(58)【調査した分野】(Int.Cl.,DB名)
試薬及び磁性ビーズを用いて生物学的試料から生物学的分子を抽出するために使用される反応容器であって、箱形を呈し、箱形本体に前記一連の処理が行われるよう配列された複数のウェルが設けられている反応容器において、
前記ウェルとして、少なくとも、
生物学的試料、生物学的分子抽出用の試薬、生物学的分子吸着用の磁性ビーズが供給される反応ウェルと、
生物学的分子を吸着した前記磁性ビーズを回収するために用いる磁性チップを格納する磁性チップ格納ウェルと、
前記磁性チップのカバーを格納するカバー格納ウェルと、を備え、
さらに前記箱形本体には、前記磁性チップ或いは前記カバーがこれらのウェルのいずれか一つに選択的に挿入された時に、前記磁性チップ或いは前記カバーをウェルに対して反応容器を介して偏心移動させることで係合,離脱させる着脱機構を備え、
前記着脱機構は、前記処理部の開口上方に対向して設けられた上部押さえ板と下部押さえ板とよりなり、これらの押さえ板には、前記磁性チップ及び前記カバーの外径に適合して前記偏心移動を受け入れる切欠き部が設けられており、
これらの切欠き部が前記ウェルの配列方向に一致して設けられ、かつこれらの切欠き部の開口も前記ウェルの配列方向に向けられていることを特徴とする反応容器。
【図面の簡単な説明】
【0014】
【
図1】本発明に係る試料処理装置の構成例を模式的に示す斜視図である。
【
図2A】
図1において、反応容器のセット部をx軸方向から見た断面図である。
【
図2B】
図1において、反応容器のセット部の一部をy軸方向から見た断面図である。
【
図3A】
図1において、反応容器のセット部に反応容器を随時セットして独立に移動させた時の配列の一例を示す反応容器群の平面図である。
【
図3B】
図1において、反応容器のセット部に反応容器を随時セットして独立に移動させた時の他の例を示す反応容器群の平面図である。
【
図4A】本発明に係る試料処理装置のステム、磁性チップおよびカバーの一例を示す図である。
【
図4B】上記ステムに磁性チップおよびカバーを装着した時の一例を示す図である。
【
図4C】上記ステムにカバーを装着した時の一例を示す図である。
【
図5A】本発明に係る試料処理装置における反応容器の構成例を示す斜視図である。
【
図6A】本発明の実施例に係る試料処理装置における反応容器の他の構成例を示す平面図である。
【
図7A】本実施例に係る試料処理装置の反応容器を示す断面図である。
【
図7B】本発明の実施例に係る試料処理方法において、ステムがカバー格納ウェルに降下する段階を示す断面模式図である。
【
図7C】本実施例の試料処理方法において、ステムに、カバーが装着される過程を示す断面模式図である。
【
図7D】本実施例の試料処理方法において、カバー装着後に、反応容器がy軸方向に移動(偏心)する過程を示す断面模式図である。
【
図7E】本実施例の試料処理方法において、カバーを装着したステムがカバー格納ウェルから出る上昇過程を示す断面模式図である。
【
図7F】本実施例の試料処理方法において、カバーを装着したステムの真下に反応ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。
【
図7G】本実施例の試料処理方法において、カバーを装着したステムが反応ウェルに降下する過程を示す断面模式図である。
【
図7H】本実施例の試料処理方法において、カバーを装着したステムが反応ウェルに降下し、下死点に達した過程を示す断面模式図である。
【
図7I】本実施例の試料処理方法において、カバーを装着したステムの真下にカバー格納ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。
【
図7J】本実施例の試料処理方法において、カバーを装着したステムがカバー格納ウェルに降下する過程を示す断面模式図である。
【
図7K】本実施例の試料処理方法において、カバーを装着したステムがカバー格納ウェルに降下し、下死点に達した過程を示す断面模式図である。
【
図7L】本実施例の試料処理方法において、カバーを装着したステムがカバー格納ウェルに降下し、下死点に達した後、反応容器がy軸方向に移動(偏心)する過程を示す断面模式図である。
【
図7M】本実施例の試料処理方法において、ステムがカバーを脱離して上昇する過程を示す断面模式図である。
【
図7N】本実施例の試料処理方法において、ステムの真下に磁性チップ格納ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。
【
図7O】本実施例の試料処理方法において、ステムが磁性チップ格納ウェルに降下する過程を示す断面模式図である。
【
図7P】本実施例の試料処理方法において、反応容器がy軸方向に移動する過程を示す断面模式図である。
【
図7Q】本実施例の試料処理方法において、磁性チップを装着したステムが上昇する過程を示す断面模式図である。
【
図7R】本実施例の試料処理方法において、磁性チップを装着したステムの真下にカバー格納ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。
【
図7S】本実施例の試料処理方法において、磁性チップを装着したステムがカバー格納ウェルに下降する過程を示す断面模式図である。
【
図7T】本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムがカバー格納ウェルに降下し、下死点に達した後、反応容器がy軸方向に移動(偏心)する過程を示す断面模式図である。
【
図7U】本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムが上昇する過程を示す断面模式図である。
【
図7V】本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムの真下に反応ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。
【
図7W】本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムが反応ウェルに下降する過程を示す断面模式図である。
【
図7X】本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムが磁性ビーズを捕集する過程を示す断面模式図である。
【
図7Y】本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムが磁性ビーズを捕集したまま上昇する過程を示す断面模式図である。
【発明を実施するための形態】
【0015】
以下、本発明に係る実施の形態、特に試料処理装置、試料処理方法及びこれらに使用する反応容器について、図面を参照しながら詳細に説明する。ただし、本発明はここで取り上げた実施の形態に限定されるものではない。
(試料処理装置の構成)
図1に、本発明に係る試料処理装置の構成例を模式的に示す。試料処理装置は、載置台101と、処理対象の生物学的試料を充填した試料容器を収容できる検体ラック102と、複数の試薬瓶を収容できる試薬ラック103と、複数のディスポーザブルチップを収容したチップラック104と、廃棄物を捨てるための廃棄物用容器117と、載置台101の一面に対向する位置にx軸、y軸、z軸方向に移動可能に配置されるノズル機構105と、ノズル機構105の移動、吸引および吐出を制御する駆動制御部109と、生物学的試料から生物学的分子を抽出、分離、精製する一連の処理が行なわれる反応容器110と、この反応容器110と協働して前記一連の処理を行うために用いる一体式ステム機構111と、反応容器110を複数並置できる反応容器セット部120と、反応容器セット部120にセットされた反応容器110を、反応容器ごとに独立して並進運動(直進移動)させる反応容器移動機構(
図2Aの反応容器搭載ステージ201、可動子202、スクリューロッド203、サーボモータ(アクチュエータ)116)とを備えている。
【0016】
なお、本文中の生物学的試料とは、特に限定されないが、(1)ヒトを含む動物から採取された血液、血漿、組織片、体液及び尿といった生体試料、(2)動物細胞、植物細胞及び昆虫細胞などの細胞、(3)細菌、真菌および藻類等の微生物、(4)ウイルス(ウイルス感染細胞を含む)などである。また、生物学的試料とは、これら細胞、微生物及びウイルスを培養した培養液と、これら細胞、微生物及びウイルスを懸濁した懸濁液を含むものである。また、これら生物学的試料には、試料処理装置による分離抽出や精製の対象となる生物学的分子が含まれている。ここで、生物学的分子とは、DNAやRNA等の核酸、酵素や抗体等のタンパク質、ペプチド断片を意味する。なお、本発明に係る試料処理装置が分離抽出や精製の対象とするものは、核酸やタンパク質、ペプチド断片に限定するものではなく、細胞や微生物が産生する化合物(有機化合物や低分子化合物)も含む。
【0017】
検体ラック102は、異なる又は同一の生物学的試料を充填した複数の検体チューブを収容できる箱形を呈している。検体ラック102には、複数の検体チューブがノズル機構105によって分注できるように、また、分注の終わった検体チューブを装置外部に取り出し、次の検体チューブをセットできるように配置されている。 試薬ラック103は、複数の試薬瓶を収容できる箱形を呈している。試薬ラック103には、生物学的試料に対して実施する処理によって、異なる試薬瓶を収容することができる。例えば、生物学的試料から核酸成分を抽出する処理を実施する場合には、カオトロピック剤を含有する溶液の試薬瓶、洗浄液の試薬瓶、溶離液の試薬瓶および反応容器110に分注するオイルの試薬瓶等を試薬ラック103に収容することができる。
【0018】
反応容器110は、後述する複数の処理部となるウェルが列をなして配設されている箱形容器からなる。ウェルについては、種々の態様のものが存在するが、本実施例では、
図5Aにカバー格納ウェル501、磁性チップ格納ウェル502、反応ウェル503、洗浄ウェル(#1)504、洗浄ウェル(#2)505、溶出ウェル506が例示されている。反応容器110は、試料処理装置に、バッチ処理を目的として複数のものを一括セットできるが、任意の数だけセットすることも可能であり、また、随時、必要に応じて追加セットして、それぞれ独立して一連の処理をランダムに進行させることができる。この反応容器110のセット部120は、各反応容器110が独立して並進(直進)動作できる機構を備えている。この並進動作機構及び反応容器については、追って詳述する。
【0019】
ノズル機構105は、図示しないが、内部が筒状となっており、ポンプ等の吸引・吐出駆動装置と接続される。
【0020】
ノズル機構105は、ノズル機構移動用ガイドX108に沿ってx軸方向に移動し、ノズル機構移動用ガイドY107に沿ってy軸方向に移動し、ノズル機構移動用ガイドZ106に沿ってz軸方向に移動する。これらのx軸、y軸、z軸の3軸方向に移動させる駆動メカニズムは、周知であるので、詳細な説明は省略する。ノズル機構105はこのx軸方向、y軸方向およびz軸方向の移動の組み合わせによって、載置台101上の検体ラック102、試薬ラック103、反応容器セット部120間を移動して検体や試薬を吸引および吐出することができる。例えば、ノズル機構105は、検体ラック102から検体を吸引し、反応容器110中の反応ウェル503へ移動し、該ウェルに検体を吐出することができる。また、ノズル機構105は、試薬ラック103から試薬を吸引し、反応容器110中の反応ウェル503へ移動し、該ウェルに試薬を吐出することができる。また、ノズル機構105は、試薬ラック103から洗浄液を吸引し、反応容器110の洗浄ウェル(#1)504および洗浄ウェル(#2)505へ移動し、該ウェルに洗浄液を吐出することができる。また、ノズル機構105は、試薬ラック103から抽出液を吸引し、反応容器110の溶出ウェル506へ移動し、該ウェルに抽出液を吐出することができる。
【0021】
ノズル機構105は、先端にチップラック104に搭載したディスポーザブルチップを装着することができる。試料処理装置のユーザーは、必要に応じて、ノズル機構105に装着されているディスポーザブルチップを、チップラック104上のものと交換することができる。ディスポーザブルチップを交換することで、試薬や試料間のコンタミネーションやキャリーオーバーを回避することができる。ディスポーザブルチップは、ポリエチレン、ポリプロピレン、ポリカーボネートなどの樹脂を素材として作製することができる。
【0022】
また、試料処理装置のユーザーやメーカーは、あらかじめ必要な試薬や洗浄液を反応容器中の複数のウェルに入れておくことも可能である。この場合は試薬ラック103の一部またはすべてが不要となることもある。さらに、下流の分析において、キャリーオーバーやコンタミネーションの影響がないと判断される場合は、チップラック104の一部またはすべてを不要としてもよい。
【0023】
反応容器セット部120の上方には、一体式ステム機構111が上下方向(z軸方向)に移動可能に配置されている。一体式ステム機構111は、複数のステム(401a〜401d)と、これらのステムを一体に支持してz軸方向に移動させるステム上下移動機構130とにより構成される。複数のステム(401a〜401d)は、それぞれのステムホルダ(113a〜113d)を介して共通の支持部材131により支持され、この支持部材131を介してステム上下移動機構130により一軸(z軸方向)の運動を行う。ステム上下移動機構130については、例えばモータ(アクチュエータ)の回転運動をz軸方向の直進運動に変換する機構、ソレノイド(アクチュエータ)のオン、オフによりz軸方向の直進運動を行う機構など種々のものが考えられるが、一体式ステム機構駆動制御部112の電気信号により制御可能なものであれば、その形態を限定するものではない。
【0024】
本実施例では、ステム上下移動機構130は、複数のステム共通の支持部材131を上下移動させることで一つの駆動装置で複数のステムの上下移動を一括して可能にしている。このようにすれば、駆動装置の数を減らすことができる。ただし、これに限定されるものではなく、例えばステム上下移動機構130のサーボモータ(アクチュエータ)として用いるモータは、ステム全体で一つであり、また、それにより回転する回転軸については共通であるが、回転軸の回転をz軸方向に変換する機構(例えばカム機構)については個々のステムに備えられて、ステムがそれぞれのカム動作により上下移動するように構成することも可能である。またそれぞれのステムにソレノイドのような機構を備えて、ステムを個別に上下移動させることも、コスト的に問題がなければ可能である。
【0025】
これらのステム(401a〜401d)は、反応容器110の移動方向(y軸方向)と交差する方向(x軸方向)に列をなし、反応容器セット部120に並置される反応容器110同士のウェル(処理部)間のピッチに合わせたピッチで配列されている。一体式ステム機構111のz軸方向の位置以外の位置(x軸、y軸方向位置)は固定であり、例えば反応容器セット部120における反応容器110の初期位置(
図1の実線の位置)の任意のウェルの上方に位置している。
【0026】
一体式ステム機構111は、一体式ステム機構駆動制御部112によって定められたタイミングで、周期的な上下運動を行う。
【0027】
一体式ステム機構111は、反応容器セット部120にセット可能な、反応容器110の最大数に等しい数のステムを備えている。言い換えれば、反応容器セット部120は、ステムの個数以下の反応容器110を任意に配設することができる。より具体的には、一体式ステム機構111のステムは例えば8〜12連程度までの並列化が可能である。ステムを並列化することで、単位時間当たりの処理能力(スループット)を向上させることが可能となる。
【0028】
反応容器110は、後述するようにサーボモータ(アクチュエータ)116によって定められたタイミングで、ガイド溝115に沿って、y軸方向に移動することができる(
図1で、反応容器110が、実線と破線の領域で移動する)。
【0029】
また、試料処理装置は、ノズル機構駆動制御部109、一体式ステム機構駆動制御部112、反応容器駆動制御部132を統括的に制御するコンピュータ133を備える。コンピュータ133は、処理条件や生物学的試料に関する情報、その他の各種情報を入力して、後述する試料処理方法を実行するための制御信号を生成する。
(反応容器の移動)
図2Aに、
図1における反応容器セット部120をx軸方向から見た断面模式図を、
図2Bに、
図1における反応容器をy軸方向から見た断面模式図を示す。
【0030】
反応容器110は、ステージ201の上面に載置される。ステージ201の下面には、複数の可動子202が取り付けられている。可動子202には雌ねじが設けられ、この雌ねじにスクリューロッド203が貫通している。スクリューロッド203は、サーボモータ(アクチュエータ)116によって回転駆動する。サーボモータ(アクチュエータ)116は、反応容器セット部120にセット(並置)可能な反応容器110の最大数だけ備えられ、反応容器駆動制御部132からの制御信号により駆動制御される。サーボモータ(アクチュエータ)116の駆動により、反応容器110はステージ201とともに、ガイド溝115に沿ってy軸方向(
図2A中矢印の方向)に移動することができる。
【0031】
反応容器110は最大数セット可能な範囲内で、反応容器セット部120にセットすることが可能であり、それぞれが対応のサーボモータ(アクチュエータ)116によりウェルの配列方向に独立して移動(並進)制御される。
図1に示すように、当初から複数の反応容器(
図3Aでは110a〜110d)をセット(並置)した場合、個々の反応容器は、対応のサーボモータ(アクチュエータ)116によって制御される。この場合、(i)各反応容器110a〜110dで実行される生物学的試料に対する処理が同じである場合には、各反応容器対応のサーボモータ(アクチュエータ)116を同期的に移動制御すれば、この移動制御と一体式ステム機構111とを連動制御することにより(なお、連動制御の具体的内容の一例については追って詳述する)、セットされた複数の反応容器に対して一括した一連の処理が行われる(
図1参照)。また、(ii)複数の反応容器を当初から任意の数だけ並置してセットした場合であっても、各反応容器の生物学的試料を異ならせたり、及び/又は、処理の手順を異ならせる場合を望むこともあり得る。この場合には、各サーボモータ(アクチュエータ)116を介して反応容器の移動を独立制御して、それぞれの処理条件に応じて、反応容器間で異なるウェル位置が一体式ステム機構111の直下にくるように制御することも可能である。さらに、(iii)処理条件が同じ場合、異なる場合のいずれであっても、任意の数の反応容器を随時必要に応じて(すなわち時間差を有して)反応容器セット部に追加的にセットすることも可能である。この場合にも、(ii)同様に各サーボモータ(アクチュエータ)116を介して反応容器の移動を独立制御する。
【0032】
図3Aに、上記した(ii)、(iii)のように反応容器を独立して移動制御する場合の一例である平面模式図を示す。試料処理を随時に連続して行うことが可能になる。すなわち、1つの反応容器の処理が終了するまで待たなくても、次の反応容器を随時に追加して連続処理を行うことが可能となる。
【0033】
図3Aでは反応容器110a〜110cを随時、時間差を与えてセットした後の反応容器の移動状態を示し、さらに必要に応じて反応容器(110d)を追加可能な空き状態を示している。一体式ステム機構のステムと、反応容器は、例えば12連程度まで並列されることが可能である。
【0034】
図3Bに、反応容器、反応容器セット部、反応容器移動機構の他の態様例の平面図を示す。
図3Aでは、 反応容器は、それぞれ独立して並進運動可能なものを例示したが、
図3Bでは、これに代えて反応容器110´(110a´〜110d´)を、1軸(図示せず)を中心に回転方向(図中、矢印の方向)にそれぞれ独立して移動可能に設定したものである(反応容器110a´〜110d´は、実線と破線の領域で移動する)。ステム機構111´は、ステム上下移動機構により既述したステム機構111同様の動作をなす。反応容器を回転方向に移動させる場合、内側の反応容器と外側の反応容器の単位回転角あたりの移動距離は内側より外側の方が大きくなるので、それに対応させて各反応容器のウェル間のピッチを設定する必要がある。すなわち、反応容器は、内側の反応容器ほどウェル間のピッチが小さくなる。以上の設定により、本態様の場合には、反応容器群は、上からみると扇形を呈する。
(ステム)
ステム401には、磁性チップ402およびカバー405の各開口を通して磁性チップ及びカバーを着脱するための異なる外径部がステム先端側からステム中間部にかけて設けられている。
【0035】
図4A〜
図4Cに、本発明に係るステム401、磁性チップ(例えば、棒状の磁性体)402およびカバー405の一例を示す。各ステム401には、
図4A〜
図4Cに示すよう、磁性チップ402およびカバー405を被せたり、或いは磁性チップ402を被せずに、直接カバー405を被せることが可能である。
【0036】
磁性チップ402およびカバー405は、それぞれ、先端と反対側の基端が開口して、その開口部の内径を、磁性チップ402よりもカバー405の方を大きくしてあり、且つ各開口周縁にフランジ部(404および406)を有している。
また、磁性チップ402は、基端部の内径がステム401の先端部とほぼ同径であり、また先端に向かって径が小さくなる形状であり、ステム401の先端側の一部に、磁性チップ402の基端部をはめることができる。この磁性チップ402は、先端に磁界を発生する磁性体403を有している。
【0037】
カバー405は、基端部の内径がステム401の中間部とほぼ同径であり、また先端に向かって径が小さくなる形状であり、ステム401の中間部に、カバー405の基端部をはめることができる。
【0038】
磁性チップ402の磁性体を除く部分およびカバー405は、素材としてポリエチレン、ポリプロピレン、ポリカーボネートなどの樹脂を用いることができる。
(反応容器)
図5Aに、本発明に係る試料処理装置における反応容器の構成例を斜視図により示す。また、
図5Bに、
図5Aの平面図を示す。
【0039】
反応容器110は、略箱形を呈しており、内部に各種試薬が分注される複数の処理部となるウェル501〜506を有する。
【0040】
ここではそれぞれのウェルを、カバー格納ウェル501、磁性チップ格納ウェル502、反応ウェル503、洗浄ウェル(#1)504、洗浄ウェル(#2)505、溶出ウェル506として説明するが、ウェルの種類や数は、分析の種類に応じて適宜変更することができる。たとえば、洗浄が重要な分析なのであれば、洗浄ウェルを追加してもよい。
【0041】
反応容器110の複数のウェル501〜506は、所定の容積の窪み部として形成される。各ウェルは、カバー405を装着したステム401が、下死点に到達した時に、ウェルの底面とカバーが接触しない深さの窪みを形成している。なお、本例では、溶出ウェル506は、反応ウェル501〜505の容積よりも小さくなるように、反応ウェル501〜505よりも浅い窪み部として形成されている。
【0042】
ウェルの数および容積は特に限定されず、生物学的試料に対する処理の内容に応じて適宜設定することができる。
【0043】
また、反応容器110の各ウェルは、ステム401に取り付けられた磁性チップ402およびカバー405を着脱するための着脱機構を備えている。以下に、この着脱機構について詳細に説明する。
【0044】
着脱機構は、磁性チップ402およびカバー405を保持するための上部押さえ板507および下部押さえ板508で構成される。上部押さえ板507および下部押さえ板508は、各ウェルの開口の直ぐ上に所定の間隔をもって互いに略平行に配置されている。また、
図5Bに示すように、上部押さえ板507及び下部押さえ板508は、各ウェルに対向して切欠き部509が設けられ、切欠き部509は、2種類の曲率の異なる切欠き要素509a、509bからなるダルマ型である。切欠き要素509aは、カバー405の外径に適合できるようにカバー外径と同じ或いはこれよりも小さい曲率で、フランジ部406よりも大きな曲率を有する。切欠き要素509bは、磁性チップ402の外径に適合できるように磁性チップ外径と同じ或いはこれよりも小さい曲率で、フランジ部404よりも大きな曲率を有する。
【0045】
上述したように切欠き要素509a及び509bにより、切欠き部509は、2段切欠き構造をなす。これらの切欠き要素は、上方から見たときに、切欠き要素509bが切欠き要素509aより奥まった位置にあって、切欠き要素509aおよび509bの開口部がそれぞれウェルの中心に向けられており、切欠き要素509b開口部と反対側の一端がウェル開口縁の真上或いはほぼ真上に位置するように形成されている。また、ウェル501〜506に対応するそれぞれの切欠き部509は、反応容器110が反応容器セット部120に搭載された時の移動方向に一直線に並んで形成されている。それらの切欠き要素509a,509bの開口は、上記の反応容器移動方向に向けられている。
【0046】
図7A、
図7Bに示すように、磁性チップカバー405は、ウェル(501〜506)の中心よりも切欠き部509側に偏心させた時に、カバーの外径一部が切欠き要素509aに接して、フランジ部406の一部が上下の押さえ板507、508に引っ掛かるようにしてある。また、磁性チップ402は、カバー無しの状態でウェル(501〜506)の中心よりもさらに切欠き部509側に偏心させた時に、磁性チップ402の外径一部が切欠き要素509bに接して、フランジ部404の一部が上下の押さえ板507、508に引っ掛かるようにしてある。カバー405及び磁性チップ402がウェルと同心の位置或いは切欠き部509と反対側に偏心した位置にある時には、フランジ部406或いは404は押さえ板507、508から外れて、カバー及び磁性チップがウェルに対して出し入れ(抜き差し)すなわち着脱操作が可能になる。
【0047】
上記実施例では、磁性チップカバー用押さえ板と磁性チップ用押さえ板を共通の上部押さえ板507と下部押さえ板508とで構成し、一つの切欠き部509を、これらの押さえ板に形成した2段の切欠き要素509a、509bで構成する。これに代えて、
図6A,
図6Bに示すように、磁性チップカバー用押さえ板と磁性チップ用押さえ板とを、それぞれ、別々にして、前者を上部押さえ板507a、下部押さえ板508aで構成し、後者を上部押さえ板507b、下部押さえ板508bで構成し、さらに前者と後者の押さえ板に、曲率の異なる2種類の切欠き要素(切欠き部)509a、509bを別々に分けて形成してもよい。また、前者と後者の押さえ板を段違いに配置してもよい。
【0048】
このような切欠き構造では、カバー405のフランジ部406を押さえ板507a、508aに引っ掛ける場合には、カバー405をウェルに対して切欠き部509a側に偏心させればよい。また、磁性チップ402のフランジ部404を押さえ板507b、508bに引っ掛ける場合には、磁性チップ402をウェルに対して切欠き部509b側に偏心させればよい。
【0049】
この場合の切り欠き部509a、509bの開口も、反応容器110の移動方向であってウェル中心側に向けられる。
【0050】
また、必要に応じて各反応ウェルの上部は揮発や隣接するウェルへの液の持ち込み防止のために油の層を加えておいてもよい。このような油層技術は、本願出願人の先願である特願2009−285343に開示されている。
【0051】
磁性チップ402は、反応容器110の磁性チップ格納ウェル502にあらかじめ格納されて(
図7Aの502)反応容器110ごと装置にセットされる。この格納は反応容器を供給するメーカーが実施してもよいし、ユーザーがその都度実施してもよい。
【0052】
カバー405は、反応容器110のカバー格納ウェル501にあらかじめ格納されて(
図7Aの501)反応容器110ごと装置にセットされる。この格納は反応容器を供給するメーカーが実施してもよいし、ユーザーがその都度実施してもよい。
【0053】
チップラック104は、複数のディスポーザブルチップを収容する複数の開口部を有している。この開口部は、ディスポーザブルチップの外径よりやや大であり、且つディスポーザルチップのフランジ部よりやや小となる径を有している。
【0054】
廃棄物用容器117は、使用済みのディスポーザブルチップ、磁性チップ402及びカバー405や、処理後の生物学的試料、洗浄液等を廃棄する容器であり箱形を呈している。なお、廃棄物用容器117は、図示しないが、ステム401の先端側の一部や中間部に取り付けられたディスポーザブルチップ、磁性チップ402及びカバー405を取り外すための取外し機構を備えていることが好ましい。取外し機構としては、例えば、ディスポーザブルチップのフランジ部、磁性チップ402のフランジ部404及びカバー405のフランジ部406に当接し、ステム401を上方に駆動することでこれらフランジ部を下方に押し下げる押圧板を採用することができる。なお、取外し機構は、ステム401及び廃棄物容器117のうちいずれか一方に備わっていればよい。
【0055】
ノズル機構駆動制御部109は、図示しないが、モータ等の動力源、動力源からの動力を伝達するギア機構及びアーム等からなる駆動機構と、上述したノズル機構105を
図1中のx軸、y軸及びz軸に沿って移動及び吸引/吐出による分注動作させる制御信号を当該駆動機構に出力する制御基板とを備えている。なお、制御基板には、コンピュータ133で操作者が設定した各種条件が入力されるまたはあらかじめ設定した各種条件を読み出して使用する。
【0056】
ところで、上述した試料処理装置は、カバー着脱機構を有する反応容器110を載置台101に取り付ける構成であった。しかしながら、試料処理装置は、反応容器110を取り付ける位置にカバー脱着機構を備えてもよい。すなわち、試料処理装置がカバー着脱機構を有する構成であってもよい。
【0057】
以上のように構成された試料処理装置は、生物学的試料に対する様々な処理を実施することができる。
【0058】
以下、上記構成をなす試料処理装置を用いた生物学的試料の処理方法の実施例について説明する。
【実施例】
【0059】
以下では、生物学的試料から核酸成分を抽出する処理を実施する形態を例として試料処理方法を説明する。
【0060】
具体的には、試料処理方法は、(1)核酸及びその他の不純物を含有する試料にカオトロピック剤存在下でシリカコーティングされた磁性ビーズを混合し、(2)当該磁性ビーズの表面へ核酸を吸着させ、(3)核酸を吸着した磁性ビーズを分離し、(4)洗浄した後に磁性ビーズから核酸を溶離する核酸抽出を実施する。しかも、複数の反応容器110の上方にある一体式ステム機構111は、一体型であるゆえ単純な上下動作、または、あらかじめ設定された周期的な上下動作をのみを行う。あらかじめ設定された周期的な上下動作とは、たとえば上死点と下死点を往復する運動において、単純な往復動作ではなく、上死点および下死点または特定の高さでは0.5秒の停止時間を設けるような設定された周期的動作を指す。
【0061】
本処理装置では、各々の反応容器110が独立にあらかじめ設定されたy軸方向への並進運動を行う。たとえば、一番目の反応容器110aに関して、カバー405の取り付けられたステム401を洗浄ウェル(#1)504で上下運動させる必要がある場合は、反応容器110aを乗せた載置台101上のステージ201がy軸方向に移動し、カバー405の真下に洗浄ウェル(#1)504を位置させて停止すれば、単純に上下運動をする一体式ステム機構111に直結したカバー405は、洗浄ウェル(#1)504内で上下運動を行うこととなる。このとき、隣接する反応容器110bは、これのy軸方向への並進運動を独自に制御するプログラムによって、カバー405と異なるまったく別の位置に配置することが可能である。
【0062】
この反応ウェル110ごとに独立したy軸方向への並進運動によって、ステージ201に反応容器110が搭載されていなければ、随時反応容器110を搭載することが可能となって、試料のコンティニュアスローディングが実現できる。
【0063】
より具体的な一つの反応容器ステージの動作としては、先ず、
図7Aに示すように、反応ウェル503に処理対象の生物学的試料とカオトロピック剤や界面活性剤を含む溶液701、洗浄ウェル(#1)504、洗浄ウェル(#2)505に洗浄液、溶出ウェル506に溶離液を分注する。これら溶液をウェル501〜506に分注する際には、ノズル機構105にディスポーザブルチップを取り付ける。ディスポーザブルチップをノズル機構105に取り付けるには、先ず、ノズル機構駆動制御部109による制御によりノズル機構105を、チップラック104に収容されたディスポーザブルチップの基端部の中心とノズル機構105の先端部とが正確に対向する位置に移動させる(x軸及びy軸方向の移動)。次に、ノズル機構駆動制御部109による制御により、ノズル機構105を下方(z軸)に移動させることによって、ノズル機構105の先端部にディスポーザブルチップを取り付けることができる。以上の一連の動作により、ノズル機構105にディスポーザブルチップを取り付けることができる。
【0064】
そして、ディスポーザブルチップを取り付けた状態で、ノズル機構駆動制御部109による制御によりノズル機構105を試薬ラック103の上方に移動し、試薬瓶の内部にディスポーザブルチップの先端を挿入し、図示しないポンプ手段等の吸引・吐出駆動装置により所定量の溶液を吸引する。
【0065】
その後、ノズル機構駆動制御部109による制御により、ノズル機構105を反応容器110の上方に移動し、ディスポーザブルチップの先端を所定のウェル(501〜506のいずれか)上に位置決めする。この状態で吸引・吐出駆動装置が作動し、ディスポーザブルチップ内に吸引した溶液を所定のウェル(501〜506のいずれか)内に分注することができる。
【0066】
溶液を分注し終わると、ノズル機構駆動制御部109による制御によりノズル機構105を廃棄物用容器117の上方に移動し、ノズル機構105又は廃棄物用容器117に取り付けられた取外し機構(図示せず)を作動させて、使用済みのディスポーザブルチップを廃棄する。
【0067】
以上の一連の動作は、洗浄液や溶離液、カオトロピック剤や界面活性剤を含む溶液を分注する際に共通する動作である。なお、生物学的試料の分注については、検体ラック102に収容された検体チューブから所定量の生物学的試料を吸引する以外は、以上の一連の動作により実施される。また、洗浄液、溶離液、生物学的試料及びカオトロピック剤や界面活性剤を含む溶液を分注する際には、それぞれ異なるディスポーザブルチップが使用される例を示したが、反応によってはディスポーザブルチップを使わなくてもよい。また装置上でノズル機構105が各種試薬や検体の分注を実施したが、各種試薬はその反応容器110への分注を、メーカが予め実施してもよいし、装置外部で分析者が予め実施してもよい。また検体の分注も装置外部で分析者が実施してもよい。
【0068】
次に、
図7Aに示すように、処理対象の生物学的試料が分注された反応ウェル503に対して、シリカコーティングされた磁性ビーズ702を図示されない磁性ビーズ分注機構により分注する。なお、磁性ビーズ702は、予め反応ウェル503に分注されていても良いし、磁性ビーズ702を分散した溶液を上述したノズル機構105の動作と同様にして、反応ウェル703に分注しても良い。また、
図7Aに示した段階で生物学的試料を分注したが、生物学的試料は磁性ビーズ702とともに或いは順次この段階で分注されても良い。
【0069】
ここで、磁性ビーズ702とは、例えば、バイオテクノロジーの分野で従来使用されている磁性体としての特徴を有するビーズであれば如何なる材質、形状及び粒径のものを使用することができる。また、試料処理装置において核酸抽出処理を実施する場合は、核酸吸着能を有する磁性ビーズ702を使用する。核酸吸着能は、磁性体からなるビーズの表面をシリカコーティングすることによって付与することができる。
【0070】
この段階では、反応ウェル503にカオトロピック剤が存在するため、生物学的試料に含まれていた核酸成分がシリカコーティングされた磁性ビーズ702の表面に吸着する。また、この段階では、反応ウェル503の内部を撹拌しても良い。反応ウェル503の内部を撹拌するには、例えば、反応容器110の外部から磁界を周期的に印加することで磁性ビーズ702を内部で移動させる方法、又は、ステム401にカバー405を取り付け、一体式シャフト機構駆動制御部112で一体式ステム機構111を制御してステム401に取り付けたカバー405を反応ウェル503内部で揺動させる方法を使用することができる(
図7H)。
【0071】
必要に応じて各反応ウェルの上部は揮発や隣接するウェルへの液の持ち込み防止のために油の層を加えておいてもよい。
【0072】
本実施例にポイントとなる一連の動作(核酸の抽出、分離、精製)は、ウェル501〜506に、
図7Aに示すように、それぞれ、カバー405、磁性チップ402、反応溶液(試料、試薬)および磁性ビーズ、洗浄液、溶離液を準備した後に、以下の通り行なわれる。以下の一連の動作において、既述したように一体式ステム機構110はステム上下移動機構により上下移動し、各反応容器110は、各反応容器移動機構によりウェル配列方向にステージ201を介して移動する。また、これらの移動機構は、上位のコンピュータ113の制御指令にしたがってステム機構駆動制御部112、反応容器駆動制御部132を介して連動制御される。
【0073】
図7Aは、磁性ビーズを含む試薬、検体が分注された反応容器が装置上の反応容器セット部120に搭載されている状態である。
【0074】
複数のステム401は、所定の位置(
図1に示す位置)で設定された周期的な上下運動を行っている。ここでは単純な往復動作ではなく、上死点および下死点では0.5秒の停止時間を設けるような設定された周期的動作を行うものとする。
【0075】
まず、反応ウェル503内の混合液を攪拌するために、ステム401にカバー405を取り付ける。
【0076】
一体式ステム機構111が上死点にあって0.5秒停止している間に、ステム401の真下にカバー格納ウェル501が来るように反応容器110を移動させる(なお、以後の反応容器110の移動に関してもステージを介して行なわれる)。0.5秒の待ち時間を経た後、ステム401は下降し(
図7B)、ステム401にカバー405が取り付けられる(
図7C)。カバーの取り付け位置は、一体式ステム機構111の下死点である。反応容器内のカバー保持部(上部押さえ板507と下部押さえ板508の隙間)からカバーを取り外すために、
図7Dに示すように、反応容器110を、わずかにy軸方向(
図7D中、矢印の方向)に移動(偏心)させる。この時点で一体式ステム機構111が上昇すると、
図7Eに示すように、ステム401と、それに取り付けられたカバー405が反応容器110から取り出される。
【0077】
図7Fで一体式ステム機構111が反応容器110の上方にあるうちに、ステム401の真下に反応ウェル503が来るように、反応容器110を移動させる。
【0078】
図7Gで一体式ステム機構111が降下して反応ウェル503内に進入する。このときのステム401及びカバー405の降下位置は、ウェル中心に対して切欠き部509と反対側に偏心した状態にある。それにより、カバー405のフランジ部406は、押さえ板507,508に干渉することなく降下可能になる。
【0079】
図7Hで一体式ステム機構111が下死点に到達する。この位置でステージ201は停止制御されており、カバー405による複数回の攪拌がなされる。
【0080】
攪拌後には、後述するように磁性ビーズを洗浄する。
【0081】
図7Iで一体式ステム機構111が上死点にある時にステージ201は、カバー405の真下にカバー格納ウェル501が来るように反応容器110を移動させる。
【0082】
この位置で待機すると、一体式ステム機構111が下降して(
図7J)、下死点に到達する(
図7K)。下死点で一体式ステム機構111が0.5秒停止しているうちに、反応容器110を、y軸方向にわずかに切欠き部509側に移動(偏心)させ(
図7L中、矢印の方向)、カバー405のフランジ部406がカバー保持部(上部押さえ板507と下部押さえ板508の隙間)に挟まるようにする。ここで待機すると、一体式ステム機構111は上昇するので、カバー405が押さえ板507,508に押さえられて、カバー405がステム401から取り外される(
図7M)。
【0083】
図7Nで一体式ステム機構111が上死点に到達したら、ステム401の真下に磁性チップ格納ウェル502が来るように反応容器110を移動させる。ここで待機すると、
図7Oのように、一体式ステム機構111が下降して、ステム401に磁性チップ402が取り付けられる。
【0084】
図7Pで反応容器110をわずかにy軸方向に動かして(すなわち切欠き部509と反対側に偏心させて)、磁性チップ402を磁性チップ保持部(上部押さえ板507と下部押さえ板508の隙間)から外し、
図7Qで一体式ステム機構111を上昇させれば、磁性チップを装着したステム401が反応容器110の上方に位置する。
【0085】
図7R〜Uの動作で、ステム401には磁性チップ402の上からカバー405が取り付けられる。すなわち、
図7Rでは、磁性チップ402を装着したステム401の真下にカバー格納ウェル501が来るように、反応容器110を移動させる。
図7Sでは、一体式ステム機構111を降下させて、磁性チップ402付きのステム401をカバー格納ウェル501に進入させる。これにより、カバー405がステム401に装着される。
図7Tでは、反応容器110をわずかに矢印方向に移動させる(カバー格納ウェル501に対して、カバー及び磁性チップ付きステム401が相対的に切欠き部509と反対側に偏心する方向の移動)。これによりカバー及び磁性チップ付きステム401が押さえ板507,508から外れる。この状態で、
図7Uに示すように、カバー及び磁性チップ付きステム401が引き上げられる。
【0086】
図7Vで、磁性チップ402及びカバー405を装着したステム401の真下に反応ウェル503が来るように、反応容器110を移動させ、この位置で反応容器110を停止させる。
図7Wで一体式ステム機構111を下降させて、磁性チップ402及びカバー405を反応ウェル503に進入させると磁性ビーズの702の捕集が行われる。
図7Xで、上記磁性ビーズ捕集を行なっているときに、ステム機構が下死点で一時的に停止し、その後に
図7Yに示すように一体式ステム機構111が上昇する。1回のステム往復(昇降)運動で磁性ビーズの捕集が十分なされない場合は、一体式ステム機構を複数回往復(上昇、下降)させるように設定すればよい。
【0087】
以降図示はしていないが、一体式ステム機構駆動制御部112によって、一体式ステム機構111を反応容器110の上方に位置させた状態(磁性ビーズ702を捕集した状態:
図7Yの状態)で、磁性チップ402及びカバー405の真下(すなわち一体式ステム機構の真下)に洗浄ウェル(#1)504が来るように、反応容器110を移動させる。その後、ステム機構111を下降させて、洗浄ウェル(#1)504に磁性ビーズ付きカバー405及び磁性チップ402を進入させる。ステム機構111が下死点に達した後に、カバー405のフランジ部406が洗浄ウェル(#1)504上方の押さえ板507,508に挟まれる(係止する)ように、反応容器110をわずかに移動させる(すなわち、カバー405を押さえ板の切欠き部509側に偏心させる)。この状態で、カバー405を残して、ステム401に磁性チップ402を装着した状態で、ステム機構111を上昇させ、ステム機構111の真下に磁性チップ格納ウェル502が来るように反応容器110を移動させる。この動作により磁性ビーズ702は、カバー405から離れて洗浄ウェル(#1)504の洗浄液内に浸漬される。ステム401に装着した磁性チップ402を磁性チップ格納ウェル502に戻すために、既述した
図7N〜
図7Qの逆動作(すなわち
図7Q〜
図7Nの動作)を行なうようにステム機構111および反応容器110を動作させる。その後に、ステム機構111の真下に再度、洗浄ウェル(#1)504が来るように反応容器110を移動させる。その後、ステム機構111を下降させて、洗浄ウェル(#1)504の押さえ板507,508に係止されているカバー405をステム401に再度装着し、カバー405の押さえ板に対する係止が解除されるよう反応容器110をわずかに移動させてステム機構111を上下運動させる。この上下運動により洗浄液内で攪拌が行なわれ洗浄ウェル(#1)504内で磁性ビーズ702での洗浄が行なわれる。この洗浄により、生物学的試料に由来するタンパク質等の不純物を磁性ビーズ表面から除去することができる。
【0088】
なお、上記の洗浄において、
図7N〜
図7Qの逆動作を行なわずに、カバー405を押さえ板507,508で洗浄ウェル(#1)504に残して)、一体式ステム機構111を上昇させるだけでも、磁性チップ402がステム401と共にカバー405から離れるので、磁性ビーズ702がカバー405から離脱して洗浄ウェル中の洗浄液中に浸漬される。ただし、この場合には、上記したようなカバーの上下動による攪拌作用は期待できず、洗浄時間は洗浄液攪拌を伴うものよりも長くなる。
【0089】
第1回目の洗浄後、再び磁性チップ402及びカバー405がステム401に装着されるように反応容器110とステム機構111を移動制御して、この磁性チップ402及びカバー405を洗浄ウェル(#1)504に位置させると、カバー405に磁性ビーズ702が再び捕集される。このように磁性ビーズ702を捕集した状態でステム機構111を上昇させて、ステム機構111の真下に洗浄ウェル(#2)505が来るように反応容器110を移動させる。その後、図示しないが、反応容器110及びステム機構111を、第1回目の洗浄同様に動作させることで、第2回目の洗浄動作が実施される。
【0090】
次に、磁性チップ402と洗浄後の磁性ビーズ702を吸着したカバー405とを装着したステム401を、ステム機構111の上下移動制御および反応容器110のウェル配列方向の移動制御により溶出ウェル506に相対移動させる。その後、洗浄過程で実施されたカバー着脱操作及び磁性チップ着脱操作と同様の操作(ステム上下移動及び反応容器配列方向移動制御)が、溶出ウェル506と磁性チップ格納ウェル502間でも行なわれる。それにより、磁性ビーズ702をカバー405から離脱させて溶出ウェル506内の溶離液内に浸漬させる。既述したように、ここまでの各々の過程は、ステム機構駆動制御部112による一体式ステム機構111の周期的上下運動制御と、反応容器駆動制御部132による反応容器110のウェル配列方向(y軸方向)への並進運動制御のみで実現できる。
【0091】
この溶出ウェル506では、磁性ビーズ702の表面に吸着した核酸成分を溶離液中に溶離させることができる。以上の過程により、核酸の抽出、分離、精製の一連の処理が行なわれる。最後に、溶離液中の磁性ビーズ702を、磁性チップ402を利用して再びカバー405の先端に捕集する。
【0092】
磁性ビーズ702を捕集した使用済みの磁性チップ402およびカバー405は、廃棄されることになるが、本実施例では、一体式ステム機構111にz軸方向の移動機構130の他にx軸方向,y軸方向の移動機構(図示省略)を加えて、ステム機構駆動制御部112による制御により一体式ステム機構111を廃棄物用容器117の上方に移動し、ノズル機構105又は廃棄物用容器117に取り付けられた取外し機構を作動させて、先端に磁性ビーズ702を捕捉した状態でカバー405及び磁性チップ402を廃棄するように設定している。ここではカバー405のみ取り外して廃棄して、接液していない磁性チップ402は回収して再利用してもよい。
【0093】
なお、一体式ステム機構111にz軸方向の移動機構(ステム上下移動機構)だけを与えて、磁性チップ402及びカバー405の廃棄については、反応容器110の交換時にユーザー自身が回収して廃棄物用容器に廃棄するようにしてもよい。このようにすれば、一体式ステム機構はz軸方向の移動だけで済むので、機構及び制御の簡略化を図ることができる。
【0094】
本実施例に係る試料処理装置を用いた核酸抽出方法では、磁性ビーズ702をカバー405の先端に捕集(捕捉)して反応ウェル503〜溶出ウェル506へと移動させている。
【0095】
従来の技術は反応容器の数だけ試料の分注ノズルが準備されている。このような従来技術は、すべての検体をバッチで処理する場合には、一つのシリンジポンプで共通の試薬や、対応する位置にある検体を反応容器の数だけの分注ノズルで吸引吐出すればよいが、すべての反応容器内での動作が同じであるため、典型的なバッチ処理である。もし、反応容器の各々にシリンジポンプを備える構造とするなら、各々の反応容器に、シリンジポンプ、xyz軸移動機構を配置せねばならず、装置のコストを増大させる。
【0096】
本実施例は、装置の内部での分注は、1つのシリンジポンプに実行させて、反応容器で行なわれる生物学的分子の抽出に関する一連の処理(攪拌、磁性ビーズ捕集等)は、一体式ステム機構のz軸方向の動作と、各反応容器のy軸方向への1軸運動によって実現している。特に、z軸方向の運動は、処理の並列数によらず軸の数は1軸であり、並列度を上げるには、1反応容器あたりy軸を1軸追加すればよいので、装置コストを抑えることができる。
【0097】
さらに、本実施例の試料処理装置および試料処理方法によれば、磁性ビーズを用いた生物学的分子の抽出、分離、精製の一連の処理において、反応容器(検体)をランダムに随時に処理装置に追加して、反応容器ごとにそれぞれ独立して一連の処理(例えば、細胞を破砕して溶液中に生物学的分子を抽出すること、抽出された生物学的分子を磁性ビーズにより溶液から分離すること、磁性ビーズを洗浄してそこに吸着された生物学的分子を溶離液により溶出(精製)させることの処理)を実施することができる。
【0098】
さらに本実施例の反応容器は、各種処理が行なわれるウェルの配列方向が、反応容器の移動方向と一致し、反応容器に設けた磁性チップ及びそのカバー用の着脱機構(押さえ板)の切欠き部が前記ウェルの配列方向に一致して設けられ、かつこれらの切欠き部の開口もウェルの配列方向に向けられているので、上記の試料処理方法の実施を可能にする反応容器を提供することができる。