【実施例】
【0119】
次に、上述のように構成することのできる圧着接続構造体1について実施した第1〜第7の効果確認試験について説明する。
まず、第1〜第7の効果確認試験を実施するにあたり、圧着端子10(10a)を用いた圧着接続構造体1(1a)からなる試験体1〜41と、比較対象として比較体1〜5を作製した。
【0120】
第1効果確認試験を、試験体1〜13及び比較体1,2について実施するにあたり、試験体の作製水準を、端子基材は厚み0.2mmのリフロー錫めっき銅合金条(FAS680H材、古河電気工業(株)製)を銅合金条100(端子基材)とし、めっき厚みを1.0±0.5μmとした。
【0121】
試験体1〜13及び比較体1,2は、それぞれの銅合金条100から端子の形状に応じた連鎖端子110を打ち抜き、曲げ加工した圧着端子10(10a)の圧着部30における
幅方向シール41及び長手方向シール42に対して、硬さと圧縮永久ひずみの異なる樹脂を塗布し硬化後、電線の被覆体先端より所定長さ露出させた電線導体の露出部分とを圧着して取り付けて圧着接続構造体1(1a)を構成した。
【0122】
高機能シール材の一例として、シリコーンゴムA、フッ素ゴム、エチレンプロピレンゴム、液状シリコーンゴムA、液状シリコーンゴムB、シリコーンゴムB、紫外線硬化型樹脂A、加熱硬化型樹脂、ホットメルト型樹脂、紫外線硬化型樹脂B、天然ゴム、紫外線硬化型樹脂Cの9種をそれぞれ試験体1及び試験体3〜13に適用した。
【0123】
また、試験体2の高機能シール材として、シリコーンゴムAを湿気硬化型接着剤により接着して、そのシリコーンゴムと湿気硬化型接着剤とを層状に構成した。
【0124】
また、比較体1,2の低機能シール材の一例として、それぞれシリコーン気泡ゴム、紫外線硬化型樹脂Dを用いた。
上記試験体1〜13及び比較体1,2における、シール材厚さは約200±50μmとし、硬さと圧縮永久ひずみは下記の表1に示す。
【0125】
前記エチレンプロピレンゴム、シリコーンゴム、フッ素ゴムは、銅合金条に加硫前の生ゴムを約200±50μmの厚さで塗布した後に、加硫処理しており、条とは加硫接着されている。また前記液状シリコーンゴムは大気中の水分を取り込み硬化反応するとともに端子基材との接着を得ている。
【0126】
電線導体は、組成がECAl(送電線用アルミニウム合金線材のJIS
A1060)である導体断面積が0.75mm
2、長さ11cmのアルミニウム素線(素線11本のより線)で構成するアルミニウム芯線を用いた。
【0127】
なお、圧着端子10(10a)の圧着部30に圧着した被覆電線200の逆端側は、長さ10mm分だけ絶縁被覆202を剥ぎ取り、アルミ用はんだ浴(日本アルミット製、T235、フラックス使用)に浸漬して、逆端側のアルミニウム芯線201の表面にハンダを付けた。これにより、電気抵抗を測定する際のプローブとの接点抵抗を可能な限り小さくしている。
【0128】
デュロメータ硬さ試験は、試験片の厚さを10mmとし、測定範囲をタイプAデュロメータ及びタイプDデュロメータとして、試験温度23度、試験湿度65%にて測定した。デュロメータ硬さ試験は、JIS K 6253に準拠して試験を行った。
【0129】
第1効果確認試験は、試験体1〜13及び比較体1,2を雄型圧着端子と雌型圧着端子それぞれサンプル数20個作製し、塩水浸漬通電試験、初期エアリーク試験、及び初期抵抗測定を実施する。
【0130】
また腐食試験を行った腐食試験後の上記試験体1〜13及び比較体1,2に対して、エアリーク試験、抵抗上昇値と腐食状況とを再度測定、観察した。
【0131】
塩水浸漬通電試験は、後述するコネクタハウジング300のキャビティ(図示せず)に対極と隣り合うように挿入した状態で200mlの5重量%塩水溶液中に浸漬し、10Vの電圧を印加して90秒間通電させ、採取した試験溶液のICP分析を実施した。試験中は、発生する気泡の離脱を促進させるため、通電中試験液の攪拌を実施した。
【0132】
その結果、全試験体においてアルミニウム検出量が0.1μg/ml未満の場合「◎」、0.1μg/ml以上1μg/ml未満のものが3個以内で残りが0.1μg/ml未満のものを「○」、0.1μg/ml以上1μg/ml未満のものが3個を越え残りが0.1μg/ml未満のものを「△」、最大で10μg/ml以上のものが1個でも存在する場合を「×」と評価している。
【0133】
初期エアリーク試験は、試験体1〜13及び比較体1,2における圧着部30の密閉性に対する効果を比較確認するため、電線の端末にプラスチック管を取付け、端子全体を水没させ、圧力を加えて圧着部30の隙間からの気泡を目視で観察する。エアーは、10.0±0.1kPaずつ30秒間隔で上昇させて50±0.1kPaまで実施する。
【0134】
その結果、密閉部より気泡の発生が無い場合「○」、密閉部より僅かな気泡が発生した場合「△」、密閉部より気泡が発生した場合「×」と密閉性を評価した。
【0135】
初期抵抗は、抵抗測定器(ACmΩHiTESTER3560、日置電機株式会社製)を用い、コネクタボックス部20の側面部分23の内側面と、被覆電線200における圧着端子10(10a)と接続した側と反対側の端部のアルミニウム芯線201とを、正・負極として4端子法により測定した。
【0136】
計測した抵抗値は、アルミニウム芯線201、圧着端子10(10a)、圧着部30/アルミニウム芯線201間の各抵抗の足し合わせと考えられるが、アルミニウム芯線201の抵抗は無視できないため、その分を差し引いた値を圧着端子10(10a)と圧着部30との間の初期抵抗とした。
【0137】
その結果、全試験体において初期抵抗値が1.5mΩ未満のものを「◎」、1.5mΩ以上3mΩ未満のものが3個以内で残りが1.5mΩ未満のものを「○」、1.5mΩ以上3mΩ未満のものが3個を越え残りが1.5mΩ未満のものを「△」、最大で3mΩ以上5mΩ未満のものが1個でも存在する場合を「▽」、最大で5mΩ以上のものが1個でも存在する場合を「×」と評価している。
【0138】
さらに、腐食試験では、上記逆端側の被覆剥ぎ取り部にPTFE性のチューブを被せ、さらにPTFEテープで目止めして防水処理した後、雄型圧着端子、雌型圧着端子の5個ずつを、それぞれ雄型のコネクタハウジング300、雌型のコネクタハウジング300に挿入し、両コネクタハウジング300を嵌合することで、ジョイントされたコネクタ3を準備した。
【0139】
このコネクタ3を、JIS Z2371に規格されているように、密閉タンク内に試験体を吊るし、温度を35℃、塩水濃度5mass%、pH6.5〜7.2の塩水を96時間噴霧した。
【0140】
また、初期抵抗の計測と同様にして抵抗値を測り、同一サンプルの初期の抵抗値を差し引くことにより、曝露前後の圧着部30/アルミニウム芯線201間の抵抗上昇値を算出した。
【0141】
全試験体において抵抗上昇値が1mΩ未満のものを「◎」、1mΩ以上3mΩ未満のものが3個以内で残りが1mΩ未満のものを「○」、1mΩ以上3mΩ未満のものが3個を越え残りが1mΩ未満のものを「△」、最大で3mΩ以上10mΩ未満のものが1個でも存在する場合を「▽」、最大で10mΩ以上のものが1個でも存在する場合を「×」と評価している。
【0142】
さらにまた、腐食の程度を断面より観察した。詳しくは、圧着されたアルミニウム芯線201の中央付近の輪切り断面を研磨して、その研磨面を光学顕微鏡により観察し、評価した。
【0143】
その結果、観察したもの全てについてアルミニウム芯線201が完全に残存しているものを「○」、観察したものの内1個でもアルミニウム芯線201の一部が腐食により欠落しているものを「△」、観察したものの内1個でもアルミニウム芯線201の大部分、あるいはほぼ全体が腐食により欠落しているものを「×」と評価している。
第1効果確認試験を、試験体1〜13及び比較体1,2に対して実施した結果について表1に示す。
【0144】
【表1】
【0145】
上述の試験結果から解るように、デュロメータタイプA1〜A90、デュロメータタイプD40〜D90の物性を有する高機能シール材(シール41,42)によって端子基材間は封止されており、本端子構造においてデュロメータタイプA1〜A90、デュロメータタイプD40〜D90の物性を有する高機能シール材に止水性が確認された。
【0146】
すなわち、デュロメータタイプA1〜A90、デュロメータタイプD40〜D90の特性を有する高機能シール材(シール41,42)によって、圧着後における、端子バレル32a,32bのスプリングバック、あるいは腐食環境に曝されたとしても、圧着端子10(10a)とシール41,42との界面に隙間を生じることがなく、密閉状態を維持し、封止性が得られた。
【0147】
次に、第2効果確認試験を、第1効果確認試験と同じ試験体1〜13及び比較体1に対して実施した。
腐食試験後、抵抗上昇値、腐食状況とを測定、観察した。また腐食試験以外の試験方法や評価方法は上述した第1効果確認試験と同様である。
【0148】
ただし、負荷の厳しい腐食環境で使用された場合を想定した腐食試験とするために、温度、塩水濃度、pH等の試験条件は第1効果確認試験と同様としたが、試験時間を288時間に延長して試験した。
【0149】
第2効果確認試験を、試験体1〜13及び比較体1に対して実施した結果について表2に示す。
【0150】
【表2】
上述の試験結果から解るように、特にデュロメータタイプA25〜A80の物性を有する高機能シール材に優れた止水性・防食性が確認された。
【0151】
すなわち、デュロメータタイプA25〜A80の特性を有する高機能シール材(シール41,42)を基材間に介在させることによって、長時間腐食環境に曝されたとしても、電線導体の腐食がなく、圧着端子10(10a)とシール41,42との界面の密着と、高い封止性が得られた。
【0152】
第3効果確認試験を実施するにあたり、それぞれの銅合金条100から端子の形状に応じた連鎖端子110を打ち抜き、曲げ加工した圧着端子10(10a)の圧着部30における
幅方向シール41及び長手方向シール42に対して、試験体1〜8及び試験体12で使用した硬さと圧縮永久ひずみの異なる樹脂を塗布し硬化後、電線の被覆体先端より所定長さ露出させた電線導体の露出部分とを圧着して取り付けて試験体を構成した。
【0153】
第1効果確認試験における試験体1〜8及び試験体12で使用したシール材の圧縮永久ひずみを測定した。
試験体1〜8及び試験体12に使用している圧縮永久ひずみを下記の手順で測定した。
圧縮永久ひずみ試験は、JIS K 6262に準拠して、圧縮率25%、試験温度125℃、試験時間75時間にて試験を行った。
【0154】
10%塩酸浸漬試験は、以下のような手順で行った。前記高機能シール材あるいは低機能シール材を適用した圧着接続構造体の圧着部を10%塩酸溶液に96時間浸漬し、試験前後の外観を観察した。酸溶液の温度は、55±5℃である。圧着後、サーマルショック試験、腐食試験を実施し、抵抗上昇値、腐食状況とを測定、観察した。
【0155】
サーマルショック試験の試験条件は、120℃にて15分間放置後、−40℃にて15分間放置する工程を1サイクルとして、5000サイクル実施した。
【0156】
腐食試験は、JASO M610−92に定める自動車部品外観腐食試験方法により、試験した。
【0157】
詳しくは、120℃にて30分の高温放置後、25℃で5%塩水を2時間噴霧し、60℃、湿度30%RHにて4時間乾燥後、50℃、湿度95%に2時間放置する工程を1サイクルとして、30サイクルまで実施した。
【0158】
第3効果確認試験を、試験体1〜8、試験体12、及び比較対1に対して実施した結果について表3に示す。また抵抗上昇値、腐食状況の評価方法は上述した第1効果確認試験と同様である。
【0159】
【表3】
下記の表4中の点線で囲んだ領域内の試験体1〜6及び試験体12が、デュロメータタイプA1〜A90あるいはデュロメータタイプD40〜D90で、圧縮永久ひずみ0%〜30%の特性を有するシール材を適用したものであり、その試験結果について表4に示す。
【0160】
【表4】
上述の試験結果から解るように、試験体1〜6及び試験体12は、強酸の液性、冷却と加熱を繰り返される非常に厳しい腐食環境に置かれたとしても密閉を維持し、圧着部における抵抗上昇抑制効果が得られることが確かめられた。
また、微細な隙間への追従・充填(樹脂の軟質性)及び高弾性反発によって、強酸、高温、温度変化の厳しい環境でも密閉状態を維持することができる。
【0161】
上記試験体1〜6及び試験体12の中でも、デュロメータタイプA25〜A80の硬度、かつ圧縮永久ひずみ0%〜30%の特性を有する試験体1〜3及び試験体5、6は、過酷な環境に曝されても、より優れた防食性をもつことが確かめられた。
【0162】
次に、第4効果確認試験を、試験体4、試験体14〜18、及び比較体3について実施した。
試験体4、試験体14〜18、及び比較体3は、それぞれの銅合金条100から端子の形状に応じた連鎖端子110を打ち抜き、曲げ加工した圧着端子10(10a)の圧着部30における
幅方向シール41及び長手方向シール42に対して、引張りせん断接着強度の異なる樹脂を塗布し半硬化状態で、電線の被覆体先端より所定長さ露出させた電線導体の露出部分とを圧着して取り付けて圧着接続構造体1(1a)を構成した。
【0163】
高機能シール材の一例である加熱硬化型樹脂B、加熱硬化型樹脂C、天然ゴムB、ホットメルト型樹脂A、液状シリコーンゴムCを試験体14〜18に適用した。また、比較体3の低機能シール材の一例として、液状シリコーンゴムDを用いた。
【0164】
前記天然ゴムBは、銅合金条に加硫前の生ゴムを約200±50μmの厚さで塗布し、圧着後に、加硫処理しており、条とは加硫接着されている。
組成がECAl(送電線用アルミニウム合金線材のJIS
A1060)である導体断面積が0.75mm
2、長さ11cmのアルミニウム素線(素線11本のより線)で構成するアルミニウム芯線201を圧着して取り付けて圧着接続構造体1(1a)を構成した。
【0165】
引張りせん断接着強さは、接着板として、ガラス製板(厚さ3mm、幅25mm、長さ100mm)を準備し、各シール材(約0.2g)を接着板に均一となるように塗布し、もう一方の接着板を12.5mm×25mmの面積で重ね合わせ2枚の接着板を接着させ、このはり合わせた接着板を、つかみ具に固定し、引張り試験機を用いて、引張り速度50mm/min、試験温度23℃、試験湿度65%にて、接着部が破断するまでの最大荷重を測定した。高機能シール材の引張りせん断接着強さは、JIS K 6850に準拠し、測定した。
【0166】
10%塩酸浸漬試験は、以下のような手順で行った。前記高機能シール材あるいは低機能シール材を適用した圧着接続構造体の圧着部を10%塩酸溶液に96時間浸漬し、試験前後の外観を観察した。酸溶液の温度は、55±5℃である。
【0167】
圧着後、サーマルショック試験、腐食試験を実施し、抵抗上昇値、腐食状況とを測定、観察した。
サーマルショック試験の試験条件は、120℃にて15分間放置後、−40℃にて15分間放置する工程を1サイクルとして、5000サイクル実施した。
【0168】
腐食試験は、JASO M610−92に定める自動車部品外観腐食試験方法により、試験した。詳しくは、120℃で30分の高温放置後、25℃で5%塩水を2時間噴霧し、60℃、湿度30%RHにて4時間乾燥後、50℃、湿度95%に2時間放置する工程を1サイクルとして、30サイクルまで実施した。
【0169】
第4効果確認試験を、試験体4,試験体14〜18及び比較体3に対して実施した結果について表5に示す。また抵抗上昇値、腐食状況の評価方法は上述した第1効果確認試験と同様である。
【0170】
【表5】
下記の表6中の点線で囲んだ領域内の試験体4、及び試験体14〜18が、デュロメータタイプA1〜A90またはデュロメータタイプD40〜D90で、引張りせん断接着強さ1MPa〜27MPaの特性を有するシール材を適用したものであり、その試験結果について表6に示す。
【0171】
【表6】
上述の試験結果から解るように、高接着強度試験体4、及び試験体14〜18は、10%塩酸への浸漬及びサーマルショック試験後に腐食試験を行っても高い密閉性、止水性をもつことが確認された。
【0172】
また、半硬化状態での圧着により、微細な隙間への追従・充填と端子基材との高接着を得ている。さらに、強酸、高温、温度変化の厳しい環境でも止水性が得られ、表6中の点線で囲んだ領域内の高硬度の試験体14〜16、高圧縮永久ひずみの試験体17の樹脂でも、第3効果確認試験における低圧縮永久ひずみの試験体1〜6と同等の防食性を得ることができる。
特に、引張りせん断接着強さ5MPa〜27MPaの特性を有する試験体14〜試験体17は、過酷な環境に曝されても優れた防食性をもつことが確認された。
【0173】
次に、第5効果確認試験を、試験体19〜29、比較体4について実施する。
試験体19〜29は、粗化処理した銅合金条100から端子の形状に応じた連鎖端子110を打ち抜き、曲げ加工した圧着端子10(10a)の圧着部30における
幅方向シール41及び長手方向シール42に対して、引張りせん断接着強度の異なる樹脂を塗布し半硬化状態で、電線の被覆体先端より所定長さ露出させた電線導体の露出部分とを圧着して取り付けて圧着接続構造体1(1a)を構成した。高機能シール材の一例であるホットメルト型樹脂A、液状シリコーンゴムC、液状シリコーンゴムDを設けた。
【0174】
粗化処理として、まず化学研磨剤によって、銅合金条100の表面に凹凸をつけ、めっき時の電流密度を過剰として、デンドライト状のめっきを生じさせた。そして、連鎖端子110を曲げ成型して、タブ幅0.64mmの圧着端子10(10a)を作製した。ここで、粗さの水準は、研磨粒子サイズを振って調整した。
【0175】
これら圧着端子10(10a)を用いた試験体19〜29及び比較体4の表面の算術平均粗さRa、十点平均粗さRzは、非接触式のレーザー顕微鏡(キーエンス社製)を用いて、300μm×300μmの範囲で測定した。
【0176】
成形した圧着端子10(10a)の圧着部30に、組成がECAl(送電線用アルミニウム合金線材のJIS
A1060)である導体断面積が0.75mm
2、長さ11cmのアルミニウム素線(素線11本のより線)で構成するアルミニウム芯線201を圧着して取り付けて圧着接続構造体1(1a)を構成した。
【0177】
端子基材と同じ厚み0.2mmのリフロー錫めっき銅合金条(FAS680H材、古河電気工業(株)製)を粗化処理してシール材を付設し、樹脂付きの条を作製した。これらの樹脂付き条の試験片に対して、前記と同様の10%酸浸漬試験を実施し、第1効果確認試験と同様の圧縮永久ひずみ測定と硬さ測定、第2効果確認試験と同様の引張りせん断接着強度測定を行った。
【0178】
第3効果確認試験と同様の10%塩酸浸漬試験及びサーマルショック試験後に第1効果確認試験と同様の腐食試験を実施し、エアリーク試験、抵抗上昇値と腐食状況とを測定、観察した。試験方法や評価方法は上述した第1効果確認試験と同様である。
【0179】
第5効果確認試験を、試験体19〜29、比較体4に対して実施した結果について表7に示す。
【0180】
【表7】
上述の試験結果から解るように、算術平均粗さRaが0.15μm〜0.95μmで、十点平均粗さRzが1.0μm〜9.0μmの表面粗さを有する試験体の方が、シール41,42にはく離が生じにくく、優れた止水性を有していることが確認された。
【0181】
また、半硬化状態での圧着により、微細な隙間への追従・充填とアンカー効果により端子基材とのさらに高い接着性を得ることができる。さらに、強酸、高温、温度変化の厳しい環境でも止水性が得られ、第4効果確認試験における試験体17,18、比較体3より優れた防食性を持つことができる。
【0182】
すなわち、圧着部30のシール41,42を付設する部分の表面を、上記表面粗さに粗化処理することによって、シール41,42が圧着端子10(10a)の表面に対して強固に固定される。
【0183】
この結果、シール41,42が圧着端子10(10a)の表面からはく離することを防止でき、止水状態を保つことができる。
【0184】
また、シール41,42が圧着端子10(10a)の表面に対して密着した状態に固定されるので、圧着端子10(10a)とシール41,42との間に水分の浸入を許容するような隙間が生じることを確実に防止できる。
【0185】
なお、表面粗さが、上記算術平均粗さRa及び十点平均粗さRzを満たす基材表面においてシール41,42が圧着端子10(10a)の表面に確実に固定されるので、十分な止水性を確保することができる。
【0186】
次に、第6効果確認試験を、試験体30〜35について実施した。
試験体30〜35は、銅合金条100から端子の形状に応じた連鎖端子110を打ち抜き、曲げ加工した圧着端子10(10a)の圧着部30における
幅方向シール41及び長手方向シール42に対して、引張りせん断接着強度の異なる樹脂を塗布し硬化後、電線の被覆体先端より所定長さ露出させた電線導体の露出部分とを圧着して取り付けて圧着接続構造体1(1a)を構成した。高機能シール材の一例であるホットメルト型樹脂A、ホットメルト型樹脂B、ホットメルト型樹脂Cを設けた。
【0187】
また、シール材の浸透と基材間あるいは導体と基材間を固着させるために、圧着端子10(10a)を用いた試験体30〜35に対して、圧着時に加圧しつつあるいは圧着後、レーザー照射、電気抵抗、超音波振動等を用いた加熱処理を行い、シール材の再溶融を実施した試験体30〜32と、熱処理を実施しなかった試験体33〜35とを作製した。
【0188】
これらの試験体30〜35に対し第2効果確認試験と同様のサーマルショック試験を実施し、試験条件は、120℃にて30分間放置後、−40℃にて30分間放置する工程を1サイクルとして、10000サイクル実施した。
【0189】
サーマルショック試験前後に第2効果確認試験と同様の抵抗測定を行った。サーマルショック試験後、腐食試験を行った試験体30〜35に対して、エアリーク試験、抵抗上昇値と腐食状況とを測定、観察した。試験方法や評価方法は上述した第1効果確認試験と同様である。
第6効果確認試験を、試験体30〜35に対して実施した結果について表8に示す。
【0190】
【表8】
上述の試験結果から解るように、試験体30〜35は、アルミニウム芯線201のアルミニウム素線が冷却と加熱を繰り返される状況に置かれたとしても、アルミニウム素線とシール41,42及びシール41,42とバレル片32間での高い固着力により、アルミニウム素線が伸縮することが抑制され、バレル片32とアルミニウム素線との間に隙間ができることが防止された。
【0191】
また、試験体30〜35は、加熱溶融後再固化することで隙間への充填、基材との接着がなされるために、高い止水性、密封性が得られたことが確認された。
また、シール材の再溶融によって、微細な隙間への追従・充填と端子基材との高い接着性を得ることができる。さらに、強酸、高温、温度変化の厳しい環境でも止水性が得られ、高硬度の試験体31及び試験体32、高圧縮永久ひずみの試験体30の樹脂でも、第3効果確認試験における試験体1〜6と同等の防食性を持つことができる。
【0192】
次に、第7効果確認試験を、試験体36〜41及び比較体5について実施するにあたり、試験体及び比較体に使用したシール材にて樹脂を付設した銅合金条の試験片を作成し、JIS H 3100に準拠して、曲げ半径が1.0mmの試験ジグにてW曲げ試験を行った。その際、試験荷重を200kgとして、試験後のシール材の外観を観察し、はく離、破壊がないか確認した。
【0193】
その結果、はく離なし、破壊なしのものを「◎」、ごく僅かにはく離ありのものを「○」、僅かに破壊ありのものを「△」、はく離と破壊ありのものを「×」と評価している。
【0194】
高機能シール材の一例である液状シリコーンゴムE、液状シリコーンゴムF、紫外線硬化型樹脂E、紫外線硬化型樹脂F、紫外線硬化型樹脂G、紫外線硬化型樹脂Hからなるシール材を銅合金条100に付設した試験体36〜41と、熱硬化型エポキシ樹脂を付設した比較体5を作製した。
【0195】
W曲げ試験を実施したシール材を銅合金条100に予め設けて固化し、連鎖端子110を曲げ成型して、タブ幅0.64mmの雄型と雌型の圧着端子10(10a)とを作製し、その圧着端子10(10a)を用いて腐食試験を行った試験体36〜41及び比較体5に対して、エアリーク試験、抵抗上昇値と腐食状況とを測定、観察した。試験方法や評価方法は上述した第1効果確認試験と同様である。
【0196】
第7効果確認試験を、試験体36〜41及び比較体5に対して実施した結果について表9に示す。
【0197】
【表9】
上述の試験結果から解るように、伸び率10%の低機能シール材は、W曲げ試験を実施するとはく離や破壊が起きやすい。また、
幅方向シール41及び長手方向シール42に伸び率10%の低機能シール材を適用し、圧着接続構造体1に形成した後、腐食試験を実施すると浸水や電線導体の腐食を引き起こしていることが確認された。
【0198】
しかし、伸び率50〜500%の樹脂は、W曲げ試験後の外観において、はく離や破壊が観察されず、また導体と圧着後に圧着接続構造体として腐食試験を実施しても、高い防食性が得られるとともに、密閉状態が保たれていることが確認された。
【0199】
また、デュロメータタイプA25未満の樹脂に比べ、デュロメータタイプA25以上の硬度の樹脂に優れたシール性が確かめられた。
【0200】
以上、第1〜第7の効果確認試験の結果から解るように、JIS K 6253に準拠したタイプAデュロメータにより測定される硬度でA1〜A90、またはJIS K 6253に準拠したタイプDデュロメータにより測定される硬度でD40〜D90の少なくとも一方の特性有機材料からなる特性を有するシール41,42を用いて止水することにより、被覆電線200のアルミニウム芯線201が圧着接続された圧着端子10(10a)の圧着部30内に水分が浸入することを防止でき、圧着部30における圧着だけで確実な止水性を確保することができる。かつ、圧着部30の内部に水分が浸入することを防止する止水性が長期に亘り安定して得られる。
【0201】
また、上述のような確実な止水性により、導電性を低下させることのない圧着接続構造体1(1a)及びコネクタ3を構成できることが確認できた。
【0202】
この発明の構成と、前記実施形態との対応において、
この発明の電線導体及びアルミニウム電線導体及びアルミニウム合金電線導体は、実施形態のアルミニウム芯線201に対応し、
以下同様に、
被覆体は、絶縁被覆202に対応し、
被覆体の先端は、被覆先端202aに対応し、
所定長さは、露出長さXwに対応し、
電線導体の露出部は、電線露出部201aに対応し、
圧着端子は、雌型圧着端子10,10aに対応し、
長手方向の長さは、長手方向長さXbに対応し、
高機能シール材は、幅方向シール41,前方幅方向シール41a,後方幅方向シール41b,長手方向シール42,内面側長手方向シール42a,外面側長手方向シール42bに対応し、
接続構造体は、圧着接続構造体1に対応し、
コネクタは、コネクタ3,雌型コネクタ3a及び雄型コネクタ3bに対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、請求項に示される技術思想に基づいて応用することができ、多くの実施の形態を得ることができる。
【0203】
本実施形態では、圧着端子の圧着部を、アルミニウムやアルミニウム合金等の卑な金属からなる電線導体に圧着接続する例を説明したが、その卑な金属以外に、例えば、銅や銅合金等の貴な金属からなる電線導体に圧着接続してもよく、前記実施形態と略同等の作用及び効果を奏することができる。
また、圧着部30をオープンバレル形式としたが、例えばクローズバレル形式としてもよい。