(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0024】
本発明の含窒素芳香族化合物は、一般式(1)で表される。以下、本発明の含窒素芳香族化合物を、本発明の化合物、又は一般式(1)で表される化合物とも言う。
【0025】
一般式(1)において、XはN−A’、O、S又はSeを表す。好ましくはN−A’、O又はSであり、より好ましくはN−A’である。
【0026】
一般式(1)中、Aは炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数6〜50の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3〜50の芳香族複素環基を表す。好ましくは炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数6〜30の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3〜30の芳香族複素環基である。
【0027】
A'は炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数6〜50の芳香族複素環基置換の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3〜50の芳香族複素環基を表す。好ましくは炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数6〜30の芳香族複素環基置換の芳香族炭化水素基、又は4環以上の縮合複素環を含まない炭素数3〜30の芳香族複素環基である。AとA'は、炭素数6〜30の芳香族炭化水素基である場合がが相違するが、他の場合は共通する。そして、一般式(1)中のAとA'は、同一であってもよい。
【0028】
AまたはA'が炭素数1〜30のアルキル基である場合、その炭素数は好ましくは1〜20、より好ましくは1〜10である。アルキル基の具体例としては、無置換の場合、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基が挙げられ、好ましくは、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、又はオクチル基が挙げられる。上記アルキル基は直鎖であっても、分岐していても構わない。
【0029】
上記アルキル基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数3〜11のシクロアルキル基、炭素数6〜18の芳香族炭化水素基又は炭素数3〜18の芳香族複素環基である。
【0030】
上記アルキル基が置換基を有する場合、置換基の総数は1〜10である。好ましくは1〜6であり、より好ましくは1〜4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。
【0031】
本明細書中、炭素数の計算において、置換基を有する場合はその置換基の炭素数も含む。
【0032】
AまたはA'が炭素数3〜30のシクロアルキル基である場合、その炭素数は好ましくは3〜20、より好ましくは5〜10である。シクロアルキル基の具体例としては、無置換の場合、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロヘキシル基、デカヒドロナフチル基が挙げられる。好ましくはシクロペンチル基、又はシクロヘキシル基が挙げられる。
【0033】
上記シクロアルキル基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数1〜10のアルキル基、炭素数6〜18の芳香族炭化水素基又は炭素数3〜18の芳香族複素環基である。
【0034】
上記シクロアルキル基が置換基を有する場合、置換基の総数は1〜10である。好ましくは1〜6であり、より好ましくは1〜4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。
【0035】
AまたはA'が炭素数2〜30のアルケニル基、又は炭素数2〜30のアルキニル基である場合、これらの炭素数は好ましくは2〜20、より好ましくは2〜10である。アルケニル基又はアルキニル基の具体例としては、無置換の場合、エチレニル基、プロピレニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、アセチレニル基、プロピニル基、ブチニル基、又はペンチニル基が挙げられる。好ましくはエチレニル基、プロピレニル基、ブテニル基、アセチレニル基、又はプロピニル基が挙げられる。上記アルケニル基及びアルキニル基は直鎖であっても、分岐していても構わない。
【0036】
上記アルケニル基又はアルキニル基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数3〜11のシクロアルキル基、炭素数6〜18の芳香族炭化水素基又は炭素数3〜18の芳香族複素環基である。
【0037】
Aが炭素数6〜50の芳香族炭化水素基である場合、その炭素数は好ましくは6〜30、より好ましくは6〜18である。A'が6〜50の芳香族複素環基置換の芳香族炭化水素基である場合、その炭素数は好ましくは6〜30、より好ましくは6〜18である。AまたはA'が炭素数3〜50の芳香族複素環基である場合、炭素数は好ましくは3〜30、より好ましくは3〜18である。ここで、芳香族複素環基は4環以上の縮合複素環を含まない。
【0038】
上記芳香族炭化水素基又は芳香族複素環基の具体例としては、無置換の場合、ベンゼン、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレン、インダセン、アセナフチレン、フェナレン、フェナンスレン、アントラセン、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、コラントリレン、ヘリセン、ヘキサフェン、ルビセン、コロネン、トリナフチレン、ヘプタフェン、ピラントレン、フラン、ベンゾフラン、イソベンゾフラン、キサンテン、オキサトレン、ジベンゾフラン、ペリキサンテノキサンテン、チオフェン、チオキサンテン、チアントレン、フェノキサチイン、チオナフテン、イソチアナフテン、チオフテン、チオファントレン、ジベンゾチオフェン、ピロール、ピラゾール、テルラゾール、セレナゾール、チアゾール、イソチアゾール、オキサゾール、フラザン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、インドリジン、インドール、イソインドール、インダゾール、プリン、キノリジン、イソキノリン、カルバゾール、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、フェノテルラジン、フェノセレナジン、フェノチアジン、フェノキサジン、アンチリジン、ベンゾチアゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソオキサゾール、ベンゾイソチアゾール又はこれら芳香環が複数連結された芳香族化合物等から水素を除いて生じる1価の基が挙げられる。好ましくはベンゼン、ナフタレン、アントラセン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、イソインドール、インダゾール、プリン、イソキノリン、イミダゾール、ナフチリジン、フタラジン、キナゾリン、ベンゾジアゼピン、キノキサリン、シンノリン、キノリン、プテリジン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、カルボリン、インドール、カルバゾール、ジベンゾフラン、ジベンゾチオフェン又はこれら芳香環が複数連結された芳香族化合物から水素を除いて生じる1価の基が挙げられる。
【0039】
なお、芳香環が複数連結された芳香族化合物から生じる基である場合、連結される数は2〜10が好ましく、より好ましくは2〜7であり、連結される芳香環は同一であっても異なっていても良い。その場合、窒素と結合するAの結合位置は限定されず、連結された芳香環の末端部の環であっても中央部の環であってもよい。ここで、芳香環は芳香族炭化水素環及び芳香族複素環を総称する意味である。また、連結された芳香環に少なくとも1つの複素環が含まれる場合は芳香族複素環基に含める。
【0040】
ここで、芳香環が複数連結されて生じる1価の基は、例えば、下記式で表わされる。
(式(11)〜(13)中、Ar
1〜Ar
6は、置換又は無置換の芳香環を示す。)
【0041】
上記芳香環が複数連結されて生じる基の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ターピリジン、ビストリアジルベンゼン、ジカルバゾリルベンゼン、カルバゾリルビフェニル、ジカルバゾリルビフェニル、フェニルターフェニル、カルバゾリルターフェニル、ビナフタレン、フェニルピリジン、フェニルカルバゾール、ジフェニルカルバゾール、ジフェニルピリジン、フェニルピリミジン、ジフェニルピリミジン、フェニルトリアジン、ジフェニルトリアジン、フェニルナフタレン、ジフェニルナフタレン等から水素を除いて生じる1価の基が挙げられる。
【0042】
ここで、4環以上の縮合複素環を含まない芳香族複素環基とは、単環の芳香族複素環基又は2〜3環の縮合芳香族複素環基を意味し、この芳香族複素環基は置換基を有してもよい。なお、この芳香族複素環基が、例えば式(11)で表わされるような芳香環が複数連結されて生じる基である場合、この芳香環はいずれも4環以上の縮合芳香族複素環基であることはない。
【0043】
上記芳香族炭化水素基又は芳香族複素環基は置換基を有しても良く、これらが置換基を有する場合、置換基としては、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数1〜2のアルコキシ基、アセチル基、炭素数6〜18のアミノ基、炭素数6〜18のホスファニル基、又は炭素数3〜18のシリル基である。好ましくは炭素数1〜4のアルキル基、炭素数3〜6のシクロアルキル基又は炭素数6〜15のアミノ基である。但し、この場合、分岐して連結する芳香族基は置換基としては扱わない。
【0044】
AまたはA'が芳香族炭化水素基又は芳香族複素環基であって、置換基を有する場合、置換基の総数は1〜10である。好ましくは1〜6であり、より好ましくは1〜4である。また、2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。
【0045】
一般式(1)において、Rはそれぞれ独立して水素、炭素数1〜30のアルキル基、炭素数3〜30のシクロアルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、炭素数6〜30の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3〜30の芳香族複素環基を表す。好ましくは水素、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数2〜20のアルケニル基、炭素数2〜20のアルキニル基、炭素数6〜20の芳香族炭化水素基又は4環以上の縮合複素環を含まない炭素数3〜20の芳香族複素環基を表す。
【0046】
アルキル基、シクロアルキル基、アルケニル基又はアルキニル基の具体例は上記Aを構成するアルキル基、シクロアルキル基、アルケニル基又はアルキニル基と同様である。また、これらアルキル基、シクロアルキル基、アルケニル基又はアルキニル基が置換基を有する場合もAにおける場合と同様である。
【0047】
芳香族炭化水素基又は4環以上の縮合複素環を含まない芳香族複素環基の具体例は総炭素数が異なることを除いて上記Aを構成する芳香族炭化水素基又は4環以上の縮合複素環を含まない芳香族複素環基と同様である。また、これら芳香族炭化水素基又は4環以上の縮合複素環を含まない芳香族複素環基が置換基を有する場合もAにおける場合と同様である。
【0048】
本発明の含窒素芳香族化合物は、インドール誘導体を出発原料とし、目的とする化合物の構造に応じて原料を選択し、公知の手法を用いて合成することができる。
【0049】
例えば、一般式(1)において、XがN−Aで表される骨格は、J.C.S.Chem.Comm.,1975,911−912及びJournal of Chemical Research,1988,272−273に示される合成例を参考にして以下の反応式により合成することができる。
【0051】
また、一般式(1)において、XがO、S、Seのいずれかで表される骨格についても前述の合成例を用いて合成することができる。
【0053】
前述の反応式で得られる各種化合物の窒素上の水素を、例えばウルマン反応などのカップリング反応により、対応する置換基に置換させることで、一般式(1)で表される含窒素芳香族化合物を合成することができる。
【0054】
一般式(1)で表される本発明の化合物の具体例を以下に示すが、本発明の化合物はこれらに限定されない。
【0062】
次に、本発明の有機半導体材料および本発明の有機電子デバイスについて説明する。本発明の含窒素芳香族化合物は、それ自体が有機半導体材料としての機能を有するので、有機半導体材料として有用である。本発明の有機半導体材料は、本発明の含窒素芳香族化合物を含む。本発明の有機半導体材料は、本発明の含窒素芳香族化合物を含むものであればよく、例えば、他の有機半導体材料に混合して用いてもよく、また、種々のドーパントを含んでいてもよい。ドーパントとしては、例えば、有機EL素子の発光層として用いる場合には、クマリン、キナクリドン、ルブレン、スチルベン系誘導体および蛍光色素、イリジウム錯体や白金錯体等の貴金属錯体を用いることができる。
【0063】
本発明の有機電子デバイスは、本発明の有機半導体材料を用いた有機電子デバイスである。すなわち、本発明の有機電子デバイスは、本発明の含窒素芳香族化合物を含む有機電子デバイスである。具体的には、本発明の有機電子デバイスは、少なくとも1層の有機層を備え、この有機層のうち少なくとも1層が本発明の化合物を含む。
【0064】
本発明の有機電子デバイスは、種々の態様とすることができるが、好適態様の一つとして、有機EL素子が挙げられる。具体的には、基板上に、陽極、発光層を含む有機層及び陰極が積層されてなる有機EL素子からなる有機電子デバイスであって、前記有機層が本発明の化合物を含む有機電子デバイスである。
【0065】
本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
【0066】
図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表わす。本発明の有機EL素子では発光層と隣接して励起子阻止層を有してもよく、また、発光層と正孔注入層との間に電子阻止層を有しても良い。励起子阻止層は発光層の陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、基板、陽極、発光層及び陰極を必須の層として有するが、必須の層以外の層に、正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか又は両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
【0067】
なお、
図1とは逆の構造、すなわち、基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
【0068】
本発明の化合物は有機EL素子中のいずれの層にも使用できる。発光層、正孔輸送層、電子阻止層、正孔阻止層、電子輸送層で使用することが好ましく、発光層、正孔輸送層、電子阻止層として使用することが特に好ましい。
【0069】
−基板−
本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
【0070】
−陽極−
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO
2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In
2O
3−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
【0071】
−陰極−
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al
2O
3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al
2O
3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明であれば発光輝度が向上し好都合である。
【0072】
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
【0073】
−発光層−
発光層は蛍光発光層、燐光発光層のいずれでも良いが、燐光発光層であることが好ましい。
【0074】
発光層が蛍光発光層である場合、蛍光発光材料は少なくとも1種の蛍光発光材料を単独で使用しても構わないが、蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含むことが好ましい。
【0075】
発光層における蛍光発光材料としては、一般式(1)で表される化合物を用いることができるが、該化合物を他の何れかの有機層に使用する場合は、多数の特許文献等により知られている蛍光発光材料を選択して使用することもできる。例えばベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8−キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族化合物、スチリル化合物、ジケトピロロピロール化合物、オキサジン化合物、ピロメテン金属錯体、遷移金属錯体、ランタノイド錯体が挙げられ、より好ましくは、ナフタセン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ベンタセン、ペリレン、フルオランテン、アセナフソフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタセン、ヘキサセン、アンタントレン、ナフト[2,1‐f]イソキノリン、α−ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5‐f]キノリン、又はベンゾチオファントレンなどが挙げられる。これらは置換基としてアリール基、複素芳香環基、ジアリールアミノ基、又はアルキル基を有していてもよい。
【0076】
前記蛍光発光材料を蛍光発光ドーパントとして使用し、ホスト材料を含む場合、蛍光発光ドーパントが発光層中に含有される量は、0.01〜20重量%、好ましくは0.1〜10重量%の範囲にあることがよい。
【0077】
通常、有機EL素子は、陽極、陰極の両電極より発光物質に電荷を注入し、励起状態の発光物質を生成し、発光させる。電荷注入型の有機EL素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起されると言われている。第57回応用物理学関係連合講演会 講演予稿集(19p−ZK−4及び19p−ZK−5)に示されているように、特定の蛍光発光物質は、系間交差等により励起三重項状態へとエネルギーが遷移した後、三重項−三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆系間交差され蛍光を放射し、熱活性遅延蛍光を発現することが知られている。本発明の化合物を用いた有機EL素子でも遅延蛍光を発現することができる。この場合、蛍光発光及び遅延蛍光発光の両方を含むこともできる。但し、発光の一部或いは部分的にホスト材料からの発光があっても良い。
【0078】
発光層が燐光発光層である場合、燐光発光ドーパントとホスト材料を含む。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。かかる有機金属錯体は、前記先行技術文献等で公知であり、これらが選択されて使用可能である。
【0079】
好ましい燐光発光ドーパントとしては、Ir等の貴金属元素を中心金属として有するIr(ppy)
3等の錯体類、(Bt)
2Iracac等の錯体類、(Btp)Ptacac等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
【0082】
前記燐光発光ドーパントが発光層中に含有される量は、1〜50重量%の範囲にあることが好ましい。より好ましくは5〜30重量%である。
【0083】
発光層におけるホスト材料としては、前記一般式(1)で表される本発明の化合物を用いることが好ましい。しかし、該化合物を発光層以外の他の何れかの有機層に使用する場合は、発光層に使用する材料は本発明の化合物以外の他のホスト材料であってもよい。また、本発明の化合物と他のホスト材料を併用してもよい。更に、公知のホスト材料を複数種類併用して用いてもよい。
【0084】
使用できる公知のホスト化合物としては、正孔輸送能又は電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。
【0085】
このような他のホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、又はポリフルオレン誘導体等の高分子化合物等が挙げられる。
【0086】
−注入層−
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。注入材料としては、一般式(1)で表される本発明の化合物を用いることができるが、該化合物を他の何れかの有機層に使用する場合は、従来公知の化合物の中から任意のものを選択して用いることができる。
【0087】
−正孔阻止層−
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
【0088】
正孔阻止層には一般式(1)で表される本発明の化合物を用いることが好ましいが、該化合物を他の何れかの有機層に使用する場合は、公知の正孔阻止層材料を用いてもよい。また、正孔阻止層材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
【0089】
−電子阻止層−
電子阻止層とは、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料から成り、正孔を輸送しつつ電子を阻止することで電子と正孔が再結合する確率を向上させることができる。
【0090】
電子阻止層の材料としては、一般式(1)で表される本発明の化合物を用いることができるが、該化合物を他の何れかの有機層に使用する場合は、後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3〜100nmであり、より好ましくは5〜30nmである。
【0091】
−励起子阻止層−
励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
【0092】
励起子阻止層の材料としては、一般式(1)で表される本発明の化合物を用いることができるが、該化合物を他の何れかの有機層に使用する場合は、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、1,3−ジカルバゾリルベンゼン(mCP)や、ビス(2−メチル−8−キノリノラト)−4−フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
【0093】
−正孔輸送層−
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
【0094】
正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送層には一般式(1)で表される本発明の化合物を用いることが好ましいが、該化合物を他の何れかの有機層に使用する場合は、従来公知の化合物の中から任意のものを選択して用いることができる。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、芳香族アミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、ポルフィリン化合物、スチリルアミン化合物、及び導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
【0095】
−電子輸送層−
電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
【0096】
電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には一般式(1)で表される本発明の化合物を用いることが好ましいが、該化合物を他の何れかの有機層に使用する場合は、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0097】
本発明の化合物を含む有機電子デバイスの別の好適態様の一つとして、有機TFT素子が挙げられる。具体的には、基板上に、ゲート電極と、ゲート絶縁層と、有機半導体層と、ソース電極およびドレイン電極とを有する有機TFT素子からなる有機電子デバイスであって、前記有機半導体層が本発明の化合物を含む有機電子デバイスである。
【0098】
本発明の有機TFT素子の構造について、図面を参照しながら説明するが、本発明の有機TFT素子の構造は何ら図示のものに限定されるものではない。
【0099】
図2及び
図3は、有機TFT素子の構造例を示す断面図であり、8は基板、9はゲート電極、10は絶縁層、11は有機半導体層、12はソース電極、13はドレイン電極を各々表わす。
【0100】
−基板−
基板は、特に限定されず、例えば、従来公知の構成とすることができる。基板としては、例えば、ガラス(例えば、石英ガラス)、シリコン、セラミック、プラスチックが挙げられる。プラスチックとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の汎用の樹脂基板が挙げられる。樹脂基板は、酸素、水蒸気等のガスの透過性を低くするためのガスバリア膜を積層したものであることが好ましい。
【0101】
−ゲート電極−
ゲート電極は、特に限定されず、例えば、従来公知の構成とすることができる。ゲート電極としては、例えば、金、白金、クロム、タングステン、タンタル、ニッケル、銅、アルミニウム、銀、マグネシウム、カルシウム等の金属またはそれらの合金、ポリシリコン、アモルファスシリコン、グラファイト、ITO、酸化亜鉛、導電性ポリマー等の材料を用いることができる。
【0102】
−ゲート絶縁層−
ゲート絶縁層は、特に限定されず、例えば、従来公知の構成とすることができる。ゲート絶縁層としては、SiO
2、Si
3N
4、SiON、Al
2O
3、Ta
2O
5、アモルファスシリコン、ポリイミド樹脂、ポリビニルフェノール樹脂、ポリパラキシリレン樹脂、ポリメチルメタクリレート樹脂、フッ素樹脂(PTFE、PFA、PETFE、PCTFE、CYTOP(登録商標)等)等の材料を用いることができる。
【0103】
−有機半導体層−
有機半導体層は、本発明の化合物を含むものであればよく、特に限定されない。例えば、実質的に本発明の化合物のみからなる層であってもよく、本発明の化合物以外の他の物質を含有してもよい。
【0104】
−ソース電極およびドレイン電極−
ソース電極およびドレイン電極は、いずれも特に限定されず、例えば、従来公知の構成とすることができる。ソース電極およびドレイン電極としては、いずれも、金、白金、クロム、タングステン、タンタル、ニッケル、銅、アルミニウム、銀、マグネシウム、カルシウム等の金属またはそれらの合金、ポリシリコン、アモルファスシリコン、グラファイト、ITO、酸化亜鉛、導電性ポリマー等の材料を用いることができる。
【0105】
有機TFT素子における積層の構成は、基板側から、ゲート電極と、ゲート絶縁層と、有機半導体層と、ソース電極およびドレイン電極とをこの順に有する構成(i)、および、基板側から、ゲート電極と、ゲート絶縁層と、ソース電極およびドレイン電極と、有機半導体層とをこの順に有する構成(ii)のいずれであってもよい。有機TFT素子の作製方法は、特に限定されないが、構成(i)の場合、例えば、基板上に、ゲート電極と、ゲート絶縁層と、有機半導体層と、ドレイン電極およびソース電極とを順次積層するトップコンタクト法が挙げられる。構成(ii)の場合、基板上に、ゲート電極と、ゲート絶縁層と、ドレイン電極およびソース電極と、有機半導体層とを順次積層するボトムコンタクト法が挙げられる。
【0106】
ゲート電極と、ゲート絶縁層と、ソース電極およびドレイン電極とは、形成方法を特に限定されないが、いずれも、例えば、上述した材料を用いて、真空蒸着法、電子ビーム蒸着法、RFスパッタ法、スピンコート法、印刷法等の周知の膜作製方法により形成させることができる。有機半導体層は、形成方法を特に限定されないが、例えば、本発明の化合物又は有機半導体材料を用いて、真空蒸着法、スピンコート法、インクジェット法、印刷法等の周知の膜作製方法により形成させることができる。
【0107】
有機TFT素子は、用途を特に限定されないが、例えばプラスチック基板を用いたフレキシブルディスプレイの駆動用TFT素子として好適に用いられる。一般的にプラスチック基板上に無機物で構成されたTFT素子を作製することはプロセス上困難である。しかし、有機TFT素子からなる本発明の有機電子デバイスの作製工程では、上述したように真空蒸着法、スピンコート法、インクジェット法、印刷法等のプロセスを用い、高温プロセスを使用しないため、プラスチック基板上に画素駆動用のTFT素子を形成しうる。特に、本発明の化合物は、クロロホルム、テトラヒドロフラン、トルエン等の汎用有機溶媒に可溶であるため、スピンコート法、インクジェット法、印刷法等の低コストプロセスを適用可能であり、安価なペーパーライク(フレキシブル)ディスプレイの作製に適している。
【0108】
本発明の化合物を含む有機電子デバイスの別の好適態様の一つとして、光起電力素子、好ましくは有機薄膜太陽電池が挙げられる。具体的には、基板上に、正極、有機半導体層及び負極とを有する光起電力素子であって、前記有機半導体層が本発明の化合物を含む有機電子デバイスである。
【0109】
本発明の光起電力素子の構造について、図面を参照しながら説明するが、本発明の光起電力素子の構造は何ら図示のものに限定されるものではない。
【0110】
図4は本発明に用いられる一般的な光起電力素子の構造例を示す断面図であり、14は基板、15は正極、16は有機半導体層、17は負極を各々表わす。また、
図5は有機半導体層が積層されている場合の構造例を示す断面図であり、16−aは電子供与性有機半導体層、16−bは電子受容性有機半導体層である。
【0111】
−基板−
基板は、特に限定されず、例えば、従来公知の構成とすることができる。機械的、熱的強度を有し、透明性を有するガラス基板や透明性樹脂フィルムを使用することが好ましい。透明性樹脂フィルムとしては、ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン−エチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。
【0112】
−電極−
電極材料としては、一方の電極には仕事関数の大きな導電性素材、もう一方の電極には仕事関数の小さな導電性素材を使用することが好ましい。仕事関数の大きな導電性素材を用いた電極は正極となる。この仕事関数の大きな導電性素材としては金、白金、クロム、ニッケルなどの金属のほか、透明性を有するインジウム、スズなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)が好ましく用いられる。ここで、正極に用いられる導電性素材は、有機半導体層とオーミック接合するものであることが好ましい。さらに、後述する正孔輸送層を用いた場合においては、正極に用いられる導電性素材は正孔輸送層とオーミック接合するものであることが好ましい。
【0113】
仕事関数の小さな導電性素材を用いた電極は負極となるが、この仕事関数の小さな導電性素材としては、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、カルシウムが使用される。また、錫や銀、アルミニウムも好ましく用いられる。さらに、上記の金属からなる合金や上記の金属の積層体からなる電極も好ましく用いられる。また、負極と電子輸送層の界面にフッ化リチウムやフッ化セシウムなどの金属フッ化物を導入することで、取り出し電流を向上させることも可能である。ここで、負極に用いられる導電性素材は、有機半導体層とオーミック接合するものであることが好ましい。さらに、後述する電子輸送層を用いた場合においては、負極に用いられる導電性素材は電子輸送層とオーミック接合するものであることが好ましい。
【0114】
−有機半導体層−
有機半導体層は本発明の化合物を含む。すなわち、本発明の化合物を含む電子供与性有機材料および電子受容性有機材料を含む。これらの材料は混合されていることが好ましく、電子供与性有機材料と電子受容性有機材料が分子レベルで相溶しているか、相分離していることが好ましい。この相分離構造のドメインサイズは特に限定されるものではないが通常1nm以上50nm以下のサイズである。また、電子供与性有機材料と電子受容性有機材料が積層されている場合は、p型半導体特性を示す電子供与性有機材料を有する層が正極側、n型半導体特性を示す電子受容性有機材料を有する層が負極側であることが好ましい。有機半導体層は5nm〜500nmの厚さが好ましく、より好ましくは30nm〜300nmである。積層されている場合は、本発明の電子供与性有機材料を有する層は上記厚さのうち1nm〜400nmの厚さを有していることが好ましく、より好ましくは15nm〜150nmである。
【0115】
電子供与性有機材料は、一般式(1)で表される本発明の化合物のみからなるものでもよいし、他の電子供与性有機材料を含んでもよい。他の電子供与性有機材料としては、例えばポリチオフェン系重合体、ベンゾチアジアゾール−チオフェン系誘導体、ベンゾチアジアゾール−チオフェン系共重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、H2フタロシアニン(H2Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)などのフタロシアニン誘導体、ポルフィリン誘導体、N,N'−ジフェニル−N,N'−ジ(3−メチルフェニル)−4,4'−ジフェニル−1,1'−ジアミン(TPD)、N,N'−ジナフチル−N,N'−ジフェニル−4,4'−ジフェニル−1,1'−ジアミン(NPD)などのトリアリールアミン誘導体、4,4'−ジ(カルバゾール−9−イル)ビフェニル(CBP)などのカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)などの低分子有機化合物が挙げられる。
【0116】
上記一般式(1)で表される本発明の化合物は電子供与性(p型半導体特性)を示すため、本発明の光起電力素子用材料は、さらに電子受容性有機材料(n型有機半導体)を含有することが好ましい。本発明の化合物と電子受容性有機材料を組み合わせることにより、光起電力素子の光電変換効率をより向上させることができる。
【0117】
本発明の光起電力素子で用いる電子受容性有機材料とは、n型半導体特性を示す有機材料であり、例えば1,4,5,8−ナフタレンテトラカルボキシリックジアンハイドライド(NTCDA)、3,4,9,10−ペリレンテトラカルボキシリックジアンハイドライド(PTCDA)、3,4,9,10−ペリレンテトラカルボキシリックビスベンズイミダゾール(PTCBI)、N,N'−ジオクチル−3,4,9,10−ナフチルテトラカルボキシジイミド(PTCDI−C8H)、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)、2,5−ジ(1−ナフチル)−1,3,4−オキサジアゾール(BND)などのオキサゾール誘導体、3−(4−ビフェニリル)−4−フェニル−5−(4−t−ブチルフェニル)−1,2,4−トリアゾール(TAZ)などのトリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物(C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]−フェニル C61 ブチリックアシッドメチルエステル([6,6]−PCBM)、[5,6]−フェニル C61 ブチリックアシッドメチルエステル([5,6]−PCBM)、[6,6]−フェニル C61 ブチリックアシッドヘキシルエステル([6,6]−PCBH)、[6,6]−フェニル C61 ブチリックアシッドドデシルエステル([6,6]−PCBD)、フェニル C71 ブチリックアシッドメチルエステル(PC70BM)、フェニル C85 ブチリックアシッドメチルエステル(PC84BM)など)、カーボンナノチューブ(CNT)、ポリ−p−フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN−PPV)などが挙げられる。中でも、フラーレン化合物は電荷分離速度と電子移動速度が速いため、好ましく用いられる。
【0118】
本発明の光起電力素子では、正極と有機半導体層の間に正孔輸送層を設けてもよい。正孔輸送層を形成する材料としては、ポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリフルオレン系重合体などの導電性高分子や、フタロシアニン誘導体(H2Pc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層は5nm〜600nmの厚さが好ましく、より好ましくは30nm〜200nmである。
【0119】
また、本発明の光起電力素子は、有機半導体層と負極の間に電子輸送層を設けてもよい。電子輸送層を形成する材料として、特に限定されるものではないが、上述の電子受容性有機材料(NTCDA、PTCDA、PTCDI−C8H、オキサゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ホスフィンオキサイド誘導体、フラーレン化合物、CNT、CN−PPVなど)のようにn型半導体特性を示す有機材料が好ましく用いられる。電子輸送層は5nm〜600nmの厚さが好ましく、より好ましくは30nm〜200nmである。
【0120】
また、本発明の光起電力素子は、1つ以上の中間電極を介して2層以上の有機半導体層を積層(タンデム化)して直列接合を形成してもよい。例えば、基板/正極/第1の有機半導体層/中間電極/第2の有機半導体層/負極という積層構成を挙げることができる。このように積層することにより、開放電圧を向上させることができる。なお、正極と第1の有機半導体層の間、および、中間電極と第2の有機半導体層の間に上述の正孔輸送層を設けてもよく、第1の有機半導体層と中間電極の間、および、第2の有機半導体層と負極の間に上述の正孔輸送層を設けてもよい。
【0121】
このような積層構成の場合、有機半導体層の少なくとも1層が一般式(1)で表される本発明の化合物を含み、他の層には、短絡電流を低下させないために、本発明の電子供与性有機材料とはバンドギャップの異なる電子供与性有機材料を含むことが好ましい。このような電子供与性有機材料としては、例えば上述のポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、H2フタロシアニン(H2Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)などのフタロシアニン誘導体、ポルフィリン誘導体、N,N'−ジフェニル−N,N'−ジ(3−メチルフェニル)−4,4'−ジフェニル−1,1'−ジアミン(TPD)、N,N'−ジナフチル−N,N'−ジフェニル−4,4'−ジフェニル−1,1'−ジアミン(NPD)などのトリアリールアミン誘導体、4,4'−ジ(カルバゾール−9−イル)ビフェニル(CBP)などのカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)などの低分子有機化合物が挙げられる。
【0122】
また、ここで用いられる中間電極用の素材としては高い導電性を有するものが好ましく、例えば上述の金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウムなどの金属や、透明性を有するインジウム、スズなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)、上記の金属からなる合金や上記の金属の積層体、ポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたもの、などが挙げられる。中間電極は光透過性を有することが好ましいが、光透過性が低い金属のような素材でも膜厚を薄くすることで充分な光透過性を確保できる場合が多い。
【0123】
有機半導体層の形成には、スピンコート塗布、ブレードコート塗布、スリットダイコート塗布、スクリーン印刷塗布、バーコーター塗布、鋳型塗布、印刷転写法、浸漬引き上げ法、インクジェット法、スプレー法、真空蒸着法など何れの方法を用いてもよく、膜厚制御や配向制御など、得ようとする有機半導体層特性に応じて形成方法を選択すればよい。
【0124】
本発明の化合物、又は本発明の化合物を含む本発明の有機半導体材料は、高電荷移動度、溶媒可溶性、酸化安定性、良好な製膜性を有しており、これを使用した有機半導体デバイスも高い特性を発揮する。本発明の有機半導体材料の特徴を生かせる具体的な有機半導体デバイスとしては、例えば、有機電界効果トランジスタや有機薄膜太陽電池を示すことができ、さらには、これらの有機半導体デバイスを組み込むことにより、有機ELパネルおよび電子ペーパー等のディスプレイ、液晶ディスプレイ、情報タグ、電子人工皮膚シートやシート型スキャナー等の大面積センサーに応用していくことができる。
【実施例】
【0125】
以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
なお、実施例1〜10は合成例であり、実施例16は参考例であると理解される。
【0126】
実施例1
化合物1−21の合成
【0127】
窒素雰囲気下、水素化ナトリウム(56.0 %品)5.8 g (135 mmol)、脱水テトラヒドロフラン(THF) 60 mlを加え、室温で30分撹拌した。得られた懸濁液にインドール13.4 g (114 mmol)のTHF (120 ml)溶液を30分かけ滴下し、滴下終了後、室温で30分撹拌した。得られた懸濁液にトリイソプロピルシリルクロリド22.0 g(114 mol)を加え、室温で1.5時間撹拌した。析出した結晶をろ取し、溶媒を減圧留去して中間体 A−1を31.2 g( 114 mmol、収率 100%)得た。
【0128】
窒素雰囲気下、中間体A−1 31.1 g(114 mmol)、THFを100 ml加え、N−ブロモスクシンイミド20.2 g(114 mmol)のTHF (70 ml)溶液を30分かけ滴下し、滴下終了後、室温で2時間撹拌した。反応溶液の溶媒を減圧留去した。得られた残渣にジクロロメタン90.0 gを加え1時間静置した。析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣にエタノール100 ml加えて、室温で一晩撹拌した。析出した固体をろ取し、中間体A−2を 34.5 g (98 mmol、収率86%)得た。
【0129】
窒素雰囲気下、中間体A−2 33.7 g(96 mmol)、THFを200 ml加え、-60℃まで冷却し、n-ブチルリチウム/ヘキサン溶液72 ml(1.57mol/l)を滴下し、1時間撹拌した。そこにイソプロピルボレイト21.7 g(115 mmol)を加えて、1時間撹拌した。反応溶液を室温まで戻し、飽和塩化アンモニウム水溶液を100 ml、トルエン100 mlを加えた。有機層を蒸留水(3 × 200 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去し、中間体A−3を27.3 g (86 mmol、収率90%)得た。
【0130】
【0131】
中間体A−3 27.3 g(88 mmol)、2-ヨードニトロベンゼン6.7 g(88 mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.6 g(0.52 mmol)、炭酸ナトリウム17 gの水(80 ml)溶液、トルエン200 ml、エタノールを100 ml加え、90℃で加熱しながら一晩撹拌した。反応溶液を室温まで冷却した後に、蒸留水(100 ml)を撹拌しながら加えた。有機層を蒸留水(3 × 100 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣に撹拌しながら、メタノールを150 ml加え、室温で60分撹拌した。析出した固体をろ取し、中間体A−4を30.0 g (76 mmol、収率87%)を得た。
【0132】
中間体A−4 30.0 g(76 mmol)、テトラブチルアンモニウムフルオリド三水和物(TBAF)2.4 g(7.6 mmol)、THF 200 mlを加え、室温にて1時間撹拌した。反応溶液に蒸留水(100 ml)とトルエン(100 ml)を加えて撹拌し、水層と有機層とを分画した。有機層をトルエン(2×100 ml)で抽出し、合わせた有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去し、中間体A−5を得た。得られた中間体A−5に1-ブロモ-3-(N-カルバゾリル)ベンゼン24.5g(76 mmol)、ヨウ化銅2.4 g(13 mmol)、リン酸三カリウム79 g (372 mmol)、trans-1,2-シクロヘキサンジアミン14.2 g (124 mmol)、1,4-ジオキサンを500 ml加え、120℃で加熱しながら10時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、中間体A−6を35.9 g (75 mol、収率99%)を得た。
【0133】
中間体A−6 35.9 g(75 mmol)、亜りん酸トリエチル49.9 g(300 mmol)、クメン200 gを加え、160℃で加熱しながら17時間攪拌した。反応溶液を室温まで冷却した後に、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製を行い、中間体A−7を 30.2 g (67.5 mmol、収率90%)を得た。
【0134】
【0135】
窒素雰囲気下、中間体A−7 を2.4 g (5.4 mmol)、3-ブロモビフェニルを1.4 g (5.9 mmol)、ヨウ化銅0.2 g (1.1 mmol)、リン酸三カリウム3.1 g (26.8 mmol)、trans-1,2-シクロヘキサンジアミン1.1 g (5.3 mmol)、1,4-ジオキサンを30 ml加え、120℃で加熱しながら72時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物1−21を 1.2 g (2.0 mmol、収率37%)を得た。
APCI-TOFMS, m/z 600 [M+H]
+、
1H-NMR測定結果(測定溶媒:THF-d8)を
図6に示す。
【0136】
実施例2
化合物1−29の合成
【0137】
窒素雰囲気下、水素化ナトリウム(62.2%品)0.2 g (5.9 mmol)、脱水N,N-ジメチルホルムアミド(DMF)10 mlを加え、室温で0.5時間撹拌した。得られた懸濁液に中間体A−7 2.4 g (5.4 mmol)のDMF(10 mL)溶液を加ええ、室温で30分撹拌した。得られた懸濁液に2-クロロ-4,6-ジフェニル-1,3,5-トリアジン1.4 g (5.4 mmmol)加え、60℃で30分間撹拌した。反応溶液を室温まで冷却した後に、蒸留水(100 ml)を撹拌しながら加え、析出した固体をろ取した。得られた固体をシリカゲルカラムクロマトグラフィー、加熱リスラリーで精製を行い、黄色固体として化合物1−29を1.8 g(2.6 mmol、収率48%)得た。
APCI-TOFMS, m/z 679 [M+H]
+、
1H-NMR測定結果(測定溶媒:THF-d8)を
図7に示す。
【0138】
実施例3
化合物1−30の合成
【0139】
3-ブロモビフェニルの代わりに2-ヨードジベンゾフランを用いた以外は化合物1−21の合成と同様にして、白色固体として化合物30を 1.4 g (2.3 mmol、収率43%)を得た。
APCI-TOFMS, m/z 614 [M+H]
+【0140】
実施例4
化合物1−31の合成
【0141】
3-ブロモビフェニルの代わりに1-ブロモ-3-(N-カルバゾリル)ベンゼンを用いた以外は化合物1−21の合成と同様にして、白色固体として化合物1−31を2.2 g (3.2 mmol、収率59%)を得た。
APCI-TOFMS, m/z 689 [M+H]
+【0142】
実施例5
化合物1−52の合成
【0143】
中間体A−4 3.0 g(7.6 mmol)、TBAFを0.2 g(0.76 mmol)、THF 20 mlを加え、室温にて1時間撹拌した。反応溶液に蒸留水(10 ml)とトルエン(10 ml)を加えて撹拌し、水層と有機層とを分画した。有機層をトルエン(2×10 ml)で抽出し、合わせた有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去し、中間体A−5を得た。続いて窒素雰囲気下、水素化ナトリウム(56.0 %品)0.2 g (9.1 mmol)、にDMF17 mLを加え、室温で30分撹拌した。得られた懸濁液に中間体A−5 1.8 g(7.6 mmol)のDMF (17 ml)溶液を30分かけ滴下し、その後、室温で30分撹拌した。得られた懸濁液にヨードメタン 1.3 gを加え、室温で5時間撹拌した。反応溶液に蒸留水(20 mL)とヘキサン(20 ml)を加えて、有機層を抽出し、無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別した。溶媒を減圧留去し、中間体A−8を1.5 g(114 mmol、収率 100%)得た。
【0144】
中間体A−6の代わりに中間体A−8を用いた以外は中間体A−7の合成と同様にして、中間体A−9を得た。
【0145】
【0146】
窒素雰囲気下、水素化ナトリウム(60.5%品)0.02 g (0.5 mmol)、DMF1.2 mlを加え、室温で0.5時間撹拌した。得られた懸濁液に中間体A−9 0.1 g(0.5 mmol)のDMF(1.0 ml)溶液を加え、室温で30分撹拌した。得られた懸濁液にヨードメタン 0.08 g(0.5 mmol)加え、常温で2時間撹拌した。反応溶液に蒸留水(10 ml)を撹拌しながら加え、析出した固体をろ取した。得られた固体をリスラリーにて精製を行い、白色固体として化合物1−52を0.09 g(0.4 mmol、収率82%)を得た。
APCI-TOFMS, m/z 234 [M+H]
+【0147】
実施例6
化合物1−46の合成
【0148】
インドールの代わりに6-フェニルインドールを用い、1-ブロモ-3-(N-カルバゾリル)ベンゼンの代わりにヨードベンゼンを用いた以外は中間体A−2、A−3及びA−4の合成と同様にして中間体A−10を得た。
【0149】
中間体A−4の代わりに中間体A−10を用い、1-ブロモ-3-(N-カルバゾリル)ベンゼンの代わりにヨードベンゼンを用いた以外は中間体A−5、A−6及びA−7の合成と同様にして中間体A−11を得た。
【0150】
【0151】
中間体A−7の代わりに中間体A−11を用い、ヨードメタンの代わりに1−ヨードオクタンを用いた以外は化合物1−52の合成と同様にして白色固体の化合物1−46を0.2 g (0.4 mmol、収率73%)を得た。
APCI-TOFMS, m/z 471[M+H]
+【0152】
実施例7
化合物1−45の合成
【0153】
中間体A−4の代わりに中間体A−10を用い、1-ブロモ-3-(N-カルバゾリル)ベンゼンの代わりにヨードメタンを用いた以外は中間体A−5、A−6及びA−7の合成と同様にして中間体A−12を得た。
【0154】
中間体A−7の代わりに中間体A−12を用い、ヨードメタンの代わりに1−ヨードオクタンを用いた以外は化合物1−52の合成と同様にして白色固体の化合物1−45を0.16 g (0.4 mmol、収率80%)を得た。
APCI-TOFMS, m/z 409 [M+H]
+【0155】
実施例8
化合物1−58の合成
【0156】
インドールの代わりに6-ブロモインドールを用い、2-ヨードニトロベンゼンの代わりに2-ヨード-4-ブロモニトロベンゼンを用いた以外は中間体A−1、A−2、A−3及びA−4の合成と同様にして中間体A−13を得た。
【0157】
【0158】
中間体A−4の代わりに中間体A−13を用いた以外は中間体A−5、A−8及びA−9の合成と同様にして中間体A−14を得た。
【0159】
窒素雰囲気下、中間体A−14 6.2 g(16 mmol)、フェニルボロン酸10.0 g(82 mmol)、テトラキス(トリフェニルホスフィン)パラジウム[0] 1.0 g(8.2 mol)、トルエン200 ml、エタノール100 mlを加え撹拌した。そこへ炭酸ナトリウム30.5 g(0.33 mol)を水200 mlで溶解した炭酸ナトリウム水溶液を加え、100 ℃で5 時間撹拌した。反応溶液を室温まで冷却した。有機層を蒸留水(2 × 100 ml)で洗浄し、その後、得られた有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をカラムクロマトグラフィーにて精製し、中間体A−15を3.9 g(10 mmol、収率63%)を得た。
【0160】
【0161】
中間体A−9の代わりに中間体A−15を用い、ヨードメタンの代わりに1−ヨードオクタンを用いた以外は化合物1−52の合成と同様にして白色固体の化合物1−58を1.8 g (3.7 mmol、収率65%)を得た。
APCI-TOFMS, m/z 485 [M+H]
+【0162】
実施例9
化合物3−3の合成
【0163】
窒素雰囲気下、3-ブロモベンゾチオフェンを10 g(47 mmol)、THFを100 ml加え、-60℃まで冷却し、n-ブチルリチウム/ヘキサン溶液36 ml(1.57mol/l)を滴下し、1時間撹拌した。そこにトリイソプロピルボレイト13.3 g(71 mmol)を加えて、1時間撹拌した。反応溶液を室温まで戻し、飽和塩化アンモニウム水溶液を50 ml、トルエン100 mlを加えた。有機層を蒸留水(3 × 100 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去し、中間体B−1を6.9 g (39 mmol、収率83%)得た。
【0164】
中間体A−3の代わりに中間体B−1を用いた以外は中間体A−4及びA−7の合成と同様にして中間体B−2を得た。
【0165】
塩化シアヌルを10 g(54 mmol)、THFを50mlを加え、臭化フェニルマグネシウムTHF溶液54 ml(1.0mol/l)を滴下し、0℃下にて3時間撹拌した。反応溶液に蒸留水50ml、トルエン100 mlを加え水層と有機層を分画し、有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた固体をヘキサン洗浄し、中間体B−3を得た。続いて窒素雰囲気下、水素化ナトリウム(62.2%品)1.3 g (34 mmol)にDMF 30 mLを加え、室温で0.5時間撹拌した。得られた懸濁液にカルバゾール 5.5 g (32 mmol)のDMF(20 ml)溶液を加え、室温で30分撹拌した。得られた懸濁液に中間体B−3を7.0 g (31 mmmol)加え、60℃で30分間撹拌した。反応溶液を室温まで冷却した後に、蒸留水(100 ml)を撹拌しながら加え、析出した固体をろ取した。得られた固体をシリカゲルカラムクロマトグラフィー、加熱リスラリーで精製を行い中間体B−4を8.1 g(23 mmol、収率74%)得た。
【0166】
【0167】
中間体A−7の代わりに中間体Wを用い、2-クロロ-4,6-ジフェニル-1,3,5-トリアジンの代わりに中間体B−4を用いた以外は化合物1−29の合成と同様にして、白色固体として白色固体として化合物3−3を3.8 g(6.9 mmol、収率62%)得た。
APCI-TOFMS, m/z 544 [M+H]
+【0168】
実施例10
化合物2−3の合成
【0169】
3-ブロモベンゾチオフェンの代わりに3-ブロモベンゾフランを用いた以外は中間体B−1及びB−2の合成と同様にして、中間体B−5を得た。
【0170】
中間体B−2の代わりに中間体B−5を用いた以外は化合物3−3の合成と同様にして、白色固体として化合物2−3を3.9 g(7.4 mmol、収率74%)得た。
APCI-TOFMS, m/z 528 [M+H]
+【0171】
実施例11
膜厚110 nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10
-5 Paで積層した。まず、ITO上に銅フタロシアニン(CuPC)を25 nmの厚さに形成した。次に、正孔輸送層として4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)を40 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての合成例1で得た化合物1−21と、燐光発光ドーパントとしてのトリス(2‐フェニルピリジン)イリジウム(III)(Ir(ppy)
3)とを異なる蒸着源から、共蒸着し、40 nmの厚さに発光層を形成した。発光層中のIr(ppy)
3の濃度は10.0 wt%であった。次に、電子輸送層としてトリス(8−ヒドロキシキノリナト)アルミニウム(III)(Alq3)を20 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を1.0 nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を70 nmの厚さに形成し、有機EL素子を作製した。
【0172】
得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表1のような発光特性を有することが確認された。表1において、輝度、電圧及び発光効率は、10mA/cm
2での値を示す。なお、素子発光スペクトルの極大波長は530 nmであり、Ir(ppy)
3からの発光が得られていることがわかった。
【0173】
実施例12
発光層のホスト材料として、化合物1−30を用いた以外は実施例11と同様にして有機EL素子を作製した。
【0174】
実施例13
発光層のホスト材料として、化合物1−31を用いた以外は実施例11と同様にして有機EL素子を作製した。
【0175】
比較例1
発光層のホスト材料として、4,4'-ビス(9-カルバゾリル)ビフェニル(CBP)を用いた以外は実施例11と同様にして有機EL素子を作製した。
【0176】
実施例11〜13及び比較例1の素子発光スペクトルの極大波長は530 nmであり、いずれもIr(ppy)
3からの発光が得られていることがわかった。発光特性を表1に示す。
【0177】
【表1】
【0178】
実施例14
膜厚110 nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10
-5 Paで積層した。まず、ITO上に銅フタロシアニン(CuPC)を25 nmの厚さに形成した。次に、正孔輸送層として4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)を55 nmの厚さに形成した。次に、正孔輸送層上に、ホスト材料としての合成例1で得た化合物1−29と、燐光発光ドーパントとしてのビス(2-(2'-ベンゾ[4,5-a]チエニル)ピリジナト-N,C3)イリジウム(アセチルアセトネート)〔(Btp)
2Iracac〕とを異なる蒸着源から、共蒸着し、47.5 nmの厚さに発光層を形成した。発光層中の(Btp)
2Iracacの濃度は8.0 wt%であった。次に、電子輸送層としてトリス(8−ヒドロキシキノリナト)アルミニウム(III)(Alq3)を30 nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を1.0 nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を200 nmの厚さに形成し、有機EL素子を作製した。
【0179】
得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表2のような発光特性を有することが確認された。表2において、輝度、電圧及び発光効率は、10mA/cm
2での値を示す。
【0180】
実施例15
発光層のホスト材料として、化合物1−30を用いた以外は実施例14と同様にして有機EL素子を作製した。
【0181】
実施例16
発光層のホスト材料として、化合物3−3を用いた以外は実施例14と同様にして有機EL素子を作製した。
【0182】
比較例2
発光層のホスト材料として、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)を用いた以外は実施例14と同様にして有機EL素子を作製した。
【0183】
実施例14〜16及び比較例2の素子発光スペクトルの極大波長は620 nmであり、いずれも(Btp)
2Iracacからの発光が得られていることがわかった。発光特性を表2に示す。
【0184】
【表2】
【0185】
表1及び表2より、本発明の含窒素芳香族化合物を有機EL素子で使用すると、燐光ホストとして一般的に知られているCBP又はBAlqに対して良好な発光特性を示すことが判る。
【0186】
実施例17
本発明の有機半導体材料の特性を、
図2に示す構成の有機TFT素子を作製し、評価した。まず、約300 nmの厚みの熱成長酸化ケイ素層を有するシリコンウェハ(nドープ)を、硫酸−過酸化水素水溶液で洗浄し、イソプロピルアルコールで煮沸した後、乾燥した。得られたシリコンウェハにフォトレジストをスピンコート後、フォトマスクを介して露光機により露光した。次いで、現像液で現像を行った後、イオン交換水で洗浄し、空気乾燥した。そのパターニングされたフォトレジストが塗布されたシリコンウェハ上に、真空蒸着法により、厚さ3 nmのクロム、更にその上から50 nmの金を蒸着した。そのシリコンウェハを、リムーバー溶液に浸すことでシリコンウェハ上にソース電極およびドレイン電極を作製した。ソース電極およびドレイン電極が作製されたシリコンウェハをアセトンで洗浄し、さらに、イソプロピルアルコールで煮沸し乾燥した後、オクチルトリクロロシランの約1×10
-6M トルエン溶液中に、一晩浸漬した。その後、トルエン、イソプロピルアルコールで洗浄した後、110 ℃で約10 分間加熱することで、オクチルトリクロロシラン(OTS)処理を行った有機TFT基板を作製した。チャネル長はL=25 μm、チャネル幅はW=15.6 μmであった。次に化合物1−21のクロロベンゼン溶液(1重量%)を0.2 μmのシリンジフィルターを用いてろ過し、OTS処理を行った基板上に、室温、1000 rpm、30 秒間の条件でスピンコートした。次いでそれを80 ℃で30 分間乾燥した。この時、有機半導体層の厚さは50 nmであった。このようにして
図2に示す構造を有する有機TFT素子を得た。
【0187】
得られた有機TFT素子のソース電極及びドレイン電極間に-10〜-100 V の電圧を印加し、ゲート電圧を-30〜-80 Vの範囲で変化させて、電圧−電流曲線を25 ℃の温度において求め、そのトランジスタ特性を評価した。電界効果移動度(μ)は、ドレイン電流I
dを表わす下記式(I)を用いて算出した。
I
d=(W/2L)μC
i(V
g−V
t)
2 (I)
【0188】
上記式(I)において、Lはゲート長であり、Wはゲート幅である。また、C
iは絶縁層の単位面積当たりの容量であり、V
gはゲート電圧であり、V
tは閾値電圧である。また、オン/オフ比は、最大及び最小ドレイン電流値(I
d)の比より算出した。得られた有機TFT素子の特性を表3に示す。
【0189】
実施例18
実施例17において、化合物1−21のクロロベンゼン溶液(1重量%)の代わりに、化合物1−58のクロロホルム溶液(1重量%)を使用し、室温にて1000 rpm、30 秒の条件でスピンコートを行ったほかは同様の操作を行い、有機TFT素子を作製した。得られた有機TFT素子の特性を表3に示す。
【0190】
【表3】
【0191】
表3より、本発明の含窒素芳香族化合物は有機半導体として高い特性を有していることが判る。
【0192】
本発明の含窒素芳香族化合物の骨格はインドールに縮合する複素環及び窒素上の置換基により、イオン化ポテンシャル、電子親和力、三重項励起エネルギーの各種エネルギー値の制御が可能となると考えられる。こうした特定の縮合様式を有する縮合インドール骨格を有することで、耐電荷安定性が高くなると考えられる。また、本発明の含窒素芳香族化合物は高い電荷移動特性を有すると考えられる。従って本発明の含窒素芳香族化合物を使用した有機電子デバイスは高い特性を発現することが可能となると考えられる。例えば、有機ELパネルおよび電子ペーパー等のディスプレイ、液晶ディスプレイ、有機電界効果トランジスタ、有機薄膜太陽電池、情報タグ、電子人工皮膚シートやシート型スキャナー等の大面積センサー等への応用が考えられ、その技術的価値は大きいものである。