特許第5758205号(P5758205)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ JX日鉱日石金属株式会社の特許一覧
特許5758205グラフェン製造用銅箔及びそれを用いたグラフェンの製造方法
<>
  • 特許5758205-グラフェン製造用銅箔及びそれを用いたグラフェンの製造方法 図000003
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5758205
(24)【登録日】2015年6月12日
(45)【発行日】2015年8月5日
(54)【発明の名称】グラフェン製造用銅箔及びそれを用いたグラフェンの製造方法
(51)【国際特許分類】
   B21B 1/40 20060101AFI20150716BHJP
   C01B 31/04 20060101ALI20150716BHJP
【FI】
   B21B1/40
   C01B31/04 101Z
【請求項の数】6
【全頁数】10
(21)【出願番号】特願2011-127973(P2011-127973)
(22)【出願日】2011年6月8日
(65)【公開番号】特開2012-183581(P2012-183581A)
(43)【公開日】2012年9月27日
【審査請求日】2014年4月2日
(31)【優先権主張番号】特願2011-33362(P2011-33362)
(32)【優先日】2011年2月18日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】502362758
【氏名又は名称】JX日鉱日石金属株式会社
(74)【代理人】
【識別番号】100113022
【弁理士】
【氏名又は名称】赤尾 謙一郎
(74)【代理人】
【識別番号】100110249
【弁理士】
【氏名又は名称】下田 昭
(72)【発明者】
【氏名】千葉 喜寛
【審査官】 坂本 薫昭
(56)【参考文献】
【文献】 特開2006−281249(JP,A)
【文献】 特開2006−326684(JP,A)
【文献】 特開2006−283078(JP,A)
【文献】 特開2010−227971(JP,A)
【文献】 特開2009−091174(JP,A)
【文献】 特開2009−280855(JP,A)
【文献】 特開2012−162442(JP,A)
【文献】 金 載浩 Jaeho Kim,マイクロ波プラズマCVDによるグラフェン膜の低温合成 Low-temperature graphene film synthesis using microwave plasma CVD,2010年秋季第71回応用物理学会学術講演会講演予稿集,2010年 8月30日
(58)【調査した分野】(Int.Cl.,DB名)
B21B 1/40
C01B 31/04
(57)【特許請求の範囲】
【請求項1】
圧延平行方向及び圧延直角方向の60度光沢度が共に500%以上であり、1000℃で1時間加熱後の平均結晶粒径が200μm以上であるグラフェン製造用銅箔。
【請求項2】
前記平均結晶粒径が400μm以上である請求項1に記載のグラフェン製造用銅箔。
【請求項3】
前記平均結晶粒径が900μm以上である請求項1に記載のグラフェン製造用銅箔。
【請求項4】
表面の算術平均粗さRaが0.05μm以下である請求項1又は2に記載のグラフェン製造用銅箔。
【請求項5】
JIS-H3100若しくはJIS-H3250に規格するタフピッチ銅、JIS-H3100若しくはJIS−H3510に規格する無酸素銅、又は前記タフピッチ銅若しくは前記無酸素銅に対してSn及びAgの群から選ばれる1種以上の元素を0.050質量%以下含有する請求項1〜4のいずれか一項に記載のグラフェン製造用銅箔。
【請求項6】
請求項1〜5のいずれか一項に記載のグラフェン製造用銅箔を用いたグラフェンの製造方法であって、
所定の室内に、加熱した前記グラフェン製造用銅箔を配置すると共に炭素含有ガスを供給し、前記グラフェン製造用銅箔の表面にグラフェンを形成するグラフェン形成工程と、
前記グラフェンの表面に転写シートを積層し、前記グラフェンを前記転写シート上に転写しながら、前記グラフェン製造用銅箔をエッチング除去するグラフェン転写工程と、を有するグラフェンの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、グラフェンを製造するための銅箔基材、及びそれを用いたグラフェンの製造方法に関する。
【背景技術】
【0002】
グラファイトは平らに並んだ炭素6員環の層がいくつも積み重なった層状構造をもつが、その単原子層〜数原子層程度のものはグラフェン又はグラフェンシートと呼ばれる。グラフェンシートは独自の電気的、光学的及び機械的特性を有し、特にキャリア移動速度が高速である。そのため、グラフェンシートは、例えば、燃料電池用セパレータ、透明電極、表示素子の導電性薄膜、無水銀蛍光灯、コンポジット材、ドラッグデリバリーシステム(DDS)のキャリアーなど、産業界での幅広い応用が期待されている。
【0003】
グラフェンシートを製造する方法として、グラファイトを粘着テープで剥がす方法が知られているが、得られるグラフェンシートの層数が一定でなく、大面積のグラフェンシートが得難く、大量生産にも適さないという問題がある。
そこで、シート状の単結晶グラファイト化金属触媒上に炭素系物質を接触させた後、熱処理することによりグラフェンシートを成長させる技術(化学気相成長(CVD)法)が開発されている(特許文献1)。この単結晶グラファイト化金属触媒としては、Ni、Cu、Wなどの金属基板が記載されている。
同様に,NiやCuの金属箔やSi基板上に形成した銅層上に化学気相成長法でグラフェンを製膜する技術が報告されている.なお,グラフェンの製膜は1000℃程度で行われる(非特許文献1)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−143799号公報
【非特許文献】
【0005】
【非特許文献1】SCIENCE Vol.324 (2009) P1312-1314
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1のように単結晶の金属基板を製造することは容易でなく極めて高コストであり、又、大面積の基板が得られ難く、ひいては大面積のグラフェンシートが得難いという問題がある。一方,非特許文献1には、Cuを基板として使用することが記載されているが,Cu箔上では短時間にグラフェンが面方向に成長せず,Si基板上に形成したCu層を焼鈍で粗大粒として基板としている。この場合、グラフェンの大きさはSi基板サイズに制約され,製造コストも高い。
すなわち、本発明は、大面積のグラフェンを低コストで生産可能なグラフェン製造用銅箔及びそれを用いたグラフェンの製造方法の提供を目的とする。
【課題を解決するための手段】
【0007】
本発明のグラフェン製造用銅箔は、圧延平行方向及び圧延直角方向の60度光沢度が共に500%以上であり、1000℃で1時間加熱後の平均結晶粒径が200μm以上である。
【0008】
前記平均結晶粒径が400μm以上であることが好ましく、900μm以上であることが更に好ましく、表面の算術平均粗さRaが0.05μm以下であることが好ましい。
【0010】
本発明のグラフェン製造用銅箔において、JIS-H3100若しくはJIS-H3250に規格するタフピッチ銅、JIS-H3100若しくはJIS−H3510に規格する無酸素銅、又は前記タフピッチ銅若しくは前記無酸素銅に対してSn及びAgの群から選ばれる1種以上の元素を0.050質量%以下含有することが好ましい。
【0011】
本発明のグラフェンの製造方法は、前記グラフェン製造用銅箔を用い、所定の室内に、加熱した前記グラフェン製造用銅箔を配置すると共に炭素含有ガスを供給し、前記グラフェン製造用銅箔の表面にグラフェンを形成するグラフェン形成工程と、前記グラフェンの表面に転写シートを積層し、前記グラフェンを前記転写シート上に転写しながら、前記グラフェン製造用銅箔をエッチング除去するグラフェン転写工程と、を有する。
【発明の効果】
【0012】
本発明によれば、大面積のグラフェンを低コストで生産可能とする銅箔が得られる。
【図面の簡単な説明】
【0013】
図1】本発明の実施形態に係るグラフェンの製造方法を示す工程図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態に係るグラフェン製造用銅箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
【0015】
<組成>
グラフェン製造用銅箔としては、JIS-H3250若しくはJIS-H3100に規格するタフピッチ銅(TPC)、又はJIS-H3510若しくはJIS−H3100に規格する無酸素銅(OFC)を用いることができる。
又、これらタフピッチ銅又は無酸素銅に対し、Sn及びAgの群から選ばれる1種以上の元素を0.050質量%以下含有する組成を用いることもできる。上記元素を含有すると、銅箔の強度が向上し適度な伸びを有すると共に、結晶粒径を大きくすることができる。上記元素の含有割合が0.050質量%を超えると強度は更に向上するものの、伸びが低下して加工性が悪化すると共に結晶粒径の成長が抑制される場合がある。より好ましくは上記元素の含有割合が0.040質量%以下である。
なお、上記元素の含有割合の下限は特に制限されないが、例えば0.005質量%を下限とすることができる。上記元素の含有割合が0.005質量%未満であると、含有割合が小さいためその含有割合を制御することが困難になる場合がある。
【0016】
<厚み>
グラフェン製造用銅箔の厚みは特に制限されないが、一般的には5〜150μmである。さらに、ハンドリング性を確保しつつ、後述するエッチング除去を容易に行うため、銅箔の厚みを12〜50μmとすると好ましい。グラフェン製造用銅箔の厚みが12μm未満であると、破断し易くなってハンドリング性に劣り、厚みが50μmを超えるとエッチング除去がし難くなる場合がある。
【0017】
<60度光沢度>
グラフェン製造用銅箔の圧延平行方向及び圧延直角方向の60度光沢度(JIS Z 8741)が共に500%以上である。
後述するように、本発明のグラフェン製造用銅箔を用いてグラフェンを製造した後、銅箔から転写シートへグラフェンを転写する必要があるが、銅箔の表面が粗いと転写がし難く、グラフェンが破損することがわかった。そこで、銅箔の表面凹凸を表す指標として、60度光沢度を規定する。
圧延平行方向及び圧延直角方向の60度光沢度のいずれかが500%未満であると、転写の際にグラフェンが破損する。圧延平行方向及び圧延直角方向の60度光沢度の上限は特に制限されないが、実用上、800%程度が上限である。
又、このように転写シートへグラフェンを転写し易くするため、JIS B0601に規格するグラフェン製造用銅箔表面の算術平均粗さRaが0.05μm以下であることが好ましく、Raが0.03μm以下であることがより好ましい。Raの下限は特に限定する必要は無いが、製造することができる銅箔表面のRaの下限値は0.01μm程度であると考えられる。
【0018】
<平均結晶粒径>
グラフェン製造用銅箔を1000℃で1時間加熱後の平均結晶粒径が200μm以上である。
グラフェン製造用銅箔の平均結晶粒径が200μmより小さいと、グラフェン製造用銅箔の表面にグラフェンを成長させる際の障害となり、面方向にグラフェンが成長し難くなる。これは、結晶粒界がグラフェンの成長の障害となるためと考えられる。特に、グラフェン製造用銅箔の平均結晶粒径が900μm以上であると好ましい。
なお、1000℃で1時間の加熱は、グラフェンを製造する際、グラフェン製造用銅箔を炭素含有ガスの分解温度以上に加熱する条件を模したものである。
又、平均結晶粒径は、JIS H0501の切断法により、グラフェン製造用銅箔を測定する。
【0019】
以上のように規定したグラフェン製造用銅箔を用いることで、大面積のグラフェンを低コストで、かつ高い歩留りで生産することができる。
【0020】
<グラフェン製造用銅箔の製造>
本発明の実施形態に係るグラフェン製造用銅箔は、例えば以下のようにして製造することができる。まず、所定の組成の銅インゴットを製造し、熱間圧延を行った後、焼鈍と冷間圧延を繰り返し、圧延板を得る。この圧延板を焼鈍して再結晶させ,所定の厚みまで圧下率を80〜99.9%(好ましくは85〜99.9%、更に好ましくは90〜99.9%)として最終冷間圧延して銅箔を得る。
【0021】
ここで、グラフェン製造用銅箔の60度光沢度を500%以上に制御することが重要である。その方法として、最終冷間圧延の最終パスと最終冷間圧延の最終パスの1つ前のパスの両方の油膜当量をいずれも18000以下とする。
圧延銅箔は、一般に油潤滑のもと高速で加工されるが、潤滑油膜が薄くなるほどせん断帯変形が支配的になりやすい。これは金属一般に共通する現象である。なお、せん断帯の存在は、焼鈍した場合の結晶粒の成長にとって好ましいとはいえない。そして、せん断帯の多少あるいは短深は銅箔表面の光沢度で表すことができる。具体的には、圧延時の現象として、ロールと材料の間に導入される油膜が厚いと圧延加工表面にオイルピット(凹凸)を生じるが、油膜が薄ければ材料表面で圧延ロールと接触する面積が増えて自由変形が制限され、オイルピットが発達せず、圧延ロールの平滑な表面プロフィルが転写され、平滑な表面が形成される。このようなことから、油膜を薄くする指標として、油膜当量を18000以下とする。油膜当量が18000を超えると、銅箔表面の60度光沢度が500%未満となる。
【0022】
油膜当量は下記式で表される。
(油膜当量)={(圧延油粘度、40℃の動粘度;cSt)×(圧延速度;m/分)}/{(材料の降伏応力;kg/mm2)×(ロール噛込角;rad)}
油膜当量を18000以下とするためには、圧延油粘度(40℃の動粘度)を低く、圧延速度も低く、ロール噛込角(圧下量に対応する)は大きいことが好ましい。例えば、ロール直径250mm以下で表面粗さRarollが0.1μm以下(好ましくは0.01〜0.04μm、更に好ましくは0.01〜0.02μm)に調整された圧延ロールにより、粘度が3〜8cSt(好ましくは3〜5cSt、更に好ましくは3〜4cSt)の圧延油を使用し、圧延速度100〜500m/分(好ましくは200〜450m/分、更に好ましくは250〜400m/分)、パス毎の圧下率10〜60%が挙げられる。又、ロール噛込角は、例えば0.001〜0.04rad、好ましくは0.002〜0.03rad、更に好ましくは0.003〜0.03radである。
【0023】
圧延ロールの表面粗さRarollが0.1μmを超えるとロール表面の凹凸が転写され、材料表面の平滑性が損なわれる。上記条件で圧延することで、オイルピットのない表面平坦部の面積を広くできる。圧延油の粘度が8cStを超えると油膜当量が大きくなり表面光沢が得られず、一方、3cSt未満であると圧延抵抗が大きくなり圧下率を上げることができない。圧延速度500m/分を超えると導入油量が増えるため光沢度が低下し、一方、100m/分未満であると充分な圧下量がとれず、また生産性の観点から不都合である。
圧下率が99.9%を超えると加工硬化がすすむため変形能力がなくなり最終パスの圧下率が確保できなくなり、一方、80%未満であると圧延集合組織が発達せず、表面平滑性が得られない。ロール噛込角が0.04radを超えるとロール周速度と材料速度との差が大きくなり、材料表面の平滑性が損なわれる。一方、0.002rad未満であると圧延ロールと被圧延材料間に入り、潤滑の役割をする油の量が多く、光沢が低下する。
パス毎の圧下率は、例えば20〜40%、好ましくは20〜35%、更に好ましくは25〜35%である。圧下率が35%を超えるとせん断帯が発達してオイルピットが発生し、光沢度が低下する。一方、20%未満であるとパス数が増えるために生産性が悪化する。
【0024】
又、グラフェン製造用銅箔の60度光沢度を500%以上に制御する別の方法として、最終冷間圧延中の材料温度を高くする方法がある.材料温度を高くすると転位の回復が起こり,せん断帯変形が起きにくくなる。材料温度としては油の潤滑性が損なわれたり,銅箔が再結晶する温度では意味がなく,120℃以下,好ましくは100℃以下であればよい。また、材料温度が50℃以下ではせん断帯変形抑制の効果はほとんどない。
【0025】
上記のような方法により、グラフェン製造用銅箔の60度光沢度を500%以上に制御することができる。又、銅箔の60度光沢度が500%以上になると、焼鈍後の結晶粒径が200μm以上になることが判明している。これは、上記した油膜当量や最終冷間圧延中の材料温度を制御し、せん断帯変形を起きにくくすることで、焼鈍後の結晶成長が促進されるためと考えられる。
なお、グラフェン製造用銅箔の60度光沢度を500%以上に制御する方法は上記に限られるものではない。
【0026】
<グラフェンの製造方法>
次に、図1を参照し、本発明の実施形態に係るグラフェンの製造方法について説明する。
まず、室(真空チャンバ等)100内に、上記した本発明のグラフェン製造用銅箔10を配置し、グラフェン製造用銅箔10をヒータ104で加熱すると共に、室100内を減圧又は真空引きする。そして、ガス導入口102から室100内に炭素含有ガスGを供給する(図2(a))。炭素含有ガスGとしては、二酸化炭素、一酸化炭素、メタン、エタン、プロパン、エチレン、アセチレン、アルコール等が挙げられるがこれらに限定されず、これらのうち1種又は2種以上の混合ガスとしてもよい。又、グラフェン製造用銅箔10の加熱温度は炭素含有ガスGの分解温度以上とすればよく、例えば1000℃以上とすることができる。又、室100内で炭素含有ガスGを分解温度以上に加熱し、分解ガスをグラフェン製造用銅箔10に接触させてもよい。
これにより、分解ガス(炭素ガス)がグラフェン製造用銅箔10の表面にグラフェン20を形成する(図2(b))。
【0027】
そして、グラフェン製造用銅箔10を常温に冷却し、グラフェン20の表面に転写シート30を積層し、グラフェン20を転写シート30上に転写する。次に、この積層体をシンクロール120を介してエッチング槽110に連続的に浸漬し、グラフェン製造用銅箔10をエッチング除去する(図2(c))。このようにして、所定の転写シート30上に積層されたグラフェン20を製造することができる。
さらに、グラフェン製造用銅箔10が除去された積層体を引き上げ、グラフェン20の表面に基板40を積層し、グラフェン20を基板40上に転写しながら、転写シート30を剥がすと、基板40上に積層されたグラフェン20を製造することができる。
【0028】
転写シート30としては、各種樹脂シート(ポリエチレン、ポリウレタン等のポリマーシート)を用いることができる。グラフェン製造用銅箔10をエッチング除去するエッチング液としては、例えば硫酸溶液、過硫酸ナトリウム溶液、過酸化水素、及び過硫酸ナトリウム溶液又は過酸化水素に硫酸を加えた溶液を用いることができる。又、基板40としては、例えばSi、 SiC、Ni又はNi合金を用いることができる。
【実施例】
【0029】
<試料の作製>
表1に示す組成の銅インゴットを製造し、800〜900℃で熱間圧延を行った後、300〜700℃の連続焼鈍ラインで焼鈍と冷間圧延を1回繰り返して1〜2mm厚の圧延板を得た。この圧延板を600〜800℃の連続焼鈍ラインで焼鈍して再結晶させ,7〜50μmの厚みまで圧下率を95〜99.7%として最終冷間圧延し、実施例1〜14、比較例1〜9の銅箔を得た。
【0030】
ここで、最終冷間圧延の最終パスと最終冷間圧延の最終パスの1つ前のパスの両方の油膜当量をいずれも表1に示す値に調整した。
油膜当量は下記式で表される。
(油膜当量)={(圧延油粘度、40℃の動粘度;cSt)×(圧延速度;m/分)}/{(材料の降伏応力;kg/mm2)×(ロール噛込角;rad)}
【0031】
<60度光沢度の測定>
実施例1〜14、比較例1〜9の銅箔について、最終冷間圧延後、及びその後に1000℃で1時間加熱後の表面の60度光沢度を測定した。
60度光沢度は、JIS−Z8741に準拠した光沢度計(日本電色工業製、商品名「PG-1M」)を使用して測定した。
【0032】
<表面粗さ(Ra,Rz,Sm)の測定>
実施例1〜14、比較例1〜9の銅箔について、最終冷間圧延後、及びその後に1000℃で1時間加熱後の表面粗さを測定した。
接触粗さ計(小坂研究所製、商品名「SE−3400」)を使用し、JIS−B0601に準拠した算術平均粗さ(Ra;μm)を測定し、オイルピット深さRzはJIS B0601−1994に準拠して十点平均粗さを測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.8mm、送り速さ0.1mm/秒の条件で圧延方向と平行に測定位置を変えて10回行ない、各方向で10回の測定での値を求めた。また凹凸の平均間隔(Sm;mm)は、測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.8mm、送り速さ0.1mm/秒の条件で圧延方向と平行に測定位置を変えて10回行ない、10回の測定での値を求めた。なお、Smは表面性状を輪郭曲線方式で表すJIS B0601−2001(ISO4287−1997準拠)において、凹凸の「凹凸の平均間隔」と規定されており、基準長さ内での各凹凸の輪郭長さの平均をいう。
【0033】
<平均結晶粒径の測定>
実施例1〜14、比較例1〜9の銅箔について、JIS H0501の切断法により、表面の平均結晶粒径を測定した。
【0034】
<グラフェンの製造>
各実施例の銅箔(縦横100X100mm)を真空チャンバーに設置し、1000℃に加熱した。真空(圧力:0.2Torr)下でこの真空チャンバーにメタンガスを供給し(供給ガス流量:10〜100cc/min)、銅箔を1000℃まで30分で昇温した後、1時間保持し、銅箔表面にグラフェンを成長させた。
各実施例について、上記条件でグラフェンの製造を10回行い、銅箔表面のグラフェンの有無を原子間力顕微鏡(AFM)で観察して評価した。AFMにより、表面全体にうろこ状の凹凸が観察されたものをグラフェンが製造されたものとみなし、10回の製造のうちグラフェンが製造された回数により以下の基準で歩留を評価した。評価が◎、○又は△であれば実用上問題はない。
◎:10回の製造のうち、5回以上グラフェンが製造された
○:10回の製造のうち、4回グラフェンが製造された
△:10回の製造のうち、3回グラフェンが製造された
×:10回の製造のうち、グラフェンが製造された回数が2回以下
【0035】
得られた結果を表1に示す。なお、表1において、G60RD、G60TDはそれぞれ圧延平行方向及び圧延直角方向の60度光沢度を示す。又、GSは平均結晶粒径を示す。
又、表中の実施例1〜7、実施例14、比較例1〜3、比較例7、9の「TPC」は、JIS-H3100に規格するタフピッチ銅を表す。実施例9〜12、比較例4〜6、比較例8の「OFC」はJIS-H3100に規格する無酸素銅を表す。実施例13のTPCはJIS−H3250に規格するタフピッチ銅を表す。実施例8のOFCはJIS−H3510に規格する無酸素銅を表す。
従って、比較例8の「OFC+Sn1200ppm」は、JIS-H3100に規格する無酸素銅にSnを1200wtppm添加したことを表す。
【0036】
【表1】
【0037】
表1から明らかなように、銅箔の表面の60度光沢度が500%以上であり、1000℃で1時間加熱後の平均結晶粒径が200μm以上である実施例1〜14の場合、グラフェンの製造歩留が優れていた。
特に、1000℃で1時間加熱後の平均結晶粒径が900μm以上である実施例1〜6、8、9、11〜13の場合、グラフェンの製造歩留が最も優れていた。又、1000℃で1時間加熱後の平均結晶粒径が400〜900μmである実施例7,10の場合、平均結晶粒径が400μm未満の実施例14に比べ、グラフェンの製造歩留が優れていた。
【0038】
一方、最終冷間圧延の最終パスと最終冷間圧延の最終パスの1つ前のパスの両方の油膜当量が18000を超え、銅箔自身の表面の60度光沢度が500%未満となった比較例1〜9の場合、グラフェンの製造歩留が劣った。又、比較例1〜9の場合、1000℃で1時間加熱後の平均結晶粒径が200μm未満となったが、これは、最終冷間圧延の油膜当量が多すぎ、せん断帯が生じて結晶粒の成長が抑制されたためと考えられる。
【符号の説明】
【0039】
10 グラフェン製造用銅箔
20 グラフェン
30 転写シート
図1