単独で、又は2種以上を混合して用いることができる。有機過酸化物を含有することで露光に残存している未反応放射重合性化合物を反応させることができ、低アウトガス化、高接着化を図ることができる。
【0222】
熱ラジカル発生剤の添加量は、放射重合性化合物の全量に対し、0.01〜20質量%が好ましく、0.1〜10質量%が更に好ましく、0.5〜5質量%が最も好ましい。0.01質量%以下であると硬化性が低下して、その添加効果が小さくなる傾向があり、5質量%を超えるとアウトガス量が増加したり、保存安定性が低下したりする傾向がある。
【0223】
熱ラジカル発生剤としては、半減期温度が80℃以上の化合物が好ましい。例えば、パーヘキサ25B(日油社製)、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシへキサン)(1分間半減期温度:180℃)、パークミルD(日油社製)、ジクミルパーオキサイド(1分間半減期温度:175℃)などが挙げられる。
【0224】
本実施形態の接着剤組成物には、保存安定性、プロセス適応性又は酸化防止性を付与するために、キノン類、多価フェノール類、フェノール類、ホスファイト類、イオウ類等の重合禁止剤又は酸化防止剤を、硬化性を損なわない範囲で更に添加してもよい。
【0225】
接着剤組成物には、適宜フィラーを含有させることもできる。フィラーとしては、例えば、銀粉、金粉、銅粉、ニッケル粉、スズ等の金属フィラー、アルミナ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、結晶性シリカ、非晶性シリカ、窒化ホウ素、チタニア、ガラス、酸化鉄、セラミック等の無機フィラー、カーボン、ゴム系フィラー等の有機フィラー等が挙げられ、種類・形状等にかかわらず特に制限なく使用することができる。
【0226】
上記フィラーは、所望する機能に応じて使い分けることができる。例えば、金属フィラーは、樹脂組成物に導電性、熱伝導性、チキソ性等を付与する目的で添加され、非金属無機フィラーは、接着剤層に熱伝導性、ピックアップ性(ダイシングテープとの易はく離性)、低熱膨張性、低吸湿性等を付与する目的で添加され、有機フィラーは接着剤層に靭性等を付与する目的で添加される。
【0227】
これら金属フィラー、無機フィラー又は有機フィラーは、1種を単独で又は2種類以上を組み合わせて使用することができる。中でも、半導体装置用接着材料に求められる、導電性、熱伝導性、低吸湿特性、絶縁性等を付与できる点で、金属フィラー、無機フィラー、又は絶縁性のフィラーが好ましく、無機フィラー又は絶縁性フィラーの中では、樹脂ワニスに対する分散性が良好でかつ、熱時の高い接着力を付与できる点でシリカフィラーがより好ましい。
【0228】
上記フィラーは、平均粒子径が10μm以下、且つ、最大粒子径が30μm以下であることが好ましく、平均粒子径が5μm以下、且つ、最大粒子径が20μm以下であることがより好ましい。平均粒子径が10μmを超え、且つ、最大粒子径が30μmを超えると、破壊靭性向上の効果が十分に得られない傾向がある。また、平均粒子径及び最大粒子径の下限は特に制限はないが、通常、どちらも0.001μmである。
【0229】
上記フィラーの含有量は、付与する特性又は機能に応じて決められるが、樹脂成分とフィラーの合計に対して0〜50質量%が好ましく、1〜40質量%がより好ましく、3〜30質量%がさらに好ましい。フィラーを増量させることにより、低アルファ化、低吸湿化、高弾性率化が図れ、ダイシング性(ダイサー刃による切断性)、ワイヤボンディング性(超音波効率)、熱時の接着強度を有効に向上させることができる。
【0230】
フィラーを必要以上に増量させると、粘度が上昇したり、熱圧着性が損なわれる傾向にあるため、フィラーの含有量は上記の範囲内に収めることが好ましい。求められる特性のバランスをとるべく、最適フィラー含有量を決定する。フィラーを用いた場合の混合・混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜、組み合わせて行うことができる。
【0231】
接着剤組成物には、異種材料間の界面結合を良くするために、各種カップリング剤を添加することもできる。カップリング剤としては、例えば、シラン系、チタン系、アルミニウム系等が挙げられ、中でも効果が高い点で、シラン系カップリング剤が好ましく、エポキシ基などの熱硬化性基やメタクリレート及び/又はアクリレートなどの放射線重合性基を有する化合物がより好ましい。また、上記シラン系カップリング剤の沸点及び/又は分解温度は150℃以上であることが好ましく、180℃以上であることより好ましく、200℃以上であることがさらにより好ましい。つまり、200℃以上の沸点及び/又は分解温度で、かつエポキシ基などの熱硬化性基やメタクリレート及び/又はアクリレートなどの放射線重合性基を有するシラン系カップリング剤が最も好ましく用いられる。上記カップリング剤の使用量は、その効果や耐熱性及びコストの面から、使用する全樹脂組成物100質量部に対して、0.01〜20質量部とすることが好ましい。
【0232】
接着剤組成物には、イオン性不純物を吸着して、吸湿時の絶縁信頼性を良くするために、さらにイオン捕捉剤を添加することもできる。このようなイオン捕捉剤としては、特に制限はなく、例えば、トリアジンチオール化合物、フェノール系還元剤等の銅がイオン化して溶け出すのを防止するための銅害防止剤として知られる化合物、粉末状のビスマス系、アンチモン系、マグネシウム系、アルミニウム系、ジルコニウム系、カルシウム系、チタン系、ズズ系及びこれらの混合系等の無機化合物が挙げられる。具体例としては、特に限定はしないが東亜合成(株)製の無機イオン捕捉剤、商品名、IXE−300(アンチモン系)、IXE−500(ビスマス系)、IXE−600(アンチモン、ビスマス混合系)、IXE−700(マグネシウム、アルミニウム混合系)、IXE−800(ジルコニウム系)、IXE−1100(カルシウム系)等がある。これらは単独あるいは2種以上混合して用いることができる。上記イオン捕捉剤の使用量は、添加による効果や耐熱性、コスト等の点から、全樹脂組成物100質量部に対して、0.01〜10質量部が好ましい。
【0233】
図1は、半導体ウェハの一実施形態を示す断面図であり、
図2及び
図3は、それぞれ接着剤層付き半導体ウェハの好適な一実施形態を示す断面図である。
図2、3に示す接着剤層2の厚みは、0.1〜100μmであることが好ましく、より好ましくは0.5〜50μmであり、更に好ましくは0.5〜20μmである。
【0234】
図3に示す半導体ウェハは、バックグラインドテープ3と、半導体ウェハ1と、接着剤層2と、を備えており、これらがこの順で積層されている。半導体ウェハ1の回路面にバックグラインドテープ3が貼り合せられたままの状態で、半導体ウェハ1の片方の面に、スピンコート等の方法で、接着剤組成物の塗膜を形成させた後、露光によってBステージ化して接着剤層2を形成させる。このような構成の接着剤層付き半導体ウェハは、例えば、
図4及び
図5に示すような半導体装置の製造に好適に用いられる。
図4に示す半導体製造装置は、支持部材に接着された一層の半導体チップを有し、
図5に示す半導体装置は、接着剤層を介して互いに接着された2層の半導体チップを有する。これら半導体装置において、半導体チップはワイヤ16によって外部接続端子と接続され、封止材17によって封止されている。半導体装置の下部には、はんだボール30が設けられている。
【0235】
図6〜17は、半導体装置の製造方法の一実施形態を示す模式図である。本実施形態に係る製造方法は、主に以下の工程から構成される。
工程1(
図6):半導体ウェハ1内に形成された半導体チップ(半導体素子)2の回路面S1上に、はく離可能な粘着テープ(バックグラインドテープ)4を積層する。
工程2(
図7):半導体ウェハ1を回路面S1とは反対側の面(裏面)S2から研磨して半導体ウェハ1を薄くする。
工程3(
図8):半導体ウェハ1の裏面S2に接着剤組成物5を塗布する。
工程4(
図9):塗布された接着剤組成物である接着剤層5側から露光を行い、接着剤組成物をBステージ化する。
工程5(
図10):接着剤層5上にはく離可能な粘着テープ(ダイシングテープ)6を積層する。
工程6(
図11):ダイシングテープ6をはく離する。
工程7(
図12):半導体ウェハ1をダイシングにより複数の半導体チップ2に切り分ける。
工程8(
図13、14、15):半導体チップ2をピックアップして半導体素子搭載用の支持部材7又は他の半導体チップ2に圧着(マウント)する。
工程9(
図16):マウントされた半導体チップを、ワイヤ16を介して支持部材7上の外部接続端子と接続する。
工程10(
図12):複数の半導体チップ2を含む積層体を封止材17によって封止して、半導体装置100を得る。
【0236】
工程1(
図6)
半導体ウェハ1の回路面S1側にバックグラインドテープ4を積層する。バックグラインドテープの積層は、予めフィルム状に成形された粘着テープをラミネートする方法により行なうことができる。
【0237】
工程2(
図7)
半導体ウェハ1のバックグラインドテープ4とは反対側の面(裏面S2)を研磨して、半導体ウェハ1を所定の厚さまで薄くする。研磨は、バックグラインドテープ4によって半導体ウェハ1を研磨用の治具に固定した状態で、グラインド装置8を用いて行う。
【0238】
工程3(
図8)
研磨の後、半導体ウェハ1の裏面S2に接着剤組成物5を塗布する。塗布は、ボックス20内で、バックグラインドテープ4が貼り付けられた半導体ウェハ1を治具21に固定した状態で行うことができる。塗布方法は、印刷法、スピンコート法、スプレーコート法、ギャップコート法、円コート法、ジェットディスペンス法及びインクジェット法などから選ばれる。これらの中でも、薄膜化及び膜厚均一性の観点から、スピンコート法やスプレーコート法が好ましい。スピンコート装置が有する吸着台には穴が形成されていてもよいし、吸着台がメッシュ状であってもよい。吸着痕が残りにくい点から、吸着台はメッシュ状であることが好ましい。スピンコート法による塗布は、ウェハのうねり、及びエッジ部の盛り上がりを防止するために、500〜5000rpmの回転数で行うことが好ましい。同様の観点から、回転数は1000〜4000rpmがさらに好ましい。接着剤組成物の粘度を調整する目的でスピンコート台に温度調節器を備えることもできる。
【0239】
接着剤組成物をシリンジ内に保存することができる。この場合、スピンコート装置のシリンジセット部分に温度調節器が備えられていてもよい。
【0240】
半導体ウェハに接着剤組成物を例えばスピンコート法によって塗布する際、半導体ウェハのエッジ部分に不要な接着剤組成物が付着する場合がある。このような不要な接着剤をスピンコート後に溶剤などで洗浄して除去することができる。洗浄方法は特に限定されないが、半導体ウェハをスピンさせながら、不要な接着剤が付着した部分にノズルから溶剤を吐出させる方法が好ましい。洗浄に使用する溶剤は接着剤を溶解させるものであればよく、例えば、メチルエチルケトン、アセトン、イソプロピルアルコール及びメタノールから選ばれる低沸点溶剤が用いられる。
【0241】
塗布される接着剤組成物の25℃における粘度は、好ましくは10〜30000mPa・s、より好ましくは30〜10000mPa・s、さらに好ましくは50〜5000mPa・s、より一層好ましくは100〜3000mPa・s、最も好ましくは200〜1000mPa・sである。上記粘度が10mPa・s以下であると接着剤組成物の保存安定性が低下したり、塗布された接着剤組成物にピンホールが生じやすくなる傾向がある。また、露光によるBステージ化が困難となる傾向がある。粘度が30000mPa・s以上であると、塗布時に薄膜化が困難であったり、吐出が困難となる傾向がある。ここでの粘度は、25℃においてE型粘度計を用いて測定される値である。
【0242】
工程4(
図9)
塗布された接着剤組成物である接着剤層5側から、露光装置9によって活性光線(典型的には紫外線)を照射して、接着剤組成物をBステージ化する。これにより接着剤層5が半導体ウェハ1に固定されるとともに、接着剤層5表面のタックを低減することができる。この段階で、本実施形態に係る接着剤層付き半導体ウェハが得られる。露光は、真空下、窒素下、空気下などの雰囲気下で行なうことができる。酸素阻害を低減するために、離形処理されたPETフィルムやポリプロピレンフィルムなどの基材を接着剤層5上に積層した状態で、露光することもできる。パターニングされたマスクを介して露光を行うこともできる。パターニングされたマスクを用いることにより、熱圧着時の流動性が異なる接着剤層を形成させることができる。露光量は、タック低減及びタクトタイムの観点から、50〜2000mJ/cm
2が好ましい。
【0243】
露光後の接着剤層5の膜厚は好ましくは30μm以下、より好ましくは20μm以下、更に好ましくは10μm以下、より一層好ましくは5μm以下である。露光後の接着剤層5の膜厚は例えば、以下の方法によって測定できる。まず、接着剤組成物をシリコンウェハ上にスピンコート(2000rpm/10s、4000rpm/20s)によって塗布する。得られた塗膜に、離型処理したPETフィルムをラミネートし、高精度平行露光機(オーク製作所製、「EXM−1172−B−∞」(商品名))により1000mJ/cm
2で露を行なう。その後、表面粗さ測定器(小坂研究所製)を用いて接着剤層の厚みを測定する。
【0244】
露光後の接着剤層表面の30℃におけるタック力(表面タック力)は、200gf/cm
2以下であることが好ましい。これにより、露光後の取り扱い性、ダイシングの容易さ、ピックアップ性の点で十分に優れたものとなる。
【0245】
露光後の接着剤層表面のタック力は以下のように測定される。まず、接着剤組成物をシリコンウェハ上にスピンコート(2000rpm/10s、4000rpm/20s)によって塗布し、塗布された接着剤組成物である接着剤層に、離型処理したPETフィルムをラミネートし、高精度平行露光機(オーク製作所製、「EXM−1172−B−∞」(商品名))を用いて1000mJ/cm
2で露光を行なう。その後、所定の温度(例えば30℃)における接着剤層表面のタック力をレスカ社製のプローブタッキング試験機を用いて、プローブ直径:5.1mm、引き剥がし速度:10mm/s、接触荷重:100gf/cm
2、接触時間:1sの条件で測定する。
【0246】
30℃における上記タック力が200gf/cm
2を超えると、接着剤層の室温における表面の粘着性が高くなりすぎて、取扱い性が低下する傾向にある他、ダイシング時に接着剤層と被着体との界面に水が浸入してチップ飛びが発生する、ダイシング後のダイシングシートとのはく離性が低下してピックアップ性が低下する、といった問題が生じやすくなる傾向にある。
【0247】
光照射によりBステージ化された接着剤組成物の5%重量減少温度は、好ましくは120℃以上、より好ましくは150℃以上、更に好ましくは180℃以上、より一層好ましくは200℃以上である。この5%重量減少温度を高めるために、接着剤組成物が溶剤を実質的に含有しないことが好ましい。5%重量減少温度が低いと、被着体圧着後の熱硬化時もしくはリフローなどの熱履歴時に被着体がはく離し易くなる傾向があるため、熱圧着前に加熱乾燥が必要となる。
【0248】
5%重量減少温度は以下のように測定される。接着剤組成物をシリコンウェハ上にスピンコート(2000rpm/10s、4000rpm/20s)によって塗布し、得られた塗膜に、離型処理したPETフィルムをラミネートし、高精度平行露光機(オーク製作所製、「EXM−1172−B−∞」(商品名))により1000mJ/cm
2で露光を行なう。その後、Bステージ化した接着剤組成物について、示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー社製、商品名「TG/DTA6300」)を用いて、昇温速度10℃/min、窒素フロー(400ml/分)の条件下で5%重量減少温度を測定する。
【0249】
工程5(
図10)
露光後、接着剤層5にダイシングテープなどのはく離可能な粘着テープ6を貼り付ける。粘着テープ6は、予めフィルム状に成形された粘着テープをラミネートする方法により貼り付けることができる。
【0250】
工程6(
図11)
続いて、半導体ウェハ1の回路面に貼り付けられたバックグラインドテープ4をはく離する。例えば、活性光線(典型的には紫外線)を照射することによって粘着性が低下する粘着テープを使用し、バックグラインドテープ4側から露光した後、これをはく離することができる。
【0251】
工程7(
図12)
ダイシングラインDに沿って半導体ウェハ1を接着剤層5とともに切断する。このダイシングにより、半導体ウェハ1が、それぞれの裏面に接着剤層5が設けられた複数の半導体チップ2に切り分けられる。ダイシングは、粘着テープ(ダイシングテープ)6によって全体をフレーム(ウェハリング)10に固定した状態でダイシングブレード11を用いて行われる。
【0252】
工程8(
図13、14、15)
ダイシングの後、切り分けられた半導体チップ2を、ダイボンド装置12によって接着剤層5とともにピックアップし、半導体装置用の支持部材(半導体素子搭載用支持部材)7または他の半導体チップ2に圧着(マウント)する。圧着は加熱しながら行なうことが好ましい。
【0253】
圧着により、半導体チップが支持部材又は他の半導体チップに接着される。半導体チップと支持部材又は他の半導体チップとの260℃におけるせん断接着強度は、0.2MPa以上であることが好ましく、0.5MPa以上であることがより好ましい。せん断接着強度が0.2MPa未満であると、リフロー工程などの熱履歴によってはく離が生じ易くなる傾向がある。
【0254】
ここでのせん断接着強度は、せん断接着力試験機「Dage−4000」(商品名)を用いて測定することができる。より具体的には、例えば以下のような方法で測定される。まず、半導体ウェハに塗布された接着剤組成物である接着剤層全面を露光した後、3×3mm角の半導体チップを切り出す。切り出された接着剤層付きの半導体チップを、予め準備した5×5mm角の半導体チップに載せ、100gfで加圧しながら、120℃で2秒間圧着する。その後、120℃1時間、次いで180℃3時間オーブンで加熱して、半導体チップ同士が接着されたサンプルを得る。得られたサンプルについて、せん断接着力試験機「Dage−4000」(商品名)を用いて260℃におけるせん断接着力を測定する。
【0255】
工程9(
図16)
工程8の後、それぞれの半導体チップ2はそのボンディングパッドに接続されたワイヤ16を介して支持部材7上の外部接続端子と接続される。
【0256】
工程10(
図17)
半導体チップ2を含む積層体を封止材17によって封止することにより、半導体装置100が得られる。
【0257】
以上のような工程を経て、半導体素子同士、及び/又は、半導体素子と半導体素子搭載用支持部材とが接着された構造を有する半導体装置を製造することができる。半導体装置の構成及び製造方法は、以上の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限り適宜変更が可能である。
【0258】
例えば、工程1〜7の順序を必要により入れ替えることが可能である。より具体的には、予めダイシングされた半導体ウェハの裏面に接着剤組成物を塗布し、その後、活性光線(典型的には紫外線)を照射して接着剤組成物をBステージ化することもできる。このとき、パターニングされたマスクを用いることもできる。
【0259】
塗布された接着剤組成物を、露光前又は露光後に120℃以下、好ましくは100℃以下、より好ましくは80℃以下に加熱してもよい。これにより、残存している溶剤、水分を低減することができ、また露光後のタックをより低減することができる。
【0260】
光照射によりBステージ化された後、さらに加熱により硬化された接着剤組成物の5%重量減少温度は、260℃以上であることが好ましい。この5%重量減少温度が260℃以下であると、リフロー工程などの熱履歴によってはく離が生じ易くなる傾向がある。
【0261】
光照射によりBステージ化された後、さらに、120℃1時間、次いで180℃3時間の加熱により硬化されたときの接着剤組成物からのアウトガスは10%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましい。アウトガス量が10%以上であると、加熱硬化時にボイドやはく離が発生し易くなる傾向がある。
【0262】
アウトガスは以下のように測定される。接着剤組成物をシリコンウエハ上にスピンコート(2000rpm/10s、4000rpm/20s)によって塗布し、得られた塗膜に、離型処理したPETフィルムをラミネートし、高精度平行露光機(オーク製作所製、「EXM−1172−B−∞」(商品名))により1000mJ/cm
2で露光を行なう。その後、Bステージ化した接着剤組成物を、示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー社製、商品名「TG/DTA6300」)を用いて、窒素フロー(400ml/分)下で、昇温速度50℃/minで120℃に昇温させ、120℃で1時間ホールドし、更に180℃に昇温させ、180℃で3時間ホールドするプログラムによって加熱したとしたときのアウトガスの量が測定される。
【実施例】
【0263】
以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
【0264】
<熱可塑性樹脂(ポリイミド樹脂)>。
(PI−1)
撹拌機、温度計及び窒素置換装置を備えたフラスコ内に、ジアミンであるMBAA5.72g(0.02mol)、「D−400」13.57g(0.03mol)、1,1,3,3−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン(商品名「BY16−871EG」、東レ ダウコーニング(株)製)2.48g(0.01mol)、及び1,4−ブタンジオールビス(3−アミノプロピル)エーテル(商品名「B−12」、東京化成製、分子量204.31)8.17g(0.04mol)と、溶剤であるNMP110gを仕込み、撹拌してジアミンを溶剤に溶解させた。
【0265】
上記フラスコを氷浴中で冷却しながら、酸無水物である4,4’−オキシジフタル酸二無水物(以下「ODPA」と略す。)29.35g(0.09mol)及びTAA(無水トリメリット酸)3.84g(0.02mol)を、フラスコ内の溶液に少量ずつ添加した。添加終了後、室温で5時間撹拌した。その後、フラスコに水分受容器付きの還流冷却器を取り付け、キシレン70.5gを加え、窒素ガスを吹き込みながら溶液を180℃に昇温させて5時間保温し、水と共にキシレンを共沸除去して、ポリイミド樹脂(PI−1)を得た。(PI−1)のGPC測定を行ったところ、ポリスチレン換算でMw=21000であった。また、(PI−1)のTgは55℃であった。
【0266】
得られたポリイミドワニスを、純水を用いて3回再沈殿精製を行ない、真空オーブンを用いて60℃で3日間加熱乾燥し、ポリイミド樹脂の固形物を得た。
【0267】
(PI−2)
撹拌機、温度計及び窒素置換装置(窒素流入管)を備えた500mLフラスコ内に、ジアミンであるポリオキシプロピレンジアミン(商品名「D−2000」(分子量:約2000)、BASF製)140g(0.07mol)、及びBY16−871EG3.72g(0.015mol)に、ODPA31.0g(0.1mol)を、フラスコ内の溶液に少量ずつ添加した。添加終了後、室温で5時間撹拌した。その後、フラスコに水分受容器付きの還流冷却器を取り付け、窒素ガスを吹き込みながら溶液を180℃に昇温させて5時間保温し水を除去して、液状ポリイミド樹脂(PI−2)を得た。(PI−2)のGPC測定を行ったところ、ポリスチレン換算で重量平均分子量(Mw)=40000であった。また、(PI−2)のTgは20℃以下であった。
【0268】
(PI−3) 撹拌機、温度計及び窒素置換装置(窒素流入管)を備えた500mLフラスコ内に、ジアミンであるポリオキシプロピレンジアミン(商品名「D−2000」(分子量:約2000)、BASF製)100g(0.05mol)、及びBY16−871EG3.72g(0.015mol)、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル(1’)]エチル−s−トリアジン(商品名「C11Z−A」、四国化成(株)製)7.18g(0.02mol)に、ODPA31.0g(0.1mol)を、フラスコ内の溶液に少量ずつ添加した。添加終了後、室温で5時間撹拌した。その後、フラスコに水分受容器付きの還流冷却器を取り付け、窒素ガスを吹き込みながら溶液を180℃に昇温させて5時間保温し水を除去して、液状ポリイミド樹脂(PI−3)を得た。(PI−3)のGPC測定を行ったところ、ポリスチレン換算で重量平均分子量(Mw)=40000であった。また、(PI−3)のTgは20℃以下であった。
【0269】
<接着剤組成物>
上記で得られたポリイミド樹脂(PI−1)、(PI−2)及び(PI−3)を用いて、下記表2及び表3に示す組成比(単位:質量部)にて各成分を配合し、実施例1〜9及び比較例1〜5の接着剤組成物(接着剤層形成用ワニス)を得た。
【0270】
表2及び表3において、各記号は下記のものを意味する。
A−BPE4:新中村化学工業社製、エトキシ化ビスフェノールA型アクリレート(5%質量減少温度:330℃、粘度:980mPa・s)
M−140:東亜合成社製、2−(1,2−シクロヘキサカルボキシイミド)エチルアクリレート(5%質量減少温度:200℃、粘度:450mPa・s)
AMP−20GY:新中村化学工業社製、フェノキシジエチレングリコールアクリレート(5%質量減少温度:175℃、粘度:16mPa・s)
YDF−8170C:東都化成社製、ビスフェノールF型ビスグリシジルエーテル(5%質量減少温度:270℃、粘度:1300mPa・s)
630LSD:ジャパンエポキシレジン社製、グリシジルアミン型エポキシ樹脂(5%質量減少温度:240℃、粘度:600mPa・s)
2PZCNS−PW:四国化成社製、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト(5%質量減少温度:220℃、平均粒子径:約4μm)
I−651:チバ ジャパン社製、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(5%質量減少温度:170℃、i線吸光係数:400ml/gcm)
パークミルD:日油社製、ジクミルパーオキサイド(1分間半減期温度:175℃)
NMP:関東化学社製、N−メチル−2−ピロリドン
【0271】
【表2】
【0272】
【表3】
【0273】
<粘度>
粘度は、東京計器株式会社製E型粘度計(EHD型回転粘度計、標準コーン)を用いて、測定温度:25℃、サンプル容量:4cc、回転数を表4のようにサンプルの想定される粘度に合わせて設定の上、測定開始から10分経過後の値を測定値とした。結果を、表5及び表6に示した。
【0274】
【表4】
【0275】
<膜厚>
接着剤組成物をシリコンウェハ上にスピンコート(2000rpm/10s、4000rpm/20s)によって塗布した。得られた塗膜に、離型処理したPETフィルムをハンドローラーでラミネートし、PETフィルム越しに高精度平行露光機(オーク製作所製、「EXM−1172−B−∞」(商品名))により1000mJ/cm
2で露光を行なって、Bステージ化された接着剤層を形成させた。その後、上記PETフィルムをはく離し、表面粗さ測定器(小坂研究所製)を用いて接着剤層の厚みを測定した。結果を、表5及び表6に示した。
【0276】
<最大溶融粘度及び最低溶融粘度>
接着剤組成物をPETフィルム上にBステージ化後の膜厚が50μmとなるように塗布し、得られた塗膜に、離型処理したPETフィルムをハンドローラーでラミネートし、PETフィルム越しに、室温で高精度平行露光機(オーク製作所製、「EXM−1172−B−∞」(商品名))により1000mJ/cm
2で露光して、Bステージ化された接着剤層を形成させた。形成された接着剤層をテフロン(登録商標)シートに貼り合せ、ロール(温度60℃、線圧4kgf/cm、送り速度0.5m/分)で加圧した。その後、PETフィルムをはく離し、接着剤層に、露光によりBステージ化された別の接着剤層を重ね、加圧、積層を繰り返して、厚みが約200μmの接着剤サンプルを得た。得られた接着剤サンプルの溶融粘度を、粘弾性測定装置(レオメトリックス サイエンティフィック エフ イー株式会社製、商品名:ARES)を用いて、直径25mmの平行プレートを測定プレートとして、昇温速度:10℃/min、周波数:1Hzの条件で、20〜200℃の測定温度で測定した。得られた溶融粘度と温度との関係から、20〜60℃における溶融粘度の最大値を最大溶融粘度として読み取り、80〜200℃における溶融粘度の最小値を最低溶融粘度として読み取った。結果を、表5及び表6に示した。
【0277】
<表面タック力>
接着剤組成物をシリコンウェハ上にスピンコート(2000rpm/10s、4000rpm/20s)によって塗布した。得られた塗膜に、離型処理したPETフィルムをハンドローラーでラミネートし、高精度平行露光機(オーク製作所製、「EXM−1172−B−∞」(商品名))により1000mJ/cm
2で露光を行なって、Bステージ化された接着剤層を形成させた。その後、レスカ社製のプローブタッキング試験機を用いて、プローブ直径:5.1mm、引き剥がし速度:10mm/s、接触荷重:100gf/cm
2、接触時間:1sの条件で、30℃及び120℃における表面タック力を測定した。結果を、表5及び表6に示した。
【0278】
<せん断接着強度>
接着剤組成物をシリコンウェハ上にスピンコート(2000rpm/10s、4000rpm/20s)によって塗布した。得られた塗膜に、離型処理したPETフィルムをハンドローラーでラミネートし、PETフィルム越しに高精度平行露光機(オーク製作所製、「EXM−1172−B−∞」(商品名))により1000mJ/cm
2で露光を行ない、Bステージ化された接着剤層をシリコンウェハ上に形成させた。次いで、PETフィルムをはく離した後、3×3mm角にシリコンウェハを切り出した。切り出した接着剤層付きシリコンチップを予め5×5mm角に切り出したシリコンチップ上に載せ、100gfで加圧しながら、120℃で2秒間圧着した。その後、120℃で1時間、次いで180℃で3時間オーブンで加熱して接着サンプルを得た。得られたサンプルについて、せん断接着力試験機「Dage−4000」(商品名)を用いて室温及び260℃でのせん断接着強度を測定した。結果を、表5及び表6に示した。
【0279】
【表5】
【0280】
【表6】